EP3399105A1 - Bodenverdichtungsgerät - Google Patents

Bodenverdichtungsgerät Download PDF

Info

Publication number
EP3399105A1
EP3399105A1 EP18170921.3A EP18170921A EP3399105A1 EP 3399105 A1 EP3399105 A1 EP 3399105A1 EP 18170921 A EP18170921 A EP 18170921A EP 3399105 A1 EP3399105 A1 EP 3399105A1
Authority
EP
European Patent Office
Prior art keywords
control
vibration
exciter
vibration exciter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18170921.3A
Other languages
English (en)
French (fr)
Other versions
EP3399105B1 (de
Inventor
Armin MALASCHEWSKI
Mirco Pinkert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ammann Schweiz AG
Original Assignee
Ammann Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ammann Schweiz AG filed Critical Ammann Schweiz AG
Priority to PL18170921T priority Critical patent/PL3399105T3/pl
Publication of EP3399105A1 publication Critical patent/EP3399105A1/de
Application granted granted Critical
Publication of EP3399105B1 publication Critical patent/EP3399105B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/046Improving by compacting by tamping or vibrating, e.g. with auxiliary watering of the soil
    • E02D3/074Vibrating apparatus operating with systems involving rotary unbalanced masses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied

Definitions

  • the invention relates to a soil compaction device with a superstructure and an undercarriage with a vibrating plate and a plurality of exciter units, wherein at least a part of the exciter units can each be driven individually by a drive.
  • a vibrating plate such as a vibrating plate
  • an internal combustion engine for driving two similar, parallel, rigidly coupled via a gear and counter-rotating unbalanced shafts.
  • the opposite rotation of the unbalanced shafts operated with the same number of revolutions causes the centrifugal forces generated by the imbalances to mutually reinforce or compensate depending on the phase angle.
  • a suitable adjustment of the respective phase position of the imbalances to one another results in a resulting force vector, which can be used for locomotion and / or compression.
  • a vibrating plate usually has a hydraulic system for adjusting the phase position of the mechanically coupled to each other waves. Often this is done by means of an axially displaceable spiral shaft.
  • Object of the present invention is to provide a cost-effective and reliable solution for a comfortable soil compaction device with a finely tuned and precise steering that allows easy control of the soil compaction device in each direction of the plate plane.
  • a ground compaction device is provided with a superstructure and an undercarriage, wherein the undercarriage has a vibration plate and a plurality of excitation units, wherein at least a part of the exciter units of each drive is individually driven and each having at least one vibration exciter, which with a measuring device for Detection of its phase position is connected, wherein the phase position of a control / regulating device can be supplied, and wherein individual vibration exciters are each coupled via an elastic element, a respective electrically controllable drive and the control / regulating device and the relative phase position of the individual vibration exciter to each other the control / regulating device is adjustable.
  • At least two of the excitation units are each individually driven by a respective drive and each have at least one vibration exciter.
  • an exciter unit can have one or two opposite, coupled to each other vibration exciter.
  • a vibration exciter may for example consist of an imbalance shaft and a rotating imbalance or an oscillator with an oscillating mass.
  • an exciter unit has exactly one vibration exciter with an imbalance shaft and a rotating imbalance.
  • control unit can advantageously consist of a higher-level control device and a plurality of control devices controlled by the control device, wherein in each case one connected to a measuring device vibration exciter each having a control device and the detectable by the respective measuring means phase positions the respective control means are supplied.
  • each vibration exciter on its own control circuit for controlling its phase position, which is the respective control device can be specified as a reference variable.
  • the phase angle of at least two vibration exciters to each other is electrically variable.
  • the change in the phase position of at least one individual vibration exciter can be changed relative to the phase position of another or further vibration exciter by changing its desired phase position as a reference variable.
  • the desired phase position can be predetermined by the control device, for example as a result of the conversion of a steering command supplied to the control device.
  • the vibration exciters are each connected via an elastic element with the respective electric drive.
  • a deviation of an actual phase position from a desired phase position due to the elastic connection can be compensated by the control device.
  • a coupling of the phase position between two vibration exciters is given via at least one elastic element and the phase position of at least one of the vibration exciters coupled via an elastic element can be regulated via a regulating device.
  • a soil compacting device is provided, the vibrating plate of which has a plurality of electrically driven and electrically controllable exciter units.
  • the electric drives are each connected in each case via an elastic element with the respective vibration exciters.
  • the arrangement of a plurality of exciting units on the vibrating plate offers the possibility to arrange them in different orientations and to generate force vectors in each direction by appropriate activation.
  • Different numbers of structurally identical exciter units can be used for the modular production of soil compactors of different weight classes, and / or on the other hand an optimization of the distribution can be achieved by distributing their orientations on the vibrating plate, for example by distributing the orientation according to the distribution of an intensity of movement directions Steering assets are achieved.
  • an elastic element between the drive, or its drive shaft and the imbalance shaft has the advantage that it acts dampening and vibrations of the imbalance shaft act less on the electric drives.
  • the loss of the rigid coupling between the imbalance shafts occurring in comparison to the conventional exciters can be at least partially compensated by a fast-response, precise electrical regulation.
  • the phase position of at least one of the unbalanced shafts or oscillators coupled via an elastic element can be regulated by way of a regulating device.
  • An excitation unit has a measuring device connected to the vibration exciter for detecting the phase position of the vibration exciter. If this is designed in the form of an imbalance wave, the phase angle of the measuring device can be detected by the measurement of the phase angle.
  • the measuring device is able to detect the phase angle of the unbalance with respect to a zero position, for example, the gravitational rest position in the freewheel, and pass it as a phase to the control device.
  • the control device is set up to set the manipulated variables of the drive to achieve a desired phase position.
  • it is able to change the phase angle between two unbalanced shafts or oscillators, or to set a predetermined phase position.
  • at least a part of the exciter units each individually assigned a control device. By a higher-level control device, the individually assigned control devices can be given their respective desired phase position as a reference variable
  • the drive is electrically designed.
  • the measuring device advantageously has an encoder for the digital processing of the measured values.
  • the measuring device of the control device in addition to the phase position and the angular velocity of a shaft available.
  • the inventively provided attenuation of the electric drives relative to the imbalance shaft reduces the demands on the capacity of the electric drives, in particular their vibration resistance, and allows the use of comparatively simple and inexpensive components.
  • the electric drives are arranged in the superstructure, the vibration exciter arranged in the undercarriage, and the electric drives in the superstructure in each case individually by means of one elastic element, advantageously a belt, each connected to a vibration exciter in the undercarriage.
  • the exciter units have exactly one vibration exciter with a single imbalance shaft. Such a configuration is low maintenance and inexpensive to implement.
  • the electric drive is designed as a substantially individual electric motor.
  • Electric motors are simple and inexpensive to produce, a use of a plurality of the same electric motors for the majority of excitation units promotes through the use of similar components, the rationalization of the production.
  • a single electric drive can also be designed as an electrical coupling, which is designed to partially divert a drive energy of a superordinate drive and to individualize it in terms of phase position and angular velocity.
  • the electric drive is designed as a stepper motor.
  • a stepper motor has the advantage that the angular position and thus the phase angle of the drive shaft is adjustable and thus can be assumed to be known.
  • a stepper motor can take over the function of the measuring device.
  • the execution of a measuring device as an independent component can be omitted in this case, the measuring device can be considered in this case as integrated into the stepper motor.
  • a stepper motor is vibration resistant executable.
  • a control device is designed as a PI or PID controller.
  • the connection of the imbalance shaft with the electric drive via an elastic element leads to a change in the angular velocity to an energy absorption of the elastic element, which returns this energy with a time delay to the arrangement.
  • a control device is designed to minimize a transient of an excitation unit after a phase or frequency change.
  • the measuring device for detecting the phase position can be arranged in front of the elastic element on the drive shaft, or behind the elastic element on the imbalance shaft.
  • An arrangement of the measuring device on the imbalance shaft of a vibration exciter in the undercarriage of the soil compaction device offers the advantage that a control device, the actual phase angle and angular velocity of the imbalance shaft can be supplied.
  • the measuring device is connected only indirectly via the elastic element with the imbalance shaft, so that due to a spring action of the elastic element, the determined phase angle and angular velocity may differ slightly from the actual phase angle and angular velocity of the unbalanced shaft. Knowing the step response of the controlled system and the spring constant of the elastic element and the mass of the imbalance shaft, the deviation between the measured and the actual phase position can be estimated by the control device.
  • the directions of rotation, angular velocities and phase positions of the vibration exciter form in their superposition a translational and / or rotational moment with respect to a standing surface of the soil compaction device.
  • This translational and / or rotational moment can be used for locomotion and steering.
  • the vibration exciter are arranged angularly, in particular star-shaped on the vibration plate.
  • a symmetrical arrangement at equal angles allows for a control device, for example, a steering command in respective desired phase positions as command values for the respective Vibratory exciter, a simple calculation of the required control values to produce a desired translational and / or rotational moment.
  • the input of a steering command for example, by means of a movable control in two axes control stick as part of a manual control.
  • the hand control may be an integral part of the soil compaction device or a remote control.
  • a control device is designed as a digital controller.
  • Digital controllers can be implemented quickly enough and offer great flexibility in terms of their controller characteristics.
  • a control device has a digital controller which has a predistorter for generating the manipulated variables for the electric drive, which causes such temporal predistortion of the manipulated variables that transient oscillation due to a phase or frequency change is avoided or reduced.
  • the control device is set up to compensate for vibrations which are enabled or favored by the elastic element.
  • the predistortion of the manipulated variables or setting of the parameters of a PI or PID controller based on the step response of the controlled system. Knowing the parameters of the step response, for example its inflection point, the parameters of a PI or PID controller are according to adjustment rules known in the literature, e.g. according to Ziegler / Nichols, dimensionable.
  • the soil compaction device has a calibration mode for determining the step response, in which the step response of the controlled system, for example after a belt change, can be determined.
  • the control loop can be opened and the reaction of the vibration exciter in response to a steering movement or a change in the phase position of the vibration exciter can be determined and stored.
  • a control device is designed to jointly evaluate the measured values of a plurality of measuring devices and to optimize the manipulated variables for the electric drives of a plurality of vibration exciters in such a way that undesired oscillation of the soil compacting device is avoided or reduced.
  • the various excitation units are coupled together via the vibrating plate, so that they stimulate each other to vibrate, there are energy balancing operations on. Due to this coupling, the individual control circuits for adjusting the phase position are not completely decoupled.
  • the soil compaction device has a control device which is designed to jointly evaluate the phase positions of a plurality of vibration devices and to optimize the manipulated variables for a plurality of vibration exciters such that a translational or rotational movement desired by the user is converted to phase changes of the vibration exciters such that the height of the phase jumps is minimized.
  • the optimization could, for example, be carried out in accordance with the method of minimum squares of the error such that, while maintaining the resulting motion vector, it is not the control difference of individual control loops that is minimized but the magnitude of the control difference vector.
  • Such an optimization is possible in particular if a large number of vibration exciters is available and different selections of vibration exciters contributing to the formation of a specific common force vector are possible.
  • Fig. 1 shows a sketch of the principle of a soil compaction device 1 with a superstructure 2 and an undercarriage 3, wherein the undercarriage 3 has a vibration plate 4 and a plurality of exciter units 5.
  • the exciter units 5 each have a vibration exciter arranged in the undercarriage 3 on the vibrating plate 4 in the form of an imbalance shaft 7 and are connected via an elastic element 9 in the form of a belt to a drive 6 arranged in the superstructure 2.
  • Fig. 2 shows a preferred arrangement of exciter units 5 on a vibrating plate 4 in an arrangement of the measuring devices 8 on the imbalance shaft 7.
  • the exciter units 5 are arranged in a star shape and axisymmetric to each other.
  • the axes of rotation of their unbalanced shafts 7 are in diagonally arranged exciter units 5 on a straight line.
  • the notionally extended axes of rotation of all unbalanced shafts 7 intersect at a point which is located approximately centrally on the vibrating plate 4.
  • the excitation units 5 are individually driven by an electric drive 6 and each have a vibration exciter with an imbalance shaft. 7 and a rotating unbalance 10 and connected to the vibration exciter measuring device 8 for detecting the phase position of the imbalance shaft 7.
  • the phase position of the vibration exciter is equated with the phase position of its imbalance shaft 7.
  • the measuring device 8 is arranged in the direction of the action of the drive, that is, in the direction of the imbalance shaft 7 behind the elastic element 9.
  • the electric drive 6 is preferably arranged in the superstructure 2, but it may also be arranged in the undercarriage 3 together with the vibration exciter on the vibration plate 4.
  • Fig. 3 shows the same preferred arrangement of excitation units 5 on a vibrating plate 4 in an arrangement of the measuring devices 8 on the drive shaft of the electric drive 6.
  • the only difference to Fig. 2 is the measuring device 8 in the direction of the action of the drive, that is arranged in the direction of the imbalance shaft 7, in front of the elastic element 9.
  • Fig. 4 shows a schematic diagram for controlling an exciter unit 5 in an arrangement of the measuring device 8 on the drive shaft.
  • the measuring device 8 is arranged in the upper carriage 2 and set up for direct detection of the phase position of the electric drive 6.
  • the imbalance shaft 7 may have a slightly different phase position from this phase, the difference to the detected phase position is not constant, but which may vary in time as a function of changes in the rotational speed of the drive 6 or by the transmission of vibrations to the imbalance shaft 7. Knowing the mass ratios, the spring constant of the elastic element 9 and the time course of phase position and speed, the controller 12 can estimate the deviation of the phase position of the imbalance shaft 7 of the phase angle of the drive shaft.
  • the detectable by the measuring device 8 phase angle of the drive shaft can be supplied as actual phase position and feedback variable of a control loop of the control device 12.
  • a manipulated variable determined by the control device 12 and a motor controller 13 can be fed.
  • the motor controller 13 converts the manipulated variable into corresponding control voltages or signals for the phase or speed change of the electric drive 6.
  • Fig. 5 shows a schematic diagram for controlling an excitation unit 5 in an arrangement of the measuring device 8 on the imbalance shaft 7.
  • the measuring device 8 is arranged in the undercarriage 3 and set up for direct detection of the phase position of the imbalance shaft 7. This is different from Fig. 4 the actual actual phase position of the imbalance shaft 7 directly comparable to the desired phase position.
  • the elastic element 9 with its time behavior ⁇ (t) is part of the controlled system. If the control device 12 is set up to generate a manipulated variable taking into account a known step response of the controlled system, and if the electric drive 6 is sufficiently fast to respond to a manipulated variable change rapidly, precise control of the phase position of the imbalance shaft 7 is achieved by compensating the time behavior ⁇ (FIG. t) of the elastic element 9 possible.
  • Fig. 6 shows a schematic diagram for coupling two individual vibration exciter via one elastic element 9, 9 ', a respective electrically controllable drive 6, 6', a respective control device 12, 12 'and a higher-level control device 11;
  • the vibration exciters of the exciter units 5, 5 'with individually associated control devices 12, 12' their respective desired phase position can be set as a reference variable, so that between the unbalanced shafts 7, 7 'of the vibration exciter a relative phase ⁇ is adjustable.
  • Fig. 7 shows a block diagram for the common control of example four exciter units 5 via a control device 14.
  • Wie aus Fig. 6 it can be seen that the phase positions of several measuring devices 8 are supplied together as the actual size vector of a control / regulating device 14. Due to the mechanical connection via the common vibration plate 4, the vibration exciter 5 are parasitically coupled to each other, wherein the degree of coupling additionally depends on the orientation of the vibration-generating elements of the vibration exciter 5.
  • control unit 14 calculates a manipulated variable vector whose coefficients are supplied to the individual motor controllers 13.
  • the calculation of the manipulated variable vector for the plurality of control loops can be optimized in such a way that high phase jumps for individual control loops are avoided, or that the magnitude of the control difference vector is minimized while maintaining the resulting motion vector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Die Erfindung betrifft ein Bodenverdichtungsgerät 1 mit einem Oberwagen 2 und einem Unterwagen 3, wobei der Unterwagen 2 eine Vibrationsplatte 4 und eine Mehrzahl von Erregereinheiten 5 aufweist, wobei zumindest ein Teil der Erregereinheiten 5 von jeweils einem Antrieb 6 jeweils individuell antreibbar ist und jeweils zumindest einen Vibrationserreger aufweist, welcher mit einer Messeinrichtung 8 zur Erfassung seiner Phasenlage verbunden ist, und die Phasenlage einer Steuer-/Regeleinrichtung 14 zuführbar ist. Erfindungsgemäß ist dabei vorgesehen, dass einzelne Vibrationserreger jeweils über ein elastisches Element 9, einen jeweiligen elektrisch steuerbaren Antrieb 6 und die Steuer-/Regeleinrichtung 14 miteinander gekoppelt sind und die relative Phasenlage der einzelnen Vibrationserreger zueinander über die Steuer-/Regeleinrichtung 14 einstellbar und regelbar ist.

Description

  • Die Erfindung betrifft ein Bodenverdichtungsgerät mit einem Oberwagen und einem Unterwagen mit einer Vibrationsplatte und einer Mehrzahl von Erregereinheiten, wobei zumindest ein Teil der Erregereinheiten von einem Antrieb jeweils individuell antreibbar ist.
  • Stand der Technik
  • Üblicherweise weisen Bodenverdichtungsgeräte mit einer Vibrationsplatte, wie beispielsweise eine Rüttelplatte, einen Verbrennungsmotor zum Antrieb von zwei gleichartigen, parallelen, über ein Getriebe starr gekoppelten und gegenläufigen Unwuchtwellen auf. Die gegensätzliche Rotation der mit gleicher Umdrehungszahl betriebenen Unwuchtwellen bewirkt, dass sich die durch die Unwuchten erzeugten Fliehkräfte in Abhängigkeit vom Phasenwinkel gegenseitig verstärken oder kompensieren. Durch eine geeignete Einstellung der jeweiligen Phasenlage der Unwuchten zueinander entsteht ein resultierender Kraftvektor, der zur Fortbewegung und/oder Verdichtung eingesetzt werden kann. Dabei weist eine Rüttelplatte zumeist eine Hydraulik zur Verstellung der Phasenlage der mechanisch miteinander gekoppelten Wellen auf. Häufig erfolgt dies mit Hilfe einer axial verschiebbaren Spiralwelle.
  • Da der durch Überlagerung entstehende Kraftvektor stets senkrecht zur Rotationsachse der Unwuchtwellen orientiert ist, ist die Antriebsrichtung ohne weitere Maßnahmen auf eine Vor- und Rückwärtsfahrt beschränkt.
  • Zur Verbesserung der Lenkeigenschaften ist aus der DE 10 2006 000786A1 ein Plattenverdichter bekannt, der eine Vielzahl von Erregereinheiten zur Ausbildung eines Kraftvektors aufweist, wobei die einzelnen Erregereinheiten beispielsweise nach zuvor beschriebenen Prinzip arbeiten. Die Vielzahl der Erregereinheiten erlaubt dabei unter anderem auch die Ausbildung von Kraftvektoren, die in seitlicher Richtung wirken. Dabei erhöht jedoch die Vielzahl der Erregereinheiten die mechanische Komplexität erheblich.
  • Ferner beschreibt die DE 10 2005 029434 A1 einen Betrieb einer Vibrationsplatte mit einer Vielzahl von Einzelerregern. Diese sind individuell ansteuerbar und werden von auf der Vibrationsplatte befindlichen Hydraulikmotoren betrieben. Dabei sind allerdings die auf der Vibrationsplatte angeordneten Hydraulikmotoren aufwendig und zudem sehr hohen mechanischen Beanspruchungen ausgesetzt.
  • Offenbarung der Erfindung
  • Aufgabe der vorliegenden Erfindung ist die Angabe einer kostengünstigen und zugleich zuverlässigen Lösung für ein komfortables Bodenverdichtungsgerät mit einer fein abstimmbaren und präzisen Lenkung, die eine bequeme Steuerung des Bodenverdichtungsgerätes in jede Richtung der Plattenebene erlaubt.
  • Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des unabhängigen Anspruchs. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Erfindungsgemäß vorgesehen ist ein Bodenverdichtungsgerät mit einem Oberwagen und einem Unterwagen, wobei der Unterwagen eine Vibrationsplatte und eine Mehrzahl von Erregereinheiten aufweist, wobei zumindest ein Teil der Erregereinheiten von jeweils einem Antrieb jeweils individuell antreibbar ist und jeweils zumindest einen Vibrationserreger aufweist, welcher mit einer Messeinrichtung zur Erfassung seiner Phasenlage verbunden ist, wobei die Phasenlage einer Steuer-/Regeleinrichtung zuführbar ist, und wobei einzelne Vibrationserreger jeweils über ein elastisches Element, einen jeweiligen elektrisch steuerbaren Antrieb und die Steuer-/Regeleinrichtung miteinander gekoppelt sind und die relative Phasenlage der einzelnen Vibrationserreger zueinander über die Steuer-/Regeleinrichtung einstellbar ist.
  • Zumindest zwei der Erregereinheiten sind von jeweils einem Antrieb jeweils individuell antreibbar und weisen jeweils zumindest einen Vibrationserreger auf. Dabei kann eine Erregereinheit einen oder zwei gegenläufige, mit einander gekoppelte Vibrationserreger aufweisen. Ein Vibrationserreger kann beispielsweise aus einer Unwuchtwelle und einer rotierenden Unwucht oder einem Oszillator mit einer oszillierenden Masse bestehen. Vorteilhaft weist eine Erregereinheit genau einen Vibrationserreger mit einer Unwuchtwelle und einer rotierenden Unwucht auf.
  • Weiterhin kann die Steuer-/Regeleinheit vorteilhaft aus einer übergeordneten Steuereinrichtung und mehreren von der Steuereinrichtung gesteuerten Regeleinrichtungen bestehen, wobei jeweils ein mit einer Messeinrichtung verbundener Vibrationserreger jeweils eine Regeleinrichtung aufweist und die von den jeweiligen Messeinrichtungen erfassbaren Phasenlagen den jeweiligen Regeleinrichtungen zuführbar sind. Bei dieser Ausgestaltung weist jeder Vibrationserreger einen eigenen Regelkreis zur Regelung seiner Phasenlage auf, welche der jeweiligen Regeleinrichtung als Führungsgröße vorgebbar ist. Die Phasenlage von zumindest zwei Vibrationserregern zueinander ist elektrisch veränderbar. Die Veränderung der Phasenlage zumindest eines einzelnen Vibrationserregers ist relativ zu der Phasenlage eines anderen oder weiterer Vibrationserreger durch die Änderung seiner Soll-Phasenlage als Führungsgröße änderbar. Die Soll-Phasenlage ist von der Steuerungseinrichtung, beispielsweise als Ergebnis der Umsetzung eines der Steuereinrichtung zugeführten Lenkbefehls vorgebbar.
    Die Vibrationserreger sind jeweils über ein elastisches Element mit dem jeweiligen elektrischen Antrieb verbunden. Eine Abweichung einer Ist-Phasenlage von einer Soll-Phasenlage aufgrund der elastischen Verbindung ist durch die Regeleinrichtung kompensierbar. Eine Kopplung der Phasenlage zwischen zwei Vibrationserregern ist über zumindest ein elastisches Element gegeben und die Phasenlage zumindest eines der über ein elastisches Element gekoppelten Vibrationserreger ist über eine Regeleinrichtung regelbar. Eine derartige Struktur ermöglicht einen einfachen und modularen Aufbau der Steuer-/Regeleinheit.
  • Mit anderen Worten ist beispielhaft ein Bodenverdichtungsgerät vorgesehen, dessen Vibrationsplatte eine Mehrzahl von elektrisch angetriebenen und elektrisch regelbaren Erregereinheiten aufweist. Dabei sind zum Beispiel die elektrischen Antriebe alle jeweils über ein elastisches Element mit den jeweiligen Vibrationserregern verbunden.
  • Eine derartige Anordnung weist mehrere Vorteile auf. Die Anordnung einer Mehrzahl von Erregereinheiten auf der Vibrationsplatte bietet die Möglichkeit, diese in verschiedenen Ausrichtungen anzuordnen und durch entsprechende Ansteuerung Kraftvektoren in jede Richtung zu generieren. Dabei können unterschiedliche Anzahlen baugleicher Erregereinheiten zum einen zur modularen Herstellung von Bodenverdichtungsgeräten unterschiedlicher Gewichtsklasse verwendet werden, und/oder zum anderen kann durch eine Verteilung ihrer Ausrichtungen auf der Vibrationsplatte, beispielsweise durch eine Verteilung der Ausrichtung entsprechend der Verteilung einer Intensität von Bewegungsrichtungen, eine Optimierung des Lenkungsvermögens erreicht werden.
  • Desweiteren bietet die Verwendung elektrischer Antriebe den Vorteil, dass elektrische Zuleitungen im Vergleich zu anderen Zuleitungen wie beispielsweise Hydraulikschläuchen, eine sehr gute Dauerschwingfestigkeit aufweisen und somit verschleißfester sind.
  • Weiterhin bietet die Verwendung eines elastischen Elements zwischen dem Antrieb, bzw. dessen Antriebswelle und der Unwuchtwelle den Vorteil, dass es dämpfend wirkt und Schwingungen der Unwuchtwelle weniger stark auf die elektrischen Antriebe einwirken.
  • Dabei kann der gegenüber den herkömmlichen Erregern eintretende Verlust der starren Kopplung zwischen den Unwuchtwellen durch eine schnell ansprechende, präzise elektrische Regelung zumindest teilweise kompensiert werden.
  • Erfindungsgemäß ist dazu die Phasenlage zumindest einer der über ein elastisches Element gekoppelten Unwuchtwellen oder Oszillatoren über eine Regeleinrichtung regelbar.
  • Eine Erregereinheit weist eine mit dem Vibrationserreger verbundene Messeinrichtung zur Erfassung der Phasenlage des Vibrationserregers auf. Ist dieser in Form einer Unwuchtwelle ausgebildet, ist die Phasenlage von der Messeinrichtung durch die Messung des Phasenwinkels erfassbar.
  • Die Messeinrichtung ist in der Lage, den Phasenwinkel der Unwucht im Bezug auf eine Nullstellung, beispielsweise der gravitationsbedingten Ruhestellung im Freilauf, zu erfassen und als Phasenlage an die Regeleinrichtung weiterzugeben. Die Regeleinrichtung ist eingerichtet, die Stellgrößen des Antriebs zur Erreichung einer Soll-Phasenlage einzustellen. Damit ist sie in der Lage, die Phasenlage zwischen zwei Unwuchtwellen oder Oszillatoren zu verändern, bzw. eine vorgebbare Phasenlage einzustellen. Vorteilhaft ist zumindest einem Teil der Erregereinheiten jeweils individuell eine Regeleinrichtung zugeordnet. Durch eine übergeordnete Steuereinrichtung können den individuell zugeordneten Regeleinrichtungen ihre jeweilige Soll-Phasenlage als Führungsgröße vorgegeben werden
  • Der Antrieb ist elektrisch ausgeführt. Ebenso weist die Messeinrichtung vorteilhaft einen Encoder zur digitalen Verarbeitung der Messwerte auf. Vorteilhaft stellt die Messeinrichtung der Regeleinrichtung neben der Phasenlage auch die Winkelgeschwindigkeit einer Welle zur Verfügung.
  • Die erfindungsgemäß vorgesehene Dämpfung der elektrischen Antriebe gegenüber der Unwuchtwelle reduziert die Anforderungen an die Belastbarkeit der elektrischen Antriebe, insbesondere ihre Vibrationsfestigkeit, und erlaubt die Verwendung vergleichsweise einfacher und preisgünstiger Komponenten.
  • Vorteilhaft sind die elektrischen Antriebe in dem Oberwagen angeordnet, die Vibrationserreger im Unterwagen angeordnet, und die elektrischen Antriebe im Oberwagen jeweils individuell mittels je einem elastischen Element, vorteilhaft einem Riemen, mit jeweils einem Vibrationserreger im Unterwagen verbunden.
  • Auf diese Weise kann die Beanspruchung der elektrischen Antriebe um etwa eine Zehnerpotenz reduziert und die Lebensdauer der elektrischen Antriebe entsprechend verlängert werden.
  • Vorteilhaft weisen die Erregereinheiten genau einen Vibrationserreger mit einer einzelnen Unwuchtwelle auf. Eine derartige Ausgestaltung ist wartungsarm und kostengünstig zu realisieren.
  • Vorteilhaft ist zumindest für einen Teil der Erregereinheiten der elektrische Antrieb als im Wesentlichen einzelner Elektromotor ausgeführt. Elektromotoren sind einfach und kostengünstig herstellbar, eine Verwendung einer Mehrzahl der gleichen Elektromotoren für die Mehrzahl der Erregereinheiten fördert durch die Verwendung gleichartiger Bauteile die Rationalisierung der Herstellung. Alternativ kann ein einzelner elektrischer Antrieb auch als elektrische Kupplung ausgebildet sein, welche ausgebildet ist, eine Antriebsenergie eines übergeordneten Antriebs partiell abzuzweigen und hinsichtlich Phasenlage und Winkelgeschwindigkeit zu individualisieren.
  • Vorteilhaft ist der elektrische Antrieb als Schrittmotor ausgeführt. Ein Schrittmotor bietet den Vorteil, dass die Winkelstellung und somit die Phasenlage der Antriebswelle einstellbar ist und somit als bekannt angenommen werden kann. Bei einer Anordnung, bei welcher die Messeinrichtung zur Erfassung der Phasenlage, in der Wirkrichtung des Antriebs gesehen, vor dem elastischen Element direkt auf der Antriebswelle angeordnet ist, kann ein Schrittmotor die Funktion der Messeinrichtung übernehmen. Die Ausführung einer Messeinrichtung als eigenständiges Bauteil kann in diesem Fall entfallen, die Messeinrichtung kann in diesem Fall als in den Schrittmotor integriert betrachtet werden. Desweiteren ist ein Schrittmotor vibrationsfest ausführbar.
  • Weiterhin vorteilhaft ist eine Regeleinrichtung als PI- oder als PID-Regler ausgebildet. Die Verbindung der Unwuchtwelle mit dem elektrischen Antrieb über ein elastisches Element führt bei einer Änderung der Winkelgeschwindigkeit zu einer Energieaufnahme des elastischen Elements, welches diese Energie zeitverzögert an die Anordnung zurückgibt. In Kenntnis der Sprungantwort der Regelstrecke, bestehend aus elektrischem Antrieb, Antriebswelle, elastischem Element und Unwuchtwelle inklusive der Unwucht, ist es möglich, den elektrischen Antrieb durch eine Regeleinrichtung derart anzusteuern, dass ein Überschwingen der Unwuchtwelle reduziert oder vermieden wird. Vorteilhaft ist eine Regeleinrichtung ausgebildet, ein Einschwingen einer Erregereinheit nach einer Phasen- oder Frequenzänderung zu minimieren.
  • Die Messeinrichtung zur Erfassung der Phasenlage kann vor dem elastischen Element auf der Antriebswelle, oder hinter dem elastischen Element auf der Unwuchtwelle angeordnet sein. Eine Anordnung der Messeinrichtung auf der Unwuchtwelle eines Vibrationserregers im Unterwagen des Bodenverdichtungsgeräts bietet den Vorteil, dass einer Regeleinrichtung die tatsächliche Phasenlage und Winkelgeschwindigkeit der Unwuchtwelle zugeführt werden können.
  • Bei einer Anordnung der Messeinrichtung auf der Antriebswelle ist die Messeinrichtung nur indirekt über das elastische Element mit der Unwuchtwelle verbunden, so dass auf Grund einer Federwirkung des elastischen Elements die ermittelte Phasenlage und Winkelgeschwindigkeit geringfügig von der tatsächlichen Phasenlage und Winkelgeschwindigkeit der Unwuchtwelle abweichen kann.
    In Kenntnis der Sprungantwort der Regelstrecke und der Federkonstante des elastischen Elements sowie der Masse der Unwuchtwelle kann die Abweichung zwischen der gemessenen und der tatsächlichen Phasenlage durch die Regeleinrichtung abgeschätzt werden.
  • Die Drehrichtungen, Winkelgeschwindigkeiten und Phasenlagen der Vibrationserreger bilden in ihrer Überlagerung ein translatorisches und/oder rotatorisches Moment gegenüber einer Standfläche des Bodenverdichtungsgeräts. Dieses translatorische und/oder rotatorische Moment ist zur Fortbewegung und Lenkung nutzbar.
  • Vorteilhaft sind die Vibrationserreger winkelig, insbesondere sternförmig auf der Vibrationsplatte angeordnet. Eine symmetrische Anordnung unter gleichen Winkeln erlaubt für eine Steuereinrichtung, die beispielsweise einen Lenkbefehl in jeweilige Soll-Phasenlagen als Führungsgrößen für die jeweiligen Vibrationserreger umsetzt, eine einfache Berechnung der erforderlichen Stellwerte, um ein gewünschtes translatorisches und/oder rotatorisches Moment zu erzeugen. Dabei kann die Eingabe eines Lenkbefehls beispielsweise mittels eines in zwei Achsen beweglichen Control-Sticks als Teil einer Handsteuerung erfolgen. Weiterhin kann es sich bei der Handsteuerung um einen integrierten Bestandteil des Bodenverdichtungsgerätes oder um eine Fernsteuerung handeln.
  • Vorteilhaft ist eine Regeleinrichtung als digitaler Regler ausgebildet. Digitale Regler sind hinreichend schnell realisierbar und bieten große Flexibilität hinsichtlich ihrer Reglereigenschaften. Vorteilhaft weist eine Regeleinrichtung einen digitalen Regler auf, der für die Erzeugung der Stellgrößen für den elektrischen Antrieb einen Vorverzerrer aufweist, welcher eine derartige zeitliche Vorverzerrung der Stellgrößen bewirkt, dass ein Einschwingen in Folge einer Phasen- oder Frequenzänderung vermieden oder vermindert wird. Vorteilhaft ist die Regeleinrichtung zur Kompensation von Schwingungen eingerichtet, welche durch das elastische Element ermöglicht oder begünstigt werden.
  • Vorteilhaft erfolgt die Vorverzerrung der Stellgrößen oder ein Einstellen der Parameter eines PI- oder PID-Reglers auf Basis der Sprungantwort der Regelstrecke. In Kenntnis der Parameter der Sprungantwort, beispielsweise deren Wendepunkt, sind die Parameter eines PI- oder PID-Reglers nach in der Literatur bekannten Einstellregeln, z.B. nach Ziegler/Nichols, dimensionierbar.
  • Vorteilhaft weist das Bodenverdichtungsgerät einen Kalibriermodus zum Ermitteln der Sprungantwort auf, in welchem die Sprungantwort der Regelstrecke, beispielsweise nach einem Riemenwechsel, ermittelbar ist. In einem derartigen Modus kann der Regelkreis geöffnet und die Reaktion des Vibrationserregers in Antwort auf eine Lenkbewegung respektive einer Änderung der Phasenlage des Vibrationserregers ermittelt und gespeichert werden.
  • Weiterhin vorteilhaft ist eine Regeleinrichtung ausgebildet ist, die Messwerte mehrerer Messeinrichtungen gemeinsam auszuwerten und die Stellgrößen für die elektrischen Antriebe von mehreren Vibrationserregern derart zu optimieren, dass ein unerwünschtes Schwingen des Bodenverdichtungsgerätes vermieden oder vermindert wird.
  • Die verschiedenen Erregereinheiten sind über die Vibrationsplatte miteinander gekoppelt, so dass sie sich gegenseitig zur Schwingung anregen, es treten Energieausgleichsvorgänge auf. Aufgrund dieser Kopplung sind auch die einzelnen Regelkreise zur Einstellung der Phasenlage nicht vollständig entkoppelt.
  • Vorteilhaft weist das Bodenverdichtungsgerät eine Regeleinrichtung auf, die ausgebildet ist, die Phasenlagen mehrerer Messeinrichtungen gemeinsam auszuwerten und die Stellgrößen für mehrere Vibrationserreger derart zu optimieren, dass eine vom Benutzer gewünschte translatorische oder rotatorische Bewegung derart auf Phasenänderungen der Vibrationserreger umgesetzt werden, dass die Höhe der Phasensprünge minimiert wird. Dabei könnte die Optimierung beispielsweise entsprechend der Methode der minimalen Fehlerquadrate derart erfolgen, dass unter Beibehaltung des resultierenden Bewegungsvektors nicht die Regeldifferenz einzelner Regelkreise, sondern der Betrag des Regeldifferenzvektors minimiert wird. Eine derartige Optimierung ist insbesondere dann möglich, wenn eine Vielzahl von Vibrationserregern verfügbar ist und zur Ausbildung eines bestimmten gemeinsamen Kraftvektors verschiedene Auswahlen von dazu beitragenden Vibrationserregern möglich sind.
  • Zeichnungen
  • Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden, schematischen Zeichnungen anhand bevorzugter Ausführungsformen näher erläutert.
  • Es zeigen
  • Fig. 1
    eine Skizze zum Prinzip des Bodenverdichtungsgeräts;
    Fig. 2
    eine bevorzugte Anordnung von Erregereinheiten auf einer Vibrationsplatte bei einer Anordnung der Messeinrichtung auf der Unwuchtwelle;
    Fig. 3
    die bevorzugte Anordnung von Erregereinheiten bei einer Anordnung der Messeinrichtung auf der Antriebswelle;
    Fig. 4
    ein Prinzipschaltbild zur Regelung einer Erregereinheit bei einer Anordnung der Messeinrichtung auf der Antriebswelle;
    Fig. 5
    ein Prinzipschaltbild zur Regelung einer Erregereinheit bei einer Anordnung der Messeinrichtung auf der Unwuchtwelle;
    Fig. 6
    ein Prinzipschaltbild zur Kopplung zwei einzelner Vibrationserreger über jeweils ein elastisches Element, einen jeweiligen elektrisch steuerbaren Antrieb und eine elektronische Steuereinrichtung;
    Fig. 7
    ein Prinzipschaltbild zur gemeinsamen Regelung der Erregereinheiten.
  • Fig. 1 zeigt eine Skizze zum Prinzip eines Bodenverdichtungsgeräts 1 mit einem Oberwagen 2 und einem Unterwagen 3, wobei der Unterwagen 3 eine Vibrationsplatte 4 und eine Mehrzahl von Erregereinheiten 5 aufweist. Die Erregereinheiten 5 weisen jeweils einen im Unterwagen 3 auf der Vibrationsplatte 4 angeordneten Vibrationserreger in Form einer Unwuchtwelle 7 auf und sind über ein elastisches Element 9 in Form eines Riemens mit einem im Oberwagen 2 angeordneten Antrieb 6 verbunden.
  • Fig. 2 zeigt eine bevorzugte Anordnung von Erregereinheiten 5 auf einer Vibrationsplatte 4 bei einer Anordnung der Messeinrichtungen 8 auf der Unwuchtwelle 7. Die Erregereinheiten 5 sind sternförmig und achsensymmetrisch zu einander angeordnet. Die Drehachsen ihrer Unwuchtwellen 7 liegen bei diagonal angeordneten Erregereinheiten 5 auf einer Geraden. Die fiktiv verlängerten Drehachsen aller Unwuchtwellen 7 schneiden sich in einem Punkt, welcher in etwa mittig auf der Vibrationsplatte 4 gelegen ist.
  • Weiterhin zeigt Fig. 2 den prinzipiellen Aufbau einer Erregereinheit 5. Die Erregereinheiten 5 sind von einem elektrischen Antrieb 6 jeweils individuell antreibbar und weisen jeweils einen Vibrationserreger mit einer Unwuchtwelle 7 und einer rotierende Unwucht 10 sowie eine mit dem Vibrationserreger verbundene Messeinrichtung 8 zur Erfassung der Phasenlage der Unwuchtwelle 7 auf. Dabei wird die Phasenlage des Vibrationserregers gleichgesetzt mit der Phasenlage seiner Unwuchtwelle 7. Die Messeinrichtung 8 ist in der Richtung der Wirkung des Antriebs, das heißt in Richtung der Unwuchtwelle 7 hinter dem elastischen Element 9 angeordnet. Der elektrische Antrieb 6 ist bevorzugt im Oberwagen 2 angeordnet, er kann jedoch auch im Unterwagen 3 zusammen mit dem Vibrationserreger auf der Vibrationsplatte 4 angeordnet sein.
  • Fig. 3 zeigt dieselbe bevorzugte Anordnung von Erregereinheiten 5 auf einer Vibrationsplatte 4 bei einer Anordnung der Messeinrichtungen 8 auf der Antriebswelle des elektrischen Antriebs 6. Im einzigen Unterschied zur Fig. 2 ist die Messeinrichtung 8 in der Richtung der Wirkung des Antriebs, das heißt in Richtung der Unwuchtwelle 7, vor dem elastischen Element 9 angeordnet.
  • Fig. 4 zeigt ein Prinzipschaltbild zur Regelung einer Erregereinheit 5 bei einer Anordnung der Messeinrichtung 8 auf der Antriebswelle. Bei der dargestellten Ausführungsvariante ist die Messeinrichtung 8 im Oberwagen 2 angeordnet und zur direkten Erfassung der Phasenlage des elektrischen Antriebs 6 eingerichtet. Die Unwuchtwelle 7 kann eine von dieser Phasenlage leicht abweichende Phasenlage aufweisen, deren Unterschied zur erfassten Phasenlage nicht konstant ist, sondern welche in Abhängigkeit von Änderungen der Drehzahl des Antriebs 6 oder durch die Übertragung von Schwingungen auf die Unwuchtwelle 7 zeitlich variieren kann. In Kenntnis der Masseverhältnisse, der Federkonstante des elastischen Elements 9 sowie des zeitlichen Verlaufs von Phasenlage und Drehzahl kann die Regeleinrichtung 12 die Abweichung der Phasenlage der Unwuchtwelle 7 von der Phasenlage der Antriebswelle abschätzen.
  • Die von der Messeinrichtung 8 erfassbare Phasenlage der Antriebswelle ist als Ist-Phasenlage und Rückführungsgröße eines Regelkreises der Regeleinrichtung 12 zuführbar. Unter Bestimmung der Abweichung zu einer von einer übergeordneten Steuereinrichtung 11 vorgegeben Soll-Phasenlage als Führungsgröße ist durch die Regeleinrichtung 12 eine Stellgröße bestimmbar und einer Motorsteuerung 13 zuführbar. In Abhängigkeit von der Ausgestaltung des elektrischen Antriebs 6, beispielsweise als Asynchron- oder als Schrittmotor, setzt die Motorsteuerung 13 die Stellgröße in entsprechende Steuerspannungen oder -signale zur Phasen- oder Drehzahländerung des elektrischen Antriebs 6 um.
  • Fig. 5 zeigt ein Prinzipschaltbild zur Regelung einer Erregereinheit 5 bei einer Anordnung der Messeinrichtung 8 auf der Unwuchtwelle 7. Bei der dargestellten Ausführungsvariante ist die Messeinrichtung 8 im Unterwagen 3 angeordnet und zur direkten Erfassung der Phasenlage der Unwuchtwelle 7 eingerichtet. Damit ist im Unterschied zu Fig. 4 die tatsächliche Ist-Phasenlage der Unwuchtwelle 7 direkt mit der Soll-Phasenlage vergleichbar. Gleichzeitig ist das elastische Element 9 mit seinem Zeitverhalten Δϕ(t) Teil der Regelstrecke. Ist die Regeleinrichtung 12 eingerichtet, eine Stellgrößenänderung unter Berücksichtigung einer bekannten Sprungantwort der Regelstrecke zu generieren, und ist der elektrische Antrieb 6 genügend schnell, um auf eine Stellgrößenänderung entsprechend schnell anzusprechen, ist eine präzise Regelung der Phasenlage der Unwuchtwelle 7 unter Kompensation des Zeitverhaltens Δϕ(t) des elastischen Elements 9 möglich.
  • Fig. 6 zeigt ein Prinzipschaltbild zur Kopplung zwei einzelner Vibrationserreger über jeweils ein elastisches Element 9, 9', einen jeweiligen elektrisch steuerbaren Antrieb 6, 6', eine jeweilige Regeleinrichtung 12, 12' und eine übergeordnete Steuereinrichtung 11; Durch die übergeordnete Steuereinrichtung 11 können den Vibrationserregern der Erregereinheiten 5, 5' mit individuell zugeordneten Regeleinrichtungen 12, 12' ihre jeweilige Soll-Phasenlage als Führungsgröße vorgegeben werden, so dass zwischen den Unwuchtwellen 7, 7' der Vibrationserreger eine relative Phasenlage Δϕ einstellbar ist.
  • Fig. 7 zeigt ein Prinzipschaltbild zur gemeinsamen Regelung von beispielhaft vier Erregereinheiten 5 über eine Steuer-/Regeleinerichtung 14. Wie aus Fig. 6 ersichtlich werden die Phasenlagen mehrerer Messeinrichtungen 8 gemeinsam als Ist-Größenvektor einer Steuer-/Regeleinrichtung 14 zugeführt. Auf Grund der mechanischen Verbindung über die gemeinsame Vibrationsplatte 4 sind die Vibrationserreger 5 untereinander parasitär gekoppelt, wobei der Grad der Kopplung zusätzlich von der Ausrichtung der schwingungserzeugenden Elemente der Vibrationserreger 5 abhängt.
  • Die Steuer-/Regeleinrichtung 14 berechnet unter Berücksichtigung der Koppelungen der Regelkreise einen Stellgrößenvektor, dessen Koeffizienten den einzelnen Motorsteuerungen 13 zugeführt werden.
  • Dabei kann die Berechnung des Stellgrößenvektors für die mehreren Regelkreise derart optimiert werden, dass hohe Phasensprünge für einzelne Regelkreise vermieden werden, bzw. dass unter Beibehaltung des resultierenden Bewegungsvektors eine Minimierung des Betrags des Regeldifferenzvektors erfolgt.

Claims (14)

  1. Bodenverdichtungsgerät (1) mit einem Oberwagen (2) und einem Unterwagen (3), wobei der Unterwagen (2) eine Vibrationsplatte (4) und eine Mehrzahl von Erregereinheiten (5) aufweist, wobei zumindest ein Teil der Erregereinheiten (5) von jeweils einem Antrieb (6) jeweils individuell antreibbar ist und jeweils zumindest einen Vibrationserreger aufweist, welcher mit einer Messeinrichtung (8) zur Erfassung seiner Phasenlage verbunden ist, wobei die Phasenlage einer Steuer-/Regeleinrichtung (14) zuführbar ist,
    dadurch gekennzeichnet, dass
    einzelne Vibrationserreger jeweils über ein elastisches Element (9), einen jeweiligen elektrisch steuerbaren Antrieb (6) und die Steuer-/Regeleinrichtung (14) miteinander gekoppelt sind und die relative Phasenlage der einzelnen Vibrationserreger zueinander über die Steuer-/Regeleinrichtung (14) einstellbar und regelbar ist.
  2. Bodenverdichtungsgerät (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Steuer-/Regeleinrichtung (14) eine übergeordnete Steuereinrichtung (11) und mehrere von der Steuereinrichtung (11) gesteuerte Regeleinrichtungen (12) umfasst, wobei jeweils ein mit einer Messeinrichtung (8) verbundener Vibrationserreger jeweils eine Regeleinrichtung (11) zugeordnet ist und die von den jeweiligen Messeinrichtungen (8) erfassbaren Phasenlagen den jeweiligen Regeleinrichtungen (11) zuführbar sind.
  3. Bodenverdichtungsgerät (1) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass zumindest ein Teil der Erregereinheiten (5) von einem elektrischen Antrieb (6) jeweils individuell elektrisch antreibbar ist und die Steuer-/Regeleinerichtung (14) oder eine Regeleinrichtung (12) ausgebildet ist, ein Einschwingen einer Erregereinheit (5) nach einer Phasen- oder Frequenzänderung zu minimieren.
  4. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Unterwagen (3) elastisch mit dem Oberwagen (2) verbunden ist, der Oberwagen (2) mehrere elektrische Antriebe (6) aufweist und die Vibrationserreger im Unterwagen (3) jeweils individuell über ein elastisches Element (9) mit einem der elektrischen Antriebe (6) verbunden sind.
  5. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Vibrationserreger eine einzelne Unwuchtwelle (7) aufweisen.
  6. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zumindest bei einem Teil der Erregereinheiten (5) der elektrische Antrieb (6) jeweils im Wesentlichen durch einen Elektromotor, insbesondere einen Schrittmotor, ausgebildet ist, das elastische Element (9) jeweils als Riemen ausgeführt ist, der Vibrationserreger jeweils eine Unwuchtwelle (7) aufweist und die Messeinrichtung (8) jeweils im Unterwagen (3) angeordnet ist.
  7. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Vibrationserreger winkelig, insbesondere sternförmig, auf der Vibrationsplatte (4) angeordnet sind und über eine Steuereinrichtung (11) die Drehrichtungen, Frequenzen und Phasenlagen der Vibrationserreger derart einstellbar sind, dass in ihrer Überlagerung gegenüber einer Standfläche des Bodenverdichtungsgeräts (1) ein translatorisches oder rotatorisches Moment entsteht.
  8. Bodenverdichtungsgerät (1) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass zumindest einem Teil der Vibrationserreger individuell jeweils eine Regeleinrichtung (12) zugeordnet ist.
  9. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Steuer-/Regeleinerichtung (14) oder eine Regeleinrichtung (12) als PI- oder PID-Regler ausgebildet ist.
  10. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Steuer-/Regeleinrichtung (14) oder eine Regeleinrichtung (12) als digitaler Regler ausgebildet ist, und die Regeleinrichtung (12, 14) für die Erzeugung der Stellgrößen für den elektrischen Antrieb (6) einen Vorverzerrer aufweist, welcher eine zeitliche Vorverzerrung der Stellgrößen bewirkt, so dass ein Einschwingen in Folge einer Phasen- oder Frequenzänderung vermieden oder vermindert wird.
  11. Bodenverdichtungsgerät (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Vorverzerrung auf Basis der Sprungantwort der Regelstrecke erfolgt.
  12. Bodenverdichtungsgerät (1) nach Anspruch 11, dadurch gekennzeichnet, dass das Bodenverdichtungsgerät (1) einen Kalibriermodus aufweist, in welchem die Sprungantwort der Regelstrecke, insbesondere nach einem Austausch des elastischen Elements (9), durch das Bodenverdichtungsgerät (1) ermittelbar ist.
  13. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Steuer-/Regeleinrichtung (14) ausgebildet ist, die Messwerte mehrerer Messeinrichtungen (8) gemeinsam auszuwerten und die Stellgrößen für die elektrischen Antriebe (6) von mehreren Vibrationserregern derart zu optimieren, dass ein unerwünschtes Schwingen des Bodenverdichtungsgeräts (1) vermieden oder vermindert wird.
  14. Bodenverdichtungsgerät (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das die Steuer-/Regeleinrichtung (14) ausgebildet ist, die Messwerte mehrerer Messeinrichtungen (8) gemeinsam auszuwerten und die Stellgrößen für mehrere Vibrationserreger derart zu optimieren, dass eine vom Benutzer gewünschte translatorische oder rotatorische Bewegung derart auf Phasenänderungen der Vibrationserreger umgesetzt wird, dass die Höhe der Phasensprünge minimiert wird.
EP18170921.3A 2017-05-05 2018-05-04 Bodenverdichtungsgerät Active EP3399105B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18170921T PL3399105T3 (pl) 2017-05-05 2018-05-04 Zagęszczarka do gruntu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017109686.8A DE102017109686B4 (de) 2017-05-05 2017-05-05 Bodenverdichtungsgerät

Publications (2)

Publication Number Publication Date
EP3399105A1 true EP3399105A1 (de) 2018-11-07
EP3399105B1 EP3399105B1 (de) 2019-05-22

Family

ID=62116764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18170921.3A Active EP3399105B1 (de) 2017-05-05 2018-05-04 Bodenverdichtungsgerät

Country Status (3)

Country Link
EP (1) EP3399105B1 (de)
DE (1) DE102017109686B4 (de)
PL (1) PL3399105T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127864A1 (de) 2022-10-21 2024-05-02 Inecosys Gmbh Schwingungserzeuger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805643A (en) * 1955-04-09 1958-12-10 Losenhausenwerk Duesseldorfer Road tamper
WO2002035005A1 (de) * 2000-10-27 2002-05-02 Wacker Construction Equipment Ag Fahrbare bodenverdichtungsvorrichtung mit fahrtrichtungsstabilisierung
DE102005029433A1 (de) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Vibrationsplatte mit winklig angeordneten Unwuchtwellen
DE202010017338U1 (de) * 2010-05-03 2012-01-04 Wacker Neuson Se Messvorrichtung zum Bestimmen vonBodenkennwerten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB944922A (en) * 1959-01-16 1963-12-18 Losenhausenwerk Duesseldorfer Road construction
US5149225A (en) * 1991-03-13 1992-09-22 M-B-W Inc. Reversible drive for a vibratory compactor
DE19511608A1 (de) * 1995-03-30 1996-10-10 Zenith Maschf Gmbh Rüttelvorrichtung für den Rütteltisch einer Steinformmaschine
US7354221B2 (en) * 2005-02-28 2008-04-08 Caterpillar Inc. Self-propelled plate compactor having linear excitation
DE102005029434A1 (de) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Vibrationsplatte mit individuell einstellbaren Schwingungserregern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805643A (en) * 1955-04-09 1958-12-10 Losenhausenwerk Duesseldorfer Road tamper
WO2002035005A1 (de) * 2000-10-27 2002-05-02 Wacker Construction Equipment Ag Fahrbare bodenverdichtungsvorrichtung mit fahrtrichtungsstabilisierung
DE102005029433A1 (de) * 2005-06-24 2006-12-28 Wacker Construction Equipment Ag Vibrationsplatte mit winklig angeordneten Unwuchtwellen
DE202010017338U1 (de) * 2010-05-03 2012-01-04 Wacker Neuson Se Messvorrichtung zum Bestimmen vonBodenkennwerten

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022127864A1 (de) 2022-10-21 2024-05-02 Inecosys Gmbh Schwingungserzeuger

Also Published As

Publication number Publication date
DE102017109686A1 (de) 2018-11-08
PL3399105T3 (pl) 2019-11-29
DE102017109686B4 (de) 2019-08-29
EP3399105B1 (de) 2019-05-22

Similar Documents

Publication Publication Date Title
EP3902637B1 (de) Vorrichtung und verfahren zum einstellen und regeln wenigstens einer schwingungsmode mittels der vielzahl von unwuchterregereinheiten an einer siebvorrichtung
DE102019214864B3 (de) Verfahren und Vorrichtung zum Ansteuern und Regeln einer Siebvorrichtung sowie Verwendung
DE4116647C1 (de)
EP2910312A1 (de) Schwinganordnung für einen Rütteltisch oder eine Siebvorrichtung
DE102012205153B4 (de) Prüfvorrichtung und Schwingmassenanordnung für ein Rotorblatt einer Windenergieanlage
EP3399105B1 (de) Bodenverdichtungsgerät
EP3992364A1 (de) Verfahren zum verdichten von asphaltmaterial
DE10301143A1 (de) Verfahren und Vorrichtung zur Einstellung der Schüttgutmenge auf einer Förderrinne einer Schwingmaschine
DE102004014750A1 (de) Bodenverdichtungsvorrichtung
EP2363212A2 (de) Stufenlos verstellbarer Schwingungserreger
EP3693090A1 (de) Regelbare siebmaschine und verfahren zum betrieb einer regelbaren siebmaschine
EP1534439B1 (de) Schwingungserreger für bodenverdichtungsgeräte
WO2013017244A2 (de) Vorrichtung sowie satz von vorrichtungen zur kontrolle mechanischer schwingungen
EP2392413A2 (de) Vibrationsramme
WO2017076525A1 (de) Schwingungserzeuger und verfahren zum einbringen eines rammgutes in einen boden
EP3004685B1 (de) Verfahren zum betreiben von gemeinsam auf einem boden angeordneten siebmaschinen mit beweglichen sieben
DE1117504B (de) Unwuchtruettelgeraet zur Verdichtung des Bodens
BE1030008B1 (de) Schwingrinne mit in Clustern angeordneten Unwuchterregereinheiten
DE2736409A1 (de) Verfahren zur zyklischen aenderung des einstellwinkels des rotorblattes eines fluggeraetes, insbesondere eines hubschraubers
EP2896464B1 (de) Schwingungserreger
DE102021121614B3 (de) Fördersystem sowie Verfahren zum Fördern von Schüttgut
DE1997933U (de) Vibrationsgeraet
EP1214988A2 (de) Vorrichtung zur Herstellung von Formteilen aus einem verdichtungsfähigen Gemenge, Rütteltisch und Schwingungserreger
DE1573932A1 (de) Mechanischer Ruetteltisch
DE102010021451A1 (de) Stelleinrichtung, Stellsystem und Werkzeugmaschine mit Stelleinrichtung oder Stellsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018000037

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1136271

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TR-IP CONSULTING LLC, CH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190522

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190822

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: ROUTE DU COUTSET 18, 1485 NUVILLY (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018000037

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

26N No opposition filed

Effective date: 20200225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20200825

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230511

Year of fee payment: 6

Ref country code: NL

Payment date: 20230512

Year of fee payment: 6

Ref country code: IT

Payment date: 20230512

Year of fee payment: 6

Ref country code: FR

Payment date: 20230419

Year of fee payment: 6

Ref country code: DE

Payment date: 20230512

Year of fee payment: 6

Ref country code: CH

Payment date: 20230602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230510

Year of fee payment: 6

Ref country code: PL

Payment date: 20230419

Year of fee payment: 6

Ref country code: AT

Payment date: 20230512

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230512

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230426

Year of fee payment: 6