EP3538521A1 - Matériaux destinés à des dispositifs électroluminescents organiques - Google Patents

Matériaux destinés à des dispositifs électroluminescents organiques

Info

Publication number
EP3538521A1
EP3538521A1 EP17792096.4A EP17792096A EP3538521A1 EP 3538521 A1 EP3538521 A1 EP 3538521A1 EP 17792096 A EP17792096 A EP 17792096A EP 3538521 A1 EP3538521 A1 EP 3538521A1
Authority
EP
European Patent Office
Prior art keywords
group
formula
atoms
groups
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17792096.4A
Other languages
German (de)
English (en)
Inventor
Amir Parham
Thomas Eberle
Anja JATSCH
Tobias Grossmann
Jonas Kroeber
Dominik Joosten
Caroline WERN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3538521A1 publication Critical patent/EP3538521A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention describes dibenzofuran compounds which are substituted with carbazole compounds, in particular for use as triplet matrix materials in organic electroluminescent devices.
  • the invention further relates to a process for the preparation of the compounds according to the invention and to electronic devices containing them.
  • organometallic complexes which exhibit phosphorescence are frequently used as emitting materials. For quantum mechanical reasons, up to four times energy and power efficiency is possible using organometallic compounds as phosphorescence emitters. In general, there are still room for improvement in OLEDs, especially in OLEDs that show phosphorescence, for example in terms of
  • phosphorescent OLEDs are not only determined by the triplet emitters used.
  • the other materials used such as matrix materials of particular importance. Improvements to these materials can thus also lead to significant improvements in the OLED properties.
  • Carbazole derivatives and dibenzofuran derivatives are used as matrix materials for phosphorescent emitters in organic electroluminescent devices. JP 2012-049518, US Pat. No. 7,935,434 and US Pat. No. 8,221,908 disclose dibenzofuran derivatives which are substituted by two N-phenylcarbazolyl groups.
  • the object of the present invention is therefore to provide compounds which are suitable for use in a phosphorescent or fluorescent OLED are suitable, in particular as a matrix material.
  • the present invention therefore provides a compound according to one of the following formulas (1), (2), (3) or (4),
  • Formula (4) where for the symbols used: is the same or different CR 'or N at each occurrence, wherein a maximum of two groups A per cycle, preferably at most one group A per cycle, are N; is O or S; is the same or different CR or N at each occurrence, with a maximum of two groups W per cycle for N and where W is C when a group L 1 or L 2 is bonded to this position, or two adjacent groups W together represent a
  • Formula (5) Formula (6) wherein the dashed bonds indicate the linkage of this group, A has the abovementioned meanings and Z is NR, CR 2, O or S; with the proviso that a group W is CR and R at this position stands for a group of the following formula (7) or formula (8) or that two adjacent groups W stand for a group of the formula (5) or (6) ;
  • Formula (8) is the same or different CR 1 or N at each occurrence, with a maximum of two groups Q per cycle for N and where Q is C, if at this position the single bond to formula (1), ( 2), (3) or (4), or two adjacent groups Q together represent a group of formula (5) or (6) and the remaining groups Q are the same or different at each occurrence, where the group of formula ( 7) or formula (8) has at most two groups of formula (5) or formula (6) and A in the case of CR 'is CR 1 , stands for the single bond to formula (1), (2), (3 ) or (4);
  • Ar 1 , Ar 2 is identical or different at each occurrence, an aromatic ring system having 5 to 30 aromatic ring atoms or a Dibenzofuran- or Dibenzothiophenadmi, wherein the aromatic ring system or the Dibenzofuran- or Dibenzothiophen embark each substituted by one or more non-aromatic radicals R substituted can be;
  • two substituents R 1 attached to the same carbon atom or to adjacent carbon atoms may be monocyclic or form polycyclic, aliphatic, aromatic or heteroaromatic ring system which may be substituted with one or more R 2 radicals;
  • R 2 is the same or different at each occurrence selected from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 20 carbon atoms or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, in which one or a plurality of H atoms may be replaced by D, F, CN and which may be substituted by one or more alkyl groups each having 1 to 4 carbon atoms; two or more adjacent substituents R 2 may together form a mono- or polycyclic aliphatic ring system.
  • Adjacent carbon atoms in the context of the present invention are carbon atoms which are directly linked to one another.
  • the two radicals are linked to one another by a chemical bond with the formal cleavage of two hydrogen atoms, with the formulation that two or more radicals can form a ring with one another. This is illustrated by the following scheme.
  • An aryl group for the purposes of this invention contains 6 to 40 carbon atoms;
  • a heteroaryl group contains 2 to 40 C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S, wherein the heteroaryl group preferably contains not more than three heteroatoms.
  • an aryl group or heteroaryl group is either a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene, phenanthrene , Quinoline, isoquinoline, etc., understood.
  • a fused aryl group is a group in which two or more aromatic groups condense to one another via a common edge, ie. H. are fused, such as in naphthalene.
  • fluorene is not a condensed aryl group in the context of the present invention, as in fluorene, the two aromatic groups have no common edge.
  • An aromatic ring system in the sense of this invention contains 6 to 40 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 1 to 40 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S, wherein the heteroaromatic ring system preferably contains not more than four heteroatoms, more preferably not more than three heteroatoms.
  • an aromatic or heteroaromatic ring system is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which several aryl or heteroaryl groups are also replaced by a nonaromatic moiety (preferably less than 10) % the non-H atoms), such.
  • a C, N or O atom or a carbonyl group may be interrupted.
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ethers, stilbene, etc.
  • aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example by a linear or cyclic alkyl group are interrupted. Furthermore, systems in which two or more aryl or heteroaryl groups are bonded directly to each other, such as.
  • biphenyl, terphenyl, quaterphenyl or bipyridine also be understood as an aromatic or heteroaromatic ring system.
  • a cyclic alkyl, alkoxy or thioalkoxy group is understood as meaning a monocyclic, a bicyclic or a polycyclic group.
  • a C 1 -C 20 -alkyl group in which also individual H atoms or Chb groups can be substituted by the abovementioned groups for example the radicals methyl, ethyl, n-propyl, i-propyl, Cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t -hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3-h
  • alkenyl group are, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, Hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl understood.
  • alkynyl group is meant, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
  • a C 1 to C 4 alkoxy group is understood as meaning, for example, methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
  • aromatic or heteroaromatic ring system having 5-40 aromatic ring atoms, which may be substituted in each case with the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic, are understood, for example, groups which are derived from benzene, naphthalene , Anthracene, benzanthracene, phenanthrene, benzophenanthrene, pyrene, chrysene, perylene, fluoranthene, benzfluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans- indenofluorene, cis- or trans-monobenzoindenofluorene, cis-
  • the group L 2 is a single bond.
  • a preferred embodiment of the compound of the formula (1) is thus a compound of the following formula (9), and a preferred embodiment of the compound of the formula (1 a) a compound of formula (9a).
  • W is the same or different at each occurrence as CR, or two W stands for a group of formula (5) or (6) and the remaining W stands for CR, and A is the same or different at each occurrence CR '.
  • W stands for a group of formula (5) or (6) and the remaining W stands for CR
  • A is the same or different at each occurrence CR '.
  • Formula (5a) Formula (6a) wherein the dashed bonds indicate the linkage of this group; n is the same or different 0, 1, 2, 3 or 4 at each occurrence; m is the same or different at each occurrence 0, 1, 2 or 3; wherein in the formulas (13a), (13f), (13j), (13n) a group R is a group according to one of the above-mentioned formulas (7) or (8), wherein additionally: Q is CR 1 , wherein Q is C when the single bond to formula (13a), (13f), (13j) or (13n) is to this position, or two adjacent groups Q together represent a group of formula (5a) or (6a) wherein the group of the formula (7) or formula (8) has at most two groups of the formula (5a) or formula (6a);
  • L 1 and L 2 are both a single bond.
  • the linkage of at least one of the two carbazole groups or carbohydrate derivatives takes place via the 3-position, ie via the position para to the nitrogen atoms.
  • both carbazole groups or carbazole derivatives via the 3-position d. H. linked via the position para to the nitrogen atoms.
  • the single bond to the formula (1), (2), (3) or (4) is particularly preferably arranged in the para position to the nitrogen of the formula (7).
  • compounds of the formulas (1), (2) and (3) or their preferred embodiments very particularly preferably compounds of the formula (1) or their preferred embodiments.
  • Very particular preference is given to compounds in which at least two adjacent groups W together represent a group of the formula (5) or (6), preferably a group of the formula (5a) or (6a).
  • Particular preference is given to compounds in which at least two adjacent groups W together represent a group of the formula (5), preferably a group of the formula (5a).
  • Z is O, NR, where the radical R bound to the nitrogen is not H, or C (R) 2, more preferably NR in which the radical R bound to the nitrogen is not H, or C (R) 2 and most preferably C (R) 2.
  • each of the carbazolyl derivative groups contains at most one group of the formula (5) or
  • the compound of the invention contains a group of the formula (6), it may be bonded in various positions. This is illustrated schematically below by means of preferred embodiments, in which the groups A and the other groups W are CR, by the formulas (G) to (L):
  • the groups Ar 1 and Ar 2 are the same or different and represent an aromatic ring system having 5 to 30 aromatic ring atoms or a dibenzofuran or dibenzothiophene group, each of which may be substituted by one or more non-aromatic radicals R.
  • R non-aromatic radicals
  • Group Ar 1 or Ar 2 for an aromatic ring system having 6 to 24 aromatic ring atoms, preferably having 6 to 18 aromatic ring atoms, more preferably having 6 to 12 aromatic ring atoms or for a Dibenzofuran- or Dibenzothiophenadmi, these groups each by a or more non-aromatic radicals R may be substituted may, but are preferably unsubstituted.
  • Ar 1 and Ar 2 are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1, 2, 3 - or 4-fluorenyl, 1-, 2-, 3- or 4-spirobi fluorenyl, 1-, 2-, 3- or 4-dibenzofuranyl and 1-, 2-, 3- or 4-dibenzothienyl, the each may be substituted by one or more non-aromatic radicals R, but are preferably unsubstituted.
  • Ar 1 or Ar 2 are the structures Ar 1 -1 to Ar 1 -19 or Ar 2 -1 to Ar 2 -19 listed below,
  • Ar 2 - 18 Ar 2 - 19 wherein R has the abovementioned meanings and represents a non-aromatic group, the dashed bond represents the bond to the nitrogen atom and Y 3 is identical or different at each occurrence of CR 2, O or S.
  • the index n is the same or different at each occurrence 0, 1, 2 or 3, more preferably 0, 1 or 2 and most preferably 0 or 1.
  • the index m in compounds of the formulas (13a) to (13p) and (14a) to (14r) the index m, if present, is the same or different at each occurrence 0, 1 or 2, particularly preferably 0 or 1 and most preferably 0.
  • two substituents R which are bonded to the same carbon atom or to
  • substituents R and R ' are particularly preferably selected from the group consisting of H, D, F, CN, a straight-chain alkyl group having 1 to 8 C atoms, preferably having 1, 2, 3 or 4 C atoms, or a branched or cyclic alkyl group having 3 to 8 carbon atoms, preferably having 3, 4, 5 or 6 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms, preferably having 2, 3 or 4 carbon atoms, each with one or R 1 may be substituted, but is preferably unsubstituted, or an aromatic or heteroaromatic ring system having 6 to 24 aromatic ring atoms, preferably having 6 to 18 aromatic ring atoms, more preferably having 6 to 13 aromatic ring atoms, each with one or more not -aromatic radicals R 1 may be substituted, but is preferably unsubstituted; optionally two substituents R bound to the same or adjacent carbon atoms, or two substituents R 'attached
  • the substituents R and R ' are selected from the group consisting of H or an aromatic or heteroaromatic ring system having 6 to 18 aromatic ring atoms, preferably having 6 to 13 aromatic ring atoms, each with one or more non-aromatic R 1 may be substituted, but is preferably unsubstituted.
  • suitable substituents R and R ' are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl,
  • Quaterphenyl in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4-spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1 -, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3- or 4-carbazolyl, which may each be substituted by one or more radicals R 1 , but are preferably unsubstituted.
  • suitable structures R are the same structures as are shown at the front for Ar 1 -1 to Ar 1 -19, these structures then being substituted by R 1 instead of R.
  • the group R bonded to this nitrogen atom is the same or different on each occurrence of an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, which may each be substituted by one or more radicals R 1 , particularly preferably for an aromatic or heteroaromatic ring system with 6 to 18 aromatic ring atoms, which may be substituted by one or more radicals R 1 .
  • substituents R are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1 -, 2-, 3- or 4-spirobifluorenyl, pyridyl, pyrimidinyl, 1, 3,5-
  • suitable structures R are the same structures as are shown at the front for Ar 1 -1 to Ar 1 -19, these structures then being substituted by R 1 instead of R.
  • Z in the structure of the formula (5) is CR 2
  • the radicals R bonded to this carbon atom be the same or different each occurrence of an alkyl group having 1 to 10 carbon atoms represented by a carbon atom or a plurality of radicals R 1 may be substituted, or an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, each of which may be substituted by one or more R 1 , more preferably an alkyl group having 1, 2, 3 or 4 carbon atoms or an aromatic or heteroaromatic ring system having 6 to 18 aromatic ring atoms, which may be substituted by one or more radicals R 1 .
  • the two radicals R can also form a ring system with one another.
  • each occurrence of R 1 is identically or differently selected from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 6 C atoms, preferably 1, 2, 3 or 4 C atoms, or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, preferably having 5 to 24 aromatic ring atoms, particularly preferably having 5 to 13 aromatic ring atoms, which may be substituted by one or more alkyl groups having in each case 1 to 4 carbon atoms, but preferably is unsubstituted.
  • aromatic or heteroaromatic ring systems formed by the formulas (5) or (6) or the formulas (5a) or (6a) are preferably the only aromatic or heteroaromatic ring systems formed by adjacent substituents. It is furthermore preferred if the aromatic or heteroaromatic groups R and R 'or R 1 or R 2 or Ar 1 or Ar 2 in the compound according to the invention does not contain any aryl or heteroaryl groups with more than two directly fused aromatic Six rings have.
  • the compounds of the invention can according to the expert known synthesis steps, such as. As bromination, Suzuki coupling, Ullmann coupling, Hartwig-Buchwald coupling, etc., are shown.
  • a suitable method of synthesis is generally in the following Scheme 2 shown.
  • Scheme 1 shows the synthesis of the 1-bromine-substituted dibenzofuran, which is used as starting material.
  • Scheme 2 shows the functionalization of the dibenzofuran in the 8-position, as well as the conversion to the compounds according to the invention.
  • Another object of the present invention is therefore a process for preparing the compounds of the invention by reacting an optionally substituted 1, 8-dihalo-dibenzofuran or 1, 8-dihalo-dibenzothiophene or a corresponding derivative which contains one or more nitrogen atoms having in the body, with a carbazole derivative, followed by reaction with the another carbazole derivative, wherein the reactions with the carbazole derivatives respectively CC couplings or CN couplings, in particular Suzuki couplings or Hartwig-Buchwald couplings.
  • formulations of the compounds according to the invention are required. These formulations may be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this purpose. Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene,
  • a further subject of the present invention is therefore a formulation comprising a compound according to the invention and at least one further compound.
  • the further compound may be for example a solvent, in particular one of the abovementioned solvents or a mixture of these solvents.
  • the further compound can also be at least one further organic or inorganic compound, which is likewise used in the electronic device, For example, an emitting compound, in particular a phosphorescent dopant, and / or another matrix material. Suitable emissive compounds and other matrix materials are listed in the background in the context of the organic electroluminescent device.
  • the further compound can also be polymeric.
  • an electronic device is understood to mean a device which contains at least one layer which contains at least one organic compound.
  • the component may also contain inorganic materials or even layers which are completely composed of inorganic materials.
  • a further subject of the present invention is therefore the use of the compounds according to the invention or mixtures in an electronic device, in particular in an organic electroluminescent device.
  • the electronic device is preferably selected from the group consisting of organic electroluminescent devices (OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin-film transistors (O-TFTs), organic light-emitting Transistors (O-LETs), organic solar cells (O-SCs), organic dye-sensitized solar cells, organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs), organic Laser diodes (O-lasers) and "organic plasmon emitting devices", preferably organic electroluminescent devices (OLEDs, PLEDs), in particular phosphorescent OLEDs.
  • OLEDs organic electroluminescent devices
  • O-ICs organic integrated circuits
  • O-FETs organic field effect transistors
  • OF-TFTs organic thin-film transistors
  • O-LETs organic light-emitting Transistors
  • O-SCs organic
  • the organic electroluminescent device includes cathode, anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers and / or charge generation layers. Likewise, interlayers (interlayers) can be introduced between two emitting layers, which have, for example, an exciton-blocking function. It should be noted, however, that not necessarily each of these layers must be present. In this case, the organic electroluminescent device may contain an emitting layer, or it may contain a plurality of emitting layers.
  • emission layers are present, they preferably have a total of a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie in the emitting layers different emitting compounds are used, which can fluoresce or phosphoresce.
  • Particularly preferred are systems with three emitting layers, wherein the three layers show blue, green and orange or red emission.
  • tandem OLEDs are also preferred. These can be fluorescent or phosphorescent emission layers or hybrid systems in which fluorescent and phosphorescent emission layers are combined with one another.
  • a white-emitting electroluminescent device can be used, for example, for lighting applications, but also in combination with a color filter for full-color displays.
  • the compound of the invention according to the above-mentioned embodiments can be used in different layers, depending on the exact structure.
  • an organic electroluminescent device comprising a compound according to formulas (1), (2), (3) or (4) or according to the preferred embodiments as matrix material for fluorescent or phosphorescent emitters or for emitters comprising TADF (thermally activated delayed fluorescence) demonstrate, in particular for phosphorescent emitters, and / or as electron-transport or hole-blocking material in an electron-transport layer and / or in a hole-blocking layer, depending on the exact substitution.
  • TADF thermalally activated delayed fluorescence
  • the compound according to formulas (1), (2), (3) or (4) or according to the preferred embodiments is used as matrix material for a phosphorescent compound in an emitting layer.
  • the organic electroluminescent device may contain an emitting layer, or it may contain a plurality of emitting layers, wherein at least one emitting layer contains at least one compound according to the invention as matrix material.
  • the matrix material for an emitting compound in an emitting layer it is preferably used in combination with one or more phosphorescent materials (triplet emitters).
  • Phosphorescence in the sense of this invention is understood to mean the luminescence from an excited state with a spin multiplicity> 1, in particular from an excited triplet state.
  • all luminescent transition metal complexes and luminescent lanthanide complexes are to be regarded as phosphorescent compounds.
  • the mixture of the compound according to the formulas (1), (2), (3) or (4) or according to the preferred embodiments and the emitting compound contains between 99 and 1 vol.%, Preferably between 98 and 10 vol. %, particularly preferably between 97 and 60% by volume, in particular between 95 and 80% by volume of the compound of the formulas (1), (2), (3) or (4) or according to the preferred embodiments based on the total mixture of emitter and matrix material. Accordingly, the mixture contains between 1 and 99% by volume, preferably between 2 and 90% by volume, more preferably between 3 and 40% by volume, in particular between 5 and 20% by volume of the emitter, based on the total mixture made of emitter and matrix material. If the compounds are processed from solution, the corresponding amounts in% by weight are preferably used instead of the amounts given above in% by volume.
  • Suitable phosphorescent compounds are, in particular, compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80, in particular a metal with this atomic number.
  • Preferred phosphorescence emitters are compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds containing iridium or platinum.
  • all luminescent compounds which contain the abovementioned metals are regarded as phosphorescent compounds.
  • Examples of the emitters described above can be found in the applications WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1 191613, EP 1 191612, EP 1 191614, WO 05/033244, WO 05/019373, US 2005/0258742, WO 2009/146770, WO 2010/015307, WO
  • a further preferred embodiment of the present invention is the use of the compound according to the formulas (1), (2), (3) or (4) or according to the preferred embodiments as a matrix material for a phosphorescent emitter in combination with another matrix material.
  • the further matrix material is a hole-transporting compound.
  • the further matrix material is an electron-transporting compound.
  • the further matrix material is a large bandgap compound that does not or does not significantly participate in hole and electron transport in the layer.
  • Suitable matrix materials for the compounds according to the invention are ketones, phosphine oxides, sulfoxides and sulfones, for. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO
  • Triazines and carbazoles e.g. B. according to WO 201 1/057706 or WO
  • indolocarbazole derivatives e.g. B. according to WO 2007/063754 or WO 2008/056746
  • indenocarbazole derivatives for. B. according to WO
  • a further phosphorescent emitter which emits shorter wavelength than the actual emitter, may be present as a co-host in the mixture.
  • Preferred co-host materials are triarylamine derivatives, especially monoamines, indenocarbazole derivatives, 4-spirocarbazole derivatives, lactams, triazine derivatives and carbazole derivatives.
  • Preferred triarylamine derivatives which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (15),
  • Ar is the same or different at each occurrence an aromatic or heteroaromatic ring system having 5 to 40 aromatic ring atoms, which may be substituted by one or more radicals R, but is preferably unsubstituted.
  • the groups Ar are the same or different at each occurrence selected from the abovementioned groups Ar 1 -1 to Ar 1 -19, wherein Y 3 is NR 1 , O, S or C (R 1 ) 2.
  • At least one group Ar is selected from a biphenyl group, which may be an ortho, meta or para biphenyl group.
  • at least one group Ar is selected from a fluorene group or spirobifluorene group, which groups may be bonded to the nitrogen atom in each of 1, 2, 3 or 4 positions.
  • At least one group Ar is selected from a phenylene or biphenyl group which is an ortho, meta or para linked group containing a dibenzofuran group, a dibenzothiophene group or a carbazole group, in particular a dibenzofurangroup, where the dibenzofuran or dibenzothiophene group is linked to the phenylene or biphenyl group via the 1, 2, 3 or 4 position and the carbazole group is attached via the 1 -, 2-, 3- or 4-position or via the nitrogen atom with the phenylene or biphenyl group is linked.
  • an Ar group is selected from a fluorene or spirobifluorene group, in particular a 4-fluorene or 4-spirobifluorene group
  • a group Ar is selected from a biphenyl group, in particular one para-biphenyl group, or a fluorene group, especially a 2-fluorene group
  • the third group Ar is selected from a para-phenylene group or a para-biphenyl group having a dibenzofurangroup, especially a 4-dibenzofurangroup, or a carbazole group, especially an N Carbazole group or an N-phenyl-3-carbazole group.
  • Preferred indenocarbazide derivatives which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (16),
  • Ar and R have the meanings listed above.
  • preferred embodiments of the group Ar are the abovementioned structures Ar 1 -1 to Ar 1 -19 wherein Y 3 is NR 1 , O, S or C (R 1 ) 2 .
  • a preferred embodiment of the compounds of the formula (16) are the compounds of the following formula (16a)
  • the two groups R which are bonded to the indenocarbon atom are preferably identical or different for an alkyl group having 1 to 4 C atoms, in particular for methyl groups, or for an aromatic ring system having 6 to 12 C atoms, in particular phenyl groups, which can also form a ring system with each other.
  • the two groups R, which are bonded to the indenocarbon atom are methyl groups.
  • the substituent R bound in formula (16a) to the parent indenocarbazole is H or a carbazole group attached to the indenocarbazole parent via the 1, 2, 3 or 4 position or via the N atom may be bound, in particular via the 3-position.
  • Preferred 4-spirocarbazole derivatives used as co-host materials together with the compounds of the invention are selected from the compounds of the following formula (17),
  • Ar and R have the meanings listed above.
  • preferred embodiments of the group Ar are the abovementioned structures Ar 1 -1 to Ar 1 -19 wherein Y 3 is NR 1 , O, S or C (R 1 ) 2 .
  • a preferred embodiment of the compounds of the formula (17) are the compounds of the following formula (17a)
  • Preferred lactams which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (18),
  • R has the meanings given above.
  • R is preferably identical or different at each occurrence for H or an aromatic or heteroaromatic ring system having 5 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 1 .
  • the substituents R are selected from the group consisting of H or an aromatic or heteroaromatic ring system having 6 to 18 aromatic ring atoms, preferably having 6 to 13 aromatic ring atoms, each of which may be substituted by one or more non-aromatic radicals R 1 , but preferably is unsubstituted.
  • Suitable substituents R are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1 - 2-, 3- or 4-spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1-, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3- or 4-carbazolyl, each of which may be substituted by one or more radicals R 1 , but are preferably unsubstituted.
  • Suitable structures R are the the same structures as shown in the front for Ar 1 -1 to Ar 1 -19, wherein these structures are substituted by R 1 instead of R and Y 3 is NR 1 , O, S or C (R 1 ) 2 stands.
  • the organic electroluminescent device according to the invention does not contain a separate hole injection layer and / or hole transport layer and / or hole blocking layer and / or electron transport layer, ie. H. the emissive layer directly adjoins the hole injection layer or the anode, and / or the emissive layer directly adjoins the electron transport layer or the electron injection layer or the cathode.
  • a metal complex which is the same or similar to the metal complex in the emitting layer, directly adjacent to the emitting layer as a hole-transporting or hole-injection material, such as. As described in WO 2009/030981.
  • the compounds according to the invention in a hole-blocking or electron-transport layer. This is especially true when the compounds are substituted with electron-transporting groups. Furthermore, it is possible to use the compounds according to the invention in a hole transport, hole injection or
  • an organic electroluminescent device characterized in that one or more layers are coated with a sublimation process.
  • the materials in vacuum sublimation systems become smaller at an initial pressure
  • an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • OVPD Organic Vapor Phase Deposition
  • carrier gas sublimation the materials at a pressure between 5 mbar and 10 are applied 1 bar.
  • OVJP organic vapor jet printing
  • an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • ink-jet printing ink jet printing
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • screen printing flexographic printing
  • offset printing Nozzle-Printing
  • soluble compounds are necessary, which are obtained for example by suitable substitution.
  • hybrid processes are possible in which, for example, one or more layers are applied from solution and one or more further layers are vapor-deposited.
  • one or more layers are applied from solution and one or more further layers are vapor-deposited.
  • the compounds according to the invention When used in organic electroluminescent devices, the compounds according to the invention generally have very good properties. In particular, when using the compounds according to the invention in organic electroluminescent devices, the lifetime much better compared to similar compounds according to the prior art. The other properties of the organic electroluminescent device, in particular the efficiency and the voltage, are also better or at least comparable. The invention will now be explained in more detail by the following examples without wishing to restrict them thereby.
  • Pretreatment for Examples V1 -E1 1 Glass slides coated with 50 nm thick structured ITO (Indium Tin Oxide) are treated with an oxygen plasma followed by argon plasma prior to coating. These plasma-treated glass slides form the substrates to which the OLEDs are applied.
  • the OLEDs have the following layer structure: substrate / hole injection layer (HIL) / hole transport layer (HTL) / electron blocking layer (EBL) / emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) / optional electron injection layer (EIL) and finally a cathode.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL emission layer
  • EML optional hole blocking layer
  • HBL electron transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter), which is admixed to the matrix material or the matrix materials by co-evaporation in a specific volume fraction.
  • the electron transport layer may consist of a mixture of two materials.
  • the OLEDs are characterized by default.
  • the electroluminescence spectra, the current efficiency (measured in cd / A) and the external quantum efficiency (EQE, measured in percent) as a function of the luminance, calculated from current-voltage-luminance characteristics (IUL characteristics) are determined assuming a Lambertian radiation characteristic .
  • the electroluminescence spectra are determined at a luminance of 1000 cd / m 2 and from this the CIE 1931 x and y color coordinates are calculated.
  • the indication U1000 in Table 2 indicates the voltage required for a luminance of 1000 cd / m 2 .
  • SE1000 is the current efficiency achieved at 1000 cd / m 2 .
  • EQE1000 refers to external quantum efficiency at an operating luminance of 1000 cd / m 2 .
  • the data of the different OLEDs are summarized in Table 2.
  • the examples V1 -V5 are comparative examples according to the prior art, the examples E1 -E1 1 show data of OLEDs according to the invention. In the following, some of the examples are explained in more detail in order to clarify the advantages of the OLED according to the invention. Use of compounds according to the invention as matrix material of phosphorescent OLEDs
  • the materials according to the invention When used as a matrix material in combination with an electron-conducting compound (such as, for example, compound IC5 in the examples below), the materials according to the invention give in
  • Emission layer (EML) in phosphorescent OLEDs significant improvements over the prior art, especially in terms of power efficiency.
  • EML Emission layer
  • the compounds f35, f and f34 according to the invention it is possible to observe an improvement in the power efficiency of about 5-10% compared with the compound from the prior art SdT1 (comparison of examples V1 with examples E1, E2, E3).
  • the compound f35 shows about 10% improved power efficiency over SdT5 (Comparison of Example V5 with Example E1).
  • V1 HATCN SpMA1 SpMA3 IC5 SdT1: TEG2 ST2 ST2: LiQ -
  • V2 HATCN SpMA1 SpMA3 IC5 SdT2: TEG2 ST2 ST2: LiQ -
  • V3 HATCN SpMA1 SpMA3 IC5 SdT3: TEG2 ST2 ST2: LiQ -
  • V4 HATCN SpMA1 SpMA3 IC5 SdT4: TEG2 ST2 ST2: LiQ -
  • E1 HATCN SpMA1 SpMA3 IC5 f39: TEG2 ST2 ST2: LiQ -
  • E2 HATCN SpMA1 SpMA3 IC5 f: TEG2 ST2 ST2: LiQ -
  • E3 HATCN SpMA1 SpMA3 IC5 f37: TEG2 ST2 ST2: LiQ -
  • E8 HATCN SpMA1 SpMA3 IC5 f10: TEG2 ST2 ST2: LiQ -
  • E10 HATCN SpMA1 SpMA3 IC5 f25: TEG2 ST2 ST2: LiQ -

Abstract

La présente invention concerne des composés dibenzofurane qui sont substitués par des composés carbazole et sont en particulier destinés à être utilisés comme matériaux matrice triplets dans des dispositifs électroluminescents. L'invention concerne également un procédé de préparation des composés selon l'invention, ainsi que des dispositifs électroniques les contenant.
EP17792096.4A 2016-11-09 2017-11-06 Matériaux destinés à des dispositifs électroluminescents organiques Pending EP3538521A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16197924 2016-11-09
PCT/EP2017/078269 WO2018087022A1 (fr) 2016-11-09 2017-11-06 Matériaux destinés à des dispositifs électroluminescents organiques

Publications (1)

Publication Number Publication Date
EP3538521A1 true EP3538521A1 (fr) 2019-09-18

Family

ID=57288171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17792096.4A Pending EP3538521A1 (fr) 2016-11-09 2017-11-06 Matériaux destinés à des dispositifs électroluminescents organiques

Country Status (7)

Country Link
US (1) US11345687B2 (fr)
EP (1) EP3538521A1 (fr)
JP (1) JP7214633B2 (fr)
KR (1) KR102474328B1 (fr)
CN (1) CN109890813B (fr)
TW (1) TWI745476B (fr)
WO (1) WO2018087022A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233421B1 (ko) * 2018-07-06 2021-03-29 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112969695A (zh) * 2018-11-30 2021-06-15 株式会社Lg化学 化合物及包含其的有机发光器件
KR102448566B1 (ko) * 2018-12-04 2022-09-27 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
CN114276360A (zh) * 2020-09-28 2022-04-05 江苏绿人半导体有限公司 一种有机化合物及有机电致发光器件
KR102469770B1 (ko) * 2020-10-30 2022-11-23 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
JP2023068426A (ja) * 2021-11-02 2023-05-17 株式会社Kyulux 化合物、組成物、ホスト材料および有機発光素子

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
WO2000070655A2 (fr) 1999-05-13 2000-11-23 The Trustees Of Princeton University Dispositifs electroluminescents organiques a tres haute performance utilisant l'electrophosphorescence
EP3379591A1 (fr) 1999-12-01 2018-09-26 The Trustees of Princeton University Complexes de forme l2mx
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN102041001B (zh) 2000-08-11 2014-10-22 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
ITRM20020411A1 (it) 2002-08-01 2004-02-02 Univ Roma La Sapienza Derivati dello spirobifluorene, loro preparazione e loro uso.
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
EP1717291A3 (fr) 2003-04-15 2007-03-21 Merck Patent GmbH Mélanges de semi-conducteurs organiques aptes à l'émission et de matières matricielles, leur utilisation et composants électroniques contenant ces mélanges
US7326475B2 (en) 2003-04-23 2008-02-05 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
ITRM20040352A1 (it) 2004-07-15 2004-10-15 Univ Roma La Sapienza Derivati oligomerici dello spirobifluorene, loro preparazione e loro uso.
WO2006117052A1 (fr) 2005-05-03 2006-11-09 Merck Patent Gmbh Dispositif electroluminescent organique, et derives d'acide boronique et d'acide borinique utilises pour produire ce dispositif electroluminescent organique
CN102633820B (zh) 2005-12-01 2015-01-21 新日铁住金化学株式会社 有机电致发光元件用化合物及有机电致发光元件
EP1970976B1 (fr) 2006-01-05 2017-07-19 Konica Minolta Holdings, Inc. Dispositif electroluminescent organique, affichage et dispositif d'eclairage
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP4388590B2 (ja) 2006-11-09 2009-12-24 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
EP2097938B1 (fr) 2006-12-28 2019-07-17 Universal Display Corporation Structures de dispositifs électroluminescents organiques (oled) phosphorescents à longue durée de vie utile
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102007053771A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
US7862908B2 (en) 2007-11-26 2011-01-04 National Tsing Hua University Conjugated compounds containing hydroindoloacridine structural elements, and their use
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
KR101340241B1 (ko) 2008-06-05 2013-12-10 이데미쓰 고산 가부시키가이샤 다환계 화합물 및 그것을 이용한 유기 전기발광 소자
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
KR101523124B1 (ko) 2008-06-05 2015-05-26 이데미쓰 고산 가부시키가이샤 할로젠 화합물, 다환계 화합물 및 그것을 사용한 유기 전기발광 소자
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
KR101506919B1 (ko) 2008-10-31 2015-03-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
CN102076813B (zh) 2008-11-11 2016-05-18 默克专利有限公司 有机电致发光器件
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009041414A1 (de) 2009-09-16 2011-03-17 Merck Patent Gmbh Metallkomplexe
DE102009048791A1 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102009057167A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische Vorrichtung enthaltend Metallkomplexe
DE102010005697A1 (de) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Verbindungen für elektronische Vorrichtungen
DE102010012738A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102010019306B4 (de) 2010-05-04 2021-05-20 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
US9273080B2 (en) 2010-06-15 2016-03-01 Merek Patent Gmbh Metal complexes
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
JP6007467B2 (ja) 2010-07-27 2016-10-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、
DE102010048608A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR102077994B1 (ko) 2011-09-21 2020-02-17 메르크 파텐트 게엠베하 유기 전계발광 소자용 카르바졸 유도체
EP2768808B1 (fr) 2011-10-20 2017-11-15 Merck Patent GmbH Matériaux destinés à des dispositifs électroluminescents organiques
KR102021162B1 (ko) 2011-11-01 2019-09-11 메르크 파텐트 게엠베하 유기 전계발광 소자
KR102088150B1 (ko) 2011-12-22 2020-03-12 메르크 파텐트 게엠베하 유기 전계발광 소자용 화합물
KR20130084093A (ko) * 2012-01-16 2013-07-24 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP5880274B2 (ja) * 2012-05-21 2016-03-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015529637A (ja) 2012-07-13 2015-10-08 メルク パテント ゲーエムベーハー 金属錯体
KR102125199B1 (ko) 2012-07-23 2020-06-22 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
US11917901B2 (en) 2012-08-07 2024-02-27 Udc Ireland Limited Metal complexes
JP6271550B2 (ja) 2012-08-10 2018-01-31 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子のための材料
JP6250684B2 (ja) 2012-10-11 2017-12-20 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
WO2014097866A1 (fr) 2012-12-18 2014-06-26 コニカミノルタ株式会社 Élément électroluminescent organique, dispositif d'affichage, et dispositif d'éclairage
JP6342419B2 (ja) 2012-12-21 2018-06-13 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子のための材料
EP2935292B1 (fr) 2012-12-21 2019-04-10 Merck Patent GmbH Complexes metalliques
CN104870458B (zh) 2012-12-21 2019-02-15 默克专利有限公司 金属络合物
JP6288092B2 (ja) 2013-08-16 2018-03-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光装置、照明装置、表示装置及び電子機器
JP6304255B2 (ja) * 2013-08-16 2018-04-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、電子デバイス、発光装置及び発光材料
WO2015036074A1 (fr) 2013-09-11 2015-03-19 Merck Patent Gmbh Complexes métalliques
CN105916868B (zh) 2014-01-13 2020-06-23 默克专利有限公司 金属络合物
CN105980519B (zh) 2014-02-05 2019-06-14 默克专利有限公司 金属络合物
WO2015124255A1 (fr) 2014-02-21 2015-08-27 Merck Patent Gmbh Matières pour dispositifs électroluminescents organiques
WO2015140073A1 (fr) 2014-03-17 2015-09-24 Idemitsu Kosan Co., Ltd. Nouveau dibenzofuranes et dibenzothiophènes
JP6890975B2 (ja) 2014-05-05 2021-06-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
KR102250186B1 (ko) * 2014-05-19 2021-05-10 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
JP2015229661A (ja) 2014-06-06 2015-12-21 三星ディスプレイ株式會社Samsung Display Co.,Ltd. カルバゾール誘導体、および有機エレクトロルミネッセンス素子
EP3174890B1 (fr) 2014-07-28 2019-03-13 Merck Patent GmbH Complexes métalliques
JP6891109B2 (ja) 2014-07-29 2021-06-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
WO2016023608A1 (fr) 2014-08-13 2016-02-18 Merck Patent Gmbh Matériaux pour dispositifs électroluminescents organiques
CN107207550B (zh) 2015-02-03 2020-06-05 默克专利有限公司 金属络合物
US11208401B2 (en) * 2015-06-10 2021-12-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US11031562B2 (en) 2015-08-25 2021-06-08 Merck Patent Gmbh Metal complexes
CN108350352B (zh) 2015-11-02 2021-03-30 默克专利有限公司 用于有机电致发光器件的材料

Also Published As

Publication number Publication date
JP7214633B2 (ja) 2023-01-30
JP2020510610A (ja) 2020-04-09
TW201833104A (zh) 2018-09-16
US11345687B2 (en) 2022-05-31
US20190367494A1 (en) 2019-12-05
CN109890813B (zh) 2023-05-30
KR102474328B1 (ko) 2022-12-06
WO2018087022A1 (fr) 2018-05-17
KR20190074311A (ko) 2019-06-27
CN109890813A (zh) 2019-06-14
TWI745476B (zh) 2021-11-11

Similar Documents

Publication Publication Date Title
EP3423542B1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3140302B1 (fr) Matières pour des dispositifs organiques électroluminescents
EP2883422B1 (fr) Matériaux pour dispositifs organiques à électroluminescence
EP3335254B1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3371274B1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3174954A1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3649123B1 (fr) Composition pour dispositifs électroniques organiques
WO2016023608A1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP3519415A1 (fr) Carbazoles comprenant des structures diazadibenzofurane ou diazadibenzothiophène
WO2018138306A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2011060877A2 (fr) Matériaux pour des dispositifs électroluminescents organiques
WO2015197156A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2018087022A1 (fr) Matériaux destinés à des dispositifs électroluminescents organiques
WO2018166932A1 (fr) Composés ayant de structures arylamine
EP3710557B1 (fr) Composition pour dispositifs électroniques organiques
WO2019052933A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2018149769A1 (fr) Matériaux pour dispositifs électroluminescents organiques
EP4172164A1 (fr) Composés hétéroaromatiques pour dispositifs électroluminescents organiques
WO2023152063A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2024038029A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2023078812A1 (fr) Dérivés de benzofuro[3,2-d]pyrimidino-2,4-dicarbonitrile et composés similaires pour dispositifs électroluminescents organiques
WO2023061998A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2023110742A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2024038068A1 (fr) Matériaux pour dispositifs électroluminescents organiques
WO2022002771A1 (fr) Composés hétérocycliques pour dispositifs électroluminescents organiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519