EP3441157B1 - Verfahren und anlage zum stranggiessen eines metallischen produkts - Google Patents

Verfahren und anlage zum stranggiessen eines metallischen produkts Download PDF

Info

Publication number
EP3441157B1
EP3441157B1 EP18183113.2A EP18183113A EP3441157B1 EP 3441157 B1 EP3441157 B1 EP 3441157B1 EP 18183113 A EP18183113 A EP 18183113A EP 3441157 B1 EP3441157 B1 EP 3441157B1
Authority
EP
European Patent Office
Prior art keywords
strand
strip
cooling section
wef
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18183113.2A
Other languages
English (en)
French (fr)
Other versions
EP3441157A1 (de
Inventor
Thomas Heimann
Uwe Plociennik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3441157A1 publication Critical patent/EP3441157A1/de
Application granted granted Critical
Publication of EP3441157B1 publication Critical patent/EP3441157B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Definitions

  • the invention relates to a method for continuously casting a metallic product according to the preamble of claim 1.
  • the liquid metal is continuously cast in a mold, where a first strand shell is formed.
  • the strand emerges from the mold downwards, the strand then being transported along a strand guide and converted into a bending radius in a so-called bending area in order to achieve a deflection of the strand in the horizontal direction.
  • the curvature of the strand begins in the mold, with the bending area then being omitted.
  • the strand guide also includes a so-called straightening area in which the strand is then completely deflected in the horizontal direction. In this straightening area, stretching occurs on an upper side (loose side) of the strand, which can lead to cracks or surface cracks.
  • Fig. 7 illustrates, which shows a simplified side view of a continuous caster. The position of an increased risk of cracking is marked here by way of example.
  • the object of the invention is to achieve a uniform sump tip over the width of the strand when continuously casting a metallic product without the edge temperature falling below the critical temperature determined by the ductility curve.
  • Such a cooling strategy ensures that an essentially uniform sump length is formed, which has a positive effect, for example, when performing a soft reduction.
  • the method according to the invention can be carried out with a continuous caster which is used to manufacture a metallic product.
  • This continuous caster which does not belong to the present invention, comprises a mold and a strand guide adjoining the mold, along which a strand emerging from the mold, in particular vertically downwards, can be transported in a conveying direction.
  • the strand guide has a straightening area through which the strand can be deflected in the horizontal direction.
  • the strand guide has a reduced cooling section provided at least in the conveying direction in front of the straightening area, in which the edge areas of the strand are cooled less than in comparison to a horizontal area of the strand guide which lies in the conveying direction after the straightening area.
  • the reduced cooling section can preferably also be provided within the straightening area.
  • the strand guide Immediately after the strand emerges from the mold, the strand guide has an intensive cooling section located upstream of the reduced cooling section in the conveying direction, in which the edge regions of the strand can be cooled at least as much as a central region of the strand.
  • the invention is based on the essential knowledge that in the intensive cooling section, the edge areas of the strand are cooled at least as much as its central area, so that this type of cooling is completely on the liquid strand core, and thus on the formation of a desired uniform or uniform swamp tip of the strand affects its width.
  • the cooling strategy explained above is carried out in any case with compliance with the condition that the temperature does not fall below the minimum temperature determined by the ductility profile along the entire length of the strand guide, and thus also within or along the intensive cooling section.
  • the intensive cooling section in which the edge regions of the strand are cooled at least as much as the central region of the strand, can be provided within a first third of the length of the continuous caster, calculated from the mold exit of the strand.
  • the cooling of the edge areas of the strand is then reduced or decreased in the reduced cooling section. This ensures that the temperature of the strand does not fall below the critical temperature determined by the ductility profile, even in its edge areas or zones close to the edge. This applies in particular to the areas of the strand in which additional stresses occur, e.g. in the bending area and / or in the straightening area.
  • the formation of possible surface cracks in the strand is also avoided in the reduced cooling section of the strand guide.
  • the edge regions of the strand are cooled more intensely than the central region of the strand within the intensive cooling section of the strand guide.
  • This can expediently be achieved in that the specific water quantities in the boundary control loops are higher than the water quantities with which the central area of the strand is applied.
  • This leads to the advantage that, in the area of the intensive cooling section of the strand guide, a difference in length in the sump tip of the strand is further reduced over its width in order to achieve a (preferably) uniform sump tip.
  • the cooling in the edge areas of the strand can be increased.
  • a calculation of the swamp length over the strand width is carried out. If it is determined on the basis of this calculation that the calculated sump tip difference is too high compared to a predetermined maximum sump tip difference, which represents a permitted upper limit value, then the cooling in the edge areas of the strand is increased according to one of the two variants mentioned. Otherwise, namely in the event that the determined sump tip difference should not be too high, the cooling in the intensive cooling section is not further intensified.
  • the intensive cooling section comprises at least one cooling zone with additional cooling nozzles which are assigned to an edge region of the strand and can be switched on to intensify the cooling of the edge regions of the strand.
  • a continuous caster 10 is shown in a basically simplified manner in a side view.
  • the continuous casting plant 10 is used to produce a metallic product 11, and for this purpose comprises a mold 12 and an adjoining strand guide 14, along which a strand S of the metallic product 11, which preferably emerges downward from the mold 12, is transported in a conveying direction F.
  • a plurality of support rollers 2 are arranged, with spray water 4 being applied or sprayed onto the strand S for the purpose of cooling the bar S.
  • the strand S is marked with the reference line "5", the strand still has a liquid sump.
  • the sump tip of the strand S is indicated with the reference number "6".
  • the strand S is completely solidified, for example at the in Fig 1 position marked with reference line "11d”.
  • a water cooling system is also provided along the strand guide 14, which is identified by the reference line “8”.
  • the strand guide 14 of the continuous caster 10 comprises a straightening area I through which the strand S is completely deflected in the horizontal direction. Furthermore, the strand guide 14 comprises a bending region II, through which the strand S, after it has emerged from the mold 12, is deflected in the direction of the horizontal.
  • the straightening area I and the bending area II are shown in Fig. 1 each symbolized in a simplified manner by dashed rectangles.
  • the conveying direction in which the strand S is transported along the strand guide 14 of the continuous caster 10 is shown in FIG Fig. 1 labeled "F".
  • the strand guide 14 comprises a reduced cooling section 16 which - as seen in the conveying direction F of the strand S - lies upstream or in front of a horizontal region 18 of the strand guide 14.
  • the undercooling section 16 can be designed in such a way that it at least partially or completely covers the directional area I.
  • the undercooling section 16 of the strand guide 14 is characterized in that the cooling zones provided therein are designed in such a way that the edge regions of the strand S are cooled to a lesser extent than in comparison to the horizontal region 18 of the strand guide 14.
  • the strand guide 14 has an intensive cooling section 20 which begins immediately after the strand S has emerged from the mold 12 and - as in FIG Fig. 1 illustrates - is seen in the conveying direction F in front of the lower cooling section 16.
  • the intensive cooling section 20 is designed with at least one cooling zone provided therein in such a way that the edge regions of the strand S are cooled at least as much as a central region of the strand S.
  • FIG. 10 shows the continuous caster 10 of FIG Fig. 1 again in a simplified side view.
  • the length of the intensive cooling section 20 is designated by “L 20 ”, this length being approximately one third of the length L 10 of the continuous casting installation 10.
  • the intensive cooling section 20 is provided within a first third of the length L 10 of the continuous casting installation 10, starting from the exit of the strand S from the mold 12.
  • a length of the undercooling section 16 is shown in FIG Fig. 2 labeled "L 16 ".
  • the Fig. 2 illustrates that the intensive cooling section 20 - viewed in the conveying direction F of the strand S - is provided in front of the reduced cooling section 16 or upstream thereof, the intensive cooling section 20 beginning immediately after the mold exit or an area near the mold level.
  • the method according to the invention ensures that the length difference in the sump tip compared to the prior art is advantageously reduced.
  • This is in the representation of Fig. 3 illustrated with the curve "A", which shows a course of the sump tip 6 over the strand width.
  • the difference in length d sump which is a measure of the unevenness of the sump tip, is only about 150 mm, for example.
  • the difference in length d sump realized by means of the method according to the invention is significantly smaller than according to the prior art, which, as described above, based on FIG Fig. 9 explained can be 1.5 m.
  • Fig. 3 It can also be seen that the temperature profile after the intensive cooling section (B) is not constant over the strand width. The temperature is lower in the edge area than in the middle of the strand. Due to the reduced cooling of the edge area in the subsequent so-called reduced cooling section, the temperature difference is largely equalized and the temperature profile after the reduced cooling section (C) over the strand width is essentially constant.
  • a reheating factor WEF [° C / (mm * sec)].
  • a reheating factor WEF is determined by the quotient of the difference between a temperature T 1 at a first measuring point P 1 and a temperature T 2 at a second measuring point P 2 , to the mean thickness of the strand shell between the measuring points P 1 and P 2 , and to Transport time of the strand S between the measuring points P 1 and P 2 . Accordingly, the unit for the rewarming factor WEF is determined as [° C / (mm * sec)].
  • the first measuring point P 1 is arranged in a cooling zone within the intensive cooling section 20, the second measuring point P 2 being arranged in a cooling zone within the reduced cooling section 16.
  • the first measuring point P 1 is located at the end of the last cooling zone of the intensive cooling section 20 (with increased edge cooling), the second measuring point P 2 being located at the end of the first cooling zone of the reduced cooling section 16 (with reduced edge cooling).
  • the temperatures T 1 and T 2 are the mean strand shell temperatures at the measuring points P 1 and P 2 .
  • a mathematical-physical calculation model is used to calculate the strand temperatures T 1 , T 2, the sump tip positions and the strand shell thicknesses.
  • FIG Fig. 1 A position of the first and second measuring points along the strand guide 14 is shown in FIG Fig. 1 Simplified with the designations "P 1 " and "P 2 " indicated.
  • the flowchart of Fig. 4 illustrates an optimization of the amount of coolant, preferably in the form of spray water, with which the strand S is cooled in its edge regions.
  • the calculated edge temperature should be greater than the minimum permissible edge temperature T KanteZiel
  • the strand shell temperatures T 1 and T 2 at the measuring points P 1 and P 2 are calculated using the mathematical-physical calculation model the transport time of the strand S between the measuring points P 1 and P 2 is also determined. Taking into account the values thus calculated or determined, the current reheating factor WEF is then currently determined using the above equation.
  • the value of the current reheating factor WEF is currently compared with a maximum permissible reheating factor WEF max . If WEF should currently be greater than WEF max , this is an indication that the temperature rise between the intensive cooling section 20 and the reduced cooling section 16 is already too great, so that the cooling in the intensive cooling section 20 or that in this section is not increased the amount of coolant used is not increased. If, however, the condition WEF currently ⁇ WEF max should be met, the next step is to calculate the swamp length over the strand width using a mathematical-physical calculation model.
  • the cooling can be carried out as a result are suitably increased in the intensive cooling section 20, namely by increasing the associated amount of coolant in at least one cooling zone of the intensive cooling section 20, preferably in all cooling zones of the intensive cooling section 20.
  • the cooling capacity in the intensive cooling section 20 remains unchanged if the calculated sump tip difference for the strand S is not represents too high.
  • the flow chart according to Fig. 4 illustrates that the sequence of steps explained above is designed in the form of a control loop.
  • a control circuit preferably records all cooling nozzles of the cooling zones which are arranged within the intensive cooling section 20 in the edge regions of the strand S.
  • the flowchart of Fig. 5 illustrates a scheme for optimizing the nozzle arrangement or the use of cooling nozzles in the edge areas of the strand S.
  • an operating mode of the continuous casting plant 10 is used in which the edge regions or the edges of the strand S are not overmolded.
  • the edge temperature of the strand S within the intensive cooling section 20 is calculated, followed by a query as to whether the calculated edge temperature is greater than a minimum permissible edge temperature T KanteZiel before the straightening area I or within the straightening area I. From this step the flow chart corresponds to Fig. 5 essentially the logic of the flowchart of Fig. 4 so that reference may be made to it in order to avoid it.
  • the flowchart of Fig. 5 differs from the flowchart according to Fig. 4 solely because, if the calculated sump tip difference should be classified as too high, then additional cooling nozzles are switched on in the edge regions of the strand S in at least one cooling zone of the intensive cooling section 20. In this way, the cooling in the edge regions of the strand S is suitably increased.
  • FIG. 11 shows a schematically simplified plan view of cooling zones within the intensive cooling section 20 and the reduced cooling section 16.
  • the additional cooling nozzles which are produced according to the flow chart of FIG Fig. 5 can be switched on to increase the cooling of the edge areas of the strand S are in Fig. 6 labeled "22".
  • the edge regions of the strand S, in which these connectable cooling nozzles 22 are arranged, are shown in FIG Fig. 6 denoted by "R", with a central region of the strand S denoted by "M”.
  • the flowcharts of Fig. 4 and Fig. 5 and the determination of the current reheating factor WEF current carried out here relate, for example, to the first and second measuring points P 1 , P 2 , which are shown in FIG Fig. 6 are also indicated symbolically by arrows. This means that these measuring points are provided in individual cooling zones of the intensive cooling gate 20 or the reduced cooling section 16. Taking this into account, the determination of the current rewarming factor WEF currently enables an assessment of the temperature rise between the intensive cooling section 20 and the reduced cooling section 16. In this context, it is finally pointed out that the measuring points P 1 and P 2 are also at points other than those shown in FIG Fig. 1 and Fig. 6 indicated can be provided. Furthermore, a plurality of first measuring points P 1 or of second measuring points P 2 are also possible, each of which are provided within the intensive cooling section 20 or within the reduced cooling section 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Stranggießen eines metallischen Produkts nach dem Oberbegriff von Anspruch 1.
  • Bei der Herstellung von metallischen Produkten in einer Stranggießanlage wird das flüssige Metall kontinuierlich in einer Kokille vergossen, wobei sich dort eine erste Strangschale ausbildet. In der Regel tritt der Strang nach unten aus der Kokille aus, wobei der Strang anschließend entlang einer Strangführung transportiert und in einem sog. Biegebereich in einen Biegeradius überführt wird, um dadurch eine Umlenkung des Stranges in Richtung der Horizontalen zu erreichen. Bei einer Kreisbogenanlage beginnt die Krümmung des Stranges bereits in der Kokille, wobei dann der Biegebereich entfällt. Die Strangführung umfasst im weiteren Verlauf auch einen sog. Richtbereich, in dem der Strang dann vollständig in die horizontale Richtung umgelenkt wird. In diesem Richtbereich treten an einer Oberseite (Losseite) des Stranges Dehnungen auf, die zu Rissen bzw. Oberflächenquerrissen führen können.
  • Die Bedeutung einer optimalen Kühlung beim Stranggießen eines metallischen Produkts nach dem Austreten des Stranges aus der Kokille ist im Stand der Technik hinreichend bekannt, z.B. aus EP 2 718 042 B1 , WO 2016/012131 A1 oder EP 1 937 429 B1 .
  • Eine Problematik beim Stranggießen besteht darin, dass für den Strang insbesondere im Richtbereich der Strangführung in Folge der dort erzeugten Krümmungen Dehnungen auftreten, die zu Rissen im Strang bzw. an dessen Oberfläche führen können. Dies ist in der Fig. 7 verdeutlicht, die eine vereinfachte Seitenansicht einer Stranggießanlage zeigt. Hierin ist die Position einer erhöhten Rissgefahr beispielhaft markiert.
  • Zur Vermeidung der vorstehend erläuterten Problematik einer erhöhten Rissgefahr wird nach dem Stand der Technik ein Ansatz verfolgt, wonach die Oberflächentemperatur des Stranges über der kritischen Duktilitätstemperatur des Metalls bzw. stranggegossenen Materials gehalten wird. Dies ist auf der Strangmitte in der Regel möglich und für eine herkömmliche Stranggießanlage in Fig. 7 gezeigt, wobei entlang der Strangführung eine gleichmäßige Kühlung über der gesamten Strangbreite eingestellt und in Fig. 7 durch entsprechende Pfeile symbolisiert ist. Gleichwohl unterliegt dieser Ansatz gewissen Einschränkungen, weil die Temperatur des Stranges nicht zu hoch sein darf, damit der Strang in seinem Kern vor dem Ende der Stranggießanlage, d.h. z.B. vor einer Schere, bereits vollständig durcherstarrt sein muss. Zudem muss der Strang nach Austritt aus der Kokille ausreichend stark gekühlt werden, um eine ausreichend dicke Strangschale zu erzielen, weil andernfalls der Strang zwischen den Stützrollen der Strangführung zu stark ausbaucht und dadurch Innenfehler auftreten würden.
  • Im Allgemeinen kühlt der Strang beim Stranggießen durch die zweidimensionale Wärmestrahlung an seinen Kanten stärker aus als in der Strangmitte. Dies impliziert die Gefahr von Kantenrissen. Durch eine geringere Kühlung des Stranges an seinen Kanten wird versucht, diesem Effekt zu begegnen. Entsprechend werden bei einer herkömmlichen Stranggießanlage gemäß Fig. 8 die Spritzwassermengen in den Randbereichen des Stranges - im Vergleich zu einem Bereich in der Strangmitte - vermindert, was dann zu einer geringeren Kühlung in den Randbereichen und folglich zur Erzeugung von höheren Kantentemperaturen führt. Eine solche verminderte Kühlung der Randbereiche des Stranges findet in einem sog. Minderkühlabschnitts statt, der in der Fig. 8 kenntlich gemacht ist und in Förderrichtung des Stranges insbesondere vor dem Richtbereich I, und ggf. auch innerhalb des Richtbereichs, liegt. Erst im Anschluss an den Minderkühlabschnitt bzw. den Richtbereich I wird der Strang dann wieder gleichmäßig über der gesamten Strangbreite gekühlt (ebenfalls in Fig. 8 kenntlich gemacht).
  • Bei Vorsehen eines Minderkühlabschnitts stellt sich - wie vorstehend erläutert - ein Anstieg der Oberflächentemperatur im kantennahen Bereich des Stranges ein. Dies kann nachteilig zu einer ungleichmäßigen Sumpfspitze über die Strangbreite führen. Eine solche ungleichmäßige Sumpfspitze kann einen Längenunterschied von z.B. 1,5 m annehmen, was in Fig. 9 schematisch mit der Strecke dSumpf veranschaulicht ist. Eine solcherart ungleichmäßige Sumpfspitze ist bei Durchführung einer Softreduktion nachteilig, und führt zur Erzeugung von Innenrissen in dem Strang.
  • Aus DE 10 2006 056 683 A1 ist ein Verfahren zum Stranggießen eines metallischen Produkts mit den Merkmalen nach dem Oberbegriff von Anspruch 1 bekannt.
  • Entsprechend liegt der Erfindung die Aufgabe zugrunde, beim Stranggießen eines metallischen Produkts eine uniforme Sumpfspitze über der Strangbreite zu erreichen, ohne dass die Kantentemperatur unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur absinkt.
  • Die obige Aufgabe wird durch ein Verfahren zum Stranggießen eines metallischen Produkts mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Die Erfindung sieht ein Verfahren zum Stranggießen eines metallischen Produkts vor, bei dem in einer Stranggießanlage ein Strang des metallischen Produkts kontinuierlich aus einer Kokille insbesondere senkrecht nach unten austritt und anschließend entlang einer Strangführung in einer Förderrichtung transportiert wird. Hierbei wird der Strang in einem Richtbereich in die horizontale Richtung umgelenkt, wobei die Randbereiche des Stranges innerhalb eines Minderkühlabschnitts, der zumindest in Förderrichtung vor den Richtbereich und vorzugsweise auch innerhalb des Richtbereichs vorgesehen ist, vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich der Strangführung, der in Förderrichtung nach dem Richtbereich liegt. Die Randbereiche des Stranges werden in einem Intensivkühlabschnitt der Strangführung, der unmittelbar nach dem Austreten des Stranges aus der Kokille beginnt und in Förderrichtung vor dem Minderkühlabschnitt liegt, zumindest genauso stark gekühlt wie ein mittiger Bereich des Stranges. Unter Verwendung eines innerhalb des Intensivkühlabschnittes liegenden ersten Messpunktes und eines innerhalb des Minderkühlabschnittes liegenden zweiten Messpunktes folgende Schritte durchgeführt werden:
    • (i) Bestimmung eines aktuellen Wiedererwärmungsfaktors (WEFaktuell), unter Verwendung von folgender Beziehung: WEF = T 1 T 2 mD * t
      Figure imgb0001
      mit:
      • T1 = berechnete Temperatur am ersten Messpunkt P1
      • T2 = berechnete Temperatur am zweiten Messpunkt P2
      • mD = mittlere Dicke der Strangschale zwischen P1 und P2
      • t = Transportzeit des Stranges (S) zwischen den Messpunkten P1 und P2,
    • ii) Vergleich des aktuellen Wiedererwärmungsfaktors (WEFaktuell) mit einem zulässigen maximalen Wiedererwärmungsfaktor (WEFmax), und
    • iii) falls (WEFaktuell) < (WEFmax): Verstärken der Kühlung in den Randbereichen (R) des Stranges (S) innerhalb des Intensivkühlabschnitts (20).
  • Durch eine solche Kühlstrategie wird erreicht, dass eine im Wesentlichen einheitliche Sumpflänge ausgebildet wird, was sich z.B. bei Durchführung einer Softreduktion positiv auswirkt.
  • Das erfindungsgemäße Verfahren kann mit einer Stranggießanlage durchgeführt werden, die zur Herstellung eines metallischen Produkts dient. Diese Stranggießanlage, die nicht zur vorliegenden Erfindung gehört, umfasst eine Kokille, und eine sich an die Kokille anschließende Strangführung, entlang der ein aus der Kokille insbesondere senkrecht nach unten austretender Strang in einer Förderrichtung transportiert werden kann. Die Strangführung weist einen Richtbereich auf, durch den der Strang in die horizontale Richtung umlenkbar ist. Ferner weist die Strangführung einen zumindest in Förderrichtung vor dem Richtbereich vorgesehenen Minderkühlabschnitt auf, in dem die Randbereiche des Stranges vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich der Strangführung, der in Förderrichtung nach dem Richtbereich liegt. Vorzugsweise kann der Minderkühlabschnitt auch innerhalb des Richtbereichs vorgesehen sein. Die Strangführung weist unmittelbar nach dem Austreten des Stranges aus der Kokille einen in Förderrichtung vor dem Minderkühlabschnitt liegenden Intensivkühlabschnitt auf, in dem die Randbereiche des Stranges zumindest genauso stark kühlbar sind wie ein mittiger Bereich des Stranges.
  • Grundsätzlich ist es auf dem Gebiet des Stranggießens von metallischen Produkten bekannt, dass für die Ausbildung der Sumpflänge hauptsächlich die Kühlung des Stranges direkt nach dessen Austritt aus der Kokille verantwortlich ist. Hier ist die Strangschale noch sehr dünn, so dass die Kühlwirkung auch den noch flüssigen Strangkern beeinflusst. Unter Berücksichtigung dessen liegt der Erfindung somit die wesentliche Erkenntnis zu Grunde, dass in dem Intensivkühlabschnitt die Randbereiche des Stranges zumindest genauso stark gekühlt werden wie dessen mittiger Bereich, so dass sich diese Art von Kühlung vollständig auf den flüssigen Strangkern, und damit auf die Ausbildung einer gewünschten gleichmäßigen bzw. uniformen Sumpfspitze des Stranges über dessen Breite auswirkt. Anders ausgedrückt, wird durch die Einstellung einer gleichmäßigen spezifischen Spritzwassermenge über der Strangbreite bzw. durch eine Verstärkung der Randkühlung innerhalb des Intensivkühlabschnitts erreicht, dass die Längendifferenz in der Sumpfspitze über der Strangbreite zumindest vermindert wird. Entsprechend wird für den Strang eine über der Strangbreite gleichmäßige Sumpfspitze realisiert. Insgesamt erfolgt die vorstehend erläuterte Kühlstrategie jedenfalls unter Einhaltung der Bedingung, dass die durch den Duktilitätsverlauf bestimmte minimale Temperatur entlang der gesamten Länge der Strangführung, und somit auch innerhalb bzw. entlang des Intensivkühlabschnitts, nicht unterschritten wird.
  • In vorteilhafter Weiterbildung der Erfindung kann der Intensivkühlabschnitt, in dem die Randbereiche des Stranges zumindest so stark gekühlt werden wie der mittige Bereich des Stranges, innerhalb eines ersten Drittels der Länge der Stranggießanlage vorgesehen sein, gerechnet ab dem Kokillenaustritt des Stranges. Im Anschluss an den Intensivkühlabschnitt wird dann in dem Minderkühlabschnitt die Kühlung der Randbereiche des Stranges reduziert bzw. vermindert. Hierdurch wird erreicht, dass die Temperatur des Stranges auch in seinen Randbereichen bzw. kantennahen Zonen nicht unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur absinkt. Dies gilt insbesondere für die Bereiche des Stranges, in denen zusätzliche Beanspruchungen auftreten, z.B. im Biegebereich und/oder im Richtbereich. Dadurch wird erfindungsgemäß die Ausbildung von möglichen Oberflächenrissen in dem Strang auch in dem Minderkühlabschnitt der Strangführung vermieden.
  • In vorteilhafter Weiterbildung der Erfindung werden innerhalb des Intensivkühlabschnitts der Strangführung die Randbereiche des Stranges stärker gekühlt als der mittige Bereich des Stranges. Dies kann zweckmäßigerweise dadurch erreicht werden, dass die spezifischen Wassermengen in den Randregelkreisen höher sind als die Wassermengen, mit denen der mittige Bereich des Stranges beaufschlagt wird. Dies führt zu dem Vorteil, dass im Bereich des Intensivkühlabschnitts der Strangführung ein Längenunterschied in der Sumpfspitze des Stranges über dessen Breite weiter vermindert wird, um damit eine (möglichst) uniforme Sumpfspitze zu erreichen.
  • Unter Berücksichtigung der Anordnung des Intensivkühlabschnitts und des Minderkühlabschnitts, nämlich - in Förderrichtung des Stranges gesehen - nachfolgend hintereinander, ist für die vorliegende Erfindung von Bedeutung, dass ein Temperaturanstieg für den Strang zwischen diesen beiden Kühlabschnitten nicht zu hoch wird. Zu diesem Zweck wird erfindungsgemäß, und vorzugsweise unter Einhaltung der Maßgabe, dass innerhalb des Intensivkühlabschnitts die Temperatur in den Randbereichen des Stranges einer minimal zulässigen Kantentemperatur entspricht bzw. stets größer als diese ist, der vorstehend genannte Wiedererwärmungsfaktor WEF [°C/(mm*sec)] berechnet, der sich wie folgt bestimmt: WEF = Differenz zwischen der Temperatur T 1 an einem ersten Messpunkt P 1 und der Temperatur T 2 an einem zweiten Messpunkt P 2 / mittlere Dicke der Strangschale zwischen den Messpunkten P 1 und P 2 / Transportzeit des Stranges zwischen den Messpunkten P 1 und P 2 .
    Figure imgb0002
  • Hierin sind beispielsweise:
  • P1:
    Ende der letzten Kühlzone des Intensivkühlabschnitts, jedenfalls zumindest ein Messpunkt innerhalb des Intensivkühlabschnitts,
    T1:
    mittlere Strangschalentemperatur an dem ersten Messpunkt P1,
    P2:
    Ende der ersten Kühlzone des Minderkühlabschnitts, jedenfalls zumindest ein Messpunkt innerhalb des Minderkühlabschnitts, und
    T2:
    mittlere Strangschalentemperatur an dem zweiten Messpunkt P2.
  • Zur Berechnung der Strangtemperaturen T1 und T2 und der Strangschalendicken bei den Messpunkten P1 und P2 und der zugehörigen Sumpfspitzenpositionen wird ein mathematisch - physikalisches Rechenmodell verwendet. Ein solcherart bestimmter bzw. gemessener Wiedererwärmungsfaktor WEF wird anschließend mit einem maximalen Wiedererwärmungsfaktor WEFmax verglichen, der materialabhängig ist und im Voraus bestimmt bzw. festgelegt worden ist. Solange der aktuell gemessene Wiedererwärmungsfaktor WEFaktuell kleiner ist als der maximale Wiedererwärmungsfaktor WEFmax, wird in zumindest einer Kühlzone des Intensivkühlabschnitts die Kühlung der Randbereiche des Stranges verstärkt, z.B. durch Zuschaltung von weiteren zusätzlichen Kühldüsen im Kantenbereich des Stranges und/oder durch Erhöhung des eingestellten Kühlmittelstroms, mit dem der Strang in seinen Randbereichen beaufschlagt bzw. gekühlt wird. Beide diese Varianten, d.h. die Zuschaltung von zusätzlichen Kühldüsen bzw. die Erhöhung der zugehörigen Kühlmittelmenge (z.B. Spritzwasser), erfolgen stets unter Beachtung bzw. Einhaltung der folgenden Aspekte:
    • Die Temperatur an der Strangkante bzw. in den Randbereichen des Stranges liegt nicht unter der durch den Duktilitätsverlauf vorgegebenen kritischen Temperatur;
    • Die Sumpfspitze besitzt keine oder eine möglichst gering ausgeprägte W - Form über der Strangbreite; und
    • Der Temperaturanstieg zwischen der letzten Kantendüse (d.h. an dem ersten Messpunkt P1 innerhalb des Intensivkühlabschnitts) und der ersten Zone ohne Kantendüsen (d.h. an dem zweiten Messpunkt P2 innerhalb des Minderkühlabschnitts) darf nicht zu hoch sein, bzw. den zulässigen maximalen Wiedererwärmungsfaktor WEFmax nicht überschreiten.
  • Ergänzend kann für die obigen beiden Varianten zur Verstärkung der Kühlung in den Randbereichen des Stranges vorgesehen sein, dass auch die jeweils aktuelle Lage bzw. Position der Sumpfspitze überprüft bzw. mit berücksichtigt wird. Hierzu wird eine Berechnung des Sumpflängenverlaufs über der Strangbreite vorgenommen. Falls auf Grundlage dieser Berechnung festgestellt wird, dass die berechnete Sumpfspitzendifferenz im Vergleich zu einer vorbestimmten maximalen Sumpfspitzendifferenz, die einen erlaubten oberen Grenzwert darstellt, zu hoch ist, wird dann die Kühlung in den Randbereichen des Stranges nach einer der beiden genannten Varianten verstärkt. Andernfalls, nämlich für den Fall, dass die festgestellte Sumpfspitzendifferenz nicht zu hoch sein sollte, wird die Kühlung in dem Intensivkühlabschnitt nicht weiter verstärkt.
  • Zur Durchführung des erfindungsgemäßen Verfahrens ist es vorteilhaft, wenn der Intensivkühlabschnitt zumindest eine Kühlzone mit zusätzlichen Kühldüsen umfasst, die einem Randbereich des Stranges zugeordnet sind und zur Verstärkung der Kühlung der Randbereiche des Stranges zugeschaltet werden können.
  • Nachstehend sind bevorzugte Ausführungsformen der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben. Es zeigen:
  • Fig. 1, Fig. 2
    jeweils eine Seitenansicht einer Stranggießanlage, die nicht zur vorliegenden Erfindung gehört, sich jedoch zur Durchführung eines erfindungsgemäßen Verfahrens eignet
    Fig. 3 eine
    Darstellung des Sumpfspitzenverlaufen (A) sowie des Temperaturverlaufes nach dem Intensivkühlbereich (B) und des Temperaturverlaufes nach dem Minderkühlabschnitt (C),
    Fig. 4, Fig. 5
    jeweils Ablaufdiagramme zur Optimierung einer Kühlung innerhalb des Intensivkühlabschnitts der Stranggießanlage von Fig. 1, und
    Fig. 6 eine
    Draufsicht auf Kühlzonen innerhalb des Intensivkühlabschnitts einer Stranggießanlage von Fig. 1.
  • In Fig. 1 ist eine Stranggießanlage 10 prinzipiell vereinfacht in einer Seitenansicht gezeigt. Die Stranggießanlage 10 dient zum Herstellen eines metallischen Produkts 11, und umfasst hierzu eine Kokille 12 und eine sich daran anschließende Strangführung 14, entlang der ein aus der Kokille 12 vorzugsweise nach unten austretender Strang S des metallischen Produkts 11 in einer Förderrichtung F transportiert wird. Unterhalb der Kokille 12, und beiderseits des Stranges S, sind eine Mehrzahl von Stützrollen 2 angeordnet, wobei Spritzwasser 4 auf den Strang S ausgebracht bzw. gespritzt wird, zwecks einer Kühlung des Stanges S. An der Stelle, wo in Fig. 1 der Strang S mit der Bezugslinie "5" markiert ist, weist der Strang noch einen flüssigen Sumpf auf. Die Sumpfspitze des Stranges S ist mit dem Bezugszeichen "6" angedeutet. Stromabwärts hiervon ist der Strang S vollständig durcherstarrt, z.B. an der in Fig 1 mit der Bezugslinie "11d" markierten Position. Stromabwärts hiervon ist entlang der Strangführung 14 ebenfalls eine Wasserkühlung vorgesehen, die mit der Bezugslinie "8" gekennzeichnet ist.
  • Die Strangführung 14 der Stranggießanlage 10 umfasst einen Richtbereich I, durch den der Strang S vollständig in die horizontale Richtung umgelenkt wird. Des Weiteren umfasst die Strangführung 14 einen Biegebereich II, durch den der Strang S, nachdem er aus der Kokille 12 ausgetreten ist, in Richtung der Horizontalen umgelenkt wird. Der Richtbereich I und der Biegebereich II sind in der Darstellung von Fig. 1 jeweils vereinfacht durch gestrichelte Rechtecke symbolisiert.
  • Die Förderrichtung, in der der Strang S entlang der Strangführung 14 der Stranggießanlage 10 transportiert wird, ist in der Darstellung von Fig. 1 mit "F" bezeichnet. Die Strangführung 14 umfasst einen Minderkühlabschnitt 16, der - in Förderrichtung F des Stranges S gesehen - stromaufwärts bzw. vor einem horizontalen Bereich 18 der Strangführung 14 liegt. Der Minderkühlabschnitt 16 kann derart ausgebildet sein, dass er zumindest teilweise, oder vollständig, den Richtbereich I erfasst. Der Minderkühlabschnitt 16 der Strangführung 14 zeichnet sich dadurch aus, dass die darin vorgesehenen Kühlzonen derart ausgebildet sind, dass die Randbereiche des Stranges S vermindert gekühlt werden als im Vergleich zu dem horizontalen Bereich 18 der Strangführung 14.
  • Ein wesentliches Merkmal der Stranggießanlage 10 besteht darin, dass die Strangführung 14 einen Intensivkühlabschnitt 20 aufweist, der unmittelbar nach dem Austreten des Stranges S aus der Kokille 12 beginnt und - wie in Fig. 1 veranschaulicht - in Förderrichtung F gesehen vor dem Minderkühlabschnitt 16 liegt. Der Intensivkühlabschnitt 20 ist mit zumindest einer darin vorgesehenen Kühlzone derart ausgebildet, dass die Randbereiche des Stranges S zumindest genauso stark gekühlt werden wie ein mittiger Bereich des Stranges S.
  • Fig. 2 zeigt die Stranggießanlage 10 von Fig. 1 nochmals in einer vereinfachten Seitenansicht. Hierin sind die Längenerstreckungen des Minderkühlabschnitts 16 und des Intensivkühlabschnitts 20 entlang der Strangführung 14 der Stranggießanlage 10 veranschaulicht. Im Einzelnen ist die Länge des Intensivkühlabschnitts 20 mit "L20" bezeichnet, wobei diese Länge in etwa ein Drittel der Länge L10 der Stranggießanlage 10 betragen kann. Für diesen Fall ist der Intensivkühlabschnitt 20 innerhalb eines ersten Drittels der Länge L10 der Stranggießanlage 10, beginnend ab dem Austritt des Stranges S aus der Kokille 12, vorgesehen. Eine Länge des Minderkühlabschnitts 16 ist in der Darstellung von Fig. 2 mit "L16" bezeichnet. Des Weiteren wird durch die Fig. 2 veranschaulicht, dass der Intensivkühlabschnitt 20 - in Förderrichtung F des Stranges S gesehen - vor dem Minderkühlabschnitt 16 bzw. stromaufwärts hiervon vorgesehen ist, wobei der Intensivkühlabschnitt 20 unmittelbar nach dem Kokillenaustritt bzw. einem gießspiegelnahen Bereich beginnt.
  • Durch die vorstehend genannte intensive Kühlung der Randbereiche des Stranges S in dem Intensivkühlabschnitt 20, die wegen der hier noch sehr dünnen Strangschale auch den noch flüssigen Strangkern beeinflusst, wird mit dem erfindungsgemäßen Verfahren erreicht, dass der Längenunterschied in der Sumpfspitze im Vergleich zum Stand der Technik vorteilhaft vermindert wird. Dies ist in der Darstellung von Fig. 3 mit der Kurve "A" veranschaulicht, die einen Verlauf der Sumpfspitze 6 über der Strangbreite zeigt. Hierin beträgt der Längenunterschied dSumpf, der ein Maß für die Ungleichmäßigkeit der Sumpfspitze ist, beispielsweise nur etwa 150 mm. Somit wird mittels des erfindungsgemäßen Verfahrens eine im Wesentlichen uniforme bzw. gleichförmige Sumpfspitze über der Strangbreite erzielt, ohne dass die Kantentemperatur unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur absinkt. Jedenfalls ist der mittels des erfindungsgemäßen Verfahrens realisierte Längenunterschied dSumpf wesentlich kleiner als nach dem Stand der Technik, der wie eingangs anhand der Fig. 9 erläutert 1,5 m betragen kann.
  • Wie aus Fig. 3 weiter ersichtlich, ist der Temperaturverlauf nach dem Intensivkühlabschnitt (B) über der Strangbreite nicht konstant. Im Randbereich ist die Temperatur niedriger als in der Strangmitte. Durch die verminderte Kühlung des Randbereiches im nachfolgenden sog. Minderkühlabschnitt gleicht sich der Temperaturunterschied größtenteils aus und der Temperaturverlauf nach dem Minderkühlabschnitt (C) über der Strangbreite ist im Wesentlichen konstant.
  • Im Betrieb der Stranggießanlage 10 bzw. bei Durchführung eines erfindungsgemäßen Verfahrens zum Stranggießen eines metallischen Produkts 11 stellt sich zwischen dem Intensivkühlabschnitt 20, in dem die Randbereiche des Stranges S einer verstärkten Kantenkühlung unterzogen werden, und dem Minderkühlabschnitt 16, in dem eine reduzierte Kühlmittelbeaufschlagung für die Randbereiche des Stranges S vorgesehen ist, ein Temperaturanstieg ein. Hierbei ist für die Erfindung von Bedeutung, dass ein solcher Temperaturanstieg nicht zu hoch wird. Ein zu starker und zu schneller Anstieg des bereits erstarrten Materials des Stranges S kann ansonsten zu Innenrissen führen.
  • Die Einhaltung eines nicht zu hohen Temperaturanstiegs zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16 wird bei dem erfindungsgemäßen Verfahren durch die Bildung eines Wiedererwärmungsfaktors WEF [°C/(mm * sec)] gewährleistet. Ein solcher Wiedererwärmungsfaktor WEF bestimmt sich durch den Quotienten der Differenz zwischen einer Temperatur T1 an einem ersten Messpunkt P1 und einer Temperatur T2 an einem zweiten Messpunkt P2, zur mittleren Dicke der Strangschale zwischen den Messpunkten P1 und P2, und zur Transportzeit des Stranges S zwischen den Messpunkten P1 und P2. Entsprechend bestimmt sich die Einheit für den Wiedererwärmungsfaktor WEF zu [°C/(mm * sec)]. Diesbezüglich versteht sich, dass der erste Messpunkt P1 in einer Kühlzone innerhalb des Intensivkühlabschnitts 20 angeordnet ist, wobei der zweite Messpunkt P2 in einer Kühlzone innerhalb des Minderkühlabschnitts 16 angeordnet ist. Beispielsweise befindet sich der erste Messpunkt P1 am Ende der letzten Kühlzone des Intensivkühlabschnitts 20 (mit verstärkter Kantenkühlung), wobei der zweite Messpunkt P2 sich am Ende der ersten Kühlzone des Minderkühlabschnitts 16 (mit reduzierter Kantenkühlung) befindet. Bei den Temperaturen T1 und T2 handelt es sich um die mittleren Strangschalentemperaturen an den Messpunkten P1 bzw. P2. Zur Berechnung der Strangtemperaturen T1, T2, der Sumpfspitzenpositionen und der Strangschalendicken wird ein mathematisch-physikalisches Rechenmodell verwendet.
  • Eine Position der ersten und zweiten Messpunkte entlang der Strangführung 14 ist in der Darstellung von Fig. 1 vereinfachend mit den Bezeichnungen "P1" und "P2" angedeutet.
  • Unter Verwendung der vorstehend erläuterten Messpunkte P1 und P2 wird bei Durchführung eines Verfahrens nach der vorliegenden Erfindung zunächst ein aktueller Wiedererwärmungsfaktor bestimmt bzw. berechnet, nämlich unter Verwendung von folgender Beziehung: WEF = Differenz zwischen einer Temperatur T 1 am ersten Messpunkt P 1 und einer Temperatur T 2 am zweiten Messpunkt P 2 / mittlere Dicke der Strangschale an den Messpunkten P 1 und P 2 / Transportzeit des Stranges S zwischen den Messpunkten P 1 und P 2 .
    Figure imgb0003
  • Im Anschluss hieran wird dann der aktuelle Wiedererwärmungsfaktor mit WEFaktuell mit einem zulässigen maximalen Wiedererwärmungsfaktor WEFmax verglichen, der materialabhängig ist und im Voraus festgelegt wird. In Abhängigkeit des Vergleichs zwischen WEFaktuell und WEFmax kann dann die Kühlung der Randbereiche des Stranges S innerhalb des Intensivkühlabschnitts 20 verstärkt werden, was nachfolgend anhand der Ablaufdiagramme im Einzelnen erläutert ist:
    Das Ablaufdiagramm von Fig. 4 veranschaulicht eine Optimierung der Kühlmittelmenge, vorzugsweise in Form von Spritzwasser, mit der bzw. dem der Strang S in seinen Randbereichen gekühlt wird. Mit Hilfe eines mathematisch-physikalischen Rechenmodells werden alle relevanten Temperaturen des Stranges S berechnet, hierbei u.a. die Kantentemperaturen des Stranges S, d.h. die Temperatur des Stranges S in seinen Randbereichen. Sodann wird überprüft, ob vor dem Richtbereich I oder innerhalb des Richtbereichs I die somit berechnete Kantentemperatur größer ist als eine minimal zulässige Kantentemperatur TKanteZiel. Falls dies nicht der Fall ist, wird die Kühlung im Intensivkühlabschnitt 20 nicht verstärkt, so dass keine weitere Minimierung der Sumpfspitzendifferenz möglich ist. Dies erfolgt wegen der Maßgabe, dass die Kantentemperatur nicht unter die durch den Duktilitätsverlauf bestimmte kritische Temperatur, vorstehend als TKanteZiel bezeichnet, absinken soll. Falls demgegenüber die berechnete Kantentemperatur größer sein sollte als die minimal zulässige Kantentemperatur TKanteZiel, werden unter Verwendung des mathematisch-physikalischen Rechenmodells die Strangschalentemperaturen T1 und T2 an den Messpunkten P1 und P2, sowie die mittlere Strangschalendicke zwischen diesen Messpunkten berechnet, als auch die Transportzeit des Stranges S zwischen den Messpunkten P1 und P2 bestimmt. Unter Berücksichtigung der somit berechneten bzw. bestimmten Werte wird dann anhand der obigen Gleichung der aktuelle Wiedererwärmungsfaktor WEFaktuell bestimmt.
  • In einem nächsten Schritt wird der Wert des aktuellen Wiedererwärmungsfaktors WEFaktuell mit einem zulässigen maximalen Wiedererwärmungsfaktor WEFmax verglichen. Falls WEFaktuell größer als WEFmax sein sollte, ist dies ein Anzeichen dafür, dass der Temperaturanstieg zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16 bereits zu groß ist, so dass die Kühlung in dem Intensivkühlabschnitt 20 nicht verstärkt wird, bzw. die in diesem Abschnitt eingesetzte Kühlmittelmenge nicht erhöht wird. Falls jedoch die Bedingung WEFaktuell < WEFmax erfüllt sein sollte, wird in einem nächsten Schritt der Sumpflängenverlauf über der Strangbreite anhand eines mathematisch-physikalischen Rechenmodells berechnet. Falls sich hierbei bei einem Vergleich mit einer vorbestimmten maximalen Sumpfspitzendifferenz, die einen erlaubten oberen Grenzwert darstellt, herausstellen sollte, dass die berechnete Sumpfspitzendifferenz zu hoch ist, kann in Folge dessen die Kühlung im Intensivkühlabschnitt 20 geeignet verstärkt werden, nämlich durch Erhöhung der zugehörigen Kühlmittelmenge in zumindest einer Kühlzone des Intensivkühlabschnitts 20, vorzugsweise in allen Kühlzonen des Intensivkühlabschnitts 20. Demgegenüber bleibt die Kühlleistung in dem Intensivkühlabschnitt 20 unverändert, falls die berechnete Sumpfspitzendifferenz für den Strang S sich als nicht zu hoch darstellt.
  • Das Ablaufdiagramm gemäß Fig. 4 veranschaulicht, dass die vorstehend erläuterte Schrittabfolge in Form eines Regelkreises ausgebildet ist. Ein solcher Regelkreis erfasst vorzugsweise alle Kühldüsen der Kühlzonen, die innerhalb des Intensivkühlabschnitts 20 in den Randbereichen des Stranges S angeordnet sind.
  • Das Ablaufdiagramm von Fig. 5 veranschaulicht eine Regelung zur Optimierung der Düsenanordnung bzw. des Einsatzes von Kühldüsen in den Randbereichen des Stranges S. Als Ausgangspunkt für das Ablaufdiagramm von Fig. 5 dient eine Betriebsweise der Stranggießanlage 10, bei der die Randbereiche bzw. die Kanten des Stranges S nicht überspritzt werden. Sodann wird unter Verwendung eines mathematisch-physikalischen Rechenmodells die Kantentemperatur des Stranges S innerhalb des Intensivkühlabschnitts 20 berechnet, gefolgt von einer Abfrage, ob vor dem Richtbereich I oder innerhalb des Richtbereichs I die berechnete Kantentemperatur größer ist als eine minimal zulässige Kantentemperatur TKanteZiel. Ab diesem Schritt entspricht das Ablaufdiagramm gemäß Fig. 5 im Wesentlichen der Logik des Ablaufdiagramms von Fig. 4, so dass zur Vermeidung darauf verwiesen werden darf.
  • Das Ablaufdiagramm von Fig. 5 unterscheidet sich vom Ablaufdiagramm gemäß Fig. 4 einzig dadurch, dass, falls die berechnete Sumpfspitzendifferenz als zu hoch eingestuft werden sollte, dann in zumindest einer Kühlzone des Intensivkühlabschnitts 20 zusätzliche Kühldüsen in den Randbereichen des Stranges S zugeschaltet werden. In dieser Weise wird die Kühlung in den Randbereichen des Stranges S geeignet verstärkt.
  • Fig. 6 zeigt eine schematisch vereinfachte Draufsicht auf Kühlzonen innerhalb des Intensivkühlabschnitts 20 und des Minderkühlabschnitts 16. Die zusätzlichen Kühldüsen, die gemäß des Ablaufdiagramms von Fig. 5 zur Verstärkung der Kühlung der Randbereiche des Stranges S zugeschaltet werden können, sind in Fig. 6 mit "22" bezeichnet. Zusätzlich sind die Randbereiche des Stranges S, in dem diese zuschaltbaren Kühldüsen 22 angeordnet sind, in Fig. 6 mit "R" bezeichnet, wobei ein mittiger Bereich des Stranges S mit "M" bezeichnet ist.
  • In gleicher Weise wie bei Fig. 4 versteht sich für das Ablaufdiagramm von Fig. 5, dass die zugehörige Schrittabfolge als Regelkreis ausgebildet ist. Somit ist bei einer Verstärkung der Kühlung in den Randbereichen R des Stranges S stets gewährleistet, dass mögliche Prozessveränderungen rechtzeitig erkannt werden. Entsprechend bleibt der Temperaturanstieg zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16 moderat, wenn die Bedingung WEFaktuell < WEFmax erfüllt wird, wobei gleichzeitig die Temperatur an der Strangkante bzw. in den Randbereichen des Stranges S nicht unter die durch den Duktilitätsverlauf vorgegebenen kritischen Temperatur TKanteZiel fällt.
  • Die Ablaufdiagramme von Fig. 4 und Fig. 5 und die hierbei durchgeführte Bestimmung des aktuellen Wiedererwärmungsfaktors WEFaktuell beziehen sich beispielsweise auf die ersten und zweiten Messpunkte P1, P2, die in der Fig. 6 auch symbolisch durch Pfeile angedeutet sind. Dies bedeutet, dass diese Messpunkte in einzelnen Kühlzonen des Intensivkühlanschnitts 20 bzw. des Minderkühlabschnitts 16 vorgesehen sind. Unter Berücksichtigung dessen ermöglicht die Bestimmung des aktuellen Wiedererwärmungsfaktors WEFaktuell eine Beurteilung des Temperaturanstiegs zwischen dem Intensivkühlabschnitt 20 und dem Minderkühlabschnitt 16. In diesem Zusammenhang wird schließlich darauf hingewiesen, dass die Messpunkte P1 und P2 auch an anderen Stellen als wie in der Darstellung von Fig. 1 und Fig. 6 angedeutet vorgesehen sein können. Des Weiteren sind auch eine Mehrzahl von ersten Messpunkten P1 bzw. von zweiten Messpunkten P2 möglich, die jeweils innerhalb des Intensivkühlabschnitts 20 bzw. innerhalb des Minderkühlabschnitts 16 vorgesehen sind.
  • Bezugszeichenliste
  • 2
    Stützrolle(n)
    4
    Kühlmittel, z.B. Spritzwasser
    5
    Flüssiger Sumpf (des Stranges S)
    6
    Sumpfspitze
    7
    Durcherstarrter Teil des Sranges S
    8
    Wasserkühlung
    10
    Stranggießanlage
    11
    Metallisches Produkt
    12
    Kokille
    14
    Strangführung
    16
    Minderkühlabschnitt (der Strangführung 14)
    18
    Horizontaler Bereich (der Strangführung 14)
    20
    Intensivkühlabschnitt (der Strangführung 14)
    22
    Zusätzliche (zuschaltbare) Kühldüse(n)
    F
    Förderrichtung (des Stranges S)
    I
    Richtbereich (der Strangführung 14)
    II
    Biegebereich (der Strangführung 14)
    L10
    Länge der Stranggießanlage 10
    L16
    Länge des Minderkühlabschnitts 16
    L20
    Länge des Intensivkühlabschnitts 20
    M
    Mittiger Bereich (des Stranges S)
    P1
    Erster Messpunkt (innerhalb des Intensivkühlabschnitts 20)
    P2
    Zweiter Messpunkt (innerhalb des Minderkühlabschnitts 16)
    R
    Randbereich(e) des Stranges S
    S
    Strang (des metallischen Produkts 11)
    T1
    Temperatur am ersten Messpunkt P1
    T2
    Temperatur am zweiten Messpunkt P2
    WEFaktuell
    Aktueller Wiedererwärmungsfaktor
    WEFmax
    Zulässiger maximaler Wiedererwärmungsfaktor

Claims (9)

  1. Verfahren zum Stranggießen eines metallischen Produkts (11), bei dem in einer Stranggießanlage (10) ein Strang (S) des metallischen Produkts (11) kontinuierlich aus einer Kokille (12) insbesondere senkrecht nach unten austritt und anschließend entlang einer Strangführung (14) in einer Förderrichtung (F) transportiert wird, wobei der Strang (S) in einem Richtbereich (I) in die horizontale Richtung umgelenkt wird, wobei die Randbereiche (R) des Stranges (S) innerhalb eines Minderkühlabschnitts (16) der Strangführung (14), der zumindest in Förderrichtung (F) vor dem Richtbereich (I) und vorzugsweise auch innerhalb des Richtbereichs (I) vorgesehen ist, vermindert gekühlt werden als im Vergleich zu einem horizontalen Bereich (18) der Strangführung (14) in Förderrichtung (F) nach dem Richtbereich (I),
    wobei die Randbereiche (R) des Stranges (S) in einem Intensivkühlabschnitt (20) der Strangführung (14), der unmittelbar nach dem Austreten des Stranges (S) aus der Kokille (12) beginnt und in Förderrichtung (F) vor dem Minderkühlabschnitt (16) liegt, zumindest genauso stark gekühlt werden wie ein mittiger Bereich (M) des Stranges (S),
    dadurch gekennzeichnet,
    dass unter Verwendung eines innerhalb des Intensivkühlabschnittes (20) liegenden ersten Messpunktes (P1) und eines innerhalb des Minderkühlabschnittes liegenden zweiten Messpunktes (P2) folgende Schritte durchgeführt werden:
    (i) Bestimmung eines aktuellen Wiedererwärmungsfaktors (WEFaktuell), unter Verwendung von folgender Beziehung: WEF = T 1 T 2 mD * t
    Figure imgb0004
    mit:
    T1 = berechnete Temperatur am ersten Messpunkt P1
    T2 = berechnete Temperatur am zweiten Messpunkt P2
    mD = mittlere Dicke der Strangschale zwischen P1 und P2
    t = Transportzeit des Stranges (S) zwischen den Messpunkten P1 und P2,
    (ii) Vergleich des aktuellen Wiedererwärmungsfaktors (WEFaktuell) mit einem zulässigen maximalen Wiedererwärmungsfaktor (WEFmax), und
    (iii) falls (WEFaktuell) < (WEFmax): Verstärken der Kühlung in den Randbereichen (R) des Stranges (S) innerhalb des Intensivkühlabschnitts (20).
  2. Verfahren nach Anspruch 1, gekennzeichnet durch eine Wiederholung der Schritte (i) bis (iii), wobei gemäß Schritt (iii) die Kühlung in den Randbereichen (R) des Stranges (S) verstärkt wird, solange die Bedingung WEFaktuell < WEF- max erfüllt ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass beim Verstärken der Kühlung gemäß Schritt (iii) in zumindest einer Kühlzone des Intensivkühlabschnitts (20) weitere zusätzliche Kühldüsen in den Randbereichen (R) des Stranges (S) zugeschaltet werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beim Verstärken der Kühlung gemäß Schritt (iii) in zumindest einer Kühlzone des Intensivkühlabschnitts (20) die auf den Strang (S) ausgebrachte Kühlmittelmenge erhöht wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schritte (i) bis (iii) durchgeführt werden, falls vor dem Richtbereich (I) oder innerhalb des Richtbereichs (I) die Temperatur in den Randbereichen (R) des Stranges (S) größer ist als eine minimal zulässige Kantentemperatur (TKanteZiel).
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Sumpfspitzenverlauf über der Strangbreite berechnet wird, wobei der Schritt (iii) unter der weiteren Bedingung durchgeführt wird, dass die berechnete Sumpfspitzendifferenz größer ist als eine vorbestimmte maximale Sumpfspitzendifferenz.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Intensivkühlabschnitt (20) innerhalb eines ersten Drittels der Länge der Stranggießanlage (10) beginnend ab dem Austritt des Stranges (S) aus der Kokille (12) vorgesehen ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass innerhalb des Intensivkühlabschnitts (20) die Randbereiche (R) des Stranges (S) stärker gekühlt werden als der mittige Bereich (M) des Stranges (S).
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass innerhalb des Intensivkühlabschnitts (20) die spezifischen Wassermengen in den Randregelkreisen höher sind als die Wassermengen, die auf den mittigen Bereich (M) des Stranges (S) ausgetragen werden.
EP18183113.2A 2017-08-08 2018-07-12 Verfahren und anlage zum stranggiessen eines metallischen produkts Active EP3441157B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017213842.4A DE102017213842A1 (de) 2017-08-08 2017-08-08 Verfahren und Anlage zum Stranggießen eines metallischen Produkts

Publications (2)

Publication Number Publication Date
EP3441157A1 EP3441157A1 (de) 2019-02-13
EP3441157B1 true EP3441157B1 (de) 2021-04-21

Family

ID=62947993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18183113.2A Active EP3441157B1 (de) 2017-08-08 2018-07-12 Verfahren und anlage zum stranggiessen eines metallischen produkts

Country Status (2)

Country Link
EP (1) EP3441157B1 (de)
DE (1) DE102017213842A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113414362B (zh) * 2021-05-31 2022-04-22 中南大学 一种同时提高高碳钢小方坯角部强度与塑性的冷却制度方法
CN113695548B (zh) * 2021-08-26 2023-01-31 宝武杰富意特殊钢有限公司 一种连铸小方坯的生产工艺及连铸小方坯

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408197B (de) * 1993-05-24 2001-09-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
JP3058079B2 (ja) * 1996-02-23 2000-07-04 住友金属工業株式会社 鋼の連続鋳造方法
JP3596290B2 (ja) * 1998-06-30 2004-12-02 Jfeスチール株式会社 鋼の連続鋳造方法
DE19916190C2 (de) * 1998-12-22 2001-03-29 Sms Demag Ag Verfahren und Vorrichtung zum Stranggießen von Brammen
DE19931331A1 (de) * 1999-07-07 2001-01-18 Siemens Ag Verfahren und Einrichtung zum Herstellen eines Stranges aus Metall
DE10001073A1 (de) * 2000-01-13 2001-07-19 Sms Demag Ag Verfahren und Vorrichtung zum Verhindern einer unerwünschten Abkühlung der Bandkantenbereiche eines Gußstranges
AT409352B (de) * 2000-06-02 2002-07-25 Voest Alpine Ind Anlagen Verfahren zum stranggiessen eines metallstranges
DE10051959A1 (de) * 2000-10-20 2002-05-02 Sms Demag Ag Verfahren und Vorrichtung zum Stranggießen und anschließendem Verformen eines Gießstranges aus Stahl, insbesondere eines Gießstranges mit Blockformat oder Vorprofil-Format
DE10329030A1 (de) * 2003-03-11 2004-09-23 Sms Demag Ag Verfahren zur Optimierung der Randbereiche von Strangoberflächen gegossener Brammen
DE102006056683A1 (de) 2006-01-11 2007-07-12 Sms Demag Ag Verfahren und Vorrichtung zum Stranggießen
DE102008032970A1 (de) * 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft Verfahren zum Abkühlen eines aus einer Stranggießkokille austretenden Stranges
DE102011077322A1 (de) 2011-06-09 2012-12-13 Sms Siemag Ag Verfahren zur Verarbeitung eines stranggegossenen Materials
DE102014214374A1 (de) 2014-07-23 2016-01-28 Sms Group Gmbh Verfahren zur Herstellung eines metallischen Produkts
DE102015223788A1 (de) * 2015-11-30 2017-06-01 Sms Group Gmbh Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017213842A1 (de) 2019-02-14
EP3441157A1 (de) 2019-02-13

Similar Documents

Publication Publication Date Title
DE69819882T2 (de) Positionskontrollverfahren und -vorrichtung eines Seitendammes in einem Doppelrollengießverfahren
DE69529513T2 (de) Verfahren zum kontinuierlichen giessen für dünnes gussstück
EP1478479B1 (de) Verfahren zum stranggiessen und unmittelbaren verformen eines metall-, insbesondere eines giessstrangs aus stahlwerkstoffen
DE102015223788A1 (de) Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang
EP2788133B1 (de) Prozesstechnische massnahmen in einer stranggiessmaschine bei giessstart, bei giessende und bei der herstellung eines übergangsstücks
EP3441157B1 (de) Verfahren und anlage zum stranggiessen eines metallischen produkts
DE10163070A1 (de) Verfahren und Einrichtung zum kontrollierten Richten und Kühlen von aus einem Warmband-Walzwerk auslaufendem breiten Metallband, insbesondere von Stahlband oder Blech
EP3338914A1 (de) Verfahren zur endlosen herstellung eines aufgewickelten warmbands in einer giess-walz-verbundanlage, verfahren zum anfahren einer giess-walz-verbundanlage und giess-walz-verbundanlage
DE3783187T2 (de) Kuehlrollen zum giessen von schnell erstarrenden metallblechen.
DE3006544A1 (de) Verfahren zur automatischen steuerung oder einstellung der breite einer bramme bzw. metallplatte beim warmvorwalzen derselben
EP2025432B1 (de) Verfahren zur Erzeugung von Stahl-Langprodukten durch Stranggiessen und Walzen
DE10357363B4 (de) Verfahren und Anlage zum Gießen und unmittelbar anschließenden Walzen von Gießsträngen aus Metall, insbesondere aus Stahlwerkstoffen, vorzugsweise Dünnsträngen
DE10310357A1 (de) Gießwalzanlage zur Erzeugen eines Stahlbandes
DE102009030793A1 (de) Vorrichtung und Verfahren zum horizontalen Gießen eines Metallbandes
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
DE2559038A1 (de) Verfahren und vorrichtung zum stranggiessen von stahl
DE3048711C2 (de) Verfahren zum Kühlen von Strängen beim Stranggießen von Stahlknüppeln
EP1585605A1 (de) Verfahren und vorrichtung zur erzeugung von stranggegossenen stahlbrammen
DE102013212951A1 (de) Gießwalzanlage und Verfahren zum Herstellen von metallischem Walzgut
DE102018220386A1 (de) Verfahren und Vorrichtung zum Einstellen der Solltemperaturen von Kühlsegmenten einer Stranggießanlage
EP4122622A1 (de) Strangführungseinrichtung und verfahren zum stranggiessen eines metallischen produkts in einer stranggiessanlage mit einer solchen strangführungseinrichtung
EP1827735B1 (de) Verfahren und vorrichtung zum bandgiessen von metallen
DE102009048567B4 (de) Verfahren und Anordnung zum Kühlen eines Gießstrangs in einer Stranggießanlage
EP3849729B1 (de) Verfahren zur steuerung oder regelung der temperatur eines giessstrangs in einer stranggiessanlage
EP3535071B1 (de) Verfahren und anlage zur herstellung eines metallischen bandes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004870

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1384096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210823

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004870

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210821

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180712

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 6

Ref country code: AT

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210421