EP4103339B1 - Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud - Google Patents

Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud Download PDF

Info

Publication number
EP4103339B1
EP4103339B1 EP21700961.2A EP21700961A EP4103339B1 EP 4103339 B1 EP4103339 B1 EP 4103339B1 EP 21700961 A EP21700961 A EP 21700961A EP 4103339 B1 EP4103339 B1 EP 4103339B1
Authority
EP
European Patent Office
Prior art keywords
setpoint
control device
hot rolling
values
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21700961.2A
Other languages
German (de)
English (en)
Other versions
EP4103339A1 (fr
Inventor
Hans-Ulrich LÖFFLER
Klaus Weinzierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Publication of EP4103339A1 publication Critical patent/EP4103339A1/fr
Application granted granted Critical
Publication of EP4103339B1 publication Critical patent/EP4103339B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the present invention is further based on a computer program for a control device of a section of a hot rolling train for treating a large number of rolled materials, the computer program comprising machine code that can be processed by the control device, the processing of the machine code by the control device causing the control device to carries out such operating procedures.
  • the present invention is further based on a control device of a section of a hot rolling train for treating a large number of rolled products, the control device being programmed with such a computer program so that the control device carries out such an operating method during operation.
  • the present invention is further based on a section of a hot rolling train for treating a large number of rolled products, the section of the hot rolling train being controlled by such a control device.
  • the section is a cooling section or includes a cooling section.
  • a total amount of coolant is determined for a respective section of a metal strip using a total cooling function, by means of which the respective section of the metal strip is cooled in the cooling section.
  • an actual size of the section of the metal strip expected due to this cooling is determined and compared with a target size.
  • the overall cooling function is adjusted based on the difference.
  • the total amount of coolant for the next section of the metal strip is then determined based on the tracked total cooling function.
  • the approach of tracking the overall cooling function corresponds to an adaptation of a sensitivity.
  • the section of the hot rolling train is a finishing train.
  • Target values for the operation of the finishing train are determined.
  • One of the target values is the final rolling temperature at which the rolling stock should exit the finishing train. If a rolling speed changes, a correction value for the final rolling temperature is determined. Based on the The amount of cooling water used to cool the rolling stock within the rolling train is adjusted based on the changed final rolling temperature or the correction value.
  • the hot rolling mill section is a cooling section behind a finishing mill.
  • the section of the hot rolling train a large number of flat rolled products are processed one after the other.
  • the primary data and the target values for the target variables of the respective rolling stock are fed to a model of the section of the hot rolling train.
  • operating values for the section of the hot rolling train are determined in such a way that the respective rolling stock reaches the target values of the target variables as well as possible after passing through the section of the hot rolling train.
  • a hot rolling train can have a finishing train, which is followed by a cooling section.
  • the cooling section is viewed as a section of the hot rolling train
  • one of the target variables can, for example, be the coiling temperature that the flat rolling stock should have after passing through the cooling section.
  • the associated setpoint can be, for example, 600 °C.
  • the associated operating value can be the number of valves that must be switched to bring about the required cooling of the flat rolling stock. In this case, the number of switched valves is the actuator.
  • the corresponding operating value can be 10 valves, for example.
  • Another target size can also be specified, for example a specific material property of the flat rolled stock.
  • material properties are the yield strength, the yield strength, the breaking strength and others more.
  • the coiler temperature can also be viewed as the operating value of the section of the hot rolling mill.
  • Measurements are taken as the respective flat rolling stock passes through the section of the hot rolling train.
  • the measurements are used to track the manipulated variables of the section of the hot rolling mill. For example, if a reel temperature of 600 °C is specified as the target variable and the manipulated variable is the number of switched valves, the reel temperature can be recorded from the point in time at which the beginning of the respective flat rolling stock reaches a temperature measuring point downstream of the cooling section. If there is a deviation in this case, the control of the valves in the cooling section is adjusted. For example, if the corresponding point on the flat rolling stock is not at 600 °C, but at 610 °C, another valve is switched on so that the flat rolling stock is cooled via 11 valves. Conversely, if the corresponding point on the flat rolling stock is not at 600 °C, but at 590 °C, a valve is switched off so that the flat rolling stock is only cooled via 9 valves.
  • sampling of the flat rolling stock that has now been treated can also be carried out.
  • a material sample can be taken and examined with regard to microscopic material properties such as structure or grain size and macroscopic material properties such as tensile strength, yield point and elongation at break.
  • the model of the cooling section was an analytical model based on mathematical-physical equations.
  • such an analytical model was corrected, supplemented or replaced by a neural network. Of course, the neural network had to be trained accordingly.
  • the model was used, for example, to calculate a coiling temperature that the respective flat rolling stock should have before the respective flat rolling stock passes through the cooling section in order to achieve the desired macroscopic have material properties.
  • the respective flat rolling stock was then cooled in the cooling section so that it had the determined coiling temperature.
  • the prior art approach has significant systematic errors.
  • manipulated variables are constantly updated via control loops. For example, in the case of a cooling section, the coil temperature is recorded and the amount of cooling water that is applied to the respective flat rolling stock is tracked. This ensures that the determined target value of the reel temperature is maintained as closely as possible.
  • the reel temperature deviates from its target value. This means that the target values for the target size for a given target point can be determined quite precisely.
  • the model very quickly becomes inaccurate and incorrect if other target values are specified for the target variables and/or other primary data is available.
  • the extent of cooling for example the number of switched valves
  • the respective measured reel temperature is entered into a diagram.
  • the amount of cooling shows in the direction of the x-axis
  • the reel temperature shows in the direction of the y-axis.
  • a regression line is then determined.
  • the model calculation and the control of the cooling section valves based on this would be correct.
  • a fault must have occurred somewhere.
  • the disorder as such does not have to be known. But it is there.
  • This disruption is corrected by tracking the cooling in the cooling section.
  • the tracking of the cooling is stochastically dependent on the disturbance.
  • the correlation shown in the diagram therefore shows the correlation between the reel temperature on the one hand and the extent of cooling including the disturbance that occurred on the other hand.
  • the interference would have to be eliminated.
  • the correlation between the reel temperature on the one hand and the extent of cooling without the disruption that occurred on the other hand would have to be determined.
  • the object of the present invention is to create options by means of which the sensitivity of a particular target size of flat rolling stock can be determined from operating sizes of a section of a hot rolling train.
  • the task is solved by an operating method for a section of a hot rolling train with the features of claim 1.
  • Advantageous refinements of the operating method are the subject of dependent claims 2 to 7.
  • the control device is supplied with an actual value of a state variable of the rolling stock, for example the respective coiler temperature.
  • the state variable is one of the special target variables, so that a target value of the state variable corresponds to the final target value of this particular target variable.
  • a target value for the reel temperature is specified directly.
  • the state variable is correlated with the at least one particular target variable, so that a target value of the State variable is determined by the final setpoint of at least one special target variable.
  • the control device can track at least one operating value with which the state variable is influenced in order to compensate for the deviation of the actual value of the state variable from the setpoint value of the state variable. For example, the number of switched valves in a cooling section can be changed in order to set a specific reel temperature.
  • the state variable correlated with the particular target variable can be the coil temperature on the output side of the cooling section and can also be an operating value, the number of activated valves of the cooling section and/or the extent of the control of valves in the cooling section.
  • this is not absolutely necessary.
  • the offsets can be determined as required. In particular, they can be completely selectable or freely selectable within a predetermined value range. If the offsets are completely freely selectable, it is the responsibility of an operator who specifies the offsets to choose them sensibly. If the offsets can be freely selected within a specified range of values, the range of values should be specified sensibly.
  • the respective target value of the respective special target variable by increasing the respective preliminary target value by a predetermined value for some of the flat rolled products and reducing it by the same value for the other flat rolled products. If necessary, it can also be divided into three parts, i.e. additionally for some of the flat rolled goods the respective preliminary target value of the respective special target variable is adopted unchanged as the respective final target value.
  • the respective preliminary target value is uniform and the particular target variable is the reel temperature:
  • the operating values can sometimes be updated as the respective rolling stock passes through the section of the hot rolling mill.
  • the actual value of the state variable corresponds exactly or only with a very small variation to the setpoint of the state variable.
  • the operating values vary, based on a specific final setpoint of a particular target variable, with a respective statistical spread.
  • the offsets are preferably chosen such that the average values of the at least one operating value for the respective final setpoint of this target variable are less than the variance, in particular less than half the variance, of that mean value of the at least one operating value that differs when using the respective preliminary target value results as the final target value of this particular target variable.
  • the operating values for the respective rolling stock are not updated when passing through the section of the hot rolling train, in return, based on a particular target variable, the actual value that would result from using the respective preliminary target value as the respective final target value varies with a statistical spread . It is therefore alternatively also possible for the respective offset for this particular target size to be smaller than this spread, in particular smaller than half of this spread.
  • the section of the hot rolling train includes a cooling section and one of the special target variables is the coiling temperature of the rolling stock on the outlet side of the cooling section or is correlated with the coiling temperature of the rolling stock on the outlet side of the cooling section.
  • at least one of the operating values can in particular influence the number of activated valves in the cooling section and/or the extent of the activation of valves in the cooling section.
  • the particular target variable itself can be the reel temperature on the outlet side of the cooling section.
  • at least one of the special target variables is a microscopic or a macroscopic material property of the respective rolling stock.
  • the operating values can, for example, directly influence the reel temperature or the number of activated valves in the cooling section and/or the extent of the activation of valves in the cooling section.
  • a microscopic material property can be, for example, the microstructure or the grain size.
  • a macroscopic material property can be, for example, tensile strength, yield strength or elongation at break.
  • the processing of the computer program by the control device causes the control device to carry out an operating method according to the invention.
  • control device of a section of a hot rolling train for treating a large number of rolled products with the features of claim 9.
  • the control device is programmed with a computer program according to the invention, so that the control device carries out an operating method according to the invention during operation.
  • the task is further solved by a section of a hot rolling train for treating a large number of rolled products with the features of claim 10.
  • the section of the hot rolling train is controlled by a control device according to the invention.
  • a hot rolling train is designed for treating rolled goods 1 made of metal.
  • the rolling stock 1 usually consists of steel. In some cases they can also be made of aluminum or another metal.
  • the rolled goods 1 are, as shown in the illustration FIGS. 1 and 2 can be seen, flat rolling stock. As a rule, the rolling stock is 1 strip. However, it can alternatively also be heavy plate.
  • the hot rolling mill has at least one rolling stand 2. Often even several rolling stands 2 are arranged sequentially one behind the other.
  • the rolling stands 2 can, for example, form a multi-stand finishing train.
  • a cooling section is also arranged downstream of the roll stand 2 (or, in the case of several roll stands 2, the last roll stand 2). Of the rolling stands 2 are in the FIGS. 1 and 2 only the work rolls shown. The rolling stands 2 often have additional support rolls and, if necessary, further rolls.
  • the cooling section usually has several cooling devices 3. A liquid coolant is supplied to the cooling devices 3 via valves 4. The coolant is usually water. In some cases it is also water with certain additives. In the FIGS. 1 and 2 Only cooling devices 3 are shown above the rolling stock 1.
  • cooling devices 3 are present both above and below the rolling stock 1.
  • the rolling stock 1 can be rolled in the rolling stands 2 and/or cooled by means of the cooling devices 3 of the cooling section. Both rolling and cooling correspond to a treatment of the rolled goods 1.
  • the hot rolling train also has a coiler device with at least one coiler 5.
  • the coiler device is in any case arranged downstream of the rolling stands 2. If the cooling section is present, the coiling device is also arranged downstream of the cooling section. In this case The cooling section is therefore arranged between the roll stands 2 and the coiler device.
  • the hot rolling train can also have units that are arranged upstream of the rolling stands 2.
  • An example of such a device is a descaling device.
  • the hot rolling train therefore has at least one section. It is possible that the rolling stands 2 or the finishing train together with the cooling section and/or at least one upstream device are viewed as a section of the hot rolling train. Alternatively, it is possible to view only the rolling stands 2 or the finishing train as a section of the hot rolling train. It is also possible to view only the cooling section or only the upstream facility as a section of the hot rolling train.
  • the cooling section is considered below as a section of the hot rolling train. However, this is not absolutely necessary.
  • the section of the hot rolling train is controlled by a control device 6.
  • the control device 6 controls in particular the valves 4 of the cooling devices 3.
  • the control device 6 can also control at least one pump (not shown), by means of which the working pressure and/or the coolant flow are adjusted.
  • the control device 6 can also control other parts of the hot rolling train, such as the rolling stands 2 and the reel 5 or the reel 5.
  • the control device 6 is programmed with a computer program 7.
  • the computer program 7 includes machine code 8, which can be processed by the control device 6.
  • the processing of the machine code 8 by the control device 6 causes the control device 6 to control the section of the hot rolling train according to an operating method which is explained in more detail below.
  • the flat rolled products 1 are treated individually one after the other. As far as the immediate As far as control of the section of the hot rolling train is concerned, this control is carried out individually for a single flat rolling stock 1. This control is discussed below in connection with FIG 3 for a single flat rolling stock 1 explained.
  • the control device 6 receives the primary data PD for a respective flat rolling stock 1.
  • the primary data PD describes the respective rolling stock 1 before it is fed to the section of the hot rolling train.
  • the primary data PD can include, for example, the chemical composition of the flat rolling stock 1, its final rolling temperature T1, its thickness, its width and the final rolling speed v.
  • the primary data PD therefore answers the question of which material should be treated in the section of the hot rolling train and/or what condition the rolling stock 1 has when fed to the section of the hot rolling train.
  • the final rolling temperature T1 can, for example, be determined instantaneously using a corresponding temperature measuring station 9 (see the FIGS. 1 and 2 ) are recorded.
  • the control device 6 receives preliminary setpoint values Z* for target variables for the rolling stock 1.
  • the preliminary target values Z* of the target variables describe properties of the respective rolling stock 1 that it should have after passing through the section of the hot rolling train. These properties are therefore sought.
  • the target variables or their preliminary target values Z* therefore answer the question of what properties the rolling stock 1 should have after passing through the section of the hot rolling train and/or what condition the respective rolling stock 1 should then have.
  • the target variables can be, for example, macroscopic or microscopic material properties of the flat rolling stock 1.
  • a macroscopic material property can be, for example, tensile strength, yield strength or elongation at break.
  • a microscopic material property can be, for example, the microstructure or the grain size.
  • It A setpoint T2* can also be specified for the coiling temperature T2, which the flat rolling stock 1 should have behind the cooling section. In this case, the reel temperature T2 is a target variable.
  • At least one of the target variables is a special target variable. It is conceivable that the control device 6 itself determines which of the target variables are special target variables. As a rule, however, the control device 6 is specified which of the target variables are special target variables. The specification can be made, for example, within the framework of the computer program 7 or by an operator (not shown).
  • control device 6 changes the respective preliminary setpoint Z* by an offset ⁇ Z in a step S3 and thus determines a respective final setpoint Z'*.
  • control device 6 determines the respective offset ⁇ Z itself.
  • the control device 6 is generally given a framework - for example within the framework of the computer program 7 or by the operator - within which the control device 6 determines the respective offset ⁇ Z itself.
  • the control device 6 can be given a maximum amount of the offset ⁇ Z, within which the control device 6 randomly determines a value.
  • the control device 6 can be given several concrete possible values for the offset ⁇ Z and for the control device 6 to select one of these values.
  • the respective offset ⁇ Z can be freely selected by the control device 6 within a predetermined value range. The range of values is either specified by the frame or by the smallest and largest of the possible offsets ⁇ Z.
  • the respective offset ⁇ Z of the control device 6 can be specified by the operator.
  • the respective offset ⁇ Z can be freely selected by the operator. If applicable It may be possible for a corresponding range of values or several possible values to be stored within the control device and for the operator to select a value from this range of values or one of the possible values. Regardless of how the offset ⁇ Z is determined, the offset ⁇ Z is determined independently of the primary data PD and also independently of the other target variables. The offsets are also determined independently of the operating values A of the hot rolling train.
  • the control device 6 determines the operating values A of the section of the hot rolling train in a step S5.
  • the determination is carried out in such a way that the respective rolling stock 1 reaches the final target values Z'* of the target variables as well as possible after passing through the section of the hot rolling train.
  • the operating values A therefore indicate how the section of the hot rolling train must be controlled in order to achieve the final setpoint values Z'* of the target variables for the rolling stock 1 given the primary data PD. At least this is expected.
  • the control device 6 can store the primary data PD and the final setpoints Z* of the target variables as shown in FIG 1 to a model 10 of the section of the hot rolling mill. In this case, the operating values A are determined using the model 10.
  • the model 10, if it is present, is implemented within the control device 6, in particular due to the processing of the machine code 8.
  • the normal target variables may be varied or adjusted based on the determined operating values A.
  • the special target variables are not influenced by the operating values A.
  • a step S6 the control device 6 controls the section of the hot rolling train. This control takes place during the treatment of the corresponding flat rolling stock 1, i.e. in particular during the passage of the respective rolling stock 1 through the section of the hot rolling train.
  • the control device 6 operates the section of the hot rolling train in step S6 in accordance with the determined operating values A. It thus controls the actuators of the section of the hot rolling train - for example the valves 4 of the cooling devices 3 - in accordance with the determined operating values A.
  • States that the rolling stock 1 has after treatment in the section of the hot rolling train can alternatively be target variables or operating values A.
  • a condition that the rolling stock 1 has after treatment in the section of the hot rolling train cannot therefore be a target variable and an operating value A at the same time.
  • the reel temperature T2 can alternatively be a target variable or an operating value A. If the coiler temperature T2 is one of the operating values A, the target variables are usually mechanical properties of the rolling stock 1, which the rolling stock 1 should have after treatment in the section of the hot rolling train.
  • the operating values A can be determined as required.
  • these can be values that correspond directly to manipulated variables for the actuators of the hot rolling mill.
  • one of the manipulated variables can be the number of valves 4 that are opened so that the corresponding cooling devices 3 apply the coolant to the flat rolling stock 1.
  • it can be - similar to this, but not completely identical - the extent to which the valves 4 are opened.
  • Step S1 to S6 are therefore carried out iteratively again and again for a new rolling stock 1.
  • the offset ⁇ Z that is used when executing step S3 is not always the same. Seen across the entirety of rolled goods 1, the offset ⁇ Z for a specific specific target size therefore has several different values. This applies to every specific target size.
  • the offset ⁇ Z always has one of two values, with the two values having the same amount.
  • a target variable is the coiler temperature T2
  • the preliminary setpoint T2* for the coiler temperature T2 can be increased by a certain amount - for example 5 K or 10 K - for some of the flat rolled products 1 and reduced by the same amount for other of the flat rolled products 1 become.
  • the offset ⁇ Z always has one of three values, one of the values being 0 and the other two values being different from 0 and having the same amount.
  • the provisional setpoint T2* for the coiling temperature T2 can be maintained unchanged for some of the flat rolled products 1, increased by a certain extent - for example 5 K or 10 K - for others of the flat rolled products 1, and for still others of the flat rolled products 1 can be reduced by the same amount.
  • the offset ⁇ Z always has one of two values, one of the values being 0 and the other value being different from 0.
  • the offset ⁇ Z can be determined using a random generator.
  • a step S11 the computing device 4 becomes aware of a pair of values for the treated rolling stock 1.
  • One value of the respective pair of values is the respective final setpoint Z'* of the particular target variable.
  • the other value of the respective pair of values is the associated operating value A, according to which the section of the rolling train was operated when treating the respective rolling stock 1.
  • a step S12 the computing device selects one of the final setpoint values Z'* of the particular target variable.
  • the computing device selects those value pairs whose final setpoint corresponds to the final setpoint Z'* selected in step S12.
  • step S15 the computing device checks whether it has already carried out steps S12 to S14 for all final setpoint values Z'* of the particular target variable. If this is not the case, the computing device returns to step S12. When step S12 is executed again, the computing device selects a new final setpoint Z'* of the particular target variable, which it selects as part of the procedure of FIG 4 has not yet been selected. Otherwise, the computing device goes to a step S16.
  • step S16 the computing device determines a sensitivity S of the special target variable from the operating variable based on the determined mean values AM and the associated setpoint values Z'* of the special target variable. For example, the computing device can be as shown in FIG 5 As part of step S16, carry out a linear regression and determine the slope of the resulting straight line as sensitivity S.
  • FIG 6 shows an alternative to the approach of FIG 4 .
  • Step S21 essentially corresponds to step S11 of FIG 4 . However, it differs from step S11 in that in step S21 the actual values Z of the particular target variable (also) become known to the computing device as an alternative or in addition to the final setpoint values Z'*.
  • the actual values Z can, for example, be determined by sampling in the case of material properties of the flat rolled products 1 and fed to the computing device. In the case of a state variable (for example the reel temperature T2), they can often be determined directly by measurement and transmitted to the computing device.
  • a step S22 the computing device selects one of the final setpoint values Z'* of the particular target variable (if known) or a specific, usually relatively small range of values for the actual value Z.
  • the step S22 essentially corresponds to the step S2 of FIG 4 .
  • Step S23 the computing device selects those value pairs whose final setpoint value matches the final setpoint value Z'* selected in step S22 or whose actual value lies in the selected value range.
  • Step S23 essentially corresponds to step S13 of FIG 4 .
  • step S26 the computing device checks whether it has already carried out steps S22 to S25 for all final setpoint values Z'* of the particular target variable or all value ranges of the associated actual value Z. If this is not the case, the computing device returns to step S22.
  • Step S22 When executing step S22 again, the computing device selects a new final setpoint Z'* of the particular target variable, which it uses as part of the procedure of FIG 6 has not yet selected, or a different range of values for the actual variable Z that you have chosen as part of the procedure of FIG 6 has not yet been selected. Otherwise, the computing device goes to a step S27. Step S26 essentially corresponds to step S15 FIG 4 .
  • a step S27 the computing device determines the sensitivity S of the special target variable from the operating variable based on the determined mean values AM of the tracked control values A and the associated mean values ZM of the actual values Z of the special target variable. For example, in step S27, the computing device can carry out a linear regression analogous to step S16 and determine the slope of the resulting straight line as sensitivity S.
  • the sensitivity S of the special target variable of the operating variable is therefore determined based on the target values or the average values of the actual values of the special target variable and the average values of the target values or actual values of the operating values A.
  • the procedure according to FIG 4 This is particularly useful when the actual value Z of the particular target variable can already be recorded during the passage of the respective rolling stock 1 through the section of the hot rolling train and can be regulated to the final target value Z'* or it is guaranteed for other reasons that the actual value Z from corresponding final setpoint Z'* does not deviate or only deviates very slightly. This is typically the case for a cooling section if the particular target variable is the reel temperature T2.
  • the approach of FIG 6 can always be taken. It must be taken if the actual value Z of the particular target variable cannot be readjusted during the passage of the respective rolling stock 1 through the section of the hot rolling train or if there is a risk for other reasons that the actual value Z deviates significantly from the corresponding final setpoint Z'*. If possible, the procedure is: FIG 4 but preferred because it can be carried out with less effort.
  • the sensitivities S of the higher-level variables can also be determined from the company variables.
  • the overarching variable is a mechanical property of the rolling stock 1, for example the tensile strength.
  • the setpoint T2* for the reel temperature T2 is determined based on the tensile strength.
  • the reel temperature T2 is the target variable, so that the offset is added to its setpoint.
  • the manipulated variable is the control of the valves 4. In this case - alternatively or in addition to determining the sensitivity of the reel temperature T2 from the control of the valves 4 - the sensitivity of the mechanical property of the rolling stock 1 can also be determined from the control of the valves 4.
  • FIG 7 includes steps S31 to S36.
  • step S31 the control device 6 - analogously to step S1 FIG 3 - for a respective flat rolling stock 1 its primary data PD.
  • step S32 the control device 6 - analogously to step S2 FIG 3 - for the rolling stock 1 provisional target values Z* for target variables.
  • the control device 6 accepts a setpoint T2* for the reel temperature T2 as one of the preliminary setpoints Z*.
  • the reel temperature T2 is a target value.
  • the reel temperature T2 is within the scope of the design of FIG 7 the special target variable, so that in step S33 the offset ⁇ Z is as Temperature offset ⁇ T is added to the preliminary setpoint T2* and a final setpoint T2* is determined for the reel temperature T2.
  • the control device 6 takes over in step S34 - analogous to step S4 of FIG 3 - directly the respective preliminary setpoint Z* as the respective final setpoint Z'*.
  • the determination of the operating values A of the section of the hot rolling train by the control device 6 takes place in step S35 analogous to step S5 of FIG 3 . However, the operating values A are determined depending on the final temperature setpoint T2*.
  • step S36 the control device 6 controls the section of the hot rolling train when treating the corresponding flat rolling stock 1 in accordance with the determined operating values A.
  • the operating values A determines the number of activated valves 4 of the cooling section and/or the extent of the activation of valves 4 the cooling section or the extent of cooling in general.
  • FIG 8 includes steps S41 to S46.
  • step S41 the control device 6 - analogously to step S1 FIG 3 - for a respective flat rolling stock 1 its primary data PD.
  • step S42 the control device 6 - analogously to step S2 FIG 3 - for the rolling stock 1 provisional target values Z* for target variables.
  • step S43 the control device 6 changes - analogously to step S3 FIG 3 -
  • the reel temperature T2 is not directly a specific target variable, it is correlated with one of the specific target variables.
  • step S43 after determining the final setpoint Z'* for this particular target variable, the control device 6 determines the setpoint T2* for the reel temperature T2 using its final setpoint Z'*. For the normal target variables, the control device 6 takes over in step S44 - analogous to step S4 of FIG 3 - directly the respective provisional Setpoint Z* as the respective final setpoint Z'*. The control device 6 then determines operating values A of the section of the hot rolling train in step S45. The determination is carried out in such a way that the respective rolling stock 1, after passing through the section of the hot rolling train, reaches, among other things, the setpoint T2* for the coiler temperature T2 determined in step S43 as well as possible.
  • step S46 the control device 6 controls the section of the hot rolling train when treating the corresponding flat rolling stock 1 in accordance with the determined operating values A.
  • the operating values A determines the number of activated valves 4 of the cooling section and/or the extent of the activation of valves 4 the cooling section or the extent of cooling in general.
  • the procedure according to FIG 8 is therefore based on the fact that the particular target variable is not directly the reel temperature T2.
  • the particular target variable can in particular be a micromechanical or a macromechanical property of the rolling stock 1, for example the tensile strength or the yield strength.
  • FIG 9 a further possible embodiment of the procedure according to the invention (see the FIGS. 1 to 3 ) explained.
  • This procedure is preferably also based on the configuration explained above, that the section of the hot rolling train includes a cooling section. However, it is not necessarily coupled to a cooling section, even if the design according to FIG 9 will be explained below in connection with a cooling section. If the section of the hot rolling train includes a cooling section, the procedure of FIG 9 with the designs of the FIGS. 7 and 8 be combined.
  • FIG 9 shows a possible embodiment of step S6 of FIG 3 .
  • an actual value of a state variable of the rolling stock 1 is recorded and fed to the control device 6 while the respective flat rolling stock 1 is passing through the section of the hot rolling train.
  • a further temperature measuring station 11 can be arranged on the output side of the cooling section, by means of which the reel temperature T2 (i.e. its actual value) is recorded.
  • the control device 6 first controls the section of the hot rolling train in a step S51. This control takes place with the current operating values A.
  • step S51 is executed for the first time, the current operating values A correspond to those in step S5 of FIG 3 determined operating values A.
  • the control device 6 receives the detected actual value of the state variable (for example the detected reel temperature T2).
  • the state variable can - see the explanations purely as an example FIG 7 - be one of the special target variables.
  • the corresponding setpoint T2* of the state variable T2 corresponds to the final setpoint Z'* of this particular target variable.
  • the recorded state variable - see the explanations purely as an example FIG 8 - be correlated with one of the special target variables.
  • the setpoint T2* of the state variable T2 is determined by the final setpoint Z'* of this particular target variable.
  • the control device 6 compares the actual value T2 of the state variable with the associated setpoint value T2* in a step S53. In the event of a deviation, the control device 6 goes to a step S54. In step S54, the control device 6 tracks at least one operating value A. The state variable T2 is influenced by the updated operating value A. The tracking takes place in order to compensate for the deviation of the actual value T2 of the state variable from the associated setpoint T2*.
  • the control device 6 then checks in a step S55 whether the treatment of the rolling stock 1 in the section of the hot rolling train is finished. If this is not the case, the controller 6 returns to step S51. However, when executing step S51 again, the control device 6 uses the now current operating values A, i.e. as they resulted from any tracking in step S54. When the treatment of the rolling stock 1 in the section of the hot rolling train is finished, the procedure of FIG 9 completed. The control device 6 thus goes to step S1 (see FIG 3 ) back.
  • the respective flat rolling stock 1 is mentally divided into a large number of sections that follow one another sequentially. If the state variable is recorded for a specific section of the rolling stock 1, this section of the rolling stock 1 can no longer be influenced by the section of the hot rolling train. However, by means of the section of the hot rolling train, subsequent sections of the flat rolling stock 1 can be influenced, the state variable of which is recorded at a later point in time. The regulation of the state variable is therefore subject to a certain dead time. However, this is not a problem and only limits the dynamics of the regulation, but not its principle. The relevant facts are generally known and familiar to experts.
  • the offset ⁇ Z can be freely selected as long as its absolute value remains below a certain limit.
  • Possibilities are explained to sensibly determine the offset ⁇ Z or a maximum value for the amount of the offset ⁇ Z.
  • the operating values A from rolling stock 1 to rolling stock 1 are always the same. This is because the operating values A are no longer changed after they have been determined in step S5.
  • the actual value Z of the special target variable - for example the coiler temperature T2 - varies in this case from rolling stock 1 to rolling stock 1.
  • An external disturbance can be assumed as the reason for the scatter. The cause of the malfunction may or may not be known.
  • the spread of the actual value Z of the special target variable has a standard deviation ⁇ around the mean ZM of the actual value Z of the special target variable.
  • the standard deviation ⁇ is often also referred to as the variance.
  • the standard deviation ⁇ is defined as covering a symmetrical range around the mean ZM. Lie in the area with one time of the standard deviation ⁇ (i.e. in the area that extends from the mean ZM of the actual value Z of the special target size minus the standard deviation ⁇ to the mean ZM of the actual value Z of the special target size plus the standard deviation ⁇ ). with a normal distribution, around 2/3 of all measured values (more precisely: 68.27%).
  • the offset ⁇ Z can be as shown in FIG 10 for example, be determined in such a way that its amount is smaller than the standard deviation ⁇ .
  • the various final target values Z'* of the particular target variable differ from the corresponding provisional one by less than the scatter (more precisely: by less than the standard deviation ⁇ ).
  • Setpoint Z* it is even better if the amount of the offset ⁇ Z has an even smaller value, in particular if it deviates from the corresponding preliminary target value Z* by less than half the spread.
  • FIG 10 shows a rather hypothetical situation.
  • the fact that the operating values A are not tracked can lead to considerable scatter, which is reflected in the actual value Z of the particular target variable.
  • the operating values A are updated.
  • the determination of the offset ⁇ Z for this case - a realistic case - is discussed below in connection with FIG 11 explained.
  • the treated rolling stock 1 is uniform and that the preliminary target value Z* is used directly as the final target value Z'* of the particular target variable.
  • the operating values A are tracked in order to keep a state variable - for example the reel temperature T2 - at its setpoint T2*.
  • the state variable is either a particular target variable or is correlated with a particular target variable.
  • the actual value Z of the particular target variable - for example the coiler temperature T2 - is always the same or at least almost the same from rolling stock 1 to rolling stock 1.
  • the operating values A vary from rolling stock 1 to rolling stock 1.
  • the operating values A have a standard deviation ⁇ ' around their mean value AM.
  • the standard deviation ⁇ ' is analogous to FIG 10 defined in that it covers a symmetrical range around the mean AM of the operating values A. In the range one times the standard deviation ⁇ ' (i.e. in the range from the mean AM minus the standard deviation ⁇ ' to the mean AM plus the standard deviation ⁇ '), in the case of a normal distribution, around 2/3 of all operating values A (more precisely: 68.27%). In the case of a normal distribution, around 95% of all operating values A (more precisely: 95.45%) lie in the area with twice the standard deviation ⁇ '. In the case of a normal distribution, almost all operating values A (more precisely: 99.73%) lie in the area with three times the standard deviation ⁇ '.
  • the offset ⁇ Z can, for example, be determined in such a way that - based on the respective offset ⁇ Z - the mean value AM of the operating values A deviates by less than the spread from the mean value AM, which, when using the provisional target value Z*, turns out to be the final target value Z' * the specific target size results.
  • the amount of the offset ⁇ Z has an even smaller value, in particular a value that corresponds to a maximum of half the spread of the operating values A.
  • the preliminary setpoint Z* should be 600 °C.
  • 2500 rolled products 1 are treated, for which the final setpoint Z'* of the special target variable is 599 ° C, that is, the offset ⁇ Z is -1 K.
  • the mean AM can be calculated with an accuracy that corresponds to a spread of the reel temperature T2 by 0.14 K. Despite the very small change in the setpoint T2* of the reel temperature T2, the sensitivity S can therefore be determined.
  • this procedure provides the correct sign of the sensitivity S. This already represents a significant advantage over the state of the art. The determination is still only accurate to around 15%. However, this accuracy is completely sufficient for many applications. Furthermore, it can be improved by correspondingly increasing the number of rolled products 1.
  • the small variation in the setpoint T2* of the coiler temperature T2 has almost no effect on the quality of the actually treated rolling stock 1. Because the resulting variation over all 5000 rolling stock 1 is only from 7 K to approx. 7.07 K and thus relatively only by approximately 1% increased. Alternatively or additionally, it is of course also possible to increase the offset ⁇ Z.
  • the determined sensitivity S can be used in particular to update the model 10. If the operating values A are to be determined at a later point in time within the framework of the model 10 for at least one further flat rolling stock 1, the determined sensitivity S can be used to determine the operating values A. This can be particularly advantageous if the setpoint Z0* or the target value Z0' of the particular target variable has changed and/or if the primary data PD has changed.
  • the present invention has many advantages.
  • the sensitivity S is determined without further assumptions or at least its sign and its approximate value are determined.
  • the advantage is that the operator of the section of the hot rolling mill usually knows the primary data PD and the preliminary setpoints Z* of the target variables very precisely, but generally does not know how to change the operating values A in order to obtain the actual values Z of the target variables in a deterministic manner. However, this is made possible with the procedure of the present invention.
  • the operating point of the section of the hot rolling train can be shifted in a targeted manner, so that a flat rolling stock 1 with improved actual values Z of the target variables results.
  • disruptions in upstream processing processes i.e. in processes that influence the primary data PD, can be completely or at least partially compensated for.
  • the present invention has been explained above over long distances in the case that the section of the hot rolling train corresponds to a cooling section or comprises at least one cooling section.
  • the coiling temperature T2 of the rolling stock 1 on the outlet side of the cooling section was assumed as a special target variable.
  • the operating value A was generally assumed to be the number of activated valves 4 of the cooling section and/or the extent of the activation of valves 4 of the cooling section.
  • the present invention is not limited to this one embodiment.
  • the particular target variable is not the coiler temperature T2.
  • the setpoint T2* of the reel temperature T2 is correlated with the particular target variable. For example, if a specific tensile strength is specified as a particular target variable, the tensile strength is stochastically varied independently of the other target variables and the primary data PD.
  • the associated setpoint T2* of the reel temperature T2 is determined and regulated to this value.
  • the associated average values AM of the operating values A are determined and evaluated based on the respective average value ZM of the actual values Z of the tensile strength. Analogous procedures arise for other special target variables.
  • the procedure according to the invention can be carried out for a section of a hot rolling train that does not include a cooling section.
  • the final rolling temperature T1 can be given as a special target variable and the final rolling speed v can be used as a special manipulated variable.
  • Another target variable and the final rolling temperature T1 can also be used as a state variable.
  • the measurement variable on the basis of which the operating values A are tracked can be the final rolling temperature T1 in the case of a finishing train, and the coiler temperature T2 in the case of a cooling section.
  • the section of the hot rolling train is designed as a multi-stand finishing train or includes a multi-stand finishing train
  • the thickness, the profile and / or the flatness of the rolling stock 1 can be used as a special target variable and variables can be used as operating values A, which determine the rolling gap of the last Roll stand 2 of the multi-stand finishing train and/or the penultimate roll stand 2 of the multi-stand Finishing train and/or other rolling stands 2 of the multi-stand finishing train influence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Metal Rolling (AREA)

Claims (10)

  1. Procédé de fonctionnement pour une section d'un laminoir à chaud,
    - dans lequel un dispositif de commande (6) pour la section du laminoir à chaud est alimenté en données primaires (PD) respectives pour une pluralité de matériaux de laminage (1) et en valeurs de consigne provisoires (Z*) respectives pour des variables cibles du matériau de laminage respectif (1),
    - dans lequel les données primaires (PD) respectives décrivent le matériau de laminage respectif (1) avant qu'il soit amené à la section du laminoir à chaud et les valeurs de consigne provisoires (Z*) respectives des variables cibles décrivent un état de consigne souhaité du matériau de laminage respectif (1) après qu'il a traversé la section du laminoir à chaud,
    - dans lequel le dispositif de commande (6) détermine des valeurs de fonctionnement (A) pour la section du laminoir à chaud de manière telle que le matériau de laminage respectif (1), après avoir traversé la section du laminoir à chaud, atteint autant que possible des valeurs de consigne définitives (Z'*) des variables cibles,
    - dans lequel le dispositif de commande (6) fait fonctionner la section du laminoir à chaud lors du traitement du matériau de laminage respectif (1) en fonction des valeurs de fonctionnement déterminées (A),
    - dans lequel au moins une des variables cibles est une variable cible particulière et les variables cibles restantes sont des variables cibles normales,
    - dans lequel le dispositif de commande (6) accepte pour les variables cibles normales la valeur de consigne provisoire (Z*) respective inchangée en tant que valeur de consigne définitive (Z'*) respective,
    caractérisé en ce que
    - le dispositif de commande (6), pour les variables cibles particulières détermine la valeur de consigne définitive (Z'*) respective du fait qu'il modifie la valeur de consigne provisoire (Z*) respective d'un décalage respectif (6Z) qui est déterminé indépendamment des données primaires (PD), des autres valeurs cibles particulières et des valeurs cibles normales pour le matériau de laminage respectif (1) et aussi indépendamment des valeurs de fonctionnement (A) du laminoir à chaud, déterminées pour traiter le matériau de laminage respectif, et
    - les décalages (5Z), par rapport à la variable cible particulière respective, présentent plusieurs valeurs différentes sur l'ensemble des matériaux de laminage (1) considérés.
  2. Procédé de fonctionnement selon la revendication 1, caractérisé en ce que le décalage (δZ) peut être choisi librement, complètement ou au sein d'une plage de valeurs prédéfinie.
  3. Procédé de fonctionnement selon la revendication 1 ou 2, caractérisé en ce
    - qu'une valeur réelle (T2) d'une variable d'état du matériau de laminage (1) est fournie au dispositif de commande (6) pendant que le matériau de laminage respectif (1) traverse la section du laminoir à chaud,
    - que la valeur d'état est l'une des variables cibles particulières de sorte qu'une valeur de consigne (T2*) de la variable d'état coïncide avec la valeur de consigne définitive (Z'*) de cette variable cible particulière, ou la variable d'état est corrélée à la au moins une variable cible particulière de sorte qu'une valeur de consigne (T2*) de la variable d'état est déterminée par la valeur de consigne définitive (Z'*) de la au moins une variable cible particulière, et
    - que le dispositif de commande (6) lors d'un écart entre la valeur réelle (T2) de la variable d'état et la valeur de consigne (T2*) de la variable d'état actualise au moins une valeur de fonctionnement (A), par laquelle la variable d'état est influencée, pendant que le matériau de laminage respectif (1) traverse la section du laminoir à chaud, pour compenser l'écart entre la valeur réelle (T2) de la variable d'état et la valeur de consigne (T2*) de la variable d'état.
  4. Procédé de fonctionnement selon la revendication 3, caractérisé en ce que, par rapport à une valeur de consigne définitive (Z'*) déterminée d'une variable cible particulière qui modifie au moins une valeur de fonctionnement (A) avec une dispersion statistique (σ') et en ce que, par rapport à cette variable cible particulière, les décalages (δZ) sont choisis de manière telle que les valeurs moyennes (AM) de la au moins une valeur de fonctionnement (A) pour la valeur de consigne définitive (Z'*) respective de cette variable cible diffèrent de moins que la dispersion (σ'), en particulier de moins que la moitié de la dispersion (σ'), de la valeur moyenne (AM) de l'au moins une valeur de fonctionnement (A) qui, lors de l'utilisation de la valeur de consigne provisoire (Z*) respective, résulte comme valeur de consigne définitive (Z'*) de cette variable cible particulière.
  5. Procédé de fonctionnement selon la revendication 1, 2 ou 3, caractérisé en ce que, par rapport à une variable cible particulière respective, la valeur réelle (T2) qui résulterait comme valeur de consigne définitive (Z'*) respective lors de l'utilisation de la valeur de consigne provisoire (Z*) respective, à condition que les valeurs de fonctionnement (A) pour le matériau de laminage respectif (1) n'aient pas été actualisées lors de la traversée de la section du laminoir à chaud, varierait avec une dispersion statistique (σ) et en ce que le décalage respectif (5Z) pour cette variable cible particulière est inférieur à la dispersion (σ), en particulier inférieur à la moitié de la dispersion (σ).
  6. Procédé de fonctionnement selon l'une des revendications précédentes, caractérisé en ce que la section du laminoir à chaud comprend un parcours de refroidissement, en ce que l'une des variables cibles particulières est la température de bobinage (T2) du matériau de laminage (1) du côté de la sortie du parcours de refroidissement ou est corrélée à la température de bobinage (T2) du matériau de laminage (1) du côté de la sortie du parcours de refroidissement et en ce que le nombre de vannes commandées (4) du parcours de refroidissement et/ou l'ampleur de la commande des vannes (4) du parcours de refroidissement est influencé par au moins une des valeurs de fonctionnement (A).
  7. Procédé de fonctionnement selon l'une des revendications précédentes, caractérisé en ce qu'au moins une des variables cibles particulières est une propriété microscopique ou macroscopique du matériau de laminage respectif (1).
  8. Programme informatique pour un dispositif de commande (6) d'une section d'un laminoir à chaud pour traiter une pluralité de matériaux de laminage (1), dans lequel le programme informatique comprend un code machine (8) qui est exécutable par le dispositif de commande (6), dans lequel l'exécution du code machine (8) par le dispositif de commande (6) a pour effet que le dispositif de commande (6) réalise un procédé de fonctionnement selon l'une des revendications précédentes.
  9. Dispositif de commande d'une section d'un laminoir à chaud pour traiter une pluralité de matériaux de laminage (1), dans lequel le dispositif de commande est programmé avec un programme informatique (7) selon la revendication 8 de sorte que le dispositif de commande en fonctionnement réalise un procédé de fonctionnement selon l'une des revendications 1 à 7.
  10. Section d'un laminoir à chaud pour traiter une pluralité de matériaux de laminage (1), dans lequel la section du laminoir à chaud est commandée par un dispositif de commande (6) selon la revendication 9.
EP21700961.2A 2020-02-11 2021-01-21 Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud Active EP4103339B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20156622.1A EP3865226A1 (fr) 2020-02-11 2020-02-11 Détermination de la sensibilité d'une grandeur cible d'une matière à laminer par une grandeur de fonctionnement d'une voie de laminage à chaud
PCT/EP2021/051350 WO2021160404A1 (fr) 2020-02-11 2021-01-21 Détermination d'une sensibilité d'une variable cible d'un matériau de laminage à partir d'une variable de fonctionnement d'un laminoir à chaud

Publications (2)

Publication Number Publication Date
EP4103339A1 EP4103339A1 (fr) 2022-12-21
EP4103339B1 true EP4103339B1 (fr) 2024-01-17

Family

ID=69571818

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20156622.1A Withdrawn EP3865226A1 (fr) 2020-02-11 2020-02-11 Détermination de la sensibilité d'une grandeur cible d'une matière à laminer par une grandeur de fonctionnement d'une voie de laminage à chaud
EP21700961.2A Active EP4103339B1 (fr) 2020-02-11 2021-01-21 Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20156622.1A Withdrawn EP3865226A1 (fr) 2020-02-11 2020-02-11 Détermination de la sensibilité d'une grandeur cible d'une matière à laminer par une grandeur de fonctionnement d'une voie de laminage à chaud

Country Status (4)

Country Link
US (1) US20230089119A1 (fr)
EP (2) EP3865226A1 (fr)
CN (1) CN115066300A (fr)
WO (1) WO2021160404A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873469A1 (fr) * 2013-11-18 2015-05-20 Siemens Aktiengesellschaft Procédé de fonctionnement pour une voie de refroidissement
JP6435234B2 (ja) * 2015-05-20 2018-12-05 株式会社日立製作所 熱間圧延仕上げミル出側温度制御装置およびその制御方法
JP6399985B2 (ja) * 2015-09-08 2018-10-03 株式会社日立製作所 巻取温度制御装置および巻取温度制御方法

Also Published As

Publication number Publication date
WO2021160404A1 (fr) 2021-08-19
EP4103339A1 (fr) 2022-12-21
EP3865226A1 (fr) 2021-08-18
US20230089119A1 (en) 2023-03-23
CN115066300A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
EP1763411B1 (fr) Procede et dispositif pour mesurer et regler la planeite et/ou la tension d'une courroie d'acier inoxydable ou d'un film d'acier inoxydable au cours du laminage a froid dans un laminoir a cylindres multiples, en particulier dans un laminoir sendzimir a 20 cylindres
EP2697001B1 (fr) Procédé de commande pour train de laminage
EP2697002B1 (fr) Procédé de commande pour train de laminoir
EP2170535A1 (fr) Procédé de réglage d'un état d'un produit à laminer, en particulier d'un ruban de préparation
EP2162245B1 (fr) Laminage d'un feuillard dans un laminoir en utilisant la dernière cage du laminoir comme réducteur de traction
EP3210681A1 (fr) Dispositif et procédé de laminage de matériau en bande à épaisseur variable
EP2790846B1 (fr) Procédé de traitement de produits laminés dans un laminoir
EP1711283B1 (fr) Procede de reglage et mecanisme de reglage pour une cage de laminoir
EP3720623B1 (fr) Système d'étirement, de courbure et de redressement et son procédé d'actionnement
DE102014215397B4 (de) Bandlageregelung mit optimierter Reglerauslegung
EP3208673B1 (fr) Étalonnage en ligne d'une emprise de laminage d'une cage de laminoir
WO2018192798A1 (fr) Optimisation de la modélisation de modèles de processus
EP4103339B1 (fr) Détermination de la sensibilité d'une grandeur cible d'une matière à laminer pour un paramètre de fonctionnement d'un train de laminage à chaud
EP2188074B1 (fr) Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure
DE102007050891A1 (de) Auf der Streuung einer Istgröße eines Walzguts basierende Adaptierung eines Reglers in einem Walzwerk
EP1173295A1 (fr) Procede de laminage d'un feuillard metallique et dispositif de laminage y relatif
AT409229B (de) Verfahren zur verbesserung der kontur gewalzten materials und zur erhöhung der gewalzten materiallänge
DE102014215396A1 (de) Differenzzugregelung mit optimierter Reglerauslegung
EP3823771B1 (fr) Procédé permettant de déterminer des grandeurs de réglage pour des éléments actifs de réglage du profil et de la planéité d'une cage de laminoir et des valeurs de profil et de planéité moyenne d'une bande métallique laminée à chaud
DE102008014304A1 (de) Betriebsverfahren für eine Kaltwalzstraße mit verbesserter Dynamik
DE1527610A1 (de) Walzverfahren und Vorrichtung zur Durchfuehrung desselben
DE10159608C5 (de) Walzverfahren und Walzstraße für ein Band mit einer Schweißnaht
DE10106527A1 (de) Verfahren zum Betreiben einer Walzstraße sowie Steuerungssystem für eine Walzstraße
DE102018215101A1 (de) Vakuumbeschichtungsanlage, und Verfahren zum Beschichten eines bandförmigen Materials
DE102022211278B3 (de) Verfahren und Computerprogramm zum Anpassen des Soll-Dickenwertes für eine Regelung der Dicke eines neu zu walzenden Bandes für mindestens ein Walzgerüst

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230823

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002491

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D