EP3419771B1 - Compensation complete des excentricites de cylindre - Google Patents

Compensation complete des excentricites de cylindre Download PDF

Info

Publication number
EP3419771B1
EP3419771B1 EP17704240.5A EP17704240A EP3419771B1 EP 3419771 B1 EP3419771 B1 EP 3419771B1 EP 17704240 A EP17704240 A EP 17704240A EP 3419771 B1 EP3419771 B1 EP 3419771B1
Authority
EP
European Patent Office
Prior art keywords
roll
rolls
control device
rolling
eccentricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17704240.5A
Other languages
German (de)
English (en)
Other versions
EP3419771A1 (fr
EP3419771B2 (fr
Inventor
Matthias Kurz
Birger Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55451005&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3419771(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Publication of EP3419771A1 publication Critical patent/EP3419771A1/fr
Application granted granted Critical
Publication of EP3419771B1 publication Critical patent/EP3419771B1/fr
Publication of EP3419771B2 publication Critical patent/EP3419771B2/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Definitions

  • the present invention is further based on a computer program for a control device of a roll stand for rolling a flat rolled metal, the computer program Machine code, which is directly abaillebar by the control device, wherein the processing of the machine code by the control means causes the control means operates the rolling stand according to such an operating method.
  • the present invention is further based on a control device for a roll stand for rolling a flat rolled metal, wherein the control device is designed such that it operates the roll stand according to such an operating method.
  • the present invention is further based on a rolling stand for rolling a flat rolled stock of metal, wherein the rolling mill is controlled by such a control device.
  • An operating method of the type mentioned is, for example, from the DE 24 16 867 A1 or the corresponding one US Pat. No. 3,893,317 known.
  • the object of the present invention is to provide possibilities by means of which a total eccentricity occurring during rolling of a flat rolling stock can be corrected in the simplest possible way in all possible case constellations.
  • the determination and the correction should be possible in particular independently of which rollers of the roll stand the total eccentricity is caused to which part.
  • the scaffolding drives act directly on the work rolls.
  • the backup rollers are driven so that the scaffold drives act indirectly on the work rolls.
  • the scaffolding drives have position sensors which output position signals directly, which are characteristic of the rotational position of the respective scaffold drive. On the basis of these signals, the rotational positions of the driven rollers can be determined directly, possibly in conjunction with translations of gears arranged between the scaffold drives and the driven rollers. For these rollers own position encoders are therefore not required for detecting the rotational position.
  • the rotational positions of these rollers can be determined from the rotational positions of the driven rollers in conjunction with the rolling condition.
  • the inventive design the accumulation of a deviation of the rotational position over a plurality of revolutions of the rollers can be avoided, however, since with each passing of the respective reference rotational position by the respective roller a new synchronization is made possible.
  • the control means only for a single initial rotational position of the upper set of rollers in conjunction with a single initial rotational position of the lower set of rollers during the rolling of the rollers together over one of these two initial rotational positions
  • Detection length detected the course of the characteristic of the change of the roll gap signal. This procedure may be sufficient, in particular, if the diameters of the support rollers differ from each other to a sufficient extent and the diameters of the work rolls differ from each other to a sufficient extent or only together for the two support rollers together on the one hand and the two work rolls together each eccentricity is determined.
  • the diameters of the support rollers are almost identical and / or the diameters of the work rolls are nearly identical and a separate compensation component is to be determined for all four rollers, it is necessary in many cases for the number of initial rotational positions to be greater than one.
  • the number of initial rotational positions may, for example, be 2, 3, 4,...
  • the number of initial rotational positions is two, after detecting the one course of one of the two sets of rollers relative to the other set of rollers is rotated by a predetermined Abrollinate.
  • the rolling length can correspond for example to half a revolution of one of the two rolls of the respective set of rolls. Thereafter, the other course is detected. It is therefore not important that the initial rotational positions of both sets of rolls are changed. Only a twisting relative to each other is required.
  • the first and second variables of the control device can be predetermined by a higher-level control device or by an operator. For example, when grinding the rolls in a grinding shop, a corresponding determination of the first and second sizes can take place so that they are already known when the rolls are installed in the roll stand.
  • a respective eccentricity component for the support rollers on the one hand and the work rolls on the other hand may be sufficient, in particular, when the diameters of the support rollers are equal to one another and the diameters of the work rollers are equal to one another.
  • the compensation value has four components of eccentricity, the sum of which is equal to the compensation value, namely one eccentricity component each for the upper back-up roll, the lower back-up roll, the upper work roll and the lower work roll.
  • a rotation of the rolls of the rolling mill counter to the direction of rotation during rolling of the last rolled flat rolled stock.
  • the upper and / or lower set of rolls are rotated such that when rolling the next flat rolled material a cost function is minimized, in which one by the sum of Eccentricities of the work rolls and the backup rolls formed total eccentricity, the first time derivative of the total eccentricity and / or the second time derivative of the total eccentricity enter.
  • a cost function is minimized, in which one by the sum of Eccentricities of the work rolls and the backup rolls formed total eccentricity, the first time derivative of the total eccentricity and / or the second time derivative of the total eccentricity enter.
  • the total eccentricity to be compensated can be minimized.
  • the speed with which the roll gap must be adjusted can be minimized.
  • the acceleration with which the roll gap must be adjusted can be minimized.
  • the procedure according to the invention already leads to excellent results. In some cases, however, it may happen that a residual eccentricity still occurs despite the correction of the set nip value by the determined compensation value.
  • the control device detects during the rolling of the flat rolling stock a signal which is characteristic of the residual eccentricity. In this case, the control device can track the first and second variables based on the residual eccentricity.
  • a computer program having the features of claim 10 is configured in that the processing of the computer program by the control device causes the control device to operate the rolling stand in accordance with an operating method according to the invention.
  • control device having the features of claim 11.
  • the control device is designed such that it operates the roll stand according to an operating method according to the invention.
  • a roll stand of the type mentioned above is configured in that the roll stand is controlled by a control device according to the invention.
  • a rolling stand has an upper roll set U and a lower set L of rolls.
  • the upper roller set U has an upper work roll 1U and an upper backup roll 2U.
  • the lower roll set L has a lower work roll 1L and a lower backup roll 2L.
  • a flat rolling stock 3 is rolled from metal.
  • the flat rolling stock 3 may in particular be a heavy plate or a metal strip.
  • the rolling stand is controlled by a control device 4.
  • the control device 4 is designed such that it operates the roll stand according to an operating method, which will be explained in more detail below.
  • the control device 4 is designed as a programmable control device 4.
  • the corresponding design of the control device 4 so that it operates the rolling stand according to the operating method, effected by a computer program 5, with which the control device 4 is programmed.
  • the computer program 5 comprises machine code 6, which can be processed directly by the control device 4.
  • the execution of the machine code 6 by the control device 4 causes the control device 4 to operate the rolling mill in accordance with the corresponding operating method.
  • the rolling stand is operated by the control device 4 at least temporarily in a normal operation.
  • the rolling of the flat rolling stock 3 takes place in normal operation.
  • the rolling mill is still operated by the control device 4 temporarily also in a calibration.
  • calibration operation no flat rolling stock is rolled by means of the roll stand 3. It is assumed below that the rolling stand is alternatively operated by the control device 4 in normal operation or in calibration operation.
  • the control device 4 therefore checks according to FIG. 3 first, in a step S1, whether the rolling stand is operated in normal operation. If the rolling mill is operated in normal operation, the control device 4 checks in step S2, whether currently a rolling stock 3 is rolled. If a rolling stock 3 is currently being rolled, the control device 4 proceeds to steps S3 to S7.
  • step S3 a set roll gap s * is set.
  • the control device 4 accepts a rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of at least one roll 1U, 1L, 2U, 2L of the roll stand.
  • the control device 4 determines a compensation value ⁇ dependent on the rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the at least one roller 1U, 1L, 2U, 2L of the roll stand.
  • the determination is made on the basis of variables RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW, for a total eccentricity of the rolls 1U, 1L, 2U, 2L of the roll stand as a function of the rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of at least a roll 1U, 1L, 2U, 2L of the roll stand are characteristic.
  • the quantities RUB, RLB, ⁇ 1UB, ⁇ 1LB are first quantities which are characteristic of eccentricity of the rolling mill support rolls 2U, 2L as a function of a rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of at least one roll 1U, 1L, 2U, 2L of the rolling stand.
  • the quantities RUW, RLW, ⁇ 2UW, ⁇ 2LW are second quantities which are characteristic of an eccentricity of the work rolls 1U, 1L as a function of a rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of at least one roll 1U, 1L, 2U, 2L of the roll stand ,
  • the meaning of the first quantities RUB, RLB, ⁇ 1UB, ⁇ 1LB and the second quantities RUW, RLW, ⁇ 2UW, ⁇ 2LW will become apparent hereinafter.
  • step S6 the control device 4 corrects the set nip value s * by the compensation value ⁇ determined in step S4.
  • step S7 the control device 4 sets a rolling gap s of the roll stand according to the corrected set roll gap value. As a result, the flat rolling stock 3 is rolled from an initial thickness to a final thickness by means of the rolling stand in accordance with the corrected set nip value.
  • step S7 the controller returns to step S1.
  • the sequence of steps S1 to S7 is therefore carried out continuously during the rolling of the flat rolling stock 3 by the control device 4.
  • step S8 Although the control device 4 operates the rolling mill in normal operation, but currently no flat rolled rolled is the controller 4 moves from step S2 to step S8. In step S8, other measures can be taken, which will be explained later.
  • the controller proceeds to steps S9 to S14.
  • the first and second quantities RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW are determined.
  • a defined initial rotational position of the upper roller set U and a defined initial rotational position of the lower roller set L of the rolling stand are set.
  • the two initial rotational positions can be set such that in FIG. 4 shown (only mentally existing) points of the upper work roll 1U and the upper support roller 2U are directly opposite each other and in an analogous manner in FIG. 4 shown points (only mentally existing) of the lower work roll 1L and the lower support roller 2L are directly opposite each other.
  • the rolling stand can be ascended so that the upper work roll 1U and the lower work roll 1L do not touch each other. Thereafter, the two sets of rollers U, L are rotated independently of one another in their respective initial rotational position.
  • rollers 1U, 2U of the upper roller set U are lifted off the rollers 1L, 2L of the lower roller set L.
  • independent drives 7U, 7L for the two sets of rollers U, L be present.
  • a common drive may be present, for example permanently connected to the lower set of rollers L, but with the upper set of rollers U via a releasable coupling. In this case, first the upper roller set U in its initial rotational position transferred, then the clutch is released, and it is the lower set of rollers L transferred to its initial position. Then the clutch is closed again.
  • the control device 4 controls the rolling stand in step S10 in such a way that the roll gap s is closed.
  • the closing of the roll gap s takes place without the flat rolling stock being in the roll gap s.
  • the upper work roll 1U thus rests on the lower work roll 1L.
  • the control device 4 controls the rolling stand in step S11 such that the rolls 1U, 1L, 2U, 2L roll against each other.
  • the length L0 is hereinafter referred to as the detection length L0.
  • the detection length L0 is based on the respective initial rotational position of the roller sets U, L. It is particularly dimensioned such that all rollers 1U, 1L, 2U, 2L perform several complete revolutions.
  • the control device 4 detects in step S11 at the same time over the detection length L0 a course of a signal F, s, which is characteristic of a change in the roll gap s.
  • the signal F, s is of course dependent on the rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the at least one roller 1U, 1L, 2U, 2L.
  • the control device 4 the roll stand in the course of the step S11 maintain a roll gap controlled at a constant setting of the roll gap s and detect the associated rolling force F as a characteristic signal s, F.
  • FIG. 5 shows purely by way of example the change of the resulting roll gap s in the case of a rolling force control over a detection length L0 of 30 m and a diameter of the work rolls 1U, 1L of approximately 1.00 m and a diameter of the support rolls 2U, 2L at a diameter of about 1.65 m.
  • FIG. 6 shows purely by way of example the corresponding revolutions of the work rolls 1U, 1L and the support rollers 2U, 2L.
  • step S14 the control device 4 checks whether it has already carried out the procedure of steps S9 to S11 for all required pairs of initial rotational positions. Only when this is the case, the controller 4 moves to step S14.
  • step S12 the control device 4 proceeds from step S12 to step S13.
  • step S13 the controller 4 selects the next pair of initial rotational positions. From step S13, the controller then returns to step S9.
  • the number of other pairs of initial rotational positions and the associated positions as such may be determined as needed. If necessary, the initial rotational position of the lower roller set L may be unchanged while the upper roller set U is rotated by a predetermined angle of the upper work roll 1U or the upper backup roll 2U, respectively. The reverse procedure is also possible. It is also possible that both sets of rollers U, L are rotated.
  • the predetermined angle may, for example, as in FIG. 4 shown in dashed lines, with a half Rotation of the upper support roller 2U correspond.
  • FIG. 7 shows another course of the signal s, F.
  • FIG. 8 shows the associated revolution numbers of the work rolls 1U, 1L and the backup rolls 2U, 2L.
  • step S14 the control device 4 uses the detected curves to determine the first and second variables RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW.
  • the basics of this investigation are explained in more detail below.
  • FIG. 9 shows - greatly exaggerated - a variation of a radius r of the roller 8 as a function of the rotational position ⁇ of the roller 8 relative to a reference position.
  • r0 denotes the mean (ideal) radius of the roller 8.
  • ⁇ r denotes the component of the i-th perturbation.
  • ⁇ i denotes a phase position of the i-th perturbation.
  • Equation 2 eight quantities are unknown, namely the four eccentricity amplitudes RUB, RUW, RLW, RLB and the four phase positions ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW.
  • the other pair of similar rolls 1U, 1L, 2U, 2L - usually the work rolls 1U, 1L -, however, is driven by means of the rolling stand drives 7U, 7L.
  • the rolling mill drives 7U, 7L generally have internal rotary encoder on. According to the invention, their signals can be used to determine the rotational positions ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the driven rollers 1U, 1L, 2U, 2L.
  • the rotational position .phi.UB, .phi.LB, .phi.UW, .phi.LW of the respective other roller 2U, 2L, 1U, 1L of the corresponding roller set U, L is in this case determined by the control device 4 on the basis of the rotational position .phi.UB, .phi.UW, .phi.LB, .phi.LW of that roller 1U, 1L, 2U, 2L of the corresponding set of rollers U, L determined whose rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW is detected. This procedure is taken in this case both in normal operation and in calibration mode.
  • the rolls 1U, 1L, 2U, 2L of the roll stand are rotated counter to the direction of rotation in which the rolls 1U, 1L, 2U, 2L are rotated during the rolling of the flat rolled rolled stock 3.
  • the rollers 1U, 1L, 2U, 2L are therefore turned back.
  • the turning back is a possible embodiment of the step S8 of FIG. 3 , Accordingly, the rolling mill is operated at this time in normal operation. The turning back is thus carried out as part of a normal rolling break between the rolling of two flat rolling stock 3.
  • the back-up rollers 2U, 2L are assigned reference signal transmitters 10U, 10L.
  • the reference signal transmitters 10U, 10L do not detect the rotational position ⁇ UB, ⁇ LB of the support rollers 2U, 2L over the entire angular range of 360 °. However, they each output a signal (for example, a pulse) when the rotational position ⁇ UB, ⁇ LB of the corresponding back-up roller 2U, 2L corresponds to a predetermined reference rotational position.
  • the reference signal transmitter 10U, 10L the passing of the reference rotational position is thereby detected during the continuous rotation of the support rollers 2U, 2L.
  • the corresponding signals are of course supplied to the control device 4.
  • the reverse procedure is also possible, that is, that the rotational positions ⁇ UB, ⁇ LB of the back-up rolls 2U, 2L are detected, the rotational positions ⁇ UW, ⁇ LW of the work rolls 1U, 1L are derived from the rotational positions ⁇ UB, ⁇ LB of the back-up rolls 2U, 2L and for the work rolls 1U, 1L each passing a reference rotational position is detected.
  • the control device 4 For each roller 1U, 1L, 2U, 2L, the control device 4 thus determines, depending on the rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the respective roller 1U, 1L, 2U, 2L, the corresponding one of the respective roller 1U, 1L, 2U, 2L caused part eccentricity and adds the Operaxzentrizticianen to the total eccentricity ⁇ . In normal operation, the control device 4 thus determines the compensation value ⁇ as a function of the respective rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of both the upper and lower work rolls 1U, 1L and the upper and lower support rolls 2U, 2L.
  • the control device 4 In order to be able to determine the four partial eccentricities mentioned above, the control device 4 must also be aware of the corresponding characteristic variables RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW. As part of the calibration operation, the control device 4 thus determines the sizes RUB, ⁇ UB for the upper support roller 2U which are characteristic of their part eccentricity. In an analogous manner, the calibration of the lower support roller 2L, the upper work roll 1U and the lower work roll 1L also determines the two variables RUW, RLW, RLB, ⁇ 2UW, ⁇ 1LB which are characteristic of the part eccentricity of the respective roller 2L, 1U, 1L. ⁇ 2LW.
  • the radii or diameter of the support rollers 2L, 2U are generally equal to each other. Likewise, the radii or diameter of the work rolls 1U, 1L among each other usually the same size. If it can be ensured that between two calibrations only a sufficiently small slip occurs between the rolls 1U, 2U of the upper roll set U with respect to the rolls 1U, 1L of the lower roll set L, the part eccentricities caused by the support rolls 2U, 2L can be combined and can also summarized by the work rolls 1U, 1L Operaxzentrizmaschineen be summarized. Also in this case, the total eccentricity results as the sum of the part eccentricities of the back-up rolls 2U, 2L and the work rolls 1U, 1L.
  • the sum in this case only has two Summands on, namely one for the partial eccentricity caused by the support rollers 2U, 2L and for the part eccentricity caused by the work rolls 1U, 1L.
  • the control device 4 determines in this case in normal operation in dependence on the rotational position ⁇ UW, ⁇ LW one of the work rolls 1U, 1L a part eccentricity for the work rolls 1U, 1L and depending on the rotational position ⁇ UB, ⁇ LB one of the support rollers 2U, 2L a part eccentricity for Back-up rolls 2U, 2L. Furthermore, in this case, it adds the two partial eccentricities to the total eccentricity ⁇ .
  • the control device 4 determines the compensation value ⁇ in normal operation as a function of the rotational position ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of both the work rolls 1U, 1L and the support rolls 2U, 2L.
  • the control device 4 determines in this case for the two support rollers 2U, 2L uniform variables that are characteristic of the Operaxzentriztician, for example, a Exzentrizticiansamplitude and a phase angle.
  • the control device 4 determines in this case in the calibration operation for the two work rolls 1U, 1L uniform variables that are characteristic of the part eccentricity, for example, a Exzentrizticiansamplitude and a phase angle.
  • Steps S21 to S23 be present. Steps S21 to S23 are one possible embodiment of step S8 of FIG. 1 ,
  • a cost function K determines the control device 4 in step S21 a cost function K.
  • the cost function K can - weighted with respective weighting factors ⁇ 0 to ⁇ 2 - for example, the total eccentricity ⁇ , the first time derivative of the total eccentricity ⁇ and / or the second time derivative of the total eccentricity ⁇ received. It is possible that all three weighting factors ⁇ 0 to a2 are different from zero. Alternatively, it is possible that only two of the weighting factors ⁇ 0 to ⁇ 2 are different from zero. At least however, one of the three weighting factors ⁇ 0 to ⁇ 2 must be different from 0.
  • the weighting factors ⁇ 0 to a2 may be fixedly assigned to the control device 4 or determined by a user within the scope of a parameterization.
  • the control device 4 further determines in step S22 a minimum of the cost function K over a rolled length L1. So it forms the integral ⁇ O L 1 ⁇ K ⁇ dl and minimizes the integral by varying rotational positions ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the rollers 1U, 1L, 2U, 2L to which rolling of the next flat rolled material 3 is started.
  • the rolled length L1 is - based on the lateral surfaces of the rollers 1U, 1L, 2U, 2L - that length over which the rollers 1U, 1L, 2U, 2L roll this flat rolling stock 3.
  • step S23 the controller 4 then adjusts the rotational positions ⁇ UB, ⁇ UW, ⁇ LB, ⁇ LW of the rollers 1U, 1L, 2U, 2L accordingly.
  • the control device 4 thus rotates the upper and / or lower roller set U, L in such a way that the cost function K during rolling of the next flat rolling stock 3 is minimized.
  • step S23 the rolling stand is closed.
  • the two sets of rollers U, L can only be rotated together.
  • the rolling stand can be opened.
  • the two sets of rollers U, L can be rotated independently.
  • FIG. 11 shows purely by way of example a comparison between a measured (M) eccentricity ⁇ and an associated, modeled (C) eccentricity ⁇ , ie an eccentricity ⁇ , which is determined on the basis of the eccentricity amplitudes RUB, RUW, RLW, RLB and phase positions ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW with the eccentricity amplitudes RUB, RUW, RLW, RLB and phase positions ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW were determined on the basis of the measured profile of the eccentricity ⁇ .
  • FIG. 12 shows the associated course of the revolutions of the rollers 1U, 1L, 2U, 2L.
  • the eccentricities of the rollers 1U, 1L, 2U, 2L are completely compensated by the addition of the compensation signal ⁇ . Due to thermal effects, wear, etc., however, it may happen that, despite the correction of the set nip value s * by the determined compensation value ⁇ , only an incomplete compensation takes place, ie that a residual eccentricity ⁇ r remains. It is therefore possible that the control device 4 as shown in FIG FIG. 13 During the rolling of the flat rolled stock 3, in a step S31, a signal F, Z characteristic of the residual eccentricity ⁇ r is detected.
  • This signal F, Z may be, for example, the rolling force F or a train Z prevailing in front of or behind the rolling stand in the flat rolling stock 3.
  • a thickness of the flat rolled stock 3 measured on the outlet side of the roll stand can also be used as a signal.
  • the control device 4 in a step S32 currently - that is, during the rolling of the flat rolled material 3 - compensate for the residual eccentricity ⁇ r.
  • the control device 4 thus corrects the set nip value s * not only by the compensation value ⁇ , but additionally by the residual eccentricity ⁇ r.
  • the controller 4 may track the first and second quantities RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW in a step S33.
  • control device 4 completely determines the first and second variables RUB, RLB, ⁇ 1UB, ⁇ 1LB, RUW, RLW, ⁇ 2UW, ⁇ 2LW on the basis of the residual eccentricity ⁇ r , that the amplitudes RUB, RLB, RUW, RLW of the individual eccentricities so initially have the value 0.
  • the phase positions ⁇ 1UB, ⁇ 1LB, ⁇ 2UW, ⁇ 2LW are irrelevant in this case at first.
  • first and second quantities RUB, RUW, RLW, RLB, ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW eccentricity amplitudes RUB, RUW, RLW, RLB and phase positions ⁇ 1UB, ⁇ 2UW, ⁇ 1LB, ⁇ 2LW were used above.
  • the eccentricities of the rolls 1U, 1L, 2U, 2L could alternatively be described by amplitudes AUB, BUB, ALB, BLB, AUW, BUW, ALW, BLW of corresponding sine and cosine functions.
  • equation 2 instead of equation 2, therefore, the following equation 5 could also be assumed.
  • the present invention has many advantages.
  • all Walzenexzentrizticianen can be determined and compensated. This is true regardless of whether the eccentricities are caused by work rolls 1U, 1L or back-up rolls 2U, 2L.
  • the roll eccentricities can be determined faster and more accurately.
  • the roll eccentricities can also be determined if the roll stand has additional rolls in addition to the work rolls 1U, 1L and the support rolls 2U, 2L, in particular intermediate rolls arranged between the work rolls 1U, 1L and the support rolls 2U, 2L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Claims (12)

  1. Procédé d'exploitation pour une cage de laminoir destinée au laminage d'un produit plat de laminage (3) en métal ;
    - dans lequel la cage de laminoir présente une batterie de cylindres supérieurs (U) et une batterie de cylindres inférieurs (L) ;
    - dans lequel la batterie de cylindres supérieurs (U) présente au moins un cylindre de travail supérieur (1U) et un cylindre de soutien supérieur (2U) et la batterie de cylindres inférieurs (L) présente au moins un cylindre de travail inférieur (1L) et un cylindre de soutien inférieur (2L) ;
    - dans lequel la cage de laminoir est exploitée au moins par moments conformément à une exploitation normale ;
    - dans lequel la cage de laminoir, au cours du laminage du produit plat de laminage (3) est exploitée conformément à une exploitation normale ;
    - dans lequel, au cours du laminage du produit plat de laminage (3), un mécanisme de commande (4) d'une manière continue, pour la cage de laminoir,
    -- détermine, en se référant à des premières valeurs (RUB, RLB, ϕ1UB, ϕ1LB) qui sont caractéristiques pour une excentricité des cylindres de soutien (2U, 2L) de la cage de laminoir en fonction d'une position rotatoire (ϕUB, ϕUW, ϕLB, ϕLW) d'au moins un cylindre (1U, 1L, 2U, 2L) de la cage de laminoir, et à des secondes valeurs (RUW, RLW, ϕ2UW, ϕ2LW) qui sont caractéristiques pour une excentricité des cylindres de travail (1U, 1L) de la cage de laminoir en fonction d'une position rotatoire (ϕUB, ϕUW, ϕLB, ϕLW) d'au moins un cylindre (1U, 1L, 2U, 2L) de la cage de laminoir, une valeur de compensation (ε) qui dépend de la position rotatoire (ϕUB, ϕUW, ϕLB, (ϕLW) dudit au moins un cylindre (1U, 1L, 2U, 2L) de la cage de laminoir ;
    -- corrige, sur base de la valeur de compensation déterminée (ε), une valeur de consigne de l'emprise (s*) pour la cage de laminoir ; et
    -- règle une emprise (s) de la cage de laminoir de manière correspondante à la valeur de consigne corrigée de l'emprise ;
    d'une manière telle que le produit plat de laminage (3) fait l'objet d'un laminage au moyen de la cage de laminoir de manière correspondante à la valeur de consigne corrigée de l'emprise ;
    caractérisé
    - en ce que la position rotatoire (ϕUB, ϕUW, ϕLB, (ϕLW) uniquement des cylindres de travail (1U, 1L) ou uniquement des cylindres de soutien (2U, 2L) de la cage de laminoir est enregistrée et est prise en compte par le mécanisme de commande (4) ;
    - en ce que les positions rotatoires (ϕUB, ϕUW, ϕLB, (ϕLW) des cylindres (1U, 1L, 2U, 2L) dont les positions rotatoires (ϕUB, ϕUW, ϕLB, (ϕLW) ne sont pas enregistrées sont déterminées par le mécanisme de commande (4) à partir des positions rotatoires (ϕUB, ϕUW, ϕLB, (ϕLW) des cylindres (1U, 1L, 2U, 2L) dont les positions rotatoires (ϕUB, ϕUW, ϕLB, (ϕLW) sont enregistrées ; et
    - en ce que pour des cylindres (1U, 1L, 2U, 2L) dont les positions rotatoires (ϕUB, ϕUW, ϕLB, (ϕLW) ne sont pas enregistrées, mais déterminées, à chaque fois le passage d'une position rotatoire de référence est enregistrée et est transmise au mécanisme de commande (4).
  2. Procédé d'exploitation selon la revendication 1, caractérisé en ce que la cage de laminoir est exploitée par moments conformément à une exploitation d'étalonnage, dans laquelle aucun produit plat de laminage (3) n'est soumis à un laminage au moyen de la cage de laminoir et en ce que le mécanisme de commande (4) au cours de l'exploitation d'étalonnage :
    - commande, pour un certain nombre de positions rotatoires initiales définies, aussi bien de la batterie de cylindres supérieurs (U) que de la batterie de cylindres inférieurs (L), la cage de laminoir d'une manière telle que le cylindre de travail supérieur (1U) s'appuie sur le cylindre de travail inférieur (1L) et que les cylindres (1U, 1L, 2U, 2L) roulent l'un contre l'autre ;
    - au cours du roulement des cylindres (1U, 1L, 2U, 2L) l'un contre l'autre, sur une longueur d'enregistrement respective (L0) qui part de la position rotatoire initiale respective, enregistre respectivement l'allure d'un signal caractéristique (s, F) pour une modification de l'emprise (s), qui dépend de la position rotatoire (ϕUB, ϕUW, ϕLB, ϕLW) dudit au moins un cylindre (1U, 1L, 2U, 2L) ; et
    détermine, sur base des allures enregistrées, les premières et les secondes valeurs (RUB, RUW, RLW, RLB, ϕ1UB, ϕ2UW, ϕ1LB, ϕ2LW).
  3. Procédé d'exploitation selon la revendication 2, caractérisé en ce que le nombre de positions rotatoires initiales est supérieur à 1.
  4. Procédé d'exploitation selon la revendication 1, caractérisé en ce que les premières et les secondes valeurs (RUB, RLB, ϕ1UB, ϕ1LB, RUW, RLW, ϕ2UW, ϕ2LW) du mécanisme de commande (4) sont prédéfinies par un mécanisme de commande de niveau supérieur ou par un préposé à la manoeuvre.
  5. Procédé d'exploitation selon l'une quelconque des revendications ci-dessus, caractérisé
    - en ce que les premières valeurs (RUB, RLB, ϕ1UB, ϕ1LB) caractérisent l'excentricité des cylindres de soutien (2U, 2L) en fonction de la position rotatoire (ϕUB, ϕLB) des cylindres de soutien (2U, 2L) ;
    - en ce que les secondes valeurs (RUW, RLW, ϕ2UW, ϕ2LW) caractérisent l'excentricité des cylindres de travail (1U, 1L) en fonction de la position rotatoire (ϕUW, (ϕLW) des cylindres de travail (1U, 1L) ; et
    - en ce que le mécanisme de commande (4) détermine la valeur de compensation (ε) en fonction de la position rotatoire (ϕUB, ϕUW, ϕLB, ϕLW), aussi bien des cylindres de travail (1U, 1L) que des cylindres de soutien (2U, 2L).
  6. Procédé d'exploitation selon la revendication 5, caractérisé
    - en ce que les positions rotatoires (ϕUB, ϕLB) des cylindres de soutien (2U, 2L) de la cage de laminoir sont enregistrées ou déterminées indépendamment l'une de l'autre et en ce que les positions rotatoires (ϕUW, (ϕLW) des cylindres de travail (1U, 1L) de la cage de laminoir sont enregistrées ou déterminées indépendamment l'une de l'autre ;
    - en ce que les premières valeurs (RUB, RLB, ϕ1UB, ϕ1LB) comprennent des valeurs (RUB, ϕ1UB) qui caractérisent l'excentricité provoquée par le cylindre de soutien supérieur (2U) en fonction de la position rotatoire (ϕUB) du cylindre de soutien supérieur (2U), et des valeurs (RLB, ϕ1LB) qui caractérisent l'excentricité provoquée par le cylindre de soutien inférieur (2L) en fonction de la position rotatoire (ϕLB) du cylindre de soutien inférieur (2L) ;
    - en ce que les secondes valeurs (RUW, RLW, ϕ2UW, ϕ2LW) comprennent des valeurs (RUW, ϕ2UW) qui caractérisent l'excentricité provoquée par le cylindre de travail supérieur (1U) en fonction de la position rotatoire (ϕUW) du cylindre de travail supérieur (1U), et des valeurs (RLW, ϕ2LW) qui caractérisent l'excentricité provoquée par le cylindre de travail inférieur (1L) en fonction de la position rotatoire (ϕLW) du cylindre de travail inférieur (1L) ;
    en ce que le mécanisme de commande (4) détermine la valeur de compensation (ε) en fonction de la position rotatoire respective (ϕUB, ϕUW, ϕLB, (ϕLW) aussi bien des cylindres de travail supérieur et inférieur (1U, 1L) que des cylindres de soutien supérieur et inférieur (2U, 2L).
  7. Procédé d'exploitation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, au cours de l'exploitation normale, lors de poses de laminage au cours desquelles aucun produit plat de laminage (3) n'est soumis à un laminage, a lieu une rotation des cylindres (1U, 1L, 2U, 2L) de la cage de laminoir à l'encontre de la direction de rotation en vigueur au cours du laminage du produit plat de laminage (3) qui a été laminé en dernier lieu.
  8. Procédé d'exploitation selon l'une quelconque des revendications ci-dessus, caractérisé en ce que, au cours des poses de laminage, au cours desquelles aucun produit plat de laminage (3) n'est soumis à un laminage, les batteries de cylindres supérieurs et/ou de cylindres inférieurs (U, L) sont mises en rotation d'une manière telle que, lors du laminage du produit plat de laminage suivant (3), on minimise une fonction de coût (K) qui prend en compte une excentricité totale (ε) formée par la somme des excentricités des cylindres de travail (1U, 1L) et des cylindres de soutien (2U, 2L), la première déviation dans le temps (ε̇) de l'excentricité totale (ε) et/ou la deuxième déviation dans le temps (ε) de l'excentricité totale (ε).
  9. Procédé d'exploitation selon l'une quelconque des revendications ci-dessus, caractérisé en ce que le mécanisme de commande (4) au cours du laminage du produit plat de laminage (3) enregistre un signal (F, Z) qui est caractéristique pour une excentricité résiduelle (εr) qui apparaît malgré la correction de la valeur de consigne de l'emprise (s*) sur base de la valeur de compensation déterminée (ε), et met à jour les premières et secondes valeurs (RUB, RUW, RLW, RLB, ϕ1UB, ϕ2UW, ϕ1LB, ϕ2LW) sur base de l'excentricité résiduelle (εr).
  10. Programme informatique pour un mécanisme de commande (4) d'une cage de laminoir destinée au laminage d'un produit plat de laminage (3) en métal ; dans lequel le programme informatique comprend un code de machine (6) qui peut être exécuté directement ; dans lequel l'exécution du code de machine (6) par le mécanisme de commande (4) fait en sorte que le mécanisme de commande (4) exploite la cage de laminoir conformément à un procédé d'exploitation selon une des revendications précédentes.
  11. Mécanisme de commande pour une cage de laminoir destinée au laminage d'un produit plat de laminage (3) en métal ; dans lequel le mécanisme de commande est réalisé d'une manière telle qu'il exploite la cage de laminoir conformément à un procédé d'exploitation selon l'une quelconque des revendications 1 à 9.
  12. Cage de laminoir destinée au laminage d'un produit plat de laminage (3) en métal, comprenant un mécanisme de commande (4) selon la revendication 11 pour la commande de la cage de laminoir.
EP17704240.5A 2016-02-23 2017-02-09 Compensation complete des excentricites de cylindre Active EP3419771B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16156857.1A EP3210682A1 (fr) 2016-02-23 2016-02-23 Compensation complete des excentricites de cylindre
PCT/EP2017/052813 WO2017144278A1 (fr) 2016-02-23 2017-02-09 Compensation complète d'excentricités de cylindres

Publications (3)

Publication Number Publication Date
EP3419771A1 EP3419771A1 (fr) 2019-01-02
EP3419771B1 true EP3419771B1 (fr) 2019-05-29
EP3419771B2 EP3419771B2 (fr) 2022-11-30

Family

ID=55451005

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16156857.1A Withdrawn EP3210682A1 (fr) 2016-02-23 2016-02-23 Compensation complete des excentricites de cylindre
EP17704240.5A Active EP3419771B2 (fr) 2016-02-23 2017-02-09 Compensation complete des excentricites de cylindre

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16156857.1A Withdrawn EP3210682A1 (fr) 2016-02-23 2016-02-23 Compensation complete des excentricites de cylindre

Country Status (3)

Country Link
EP (2) EP3210682A1 (fr)
CN (1) CN109070164B (fr)
WO (1) WO2017144278A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083907B (zh) * 2021-03-29 2022-07-19 广西北港不锈钢有限公司 一种不锈钢板材偏心轧制线计算方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467446A (en) * 1973-04-10 1977-03-16 Davy Loewy Ltd Eccentricity correction in a rolling mill
US3881335A (en) 1974-03-07 1975-05-06 Westinghouse Electric Corp Roll eccentricity correction system and method
JPS5877706A (ja) * 1981-10-30 1983-05-11 Sumitomo Metal Ind Ltd ロ−ル偏心制御方法
US4580224A (en) * 1983-08-10 1986-04-01 E. W. Bliss Company, Inc. Method and system for generating an eccentricity compensation signal for gauge control of position control of a rolling mill
JPS63157713A (ja) * 1986-12-19 1988-06-30 Mitsubishi Heavy Ind Ltd 圧延機のロ−ル偏心補償装置
GB2253719A (en) * 1991-03-15 1992-09-16 China Steel Corp Ltd Compensating roll eccentricity of a rolling mill
DE4411313C2 (de) * 1993-05-08 1998-01-15 Daimler Benz Ag Verfahren zur Ausfilterung des Exzentrizitätseinflusses beim Walzen
JPH07185626A (ja) * 1993-12-28 1995-07-25 Nippon Steel Corp 圧延機のロール偏芯除去装置およびロール偏芯除去方法
AT407015B (de) * 1996-12-04 2000-11-27 Voest Alpine Ind Anlagen Verfahren zur kompensation der exzentrizität der stütz- und/oder arbeitswalzen in einem duo- oder quarto-walzgerüst
JP3328908B2 (ja) * 1998-04-02 2002-09-30 三菱電機株式会社 圧延機のロール偏心制御装置
JP2002282917A (ja) * 2001-03-28 2002-10-02 Toshiba Corp 圧延機の板厚制御装置
JP2003019505A (ja) * 2001-07-03 2003-01-21 Mitsubishi Electric Corp 冷間圧延機のロール偏心補償装置
JP4397796B2 (ja) * 2004-11-22 2010-01-13 東芝三菱電機産業システム株式会社 圧延機のロール偏心制御装置
DE102011078139A1 (de) * 2011-06-07 2012-12-13 Sms Siemag Ag Messvorrichtung, Walzgerüst und Verfahren zum Erfassen der Höhe eines Walzspalts
EP2662158A1 (fr) * 2012-05-07 2013-11-13 Siemens Aktiengesellschaft Procédé de traitement de produits à laminer et laminoir
CN103042042B (zh) * 2013-01-31 2014-10-29 燕山大学 一种基于离散辅助闭环的轧辊偏心补偿方法
CN104815848B (zh) * 2014-12-19 2017-03-29 中冶南方(武汉)自动化有限公司 基于厚度检测信号及自适应神经网络的轧辊偏心控制方法
CN104923572B (zh) * 2015-06-25 2017-01-11 中色科技股份有限公司 一种冷轧机上游轧机轧辊偏心补偿的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017144278A1 (fr) 2017-08-31
CN109070164B (zh) 2021-05-07
EP3419771A1 (fr) 2019-01-02
EP3210682A1 (fr) 2017-08-30
EP3419771B2 (fr) 2022-11-30
CN109070164A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
EP2259882B1 (fr) Procédé d'exploitation pour un train de laminage multi-cages avec détermination d'épaisseur de bande à l'aide d'une équation de continuité
DE2430089C3 (de) Einrichtung zum Regeln der Walzgutdicke unter Berücksichtigung der Exzentrizität der Walzen in einem Walzgerüst
DE3325385A1 (de) Druckbehandlungswalze
EP2548665B1 (fr) Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre
DE102011000434A1 (de) Verfahren und Vorrichtung zum Abgleichen eines ermittelten Lenkwinkels mit einem gemessenen Lenkwinkel
EP2422893A1 (fr) Procédé de fonctionnement d'un laminoir destiné à laminer des produits de laminage plats à l'aide d'un pronostic d'usure des produits à laminer
EP1711283B1 (fr) Procede de reglage et mecanisme de reglage pour une cage de laminoir
DE3341213A1 (de) Walzenexzentrizitaets-steuersystem fuer ein walzwerk
EP3419771B1 (fr) Compensation complete des excentricites de cylindre
EP3122483B1 (fr) Procédé permettant de positionner un galet de dressage d'une installation de dressage à galets
DE102007003243A1 (de) Regelanordnung für ein Walzgerüst und hiermit korrespondierende Gegenstände
DE102014203422B3 (de) Verfahren und Computerprogramm zum Analysieren der Wanddickenverteilung eines Rohres
EP2188074A1 (fr) Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure
EP2268427B1 (fr) Procédé d'exploitation pour un train de laminoir à froid avec dynamique améliorée
EP4103339B1 (fr) Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud
DE102014215396A1 (de) Differenzzugregelung mit optimierter Reglerauslegung
EP1240955B1 (fr) Procédé et dispositif pour calculer le profil de l'emprise entre les cylindres
EP4217125A1 (fr) Dispositif et procédé de laminage d'une bande métallique
EP1525061B1 (fr) Correction dynamique d'epaisseur
EP2228283A1 (fr) Procédé d'enregistrement du maintien ou du non maintien d'un volant de direction, procédé de fonctionnement d'un système d'assistance au conducteur ainsi que véhicule automobile
DE69917169T2 (de) Verfahren und Vorrichtung zur aktiven Kompensation periodischer Störungen beim Warm- oder Kaltwalzen
EP3851217A1 (fr) Adaptation améliorée d'un modèle de cylindre
DE112011102502B4 (de) Anordnung, Vorrichtung und Verfahren zur Ermittlung eines Klingendrucks
EP1650147A1 (fr) Méthode pour controler le répérage d'une découpeuse dans une machine rotative d'impression
DE2830252C2 (de) Zentrierkraftregelung für eine Ringwalzmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20190122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1137968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001446

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017001446

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26 Opposition filed

Opponent name: SMS GROUP GMBH

Effective date: 20200228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017001446

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200209

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20221130

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502017001446

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1137968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240219

Year of fee payment: 8

Ref country code: IT

Payment date: 20240228

Year of fee payment: 8

Ref country code: FR

Payment date: 20240221

Year of fee payment: 8

Ref country code: BE

Payment date: 20240219

Year of fee payment: 8