EP3482454B1 - Phasengesteuertes antennenelement - Google Patents

Phasengesteuertes antennenelement Download PDF

Info

Publication number
EP3482454B1
EP3482454B1 EP17735448.7A EP17735448A EP3482454B1 EP 3482454 B1 EP3482454 B1 EP 3482454B1 EP 17735448 A EP17735448 A EP 17735448A EP 3482454 B1 EP3482454 B1 EP 3482454B1
Authority
EP
European Patent Office
Prior art keywords
phase
antenna element
waveguide radiator
element according
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17735448.7A
Other languages
English (en)
French (fr)
Other versions
EP3482454A1 (de
Inventor
Jörg Oppenländer
Alexander Mössinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lisa Draexlmaier GmbH
Original Assignee
Lisa Draexlmaier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lisa Draexlmaier GmbH filed Critical Lisa Draexlmaier GmbH
Publication of EP3482454A1 publication Critical patent/EP3482454A1/de
Application granted granted Critical
Publication of EP3482454B1 publication Critical patent/EP3482454B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0241Waveguide horns radiating a circularly polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/28Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave comprising elements constituting electric discontinuities and spaced in direction of wave propagation, e.g. dielectric elements or conductive elements forming artificial dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/244Polarisation converters converting a linear polarised wave into a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the invention relates to a phase-controlled antenna element for phase-controlled group antennas, in particular for the GHz frequency range.
  • a phase-controlled antenna element is intended to set, control and monitor the phase position of an electromagnetic wave emitted and / or received by the antenna element in a simple manner.
  • the antenna directional diagram of stationary antenna groups can be spatially changed with the aid of variable, controllable phase actuators ("phase shifters").
  • phase shifters variable, controllable phase actuators
  • the main beam can be swiveled in different directions.
  • the phase control elements change the relative phase position of the signals that are received or sent by various individual members of the group antennas. If the relative phase position of the signals of the individual antennas is adjusted accordingly with the aid of the phase control elements, the main beam of the antenna diagram of the group antenna points in the desired direction.
  • phase actuators are mostly composed of non-linear solids ("solid state phase shifters”), mostly ferrites, microswitches (MEMS technology, binary switches), or liquid crystals (“liquid crystals”). All these However, technologies have the disadvantage that they often lead to a considerable loss of signal, since part of the high-frequency power is dissipated in the phase control elements. In particular in the case of applications in the GHz range, the antenna efficiency of the group antennas is greatly reduced as a result.
  • phase control elements must always be accommodated in the feed networks of the group antennas. This leads to an undesirable increase in the dimensions of the feed networks and thus of the group antennas themselves.
  • the group antennas are typically very heavy.
  • Phased array antennas using conventional phase actuators are very expensive. This prevents their use in particular for civil applications above 10 GHz.
  • a further problem is the exact control of the antenna pattern of the group antennas. Such a control is only possible if the amplitude relations and the phase relations of all signals which are sent or received by the antenna elements of the group antenna are accurate at every point in time (ie for every state) are known.
  • phase control elements allows the reliable instantaneous determination of the phase position of the signal after the phase control element. For this it would be necessary to be able to reliably determine the state of the phase control element at any time. However, this is practically impossible with solid-state, MEMS or liquid-crystal phase shifters.
  • Solid-state phase shifters also typically contain non-linear components, which makes determining the amplitude relationships very difficult or even impossible.
  • the attenuation values and the wave impedance of such phase shifters are typically dependent on the value of the phase rotation.
  • Phase shifters based on microswitches typically work in binary mode. With binary phase shifters, the phase position of the individual signals can only be set granularly in certain steps. A highly precise alignment of the antenna diagram is not possible in principle.
  • a phase-controlled antenna array which includes electronically controllable lenses and MEMS phase shifters.
  • the DE9200386U1 shows an antenna structure based on the Yagi principle, in which parasitic elements made of circular, centrally perforated disks are pushed onto a support tube between sleeve-shaped spacers.
  • the WO 02/084797 A1 a phased array antenna with a plurality of circularly polarized radiator elements, the array antenna comprising movement means which is used for the independent and angular rotation of at least a part of the radiator elements.
  • the phase-controlled antenna element consists of a waveguide radiator (1) with signal decoupling or coupling (7), into which a rotatable phase control element (2) is inserted, and a drive unit (6).
  • the phase control element comprises a holder (3), at least two polarizers (4) which are attached to the holder (3), and a connecting element (5).
  • Each of the at least two polarizers (4) can convert a circularly polarized signal into a linearly polarized signal.
  • the phase control element (2) is rotatably mounted in the waveguide radiator (1) and with the help of the connecting element (5) with the Drive unit (6) connected in such a way that the drive unit (6) can rotate the phase control element (2) around the axis (10) of the waveguide radiator (1), as shown in FIG Fig. 1 is illustrated like a sketch.
  • FIG. 2 The principle of operation of the invention is shown in Fig. 2 shown.
  • a wave (19a) incident in the waveguide radiator (1) with circular polarization and phase position ⁇ is transformed by the first polarizer (4a) into a wave with linear polarization (19b).
  • This wave of linear polarization is reconverted by the second polarizer (4b) into a wave with circular polarization (19c).
  • the phase control element (2) is now rotated by an angle ⁇ in the waveguide radiator (1) with the aid of the drive unit (6) and the connecting element (5), the polarization vector (19b) of the linear wave rotates between the two polarizers (4a) and ( 4b) in a plane perpendicular to the axis (10) (direction of propagation of the electromagnetic wave). Since the polarizer (4a) also rotates, the circular wave (19c) generated by the second polarizer (4b) now has a phase position of ⁇ + 2 ⁇ The circular wave (19c) with phase position ⁇ + 2 ⁇ can then can be decoupled from the waveguide radiator (1) with the aid of the signal decoupling or coupling (7).
  • phase control of the antenna element Due to the design of the phase control of the antenna element, the dependence of the phase angle difference between the outgoing (19c) and incoming (19a) circular wave on the rotation of the phase control element (2) is strictly linear, continuous and strictly 2 ⁇ periodic. In addition, any phase rotation or phase shift can be set continuously by the drive unit (6).
  • phase control element (2) Since the phase control element (2) is, from an electrodynamic point of view, a purely passive component which does not contain any non-linear components, its function is completely reciprocal. This means that a shaft which runs from bottom to top through the phase control element (2) is rotated in its phase in the same way as a shaft which runs from top to bottom through the phase control element (2).
  • phase position of a signal sent or received by the waveguide radiator (1) can thus be set as desired. Simultaneous transmission and reception is also possible.
  • the wave impedance of the waveguide radiator (1) is completely independent of the relative phase position of the incoming and outgoing wave.
  • phase control also works with practically no loss, since with an appropriate design the losses induced by the polarizers (4a, b) and the dielectric holder (3) are very small.
  • the total losses are less than 0.2 dB, which corresponds to an efficiency of more than 95%.
  • Conventional phase shifters have typically losses of several dB at these frequencies.
  • the phase-controlled antenna element according to the invention is therefore hardly different from a corresponding antenna element without phase control, as is e.g. is already used in antenna fields, distinguishable.
  • antenna fields of this type are implemented with phase-controlled antenna elements according to the invention, the RF properties, in particular antenna gain and antenna efficiency, of the antenna fields advantageously change only insignificantly, despite the additional phase control.
  • a further advantage of the device according to the invention is therefore that the phase control function and the antenna function are integrated in a single component and are nevertheless completely independent of one another.
  • the waveguide radiator (1) is preferably designed such that it contains at least one cylindrical waveguide piece (section). This ensures that a cylindrically symmetrical electromagnetic oscillation mode (mode) of circular polarization can develop in its interior, which can be transformed into a mode of linear polarization by the polarizers (4).
  • mode cylindrically symmetrical electromagnetic oscillation mode
  • the waveguide termination can, for example, be conical or stepped on one side.
  • the aperture of the waveguide radiator can also be designed, for example, conical, square or rectangular.
  • the waveguide radiator (1) As a horn radiator.
  • the dimensional design of the waveguide radiator (1) for a specific operating frequency band is carried out using the known methods of antenna technology.
  • An axis of rotation (10) for the phase control element (2) is preferably in the axis of symmetry of the cylindrical waveguide section, which the waveguide radiator (1) preferably contains. It can thus be ensured that the mode conversion by the polarizers (4) takes place in an optimal manner.
  • the at least two polarizers (4a) and (4b) are preferably mounted in the holder (3) perpendicular to the axis of rotation (10) and parallel to one another. The linear mode between the polarizers can then develop undisturbed.
  • the phase position of the wave (19a) emitted and / or received by the hollow conductor radiator (1) can be instantaneous at any time, i.e. can be exactly determined immediately, without further calculation.
  • phase-controlled antenna element can be implemented very inexpensively. Reproduction of the phased antenna elements in large numbers, e.g. for use in larger group antennas is easily possible.
  • drive units (6) for example, both inexpensive electric motors or micro-electric motors, as well as piezomotors, or simple actuators that are constructed from electroactive materials can be used.
  • the connecting element (5) is preferably designed as an axle and is preferably made of a non-metallic, dielectric material such as plastic. This has the advantage that cylindrical cavity modes are not, or only very slightly, disturbed when the axis is attached symmetrically in the waveguide radiator (1).
  • the drive unit (6) controls the phase control element (2) in a contactless manner, e.g. via a rotating magnetic field, rotates.
  • a magnetic rotator can be attached above the termination of the waveguide radiator, which then acts together with the rotating magnetic field as a connecting element (5), if e.g. Parts of the polarizer are made of magnetic materials.
  • the polarizers (4a) and (4b) can e.g. consist of simple, flat meander polarizers which are applied to a conventional carrier material. These polarizers can be produced by known thin-film etching processes or by additive processes ("circuit printing").
  • the at least two polarizers (4a) and (4b) preferably have a shape symmetrical to the axis (10) so that they can be easily accommodated in the cylindrically symmetrical waveguide section of the waveguide radiator (1).
  • the in Fig. 3 The polarizer (4a, b) shown is designed as a meander polarizer.
  • multilayer meander polarizers ie structures that are aligned parallel to one another and separated from one another by only fractions of the wavelength, are advantageous, since they can have large frequency bandwidths and thus enable broadband operation.
  • Embodiments are conceivable in which the signal polarization is not converted by plane polarizers but by structures spatially distributed in the holder (e.g. septum polarizers).
  • structures spatially distributed in the holder e.g. septum polarizers.
  • holder (3) e.g. closed-cell foams with low density, which are known to have very low HF losses, but also plastic materials such as
  • Polytetrafluoroethylene (Teflon) or polyimides can be used. Because of the small size of the phase control element in the range of one wavelength, especially at frequencies above 10 GHz, the HF losses remain very small here too with appropriate impedance matching to the corresponding electromagnetic mode in the waveguide radiator (1).
  • phase control element (2) at a specific operating frequency is similar to the dimensional design of the waveguide radiator (1) at a specific operating frequency, the phase control element (2) can typically easily be attached inside the waveguide radiator (1) will.
  • its minimum diameter is typically in the range of one wavelength of the operating frequency.
  • the expansion of the waveguide radiator (1) in the direction of the incident waves is typically a few wavelengths of the operating frequency.
  • the dimensions of the phase control element are always in the range of the dimensions of the waveguide radiator (1).
  • the dimensions of the phase control element (2) are typically in the range smaller than one wavelength, i.e. approx. 1cm x 1cm. If the holder (3) is designed as a dielectric filling body and the relative permittivity is selected to be correspondingly large, then much smaller shapes can also be realized. The ohmic losses then increase slightly, but are still only in the percentage range.
  • the phase control element (2) can be made so small that it is in the waveguide radiator (1) by selecting the dielectric constant for the material of the holder (3). Takes place.
  • FIG Fig. 4 One embodiment of the phased antenna element is shown in FIG Fig. 4 shown schematically.
  • the waveguide radiator (1) is designed as a cylindrical horn radiator and the signal decoupling or coupling (7) is implemented using microstrip technology on an HF substrate (71).
  • the microstrip line (7) used to couple or couple the circular mode is designed here in the form of a loop. This has the advantage that the cylindrically symmetrical waveguide mode in the waveguide radiator (1) can be excited or decoupled directly and practically without losses.
  • the waveguide radiator (1) is at least partially cut out at the position of the coupling (7) so that the signal coupling or coupling (7) with its substrate (71) can be inserted and aligned in the waveguide radiator (1).
  • vias Conductive through-contacts
  • a recess (73) is provided in the substrate (71) through which the axis (5), which establishes the connection between the drive unit (6) and the phase control element (2), can be guided.
  • the holder (3) of the polarizers (4) is also designed as a dielectric filler (9) which completely fills the cross section of the waveguide radiator (1).
  • Such embodiments of the holder can be advantageous, since the impedance matching of the modes in the waveguide radiator (1) can be facilitated and undesired modes can be suppressed.
  • the materials used for the dielectric filling body are in particular plastic materials with low surface energy, such as e.g. Polytetrafluoroethylene (Teflon) or polyimide, which, when rotated in the waveguide radiator (1), generate very little to negligible friction.
  • plastic materials with low surface energy such as e.g. Polytetrafluoroethylene (Teflon) or polyimide, which, when rotated in the waveguide radiator (1), generate very little to negligible friction.
  • the signal decoupling or coupling (7) is designed in two parts as two orthogonal, pin-like microstrip lines (7a) and (7b), which are located on two separate substrates lying one above the other.
  • Such embodiments can be advantageous if two signals are more orthogonal with the phase-controlled antenna element Polarization should be received and / or sent at the same time. Phase imbalances can also be compensated if the signals are processed in an orthogonal system.
  • dielectric filling bodies (9a) and (9b) are provided, which ensure that the volume of air remaining in the waveguide radiator (1) is completely filled with dielectric.
  • the filling bodies (9a) and (9b) are fixedly mounted in the waveguide radiator (1) and do not rotate with the phase control element.
  • they typically have a recess for the axis (10), analogous to the substrates of the microwave lines (7a) and (7b).
  • the waveguide radiator (1) is filled homogeneously with dielectric and the mode distribution in its interior is advantageously homogeneous.
  • the waveguide radiator (1) it can also be advantageous to choose different dielectric constants for the various dielectric filling bodies 9, 9a, 9b. E.g. when the waveguide radiator (1) tapers downwards, it can be advantageous to use a higher dielectric constant for the filler body (9b).
  • FIG. 6 A further development of the invention for the direct reception or transmission of signals with linear polarization by the phase-controlled antenna element is in Fig. 6 shown.
  • the advantageous further development consists in that in the waveguide radiator (1) in front of the phase control element (2) there is at least one further polarizer (41) which can transform signals with linear polarization into signals with circular polarization, and after the phase control element (2) and before at least one further polarizer (42) is attached to the coupling-out (7), which polarizer can transform signals of circular polarization into signals of linear polarization.
  • the phase control element (2) also consists of the holder (3) and the polarizers (4a) and (4b) and has a drive unit (6) which connects to the phase control element (2) or the holder ( 3) is connected in such a way that the phase control element (2) or the holder (3) in the waveguide radiator (1) can be rotated about the axis (10).
  • the phase control element (2) can easily perform its function according to the invention.
  • the second polarizer (42) which is attached after the phase control element (2) and before the decoupling (7), transforms the signal of circular polarization generated by the phase control element (2) and its phase position determined back into a signal of linear polarization, which can be directly decoupled by a decoupling (7) designed accordingly for linear modes.
  • the coupling (7) excites a linear mode in the waveguide radiator (1), which is transformed into a circular mode by the second polarizer (42).
  • This circular mode is one of the phase control element (2) Angle of rotation of the phase control element (2) around the axis (10) dependent phase position.
  • the circularly polarized signal with the set phase position, which leaves the phase control element (2), is transformed by the first polarizer (41) into a signal with linear polarization and the imposed phase position and emitted by the waveguide radiator (1).
  • FIG. 6 An embodiment of the in Fig. 6 further development shown is in Fig. 7 shown schematically.
  • the signal decoupling or coupling (7) is analogous to the embodiment of FIG Fig. 5 designed in two parts as a pin-shaped, orthogonal microstrip line (7a) and (7b) on separate substrates.
  • the additional polarizers (41) and (42) are each embedded in a dielectric filler body (9c) or (9d) and are typically fixedly mounted in the waveguide radiator (1).
  • the area between the coupling-out and coupling-out (7a) and (7b) is filled with a dielectric filling body (9a), the waveguide termination below the coupling-out or coupling-in (7b) is filled with a dielectric filling body (9b).
  • This structure has the advantage that the entire interior of the waveguide radiator (1) is filled with a dielectric, typically of the same type, so that mode discontinuities cannot occur.
  • the coupling-out and coupling-in (7a) and (7b) can also be designed in one piece for a linear mode for a corresponding application (analogous to the exemplary embodiment in FIG Fig. 4 ).
  • the first additional polarizer (41) rotatable and to equip it with an independent drive so that the polarizer (41) in the waveguide radiator (1) independently of the phase control element (2) the axis (10) can be rotated.
  • Such an arrangement is particularly advantageous when, in mobile arrangements, the movement of the carrier causes a rotation of the polarization vector of the incident wave relative to the array antenna fixedly mounted on the carrier.
  • FIG. 8 A corresponding embodiment is shown in Fig. 8 shown schematically.
  • the polarizer (41) is rotatably mounted in the waveguide radiator (1) and connected to its own drive (12) with the aid of a connector (13) so that this drive (12) can rotate the polarizer (41) about the axis (10) .
  • FIG Fig. 8 The independent rotation of the polarizer (41) from the rotation of the phase control element (2) is shown in FIG Fig. 8 realized in such a way that the axis (5) which connects the phase control element (2) to its drive (6) is designed as a hollow axis.
  • the connector (13), which connects the polarizer (41) to its drive (12), is located in this hollow axis.
  • the second additional polarizer (42) is firmly attached in the antenna radiator (1), since its alignment determines the alignment of the linear mode which is coupled out and coupled in by the coupling out and coupling (7).
  • the fixed alignment of the polarizer (42) is therefore based on the position of the coupling-out or coupling-in (7).
  • the coupling out or coupling (7) is in the embodiment of Fig. 8 designed in one piece as a pin-like microstrip line.
  • This embodiment is advantageous if a linear mode is to be coupled out or coupled into the waveguide radiator (1).
  • the second additional polarizer (42) can also be dispensed with, since the circularly polarized signal generated by the phase control element (2) basically contains all the information of the incident wave.
  • a 90 ° hybrid coupler for example, can then be used, into which the signal divided into signals (7a) and (7b) is fed.

Description

  • Die Erfindung betrifft ein phasengesteuertes Antennenelement für phasengesteuerte Gruppenantennen, insbesondere für den GHz-Frequenzbereich.
  • Ein phasengesteuertes Antennenelement soll die Phasenlage einer vom Antennenelement abgestrahlten und/oder empfangenen elektromagnetischen Welle in einfacher Weise beliebig einstellen, steuern und kontrollieren.
  • Es ist bekannt, dass sich mit Hilfe von variablen, steuerbaren Phasenstellgliedern ("phase shifters") das Antennenrichtdiagramm von stationären Antennengruppen räumlich verändern lässt. So kann z.B. der Hauptstrahl in verschiedene Richtungen geschwenkt werden. Die Phasenstellglieder verändern dabei die relative Phasenlage der Signale, die von verschiedenen einzelnen Mitgliedern der Gruppenantennen empfangen oder gesendet werden. Wird die relative Phasenlage der Signale der einzelnen Antennen mit Hilfe der Phasenstellglieder entsprechend eingestellt, dann zeigt die Hauptkeule ("main beam") des Antennendiagramms der Gruppenantenne in die gewünschte Richtung.
  • Die derzeit bekannten Phasenstellglieder sind meist aus nichtlinearen Festkörpern ("solid state phase shifters"), meist Ferriten, Mikroschaltern (MEMS-Technologie, binäre Schalter), oder Flüssigkristallen ("liquid crystals") aufgebaut. Alle diese Technologien haben jedoch den Nachteil, dass sie zu einem oft erheblichen Signalverlust führen, da ein Teil der Hochfrequenzleistung in den Phasenstellgliedern dissipiert wird. Insbesondere bei Anwendungen im GHz-Bereich sinkt die Antenneneffizienz der Gruppenantennen dadurch stark ab.
  • Herkömmliche Phasenstellglieder müssen darüber hinaus immer in den Speisenetzwerken der Gruppenantennen untergebracht werden. Dies führt zu einer unerwünschten Vergrößerung der Dimensionen der Speisennetzwerke und damit der Gruppenantennen selbst. Zudem werden die Gruppenantennen typischerweise sehr schwer.
  • Phasengesteuerte Gruppenantennen, bei denen herkömmliche Phasenstellglieder verwendet werden, sind sehr teuer. Insbesondere für zivile Anwendungen oberhalb von 10 GHz verhindert dies deren Verwendung.
  • Ein weiteres Problem stellt die genaue Kontrolle des Antennendiagramms der Gruppenantennen dar. Eine solche Kontrolle ist nur möglich, wenn die Amplitudenrelationen und die Phasenrelationen aller Signale, welche von den Antennenelementen der Gruppenantenne gesendet oder empfangen werden, zu jedem Zeitpunkt (d.h. für jeden Zustand) genau bekannt sind.
  • Keine der derzeit bekannten Technologien für Phasenstellglieder erlaubt jedoch die zuverlässige instantane Bestimmung der Phasenlage des Signals nach dem Phasenstellglied. Hierzu wäre es erforderlich, den Zustand des Phasenstellglieds jederzeit zuverlässig bestimmen zu können. Dies ist jedoch praktisch weder bei Festkörper-, noch bei MEMS- oder Flüssigkristallphasenschiebern möglich.
  • Festkörper-Phasenschieber beinhalten zudem typischerweise nichtlineare Bauteile, was die Bestimmung der Amplitudenrelationen sehr schwierig oder gar unmöglich macht. Außerdem sind die Dämpfungswerte und die Wellenimpedanz solcher Phasenschieber typischerweise vom Wert der Phasendrehung abhängig.
  • Phasenschieber, welche auf Mikroschaltern (MEMS-Technologie) aufbauen, arbeiten typischerweise binär. Bei binären Phasenschiebern kann prinzipiell die Phasenlage der Einzelsignale nur in bestimmten Schritten granular eingestellt werden. Eine hochpräzise Ausrichtung des Antennendiagramms ist so prinzipiell nicht möglich.
  • Bei Flüssigkristallphasenschiebern besteht darüber hinaus das Problem der Abhängigkeit der Kennlinien von Umgebungseinflüssen. Die Kennlinien der Bauteile zeigen eine starke Temperatur- und Druckabhängigkeit und frieren z.B. bei tieferen Temperaturen ein.
  • Aus US6822615B2 ist ein phasengesteuertes Antennenarray bekannt, das elektronisch steuerbare Linsen und MEMS Phasenschieber beinhaltet. Die DE9200386U1 zeigt eine Antennenstruktur nach dem Yagi-Prinzip, bei der parasitäre Elemente aus kreisförmigen, zentrisch gelochten Scheiben zwischen hülsenförmigen Abstandshaltern auf ein Tragrohr aufgeschoben werden.
  • Des Weiteren offenbart die WO 02/084797 A1 eine phasengesteuerte Gruppenantenne mit mehreren zirkular polarisierten Strahlerelementen, wobei die Gruppenantenne Bewegungsmittel umfasst, die zur unabhängigen und winkligen Drehung zumindest eines Teils der Strahlerelemente dient.
  • Die Aufgabe der Erfindung besteht deshalb darin, ein phasengesteuertes Antennenelement, insbesondere für phasengesteuerte Gruppenantennen und für den GHz-Frequenzbereich zur Verfügung zu stellen, welches
    1. 1. die exakte Einstellung und Steuerung der Phasenlage von Signalen erlaubt, welche vom Antennenelement gesendet und/oder empfangen werden,
    2. 2. zu jedem Zeitpunkt die instantane Bestimmung der Phasenlage des empfangenen und/oder gesendeten Signals zulässt,
    3. 3. keine Abhängigkeit der Wellenimpedanz von der Phasenlage zeigt,
    4. 4. keine oder nur sehr geringe Verluste induziert,
    5. 5. Phasensteuerung und Antennenfunktion in einem einzigen Bauteil integriert, und
    6. 6. kostengünstig realisierbar ist.
  • Diese Aufgabe wird durch ein erfindungsgemäßes phasengesteuertes Antennenelement mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind den abhängigen Ansprüchen, der Beschreibung und den Figuren zu entnehmen.
  • Das phasengesteuerte Antennenelement besteht aus einem Hohlleiterstrahler (1) mit Signalauskopplung bzw. -einkopplung (7), in den ein drehbares Phasenstellglied (2) eingebracht wird, und einer Antriebseinheit (6).
  • Das Phasenstellglied umfasst dabei eine Halterung (3), mindestens zwei Polarisatoren (4), die an der Halterung (3) befestigt sind, und ein Verbindungselement (5).
  • Jeder der mindestens zwei Polarisatoren (4) kann ein zirkular polarisiertes Signal in ein linear polarisiertes Signal umwandeln. Das Phasenstellglied (2) ist im Hohlleiterstrahler (1) drehbar angebracht und mit Hilfe des Verbindungselements (5) mit der Antriebseinheit (6) derart verbunden, so dass die Antriebseinheit (6) das Phasenstellglied (2) um die Achse (10) des Hohlleiterstrahlers (1) drehen kann, wie dies in Fig. 1 skizzenartig verdeutlicht ist.
  • Die prinzipielle Funktionsweise der Erfindung ist in Fig. 2 dargestellt. Eine in den Hohlleiterstrahler (1) einfallende Welle (19a) mit zirkularer Polarisation und Phasenlage ϕ wird durch den ersten Polarisator (4a) in eine Welle mit linearer Polarisation (19b) transformiert. Diese Welle linearer Polarisation wird durch den zweiten Polarisator (4b) in eine Welle mit zirkularer Polarisation (19c) rückverwandelt.
  • Wird das Phasenstellglied (2) jetzt mit Hilfe der Antriebseinheit (6) und dem Verbindungselement (5) um einen Winkel Δθ im Hohlleiterstrahler (1) gedreht, dann rotiert der Polarisationsvektor (19b) der linearen Welle zwischen den beiden Polarisatoren (4a) und (4b) in einer Ebene senkrecht zur Achse (10) (Fortpflanzungsrichtung der elektromagnetischen Welle) mit. Da sich auch der Polarisator (4a) ebenfalls mit dreht, hat die zirkulare Welle (19c), welche vom zweiten Polarisator (4b) generiert wird, jetzt eine Phasenlage von ϕ+2Δθ Die zirkulare Welle (19c) mit Phasenlage ϕ+2Δθ kann daraufhin mit Hilfe der Signalauskopplung bzw. -einkopplung (7) aus dem Hohlleiterstrahler (1) ausgekoppelt werden.
  • Bedingt durch die Konstruktion der Phasensteuerung des Antennenelements ist die Abhängigkeit der Phasenwinkeldifferenz zwischen auslaufender (19c) und einlaufender (19a) zirkularer Welle von der Drehung des Phasenstellglieds (2) streng linear, stetig und streng 2Π periodisch. Zudem kann jede beliebige Phasendrehung bzw. Phasenschiebung kontinuierlich durch die Antriebseinheit (6) eingestellt werden.
  • Da es sich beim Phasenstellglied (2) elektrodynamisch betrachtet um ein rein passives Bauelement handelt, welches keinerlei nichtlineare Komponenten enthält, ist seine Funktion vollständig reziprok. D.h., dass eine Welle, welche von unten nach oben durch das Phasenstellglied (2) läuft, in gleicher Weise in ihrer Phase gedreht wird wie eine Welle, welche von oben nach unten durch das Phasenstellglied (2) läuft.
  • Die Phasenlage eines vom Hohlleiterstrahlers (1) abgesendeten bzw. empfangenen Signals kann damit beliebig eingestellt werden. Auch der simultane Sende- und Empfangsbetrieb ist möglich.
  • Auch die Wellenimpedanz des Hohlleiterstrahlers (1) ist konstruktionsbedingt vollkommen unabhängig von der relativen Phasenlage von ein- und auslaufender Welle.
  • Dies ist bei Antennenelementen, welche mit Hilfe von nichtlinearen Phasenschiebern wie etwa Halbleiterphasenschiebern oder Flüssigkristallphasenschiebern in ihrer Phasenlage gesteuert werden, typischerweise nicht der Fall. Dort ist die Wellenimpedanz von der relativen Phasenlage abhängig, was diese Bauteile schwierig zu steuern macht.
  • Die Phasensteuerung arbeitet zudem praktisch verlustlos, da bei entsprechender Auslegung die durch die Polarisatoren (4a, b) und den dielektrischen Halter (3) induzierten Verluste sehr klein sind.
  • Bei Frequenzen von 20 GHz zum Beispiel betragen die gesamten Verluste weniger als 0,2 dB, was einer Effizienz von mehr als 95% entspricht. Konventionelle Phasenschieber dagegen haben typischerweise bei diesen Frequenzen bereits Verluste von mehreren dB.
  • Bezüglich seiner Hochfrequenzeigenschaften ist das erfindungsgemäße phasengesteuerte Antennenelement daher kaum von einem entsprechenden Antennenelement ohne Phasensteuerung, wie es z.B. in Antennenfeldern bereits eingesetzt wird, unterscheidbar.
  • So ist bekannt, dass z.B. dielektrisch gefüllte Hornstrahler, insbesondere bei Frequenzen größer 20 GHz, wegen ihrer hohen Antenneneffizienz in Antennenfeldern zum Einsatz kommen. Werden solche Antennenfelder mit erfindungsgemäßen phasengesteuerten Antennenelementen realisiert, dann ändern sich die HF-Eigenschaften, insbesondere Antennengewinn und Antenneneffizienz, der Antennenfelder trotz der zusätzlichen Phasensteuerung vorteilhafterweise nur unmaßgeblich.
  • Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung liegt daher darin, dass die Phasensteuerungsfunktion und die Antennenfunktion in einem einzigen Bauteil integriert und trotzdem völlig unabhängig voneinander sind.
  • Der Hohlleiterstrahler (1) ist vorzugsweise so ausgelegt, dass er mindestens ein zylinderförmiges Hohlleiterstück (-abschnitt) beinhaltet. Damit ist sicher gewährleistet, dass sich in seinem Innern eine zylindersymmetrische elektromagnetische Schwingungsmode (Mode) zirkularer Polarisation ausbilden kann, welche von den Polarisatoren (4) in eine Mode linearer Polarisation transformiert werden kann.
  • Sowohl der Hohlleiterabschluss des Hohlleiterstrahlers, als auch seine Öffnung (Apertur) müssen hingegen nicht notwendigerweise einen kreisförmigen Querschnitt besitzen. Je nach Art der Aus- bzw. Einkopplung (7) kann der Hohlleiterabschluss z.B. konisch oder einseitig gestuft ausgeführt sein. Die Apertur des Hohleiterstrahlers kann bei der Anwendung in zweidimensionalen Antennenfeldern z.B. auch konisch, quadratisch oder rechteckig ausgelegt werden.
  • Da sich zylindersymmetrische Moden auch in Hohlleitern mit nichtkreisförmigen Querschnitten, wie z.B. elliptischen oder vieleckigen Querschnitten, ausbreiten können, sind jedoch auch andere Bauformen des Hohlleiterstrahlers denkbar.
  • In Rundhohlleitern bilden sich bekanntermaßen zylindrische Moden generisch aus. Es kann daher von Vorteil sein den Hohlleiterstrahler (1) als Rundhohlleiter auszubilden, wenn die Signalauskopplung bzw. -einkopplung (7) entsprechend ausgelegt werden kann.
  • Um den Antennengewinn des phasengesteuerten Antennenelements zu verbessern, kann es darüber hinaus von Vorteil sein, den Hohlleiterstrahler (1) als Hornstrahler auszulegen.
  • Im Übrigen erfolgt die dimensionsmäßige Auslegung des Hohlleiterstrahlers (1) für ein bestimmtes Betriebsfrequenzband den bekannten Verfahren der Antennentechnik.
  • Eine Drehachse (10) für das Phasenstellglied (2) liegt vorzugsweise in der Symmetrieachse des zylinderförmigen Hohlleiterstücks, welches der Hohlleiterstrahler (1) vorzugsweise beinhaltet. Damit kann gewährleistet werden, dass die Modenumwandlung durch die Polarisatoren (4) in optimaler Weise erfolgt.
  • Die mindestens zwei Polarisatoren (4a) und (4b) sind vorzugsweise senkrecht zur Drehachse (10) und parallel zueinander in der Halterung (3) angebracht. Die lineare Mode zwischen den Polarisatoren kann sich dann ungestört ausbilden.
  • Wird die Antriebseinheit (6) mit einem Winkellagegeber ausgestattet oder ist sie selbst schon winkellagegebend (wie z.B. bei manchen Piezomotoren), so kann die Phasenlage der vom Hohleiterstrahler (1) abgestrahlten und/oder empfangenen Welle (19a) zu jedem Zeitpunkt instantan, d.h. sofort, ohne weitere Berechnung, exakt bestimmt werden.
  • Wegen des einfachen Aufbaus des Phasenstellglieds (2) und der Tatsache, dass lediglich sehr einfach aufgebaute Antriebe (6) erforderlich sind, lässt sich das phasengesteuerte Antennenelement sehr kostengünstig realisieren. Auch eine Reproduktion der phasengesteuerten Antennenelemente mit großen Stückzahlen, z.B. für die Anwendung in größeren Gruppenantennen, ist ohne weiteres möglich.
  • Als Antriebseinheiten (6) kommen zum Beispiel sowohl kostengünstige Elektromotoren bzw. Mikro-Elektromotoren, als auch Piezomotoren, oder einfache Aktuatoren, die aus elektroaktiven Materialen aufgebaut sind, in Frage.
  • Das Verbindungselement (5) ist bevorzugt als Achse ausgeführt und besteht dabei vorzugsweise aus einem nichtmetallischen, dielektrischen Material wie z.B. Kunststoff. Dies hat den Vorteil, dass zylindrische Hohlraummoden nicht, oder nur sehr wenig gestört werden, wenn die Achse symmetrisch im Hohlleiterstrahler (1) angebracht wird.
  • Werden zum Betrieb des Hohlleiterstrahlers (1) Koaxialmoden verwendet, dann können allerdings auch metallische Achsen zur Anwendung kommen. In einem solchen Fall ist es sogar denkbar, dass die Antriebseinheit (6) direkt am Phasenstellglied (2) im Hohlleiterstrahler (1) angebracht ist.
  • Es ist jedoch auch denkbar, dass die Antriebseinheit (6) das Phasenstellglied (2) kontaktlos, z.B. über ein rotierendes magnetisches Feld, dreht. Hierzu kann z.B. über dem Abschluss des Hohlleiterstrahlers ein magnetischer Rotator angebracht werden, der dann zusammen mit dem rotierenden magnetischen Feld als Verbindungselement (5) wirkt, wenn z.B. Teile des Polarisators aus magnetischen Materialien bestehen.
  • Die Polarisatoren (4a) und (4b) können z.B. aus einfachen, ebenen Mäanderpolarisatoren bestehen, welche auf ein herkömmliches Trägermaterial aufgebracht sind. Hergestellt werden können diese Polarisatoren durch bekannte Dünnschicht-Ätzverfahren oder durch additive Verfahren ("circuit printing").
  • Wie in Fig. 3 dargestellt, besitzen die mindestens zwei Polarisatoren (4a) und (4b) vorzugsweise eine zur Achse (10) symmetrischen Form, so dass sie im zylindersymmetrischen Hohlleiterstück des Hohlleiterstrahlers (1) in einfacher Weise untergebracht werden können.
  • Der in Fig. 3 dargestellte Polarisator (4a, b) ist als Mäanderpolarisator ausgeführt. Vorteilhaft sind dabei Mehrschicht-Mäanderpolarisatoren, d.h. parallel zueinander ausgerichtete, nur Bruchteile der Wellenlängenlänge voneinander getrennte Strukturen, da diese große Frequenzbandbreiten aufweisen können und so einen breitbandigen Betrieb ermöglichen.
  • Es gibt jedoch auch eine Vielzahl von anderen möglichen Ausführungsformen von Polarisatoren für elektromagnetische Wellen, welche eine Welle zirkularer Polarisation in eine Welle linearer Polarisation transformieren können.
  • So sind z.B. Ausführungsformen denkbar, bei denen die Umwandlung der Signalpolarisation nicht durch ebene Polarisatoren sondern durch räumlich in der Halterung verteilte Strukturen erfolgt (z.B. Septum-Polarisatoren). Für die Funktion der Erfindung kommt es lediglich darauf an, dass diese Strukturen eine in den Hohlleiterstrahler (1) einfallende Welle mit zirkularer Polarisation zunächst in eine Welle mit linearer Polarisation transformieren und anschließend in eine Welle mit zirkularer Polarisation zurücktransformieren können.
  • Für die Halterung (3) können z.B. geschlossenzellige Schäume mit geringer Dichte, welche bekanntermaßen sehr geringe HF-Verluste aufweisen, aber auch Kunststoffmaterialien wie
  • Polytetrafluorethylen (Teflon) oder Polyimide verwendet werden. Wegen der insbesondere bei Frequenzen oberhalb von 10 GHz geringen Größe des Phasenstellglieds im Bereich einer Wellenlänge, bleiben die HF-Verluste bei entsprechender Impedanzanpassung an die entsprechende elektromagnetische Mode im Hohlleiterstrahler (1) auch hier sehr klein.
  • Da elektrodynamisch betrachtet die dimensionsmäßige Auslegung des Phasenstellglieds (2) bei einer bestimmten Betriebsfrequenz in ähnlicher Weise erfolgt wie die dimensionsmäßigen Auslegung des Hohlleiterstrahlers (1) bei einer bestimmten Betriebsfrequenz, kann das Phasenstellglied (2) typischerweise ohne weiteres im Inneren des Hohlleiterstrahlers (1) angebracht werden.
  • So liegt nach den bekannten Auslegungsvorschriften für einen Hohlleiterstrahler (1) dessen minimaler Durchmesser typischerweise im Bereich einer Wellenlänge der Betriebsfrequenz. Die Ausdehnung des Hohlleiterstrahlers (1) in Richtung der einfallenden Wellen liegt typischerweise bei einigen Wellenlängen der Betriebsfrequenz.
  • Da die Polarisatoren (4a) und (4b) und ihr Abstand zueinander ebenfalls entsprechend der Wellenlänge der Betriebsfrequenz nach den bekannten Verfahren der Impedanzanpassung ausgelegt werden, liegen die Dimensionen des Phasenstellglieds immer im Bereich der Dimensionen des Hohlleiterstrahlers (1).
  • Bei einer Frequenz von 20 GHz z.B. liegen die Abmessungen des Phasenstellglieds (2) typischerweise im Bereich kleiner als eine Wellenlänge, d.h. ca. 1cm x 1cm. Wird die Halterung (3) als dielektrischer Füllkörper ausgelegt und die Dielektrizitätszahl entsprechend groß gewählt, dann können auch sehr viel kleiner Formen realisiert werden. Die Ohmschen Verluste steigen dann zwar leicht an, liegen aber immer noch lediglich im Prozentbereich.
  • In jedem Fall kann, auch wenn die Dimension des Hohlleiterstrahlers (1) sehr klein gewählt wird, durch entsprechende Wahl der Dielektrizitätszahl für das Material des Halters (3), das Phasenstellglied (2) so klein gemacht werden, dass es im Hohlleiterstrahler (1) Platz findet.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand weiterer Figuren gezeigt:
  • Figur 4
    Phasengesteuertes Antennenelement in MS-Technologie,
    Figur 5
    Phasengesteuertes Antennenelement mit dielektrischem Füllkörper,
    Figur 6
    Phasengesteuertes Antennenelement für linear Moden,
    Figur 7
    Phasengesteuertes Antennenelement für linear Moden in MS-Technologie,
    Figur 8
    Phasengesteuertes Antennenelement mit zusätzlichen drehbaren Polarisatoren.
  • Eine Ausführungsform des phasengesteuerten Antennenelements ist in Fig. 4 schematisch dargestellt.
  • Der Hohlleiterstrahler (1) ist als zylindrischer Hornstrahler ausgelegt und die Signalauskopplung bzw. -einkopplung (7) ist in Mikrostreifentechnologie auf einem HF-Substrat (71) ausgeführt.
  • Die zur Aus- bzw. Einkopplung der zirkularen Mode verwendete Mikrostreifenleitung (7) ist hier schlaufenförmig ausgelegt. Dies hat den Vorteil, dass die zylindersymmetrische Hohlleitermode im Hohlleiterstrahler (1) direkt und praktisch ohne Verluste angeregt bzw. ausgekoppelt werden kann.
  • Der Hohlleiterstrahler (1) ist an der Position der Auskopplung (7) mindestens teilweise derart ausgeschnitten, dass die Signalauskopplung bzw. -einkopplung (7) mit ihrem Substrat (71) in den Hohlleiterstrahler (1) eingeführt und ausgerichtet werden kann.
  • Damit keine Störung der HF-Ströme, welche an den Innenwänden des Hohlleiterstrahlers (1) fließen, auftritt, sind leitende Durchkontaktierungen ("vias") (72) vorgesehen, welche einen durchgehenden elektrischen Kontakt zwischen Ober- und Unterteil des Hohlleiterstrahlers (1) an der Stelle, an der die Ein- bzw. Auskopplung (7) eingeführt wird, herstellen (sog. "via fence").
  • Zudem ist im Substrat (71) eine Aussparung (73) vorgesehen, durch welche die Achse (5), die die Verbindung zwischen der Antriebseinheit (6) und dem Phasenstellglied (2) herstellt, geführt werden kann.
  • Im Ausführungsbeispiel der Fig. 4 ist zudem die Halterung (3) der Polarisatoren (4) als dielektrischer Füllkörper (9) ausgeführt, welcher den Querschnitt des Hohlleiterstrahlers (1) vollständig ausfüllt.
  • Solche Ausführungsformen der Halterung können von Vorteil sein, da damit die Impedanzanpassung der Moden im Hohlleiterstrahler (1) erleichtert werden kann und unerwünschte Moden unterdrücken werden können.
  • Als Materialien für den dielektrischen Füllkörper kommen dabei insbesondere Kunststoffmaterialien mit niedriger Oberflächenenergie, wie z.B. Polytetrafluorethylen (Teflon) oder Polyimide, in Frage, welche bei einer Drehung im Hohlleiterstrahler (1) nur eine sehr geringe bis vernachlässigbare Reibung erzeugen.
  • In der in Fig. 5 schematisch dargestellten Ausführungsform wird die Signalauskopplung bzw. -einkopplung (7) zweigeteilt als zwei orthogonale, stiftartige Mikrostreifenleitungen (7a) und (7b) ausgeführt, welche sich auf zwei separaten, übereinanderliegenden Substraten befinden.
  • Solche Ausführungsformen können von Vorteil sein, wenn mit dem phasengesteuerten Antennenelement zwei Signale orthogonaler Polarisation gleichzeitig empfangen und/oder gesendet werden sollen. Auch können Phasenungleichgewichte ("phase imbalances") kompensiert werden, wenn die Signale in einem orthogonalen System verarbeitet werden.
  • Im Ausführungsbeispiel der Fig. 5 sind weitere dielektrische Füllkörper (9a) und (9b) vorgesehen, die dafür sorgen, dass das im Hohlleiterstrahler (1) verbliebene Luftvolumen vollständig mit Dielektrikum gefüllt ist.
  • Typischerweise sind dabei die Füllkörper (9a) und (9b) fest im Hohlleiterstrahler (1) montiert und drehen sich nicht mit dem Phasenstellglied mit. Hierzu besitzen sie typischerweise eine Aussparung für die Achse (10), analog zu den Substraten der Mikrowellenleitungen (7a) und (7b).
  • Wenn die dielektrischen Füllkörper (9a) und (9b) aus demselben Material bestehen wie der dielektrische Füllkörper der Halterung (3), dann ist der Hohlleiterstrahler (1) homogen mit Dielektrikum gefüllt und die Modenverteilung in seinem Innern ist vorteilhafterweise homogen.
  • Je nach geometrischer Form des Hohlleiterstrahlers (1) kann es jedoch auch von Vorteil sein, für die verschiedenen dielektrischen Füllkörper 9. 9a, 9b unterschiedliche Dielektrizitätszahlen zu wählen. Z.B. dann, wenn sich der Hohlleiterstrahler (1) nach unten hin verjüngt, kann es vorteilhaft sein für den Füllkörper (9b) eine höhere Dielektrizitätszahl zu verwenden.
  • Eine Weiterentwicklung der Erfindung zum direkten Empfang bzw. Senden von Signalen mit linearer Polarisation durch das phasengesteuerte Antennenelement ist in Fig. 6 dargestellt.
  • Die vorteilhafte Weiterentwicklung besteht darin, dass im Hohlleiterstrahler (1) vor dem Phasenstellglied (2) mindestens ein weiterer Polarisator (41) angebracht ist, welcher Signale mit linearer Polarisation in Signale mit zirkularer Polarisation transformieren kann, und nach dem Phasenstellglied (2) und vor der Auskopplung (7) mindestens ein weiterer Polarisator (42) angebracht ist, welcher Signale zirkularer Polarisation in Signale linearer Polarisation transformieren kann.
  • Das Phasenstellglied (2) besteht weiterhin aus der Halterung (3) und den Polarisatoren (4a) und (4b) und verfügt über eine Antriebseinheit (6), welche über das Verbindungselement (5) mit dem Phasenstellglied (2) bzw. der Halterung (3) derart verbunden ist, dass das Phasenstellglied (2) bzw. die Halterung (3) im Hohlleiterstrahler (1) um die Achse (10) gedreht werden kann.
  • Dadurch, dass der erste zusätzliche Polarisator (41) ein einfallendes Signal mit linearer Polarisation in ein Signal mit zirkularer Polarisation umwandelt, kann das Phasenstellglied (2) seine erfindungsgemäße Funktion ohne weiteres ausüben.
  • Der zweite Polarisator (42), welcher nach dem Phasenstellglied (2) und vor der Auskopplung (7) angebracht ist, transformiert das vom Phasenstellglied (2) erzeugte und in seiner Phasenlage bestimmte Signal zirkularer Polarisation dann wieder zurück in ein Signal linearer Polarisation, welches von einer entsprechend für lineare Moden ausgelegten Auskopplung (7) direkt ausgekoppelt werden kann.
  • Die Funktion der Anordnung ist wieder vollständig reziprok. Im Sendefall wird durch die Einkopplung (7) eine lineare Mode im Hohlleiterstrahler (1) angeregt, welche durch den zweiten Polarisator (42) in eine zirkulare Mode transformiert wird. Dieser zirkularen Mode wird mit dem Phasenstellglied (2) eine vom Drehwinkel des Phasenstellglieds (2) um die Achse (10) abhängige Phasenlage aufgeprägt. Das zirkular polarisierte Signal mit der eingestellten Phasenlage, welches das Phasenstellglied (2) verlässt, wird vom ersten Polarisator (41) in ein Signal mit linearer Polarisation und der aufgeprägten Phasenlage transformiert und vom Hohlleiterstrahler (1) abgestrahlt.
  • Die in Fig. 6 dargestellte Anordnung funktioniert zudem auch für zwei simultan einfallende orthogonale lineare Polarisationen, wenn die Signalauskopplung bzw. -einkopplung (7) entsprechend für zwei orthogonale lineare Moden ausgelegt ist, z.B. so wie in Fig. 5 dargestellt.
  • Das simultane Senden und Empfangen von Signalen gleichartiger oder unterschiedlicher Polarisation ist ebenfalls möglich.
  • Eine Ausführungsform der in Fig. 6 gezeigten Weiterentwicklung ist in Fig. 7 schematisch dargestellt.
  • Die Signalauskopplung bzw. -einkopplung (7) ist analog zum Ausführungsbeispiel der Fig. 5 zweigeteilt als stiftförmige, orthogonale Mikrostreifenleitung (7a) und (7b) auf separaten Substraten ausgeführt.
  • Die zusätzlichen Polarisatoren (41) und (42) sind jeweils in einen dielektrischen Füllkörper (9c) bzw. (9d) eingebettet und typischerweise fest im Hohlleiterstrahler (1) montiert. Der Bereich zwischen den Aus- bzw. Einkopplungen (7a) und (7b) ist mit einem dielektrischen Füllkörper (9a), der Hohlleiterabschluss unterhalb der Aus- bzw. Einkopplung (7b) ist mit einem dielektrischen Füllkörper (9b) gefüllt.
  • Dieser Aufbau hat den Vorteil, dass der gesamte Innenraum des Hohlleiterstrahlers (1) mit einem typischerweise gleichartigen Dielektrikum gefüllt ist und es damit nicht zu Modendiskontinuitäten kommen kann.
  • Der zweite zusätzliche Polarisator (42) und sein dielektrischer Füllkörper (9c) besitzen ebenso wie die dielektrischen Füllkörper (9b) und (9a) eine mittige Aussparung für die Achse (5) analog zu den Substraten der Mikrostreifenleitungen (7a) und (7b) (vgl. Fig. 4, (73)), so dass die Achse (5) frei gedreht werden kann.
  • Die Aus- bzw. Einkopplung (7a) und (7b) kann für eine entsprechende Anwendung auch einteilig für eine lineare Mode ausgelegt werden (analog zum Ausführungsbeispiel der Fig. 4).
  • Um eine Polarisationsdrehung einer einfallenden Welle zu kompensieren, ist es zudem denkbar, den ersten zusätzlichen Polarisator (41) drehbar zu gestalten und mit einem eigenständigen Antrieb auszustatten, so dass der Polarisator (41) unabhängig vom Phasenstellglied (2) im Hohlleiterstrahler (1) um die Achse (10) gedreht werden kann.
  • Eine solche Anordnung ist insbesondere dann vorteilhaft, wenn in mobilen Anordnungen wegen der Bewegung des Trägers eine Drehung des Polarisationsvektors der einfallenden Welle relativ zur fest auf dem Träger montierten Gruppenantenne auftritt.
  • Da eine solche Polarisationsdrehung im Allgemeinen unabhängig von der Phasendrehung ist, welche der räumlichen Ausrichtung des Antennenstrahls dient, muss die Drehung des Polarisators (41) unabhängig von der Drehung des Phasenstellglieds (2) erfolgen können.
  • Ein entsprechendes Ausführungsbeispiel ist in Fig. 8 schematisch dargestellt.
  • Der Polarisator (41) ist drehbar im Hohlleiterstrahler (1) montiert und mit Hilfe eines Verbinders (13) mit einem eigenen Antrieb (12) verbunden, so dass dieser Antrieb (12) den Polarisator (41) um die Achse (10) drehen kann.
  • Die unabhängige Drehung des Polarisators (41) von der Drehung des Phasenstellglieds (2) ist im Ausführungsbeispiel der Fig. 8 so realisiert, dass die Achse (5), welche das Phasenstellglied (2) mit seinem Antrieb (6) verbindet, als Hohlachse ausgeführt ist. In dieser Hohlachse befindet sich der Verbinder (13), welcher den Polarisator (41) mit seinem Antrieb (12) verbindet.
  • Da die Polarisationsebene einer Welle mit linearer Polarisation nur in einem Winkelbereich von 180° definiert ist, ist für die Drehung des Polarisators (41) ein Winkelbereich von -90° bis +90°, d.h. eine Halbkreisdrehung, ausreichend.
  • Der zweite zusätzliche Polarisator (42) ist fest im Antennenstrahler (1) angebracht, da seine Ausrichtung die Ausrichtung der linearen Mode bestimmt, welche von der Aus- bzw. Einkopplung (7) aus- bzw. eingekoppelt wird. Die feste Ausrichtung des Polarisators (42) richtet sich daher nach der Lage der Aus- bzw. Einkopplung (7).
  • Die Aus- bzw. Einkopplung (7) ist im Ausführungsbeispiel der Fig. 8 einteilig als stiftartige Mikrostreifenleitung ausgeführt.
  • Diese Ausführungsform ist vorteilhaft, wenn eine lineare Mode aus dem Hohlleiterstrahler (1) aus- bzw. eingekoppelt werden soll.
  • Sollen dagegen zwei orthogonale lineare Moden aus- bzw. eingekoppelt werden, dann ist die in Fig. 7 gezeigte zweiteilige Aus- bzw. Einkopplung (7a) und (7b) vorteilhaft, welche in gleicher Weise wie im Ausführungsbeispiel der Fig. 7 im Ausführungsbeispiel der Fig. 8 realisiert werden kann.
  • Wird die Aus- bzw. Einkopplung (7) zweigeteilt realisiert, dann kann auf den zweiten zusätzlichen Polarisator (42) auch verzichtet werden, da das vom Phasenstellglied (2) erzeugte zirkular polarisierte Signal prinzipiell alle Information der einfallenden Welle enthält. Zur Rekombination des ursprünglichen Signals kann dann z.B. ein 90° Hybridkoppler verwendet werden, in welchen das in die Signale (7a) und (7b) aufgeteilte Signal eingespeist wird. Bezugszeichen
    Hohlleiterstrahler 1
    Phasenstellglied 2
    Halterung 3
    Polarisatoren 4, 4a, 4b
    Achse, Verbindungselement 5
    Antriebseinheit 6
    Ein- bzw. Auskopplung 7
    Mikrostreifenleitungen 7a, 7b
    Füllkörper 9, 9a, 9b, 9c, 9d
    Achse 10
    Antrieb 12
    Verbinder 13
    Welle 19, 19a, 19b, 19c
    Zusätzliche Polarisatoren 41, 42
    Substrat 71
    Durchkontaktierung 72
    Aussparung 73

Claims (14)

  1. Phasengesteuertes Antennenelement für Gruppenantennen, mit einem Hohlleiterstrahler (1),
    einem drehbaren, im Hohlleiterstrahler (1) angeordneten Phasenstellglied (2) mit
    • mindestens zwei Mäanderpolarisatoren (4), die jeweils ein zirkular polarisiertes Signal in ein linear polarisiertes Signal umwandeln können,
    • einer Halterung (3), die mit den Mäanderpolarisatoren (4) verbunden ist,
    • einem Verbindungselement (5),
    einer Antriebseinheit (6), die über das Verbindungselement (5) mit dem Phasenstellglied (2) verbunden ist, so dass das Phasenstellglied (2) um die Achse (10) des Hohlleiterstrahlers (1) gedreht werden kann, und
    einer Signalauskopplung bzw. -einkopplung (7) aus dem bzw. in den Hohlleiterstrahler (1).
  2. Phasengesteuertes Antennenelement nach Anspruch 1, wobei der Hohlleiterstrahler (1) einen zylinderförmigen Hohlleiterabschnitt aufweist.
  3. Phasengesteuertes Antennenelement nach Anspruch 2, wobei der Hohlleiterstrahler (1) als Rundhohlleiter ausgelegt ist.
  4. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei der Hohlleiterstrahler (1) als Hornstrahler ausgebildet ist.
  5. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei die Mäanderpolarisatoren (4) senkrecht zur Achse (10) des Hohlleiterstrahlers (1) und parallel zueinander in der Halterung (3) angebracht sind.
  6. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei die Mäanderpolarisatoren (4) eine zur Achse (10) symmetrische Form aufweisen.
  7. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei das Verbindungselement (5) als Achse ausgeführt ist, welche das Phasenstellglied (2) mit der Antriebseinheit (6) verbindet.
  8. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei die Antriebseinheit (6) einen Elektromotor oder einen Piezomotor oder einen Aktuator enthält, wobei der Aktuator elektroaktive Materialen beinhaltet.
  9. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei das Verbindungselement (5) oder die Antriebseinheit (6) mit einem Winkellagegeber ausgestattet ist.
  10. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei die Signalauskopplung bzw. - einkopplung (7) eine schlaufenförmige oder eine stiftförmige metallische Struktur enthält, und/oder in Mikrostreifenleitungstechnik ausgeführt ist und/oder zweiteilig derart ausgeführt ist, dass zwei orthogonale Moden des Hohlleiterstrahlers (1) getrennt ein- bzw. auskoppelbar sind.
  11. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, mit zumindest einem zusätzlichen dielektrischen Füllkörper, der den Hohleiterstrahler (1) ganz oder teilweise ausfüllt.
  12. Phasengesteuertes Antennenelement nach einem der vorhergehenden Ansprüche, wobei zwischen einer Apertur des Hohlleiterstrahlers (1) und dem Phasenstellglied (2) mindestens ein zusätzlicher Polarisator (41) angebracht ist, welcher ein Signal mit linearer Polarisation in ein Signal mit zirkularer Polarisation umwandeln kann.
  13. Phasengesteuertes Antennenelement nach Anspruch 12, wobei zwischen dem Phasenstellglied (2) und der Signalauskopplung bzw. - einkopplung (7) mindestens ein weiterer zusätzlicher Polarisator (41, 42) angebracht ist, welcher ein Signal mit linearer Polarisation in ein Signal mit zirkularer Polarisation umwandeln kann.
  14. Phasengesteuertes Antennenelement nach Anspruch 12, wobei der zwischen der Apertur des Hohlleiterstrahlers (1) und dem Phasenstellglied (2) angebrachte, mindestens eine zusätzliche Polarisator (41) drehbar im Hohlleiterstrahler (1) angebracht ist, und über einen zusätzlichen Antrieb (12) und einen zusätzlichen Verbinder (13) verfügt, so dass der Antrieb (12) mit Hilfe des Verbinders (13) den Polarisator (10) unabhängig vom Phasenstellglied (2) drehen kann.
EP17735448.7A 2016-07-08 2017-06-27 Phasengesteuertes antennenelement Active EP3482454B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016112582.2A DE102016112582A1 (de) 2016-07-08 2016-07-08 Phasengesteuertes Antennenelement
PCT/EP2017/065881 WO2018007209A1 (de) 2016-07-08 2017-06-27 Phasengesteuertes antennenelement

Publications (2)

Publication Number Publication Date
EP3482454A1 EP3482454A1 (de) 2019-05-15
EP3482454B1 true EP3482454B1 (de) 2020-09-30

Family

ID=59285169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17735448.7A Active EP3482454B1 (de) 2016-07-08 2017-06-27 Phasengesteuertes antennenelement

Country Status (7)

Country Link
US (1) US10868350B2 (de)
EP (1) EP3482454B1 (de)
CN (1) CN109417228B (de)
DE (1) DE102016112582A1 (de)
ES (1) ES2836259T3 (de)
IL (1) IL264095B2 (de)
WO (1) WO2018007209A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135147B2 (en) * 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US11616309B2 (en) * 2019-11-20 2023-03-28 Thinkom Solutions, Inc. Wide-scan-capable polarization-diverse polarizer with enhanced switchable dual-polarization properties
CA3190861A1 (en) 2020-08-28 2022-03-03 Amr Abdelmonem Method and system for mitigating interference in the near field
CN114122736B (zh) * 2022-01-26 2022-05-24 华南理工大学 一种全向覆盖的宽带圆极化多波束天线阵列
US11476574B1 (en) 2022-03-31 2022-10-18 Isco International, Llc Method and system for driving polarization shifting to mitigate interference
US11476585B1 (en) 2022-03-31 2022-10-18 Isco International, Llc Polarization shifting devices and systems for interference mitigation
US11502404B1 (en) 2022-03-31 2022-11-15 Isco International, Llc Method and system for detecting interference and controlling polarization shifting to mitigate the interference
US11515652B1 (en) 2022-05-26 2022-11-29 Isco International, Llc Dual shifter devices and systems for polarization rotation to mitigate interference
US11509071B1 (en) 2022-05-26 2022-11-22 Isco International, Llc Multi-band polarization rotation for interference mitigation
US11509072B1 (en) 2022-05-26 2022-11-22 Isco International, Llc Radio frequency (RF) polarization rotation devices and systems for interference mitigation
US11949489B1 (en) 2022-10-17 2024-04-02 Isco International, Llc Method and system for improving multiple-input-multiple-output (MIMO) beam isolation via alternating polarization
US11956058B1 (en) 2022-10-17 2024-04-09 Isco International, Llc Method and system for mobile device signal to interference plus noise ratio (SINR) improvement via polarization adjusting/optimization
CN117498136B (zh) * 2024-01-02 2024-03-15 北京镭宝光电技术有限公司 光参量振荡器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716221A (en) * 1950-09-25 1955-08-23 Philip J Allen Rotatable dielectric slab phase-shifter for waveguide
JPS5927522B2 (ja) * 1979-01-30 1984-07-06 日本高周波株式会社 回転形移相器
DE9200386U1 (de) * 1992-01-15 1992-03-05 Ille, Rudolf, Dipl.-Ing., 7850 Loerrach, De
US5283590A (en) * 1992-04-06 1994-02-01 Trw Inc. Antenna beam shaping by means of physical rotation of circularly polarized radiators
US6081234A (en) * 1997-07-11 2000-06-27 California Institute Of Technology Beam scanning reflectarray antenna with circular polarization
WO2002084797A1 (en) * 2001-04-12 2002-10-24 Marius Du Plessis Antenna
US6717553B2 (en) * 2001-05-11 2004-04-06 Alps Electric Co., Ltd. Primary radiator having excellent assembly workability
US6822615B2 (en) * 2003-02-25 2004-11-23 Raytheon Company Wideband 2-D electronically scanned array with compact CTS feed and MEMS phase shifters
JP4822262B2 (ja) * 2006-01-23 2011-11-24 沖電気工業株式会社 円形導波管アンテナ及び円形導波管アレーアンテナ
JP4027967B2 (ja) * 2006-04-14 2007-12-26 松下電器産業株式会社 偏波切換・指向性可変アンテナ
EP2356720A4 (de) 2008-10-20 2016-03-30 Ems Technologies Inc Antennenpolarisationssteuerung
US8279125B2 (en) * 2009-12-21 2012-10-02 Symbol Technologies, Inc. Compact circular polarized monopole and slot UHF RFID antenna systems and methods
EP2569824B1 (de) * 2010-05-13 2019-03-13 UTI Limited Partnership Zirkular polarisierte antenne mit breitbandeigenschaften
CN103107386B (zh) * 2011-09-29 2016-01-13 深圳光启高等理工研究院 超材料移相器
CN104428948B (zh) * 2012-07-03 2017-07-11 利萨·德雷克塞迈尔有限责任公司 包括具有几何收缩的喇叭天线的、用于GHz频率范围的宽带卫星通信的天线系统
CN104319488B (zh) * 2014-11-03 2017-02-15 中国工程物理研究院应用电子学研究所 一种左右旋圆极化可重构高功率微波相控阵天线
CN204156096U (zh) * 2014-11-03 2015-02-11 中国工程物理研究院应用电子学研究所 一种左右旋圆极化可重构高功率微波相控阵天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20200119422A1 (en) 2020-04-16
CN109417228B (zh) 2021-02-02
ES2836259T3 (es) 2021-06-24
DE102016112582A1 (de) 2018-01-11
CN109417228A (zh) 2019-03-01
US10868350B2 (en) 2020-12-15
IL264095A (en) 2019-01-31
WO2018007209A1 (de) 2018-01-11
IL264095B2 (en) 2023-04-01
EP3482454A1 (de) 2019-05-15
IL264095B (en) 2022-12-01

Similar Documents

Publication Publication Date Title
EP3482454B1 (de) Phasengesteuertes antennenelement
DE69910314T2 (de) Gruppenantenne und Funkgerät
DE60302766T2 (de) Wellenleiter
DE69931663T2 (de) Aktive phasengesteuerte gruppenantenne und einheit zur steuerung der antenne
EP2870658B1 (de) Antennensystem zur breitbandigen satellitenkommunikation im ghz frequenzbereich mit hornstrahlern mit geometrischen konstriktionen
DE602005003016T2 (de) Rücken-resonator-antennen mit dielektrischen und luftresonatoren und reflexionsgruppenantenne und millimeterwellen-übertragungssystem damit
DE19958750B4 (de) Leckwellenantenne
DE4136476C2 (de) Höchstfrequenzlinse und Antenne mit elektronischer Strahlschwenkung mit einer solchen Linse
WO1998026642A2 (de) Breitband-planarstrahler
EP3482457B1 (de) Phasengesteuerte gruppenantenne
DE102010014916B4 (de) Phasengesteuerte Gruppenantenne
EP1064691B1 (de) Integriertes wellenleiterbauelement
WO1995015591A1 (de) Planarantenne
EP3482448B1 (de) Steuerbares phasenstellglied für elektromagnetische wellen
DE112020007004T5 (de) Phasenschieber und antenne
EP2332215B1 (de) Antennenvorrichtung für hochfrequente elektromagnetische wellen
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
EP4150708B1 (de) Antennenanordnung, transceiveranordnung, kommunikationssystem, aktuatoreinrichtung und verfahren zum betreiben einer antennenanordnung
DE102014017621B4 (de) Elektronisch schaltbares Reflektorelement für Parallelplatten- oder Oberflächenwellen und dessen Anwendung
DE102009005502B4 (de) Hohlraumresonator HF-Leistung Verteilnetzwerk
EP1043797B1 (de) Erreger- oder Speisevorrichtung für eine Satellitenantenne
Mitchell et al. Additively Manufactured Circular-Linear Polarization Converter using Circular Waveguide
DE2613566C2 (de) In einer Richtantenne eingesetzter Mikrowellenstrahler
WO2002087018A1 (de) Anordnung zur erregung einer zentralfokussierten reflektorantenne
EP1880443A1 (de) Antennenvorrichtung für ein antennenarray und antennenarray mit einer mehrzahl derartiger antennenvorrichtungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1319744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007531

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2836259

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007531

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

26N No opposition filed

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230510

Year of fee payment: 7

Ref country code: FR

Payment date: 20230510

Year of fee payment: 7

Ref country code: DE

Payment date: 20230629

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1319744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230504

Year of fee payment: 7

Ref country code: ES

Payment date: 20230707

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231017