EP3387198A2 - Structure gonflable à fenêtre - Google Patents
Structure gonflable à fenêtreInfo
- Publication number
- EP3387198A2 EP3387198A2 EP16829071.6A EP16829071A EP3387198A2 EP 3387198 A2 EP3387198 A2 EP 3387198A2 EP 16829071 A EP16829071 A EP 16829071A EP 3387198 A2 EP3387198 A2 EP 3387198A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- air
- hall
- piping
- inflated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 claims abstract description 146
- 239000010408 film Substances 0.000 claims abstract description 73
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000010276 construction Methods 0.000 claims abstract description 11
- 239000002985 plastic film Substances 0.000 claims abstract description 10
- 229920006255 plastic film Polymers 0.000 claims abstract description 10
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims abstract description 5
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- 239000011104 metalized film Substances 0.000 claims abstract description 3
- 239000004567 concrete Substances 0.000 claims description 11
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 229920005372 Plexiglas® Polymers 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000005192 partition Methods 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 239000011178 precast concrete Substances 0.000 claims 1
- 229920000134 Metallised film Polymers 0.000 abstract 1
- 239000005030 aluminium foil Substances 0.000 abstract 1
- 238000009413 insulation Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 11
- 230000009182 swimming Effects 0.000 description 6
- 238000004873 anchoring Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000002990 reinforced plastic Substances 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 240000004050 Pentaglottis sempervirens Species 0.000 description 1
- -1 Polytsrol Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H15/00—Tents or canopies, in general
- E04H15/20—Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
- E04H15/22—Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure supported by air pressure inside the tent
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/34—Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/32—Arched structures; Vaulted structures; Folded structures
- E04B1/3205—Structures with a longitudinal horizontal axis, e.g. cylindrical or prismatic structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H15/00—Tents or canopies, in general
- E04H15/32—Parts, components, construction details, accessories, interior equipment, specially adapted for tents, e.g. guy-line equipment, skirts, thresholds
- E04H15/64—Tent or canopy cover fastenings
- E04H15/642—Tent or canopy cover fastenings with covers held by elongated fixing members locking in longitudinal recesses of a frame
- E04H15/644—Tent or canopy cover fastenings with covers held by elongated fixing members locking in longitudinal recesses of a frame the fixing members being a beading
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H15/00—Tents or canopies, in general
- E04H15/20—Tents or canopies, in general inflatable, e.g. shaped, strengthened or supported by fluid pressure
- E04H2015/207—Tents specially designed for insulation
Definitions
- Air halls offer beating advantages for various applications, especially as roofing of outdoor pools, tennis courts, warehouses, commercial buildings and temporary halls for events of all kinds. They consist of a dome-shaped shell of a textile-reinforced plastic membrane, the bottom of their Anchored edges and sealed there against the spanned interior. With air blowers, an overpressure with respect to the atmosphere is generated in the interior, which inflates the membrane and keeps it stable in this position. It is only a small and not noticeable pressure difference to the atmosphere necessary because only the membrane weight and any wind and snow loads are to be borne. This usually corresponds to a load of about 25 to 35 kg / m 2 .
- the entrances are designed with sealing 4-wing revolving doors (carousel doors) or locks.
- the outer shell is usually made of a fabric-reinforced plastic membrane of the highest quality, mostly translucent.
- the outer shell is the actual static membrane, which must absorb wind and snow loads and is impregnated against UV radiation and pollution.
- the single to multilayer interlayers with trapped air pockets are mainly installed as insulation layers. They should improve the heat transfer value of the hall in the direction of insulation.
- the innermost membrane forms the conclusion of the two- to multi-layer air envelopes. It is executed white for the light reflection.
- a darker color eg green or blue
- flying buildings or Fahrnisbauten fall air halls under a special DIN standard. If required, they can easily be dismantled and set up elsewhere, in contrast to a fixed component.
- a crucial component is the foil of the air-inflated hall.
- the roof can be constructed with 2x2 membranes, giving a U-value of about 1.1 W / m 2 K.
- 2-layered membrane roofs with a significantly worse U-value (3-layer approx. 1.9 W / m 2 K).
- a certain permeability of the film for solar radiation is to be considered positive.
- the g-value is estimated to be 0.1 (0.07 to 0.2).
- the object of the present invention is to at least partially flood an air-inflated hall with natural light in order to create an ambience and atmospheric and visible connection with the outside world inside the air-inflated hall.
- Another object of the invention is to improve the acoustics within the air-inflated hall and thereby create a more comfortable atmosphere.
- Yet another object is to provide such an air-inflated hall with daylight inside, which can be erected more quickly and with far less personnel expenditure than before, and the need as quickly and easily degradable and easily transportable and interposable.
- it is an object of the invention is to provide such air-inflated hall with a much better thermal insulation and thus can meet the applicable requirements for the thermal insulation of a building envelope.
- the fourth object of this invention is to improve the acoustics within the airfield and thereby create a more comfortable atmosphere.
- a airfoil with one or more membrane shells made of plastic film material characterized in that it comprises on at least one longitudinal or transverse side of a frame structure which is connected to the adjacent membrane material, and in the frame profile at least a transparent or translucent film or a similar solid or flexible plate is installed to form a window front.
- FIG. 1 a concrete strip foundation insulated on the inside with a cast-in connection profile as an anchor rail;
- ur 2 A membrane strip of the membrane to be built reaching from one side of the hall to the other;
- Ur 3 A section along the line AA in Figure 2, to show how two membrane strips along their length with each other are connected to a profile on the outside;
- ur 4 A section along the line AA in Figure 2, to show how two membrane strips along their length are connected together with a profile on the inside;
- ur 5 The end portion of a membrane strip reaching to the bottom is shown in a longitudinal section;
- ur 6 The overlap of two membrane strips along their longitudinal edges;
- ur 7 The construction of a hall by means of strung together membrane strips with their longitudinal edges connected to each other by means of a respective piping and associated connection profile, shown schematically;
- ur 8 A connection profile for two along the longitudinal edge of a film web extending piping;
- ur 9 Welding a welt into the edge area of a
- Membrane strip; ur 10 bonding a welt comprised of a film section by welding that section to the edge of the membrane strip; ur 1 1: The connection of two membrane strips, each with a piping along their
- FIG. 12 The connection of two membrane webs along their longitudinal edges, fastened by means of a connecting profile and a single welt, only at one of the two membrane edges;
- Figure 13 An air-inflated hall in cross section, with transverse to the viewing direction
- FIG. 14 Two 2-layer membrane webs to be joined together when inserting a heat reflection mat
- Membrane web shown enlarged, and the adjacent 2-layer membrane web with a to be pushed over the two piping connection profile;
- Figure 16 The one front of an air-inflated hall, that is running along the tennis fields, as an air-supported tennis hall for two tennis courts in an elevation;
- Figure 17 The front wall construction with the inserted film web before the subsequent inflation of the airfoil
- FIG. 18 a longitudinal view of the air-inflated hall after the inflation has taken place
- FIG. 19 This air-inflated hall according to FIGS. 16 to 18 seen in a plan view, with the field lines of the two tennis courts on its floor;
- FIG. 20 an air-inflated hall for three tennis fields in a front view
- FIG. 21 shows the layout of the air-inflated hall according to FIG. 20, with three tennis fields on its bottom;
- Figure 22 The one front or back of an air-inflated hall, that is along the longitudinal side of the tennis fields running, according to the same construction principle, in an elevation;
- FIG. 23 shows an air-inflated hall for three tennis fields in a bird's-eye view
- Figure 24 The floor plan of another embodiment of a tennis air-inflated hall, for two
- FIG. 25 The longitudinal side of this air-inflated hall according to FIGS. 16 to 19, that is to say running along the top sides of the tennis fields, with a 3.5 meter high window front, shown in elevation, with tennis nets drawn in;
- FIG. 26 shows this air-inflated hall according to FIGS. 16 to 19 in a view of its own
- Figure 27 A perspective view of this air-inflated hall with windows, over the two
- Figure 28 A perspective view from the inside of this air-inflated hall, over a
- this heat reflection material is inserted in the form of mats, which are cut from a roll, on the insides of the membrane, for example into planar-like pockets arranged like a matrix, which are welded onto the membrane.
- the pockets are sealed as airtight after insertion of the heat reflection mats, for example by means of a weld or a zipper.
- the entire membrane is covered practically everywhere by these invisible in the pockets heat reflection mats.
- the membranes are also constructed in a novel way, compared to those of conventional air halls, namely several membrane strips which are connected along their longitudinal sides by means of piping and piping connection profiles together to form a whole membrane. Firstly, it is faster, requires far fewer personnel and still has the advantage that the membrane can be easily dismantled, so that the air-inflated building can be dismantled, moved and rebuilt much easier.
- the individual film webs are equipped for insertion with special bags, as will be shown and explained later.
- the individual membrane strips 8 are connected to each other along their longitudinal edges, which are also equipped with piping, by means of several connecting profiles, so that from a plurality of such adjacent Membranst Shape 8 a complete membrane is formed.
- the anchor profiles 22 are particularly designed so that they can be inserted with a pivoting movement in the open top Halfen rails 26, as this pivoting movement is indicated by arrows inside the Halfen rail 26.
- the anchor profile 22 hangs with its two lower shoulders 28 on the undersides of the two wings 29 of the Halfen rail 26.
- By means of one or more fans then a slight pressure over the atmosphere is generated. Due to this overpressure, the membrane rises up against and is inflated and kept stable in this position by the low pressure. In this case, the membrane over the concrete strip foundation 23, with which the membrane is connected by traction, fully stressed.
- a single membrane strip 8 is shown, in a position as if it were installed in a hall membrane. So it extends from the ground over the zenith of the hall to the other side back to the ground. Thus, for example, it measures 42 meters in length if it is to span a tennis field lengthwise. Its width measures depending on the version about 3 to 5 meters. It is double-layered and thus forms a bag. In this bag a heat reflection mat is inserted, as such will be described later. Such mats are roll material available in widths of, for example, 2.5 meters, with a thickness of about 25mm.
- a strip of 2.5m x 42m length may be placed in the pocket of a membrane strip, or two such heat reflection mats slightly overlapping along its longitudinal edge may be slid into its pocket along the entire length of the membrane strip.
- the double-layer membrane strip is welded on three sides, and a longitudinal side is initially left open, so that a pocket is formed. This allows the insertion of a strip of heat-reflecting film over the entire length of the membrane strip. Thereafter, the opening of the pocket in the membrane strip is welded, so that the membrane strip is completely sealed, and then several membrane strips are connected by means of connecting profiles with the edges along their edges existing keder.
- FIG. 3 shows a cross section at the point AA of the membrane stiffener 8, from which it can be seen that an overlap of the two strips 8 is generated along its longitudinal edge, so that there is always a heat reflection film between the inside and outside continuously over the composite membrane strips extends.
- a piping 5 with a film section 6 is welded up on the left-hand membrane strip 8.
- the membrane strip 8 on the right lies with its longitudinal edge over the longitudinal edge of the left membrane strip 8. Its edge extends into a section 7, which is guided over the piping 5 and around it. Thereafter, a connection profile 1 is pushed over the piping 5, and thus a zugkraftschlüssige connection is generated transversely between these two membrane strips 8.
- the membrane strip 8 forms directly the outer membrane, made of a material as conventional for the requirements of an outer membrane, and weighs about 1 kg / m 2 , and the inner membrane could be made thinner in principle. But because it lies on the ground during the construction of the hall, it must be at least tear-resistant enough, with a wiping of about 500 to 600 grams / m 2 . It is impregnated to prevent fungal and mold growth, and both membranes are also impregnated for soil repellency, as conventionally practiced. A pocket for the heat reflection mat 13 is formed between these two membranes.
- the same is shown in principle, except that here the piping is directed downwards, ie towards the hall interior, and the connection profiles are mounted on the underside of the inner membrane. These profiles can be specially designed, with a groove on its then lower side, in which, for example, lighting fixtures, nets, partitions, curtains, etc. can be hung.
- the inner membranes are perforated, whereby an efficient soundproofing is achieved. The sound, as it is produced in tennis halls of the blows on the balls, or the sound in swimming bands, where it is regularly noisy, is effectively broken at the perforated inner membrane and it is achieved a far more pleasant sound climate.
- FIG. 5 shows the section along the line BB in Figure 2.
- the double-layered membrane strip 8 is brought together at the bottom, directed towards the bottom portion and thus runs in a flat flap 24. This is then placed on the inside of the hall and lies on the floor.
- a welded Keder 5 This is used for connection to the ground. It is introduced into a profile that forms an anchor rail on a strip foundation.
- FIG. 6 shows an overlap in a perspective view.
- the left-hand membrane strip 8 is overlapped by the membrane strip 8 on the right side of the image.
- This right membrane strip runs in a single-layer film, which is guided over the piping 5 and this full covers and extends slightly further beyond the piping 5 addition. Prepared so a connection profile can be pushed over the piping 5.
- Figure 7 shows a schematic representation of a number of membrane strips 8, which are arranged one next to the other. They extend for example in a tennis court advantageous along the tennis fields and thus span it across the direction of the tennis nets on the courts.
- a possible piping connection profile 1 is first shown in FIG. This is formed by an aluminum extruded profile, which forms a groove 4 as Keder charged 2 at its two longitudinal sides.
- Each such Keder charged 2 is formed in the example shown by a tube having a longitudinal slot or a groove 4, so that the pipe circumference extends only by about 270 °.
- the two openings or grooves 4 in the two Keder chargeden 2 are facing away from each other directed outwards, and the two tubes are integrally connected by a connecting web 3.
- connection profiles 1 of approximately 30cm to 50cm in length are used.
- connection profiles 1 film webs 8 with its pocket 12 are equipped along their longitudinal edges with piping 5.
- a two-ply film 8 is separated along its edge into two lobes 7, which enclose the extension 6 from both sides and are firmly welded to it. This creates a traction-force-fit connection of the welt 5 with the film web 8. It can also be the edge of a film web 8 the only one side of the extension 6 are welded, wherein the force is then not quite symmetrical.
- a rubber round profile 1 1 which is covered by a film 10, wherein the film 10 then terminates in two edge portions 9, as shown in Figure 10.
- These two edge portions 9 can accommodate a film web 8 with its pocket 12 along its longitudinal edge on both sides between them and they are welded to the film web 8 on both sides firmly with the edge region of the film web 8. Even so, a zugkraftschlüssige connection is generated transversely to the piping 5.
- FIG 11 a possibility of connecting two adjacent film webs 8 is shown, the longitudinal edges are each equipped with a piping 5.
- the connecting profiles 1 are pushed in the longitudinal direction of the film webs 8 on the piping 5, one after the other.
- the resulting between the individual successive connection profiles slots 1 allow a curvature of a membrane thus created also a relatively small radius.
- the slots between the successive connection profiles 1 can be closed by means of an elastic sealant.
- connection profile sections are used.
- they are bendable by a radius of several meters depending on the wall thickness of the profiles, which makes it possible to create an entire membrane dome from one side to the other with only a few profile sections.
- Such a film web 8 a tennis hall which spans the playing fields in the longitudinal direction, is about 42m long.
- a few easily transportable connection profile sections for example 3 x 14m long sections, or 4 x 10.5m or 6 x 7m sections are sufficient.
- FIG. 12 shows an alternative possibility for connecting two adjacent film webs 8.
- the film web 8 is equipped on the left with a piping 5 in the picture.
- the film web 8 on the right is looped with its longitudinal region around the piping 5 of the other film web 8 and afterwards a connection profile 1 is pushed over the piping erected by 90 °, as shown.
- This comprises the piping 5 by more than about 270 ° and this causes a zugkraftschlüssige connection of the two film webs 8 transverse to the piping 5.
- the individual connection profiles 1 measure, for example, about 30 to 50cm and can therefore be postponed by a single mechanic.
- longer profile sections can be used, up to a maximum transportable length.
- connection profiles 1 are pushed in the longitudinal direction of the film webs over their piping 5, one after the other.
- the resulting between the individual successive connection profiles 1 slots allow a curvature of the membrane and a relatively small radius. These slots can be closed with an elastic sealant.
- FIG. 14 shows two film webs 8, which are connected to connection profiles 1.
- the film webs 8 are conventional textile-reinforced plastic films, ideally from 3 to 5 meters wide. They can be transported in rolls to the site, in lengths of, for example, 42m, to form a whole dome length in one piece. If they are transported in shorter sections, they can be welded on the building site in conventional manner by slight overlap by a few cm traction and tight together to achieve the necessary length.
- These film webs 8 are now equipped as a special feature with pockets 12.
- pockets 12 extend across the width of the film webs 8 between the cords 5, so are approximately 3 m to 5 m wide, and they are slightly deeper than 1 .5m to 2.5m, so that after insertion of a 1 .5 m or 2.5 m wide mat is formed a free edge, which can be equipped on the open side of the pockets on the inside with Velcro.
- Bottom and sides of the bags are firmly welded to the film web 8 or riveted or glued to the same.
- heat reflection mats 13 are inserted of the same dimension, ie 1 .5 m to 2.5 m wide and 3 m to 5 m long mats.
- the pockets 12 and the heat reflection mats 13 to be inserted into them can also be made smaller.
- These heat reflection mats are known, for example, as Lu.po.Therm B2 + 8 and available from LSP GmbH, Bladering 1, A-5144 Handenberg. They are delivered in rolls with a width of 1, 5m or 2.5m and can be cut into sections 13 from these rolls be tailored, so in this case the respective width of the film webs 8, while the pockets 12 are designed with their depth to the width of the rollers.
- These multilayer heat reflection mats are available in versions up to 12cm thick.
- T 4 W / m 2 applies.
- Thermal protection is achieved in cascade when the heat reflection mat is multi-layered, with a variety of cumulative interactions.
- these heat reflection materials achieve approximately 100% reflection of the incoming radiant heat. This is so for the most part reflected back into the interior of the air-inflated hall.
- the heat radiation of the sun is reflected and inside the air-inflated hall, it remains pleasantly cool, which is especially welcome for playing tennis.
- the technical specifications of these heat reflection mats are as follows:
- These heat reflection mats are preferably installed in a tennis court in a 3cm thick version. They are welded all around, just for fixing, so not tight and firm. A grid perforation with T-end threads results in the diffusion-open outer side. Thus the dew point degassing is already installed.
- Lu.Po Therm B2 + 8 thermal insulation or any other mat with similar technical and mechanical properties in the field of heat reflection is suitable as a make. Lu.Po Therm B2 + 8 is well suited because it is thin, simply flexible and flexible. Because these heat reflection mats are highly flexible, their incorporation is also at corners and contours no problem. They are not hygroscopic, and therefore they provide a consistent reflection effect.
- such an air-inflated hall is constructed with a double-shell membrane incorporating a thermal reflective material for thermal building insulation in pockets 12 on the inside of the inner membrane.
- a multilayer hybrid insulating mat with integrated energy-efficient IR-reflecting aluminum foils is advantageously used.
- Two to eight layers of absorption-reducing bubble wrap provide the convective distances through the trapped air in the knobs for optimal convective action. This reduces the transmission heat losses.
- the heat reflection mats 13 contain up to five layers of metallized films for highly effective infrared radiation, with low intrinsic emission. In addition, there is a highly effective shield against high-frequency radiation, waves and fields.
- FIG 15 shows a film web 8 with a single bag 12.
- a heat reflection mat 13 is inserted on the open side so that it fills the bag 12 over its entire surface.
- the opening of the pockets 12 may be equipped with zippers 14 so that the pockets 12 can be closed approximately airtight after insertion of the heat reflection mats 13. Instead of zippers 14 to close the bags can also be welded airtight.
- the pockets 12 are arranged in a row adjoining one another or in a matrix-like manner with a plurality of rows of pockets. Each is so equipped with a heat reflection mat 13.
- the inflatable halls which are equipped with such special heat reflection mats 13, which cover practically the entire membrane surface inside or outside in pockets 12, provide a much better overall U-value than before, namely less than 1 .0 W / m 2 K.
- special ones may also be used Acoustic membrane are used as êtmennbrane, which are also inserted into the pockets 12. This allows the hall acoustics to be adapted to different floors and adjusted so that it is perceived as pleasant.
- the interior membrane perforated in the hall for this purpose breaks and in this case the noise. In tennis halls, the impact sounds are largely absorbed. The result is a much more pleasant acoustics than hitherto in indoor tennis courts.
- the individual film webs 8 can be connected by means of the connecting profiles 1 and their piping 5 along their longitudinal edges traction, until the entire membrane is assembled in this way on the site and lies on the ground.
- the connection profiles of the type shown in FIG. 8 can be arranged both on the inside or on the outside of the membrane. The outer edges of the created membrane are then tightly connected to the floor or window frame. In any case, when the film webs 8 are sealingly connected in this way with connecting profiles 1 for piping 5, eliminates clamping screw connections, which are relatively more expensive to install.
- Figure 16 shows an air-inflated hall for two tennis courts in a view on the side, which extends along the long sides of the tennis courts. It is designed as a special feature with a window front.
- This consists of a skeleton of window frame profiles 15 to 18 and is assembled on the site, the bottom row is equipped with, for example, with transparent plastic films, so-called ETFE foils, which are all around equipped with Kederklamen and only in the Window frame profiles 15 to 18 must be inserted.
- ETFE films other transparent or translucent films or similar solid or flexible plates can be installed, which are preferably equipped at their edges with piping for mounting.
- For flexible or flexible windows fronts are transparent or translucent films, ie ETFE films, plastic films or membrane films that can bulge outwards.
- the window fronts can be provided with panels made of wood materials, such as those in the form of slat blinds or in shape of swiveling or sliding shutters, so that the window fronts are covered as needed outside.
- the height of the bottom row of windows is around 5.2 meters, and the width of these windows is 5 meters. So they are almost square shaped. If additional intermediate struts are used, it is also possible to assemble them with unbreakable window glass.
- the two profile struts 18 are made at the outer ends initially steep and left loose. On them, the respective outermost foil web 8 of the assembled membrane is again fastened from the bottom upwards via a keder connection. From the upper end of these outermost profile struts 18, the film web 8 is still loose and lies in the middle on the ground, and at the other end it is again connected in the same way with the local loose outermost profile 18. It stretches over approximately 42 meters.
- FIG. 19 shows this indoor tennis court in a floor plan, with the two spanned tennis fields with their field markings 20 and 21 networks drawn.
- the hall thus has a square floor plan, with 36 meters side length.
- the window fronts extend along the long sides of the tennis fields, so that they are far less hit with balls than about the transverse sides of the tennis courts.
- a tennis court for three tennis courts is shown.
- the 36-meter-long window front extends along the long sides of the tennis courts, as can be seen from the plan in Figure 21, and those sides of the air-inflated hall, where the membrane reaches to the bottom, then measures 53.9 meters.
- FIG. 22 shows the profile wall of this tennis hall with the formed 5 meter wide and 9 meter high windows
- this tennis hall is shown in a bird's eye view. Unlike conventional airbases, this hall has a barrel-shaped roof, no longer a dome with a zenith that extends all the way to the floor.
- FIG. 24 shows a further embodiment, here on the basis of the plan. It is designed for two tennis courts and measures 36m x 36m.
- Figure 25 it is shown in a view from the side which runs along the head sides of the tennis courts, the networks 21 of the tennis courts are located inside the hall. On the left and on the right this air-inflated hall has vertical 3.5 m high end surfaces with windows, from the upper edge of which the membrane is laterally fastened with its piping to the profiles 16. From the profile 16, the membrane then rises at an angle, up to the 9m high ridge.
- FIG. 26 shows this air-inflated hall seen on a window front. The individual windows are 5m long and 3.5m high, and the outermost are approximately equilateral triangles, and the whole window front measures 36m in length.
- Figure 27 shows this indoor tennis court in a perspective view and gives a better idea of the advantages of such a window front for the ambience.
- the frame for the windows is still strutted in the example shown with the obliquely arranged struts 25 against the outside to absorb the increased internal pressure.
- a tennis air-inflated hall with a double-sided continuous window front is flooded with natural light and offers an incomparable playing atmosphere compared to a conventional tennis air-inflated hall. From the outside, the air-inflated hall is lighter and stylistically more convincing, less voluminous and more dynamic.
- Figure 28 shows how the view from inside offers a tennis field to the outside. Zusannnnenend offers such a breeze hall a whole series of striking technical advantages over conventional constructions.
- connection profiles 1 piping 5 assembly of the air-inflated hall is greatly facilitated. It requires far less staff, both for the construction and for the dismantling. Instead of 20 technicians, the work of 4 technicians can be mastered. The assembly time is significantly reduced by the ease of use. This can save costs.
- the tracks or membrane strips 8 of the air box can be easily removed in the spring and rolled up on rollers and thus are very easy to store compared to a conventional air-inflated hall.
- connection profiles can be pushed over the piping by hand. To screwed clamps are unnecessary.
- the strip foundations 23 can be factory-made as ready-mixed concrete elements and transported with inserted anchor rails and prepared insulation connections completely ready to the site and laid there.
- connection profiles 1 as anchor profile rails 22, so that only the end-side piping 5 must be inserted into the connection profiles 1 for the bottom attachment of the film webs 8.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Tents Or Canopies (AREA)
- Building Environments (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01807/15A CH711869A2 (de) | 2015-12-10 | 2015-12-10 | Traglufthalle mit Fensterfront. |
CH00218/16A CH711873B1 (de) | 2015-12-10 | 2016-02-19 | Traglufthalle mit Fensterfront. |
PCT/EP2016/080597 WO2017098042A2 (fr) | 2015-12-10 | 2016-12-12 | Structure gonflable à fenêtre |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3387198A2 true EP3387198A2 (fr) | 2018-10-17 |
EP3387198B1 EP3387198B1 (fr) | 2022-01-26 |
EP3387198B8 EP3387198B8 (fr) | 2022-07-20 |
Family
ID=59030683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16829071.6A Active EP3387198B8 (fr) | 2015-12-10 | 2016-12-12 | Dôme gonflable à fenêtres |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180347174A1 (fr) |
EP (1) | EP3387198B8 (fr) |
CN (1) | CN108699854B (fr) |
CA (1) | CA3007734A1 (fr) |
CH (2) | CH711869A2 (fr) |
EA (1) | EA201800364A1 (fr) |
WO (1) | WO2017098042A2 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH712383B1 (de) * | 2016-04-21 | 2021-01-29 | Klaus ming | Auf Zug belastbare Wärmereflexions-Matte. |
CN108560717B (zh) * | 2017-08-04 | 2020-03-20 | 深圳市科冷商用设备有限公司 | 一种气承式多层膜建筑结构 |
CN108301511A (zh) * | 2018-04-16 | 2018-07-20 | 北京伊德气膜建筑技术有限公司 | 一种气膜建筑及其积雪监测装置和压力控制系统 |
IT201800010351A1 (it) * | 2018-11-15 | 2020-05-15 | Carretta Tessitura S N C Di Carretta Gian Mario & C | Sistema di collegamento particolarmente adatto per reti di protezione ad uso agricolo e copertura di protezione utilizzante tale sistema di collegamento |
CN109707121B (zh) * | 2019-01-30 | 2024-04-12 | 浙江耀伏能源管理有限公司 | 可卷空气间层帘及可卷多空气间层热工围护幕帘结构 |
CN112459521B (zh) * | 2020-11-16 | 2022-02-15 | 中国矿业大学 | 一种既有建筑增设楼顶停车场或健身场的结构及实施方法 |
WO2024072970A2 (fr) * | 2022-09-28 | 2024-04-04 | North Carolina State University | Moule flexible pour déploiement rapide de structures |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3277615A (en) * | 1964-04-14 | 1966-10-11 | Danny C Marquez | Air-inflated building structure |
DE1475102C2 (de) * | 1964-04-28 | 1970-05-06 | Peralt Anstalt, Vaduz | Verbindung zwischen einer flexiblen Bahn und einem festen oder starren Gegenstand,insbesondere zum Schutz von Bauwerken,Baustellen oder Baugeraeten gegen Witterungseinfluesse und fuer Traglufthallen oder Fahrzeugplanen od.dgl. |
DE2242286A1 (de) * | 1972-08-28 | 1974-03-21 | Knittax Steinhof Vertriebsgese | Traglufthalle, insbesondere tennishalle |
US4186530A (en) * | 1976-06-16 | 1980-02-05 | Air Tech Industries Inc. | Triple wall panel unit for air supported structure |
US4307554A (en) * | 1979-05-08 | 1981-12-29 | Shelter Engineering Limited | Structures and methods of construction thereof |
EP0091494A1 (fr) * | 1982-03-31 | 1983-10-19 | Hünnebeck GmbH | Profilé à rainure pour constructions de tente ou similaires |
DE29618340U1 (de) * | 1996-10-22 | 1997-02-13 | LIENHOP Planen Zelte Textiles Bauen GmbH, 28197 Bremen | Rahmenelement mit flexibler Bespannung und Bauwerk aus derartigen Rahmenelementen |
FR2781244B3 (fr) * | 1998-07-16 | 2000-09-08 | Rene Ferdinand Albert Ebel | Elements de couverture gonflables et ensemble obtenu par leur juxtaposition sur une structure portante |
AU5516500A (en) * | 1999-06-10 | 2001-01-02 | Sunarc Structures Inc. | Lightweight construction system |
WO2009073000A1 (fr) * | 2007-03-20 | 2009-06-11 | Ipd Sales & Marketing Llc | Système de mur latéral pour une structure gonflable |
RU2383705C1 (ru) * | 2008-11-12 | 2010-03-10 | Юрий Георгиевич Полтавцев | Большепролетное покрытие строительного сооружения (варианты) |
CN102900160B (zh) * | 2012-11-06 | 2014-06-25 | 天津大学建筑设计研究院 | 用于建筑保温的多层充气组合膜体 |
-
2015
- 2015-12-10 CH CH01807/15A patent/CH711869A2/de not_active Application Discontinuation
-
2016
- 2016-02-19 CH CH00218/16A patent/CH711873B1/de unknown
- 2016-12-12 WO PCT/EP2016/080597 patent/WO2017098042A2/fr active Application Filing
- 2016-12-12 CN CN201680079810.8A patent/CN108699854B/zh active Active
- 2016-12-12 CA CA3007734A patent/CA3007734A1/fr not_active Abandoned
- 2016-12-12 EA EA201800364A patent/EA201800364A1/ru unknown
- 2016-12-12 US US16/060,849 patent/US20180347174A1/en not_active Abandoned
- 2016-12-12 EP EP16829071.6A patent/EP3387198B8/fr active Active
Also Published As
Publication number | Publication date |
---|---|
WO2017098042A4 (fr) | 2017-10-19 |
WO2017098042A3 (fr) | 2017-08-24 |
EP3387198B8 (fr) | 2022-07-20 |
EP3387198B1 (fr) | 2022-01-26 |
EA201800364A1 (ru) | 2019-02-28 |
CH711873B1 (de) | 2020-02-28 |
CN108699854A (zh) | 2018-10-23 |
CA3007734A1 (fr) | 2017-06-15 |
US20180347174A1 (en) | 2018-12-06 |
CH711873A2 (de) | 2017-06-15 |
CN108699854B (zh) | 2022-03-25 |
WO2017098042A2 (fr) | 2017-06-15 |
CH711869A2 (de) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3387198B1 (fr) | Dôme gonflable à fenêtres | |
EP3387199B1 (fr) | Dôme gonflable autoportant thermo-isolant | |
WO2017098043A1 (fr) | Fondation pour une structure gonflable | |
EP3269901A1 (fr) | Tente industrielle améliorée et ensemble de canevas de toile de tente | |
EP3235976A1 (fr) | Tapis réfléchissant la chaleur et résistant aux charges de traction | |
WO2017098041A1 (fr) | Chapiteau gonflable rapide à démonter et à remonter | |
DE102015100962B3 (de) | Flexible Isoliereinlage für Profilglasbahnen | |
DE202004001154U1 (de) | Plane für den Abschluss eines Raumes | |
DE202009000031U1 (de) | Oberlichteinheit für Flachdächer oder schwach geneigte Dächer | |
DE2709718C3 (de) | Innenausbau für Wohnwagen-Vorzelte | |
DE1658887C3 (de) | Nichttragende, mehrschichtige Gebäude-AuBenwandung, z.B. Vorhangwand od. dgl | |
DE3021537A1 (de) | Isolierung fuer den hoch- und tiefbau | |
DE102015110257A1 (de) | Notunterkunft | |
DE10234357A1 (de) | Bausatz für die Errichtung von leichten, klimatisierbaren und witterungsfesten Aufenthalts- und Wohnobjekten | |
DE2037472C3 (de) | Gebäude in Raumzellenbauweise mit einem sechseckigen Raster | |
DE19841922A1 (de) | Passivhaus | |
EP4105402A1 (fr) | Maison composée essentiellement de boîtes en forme de plaque | |
DE4007168A1 (de) | Rundhaus | |
DE4021471A1 (de) | Waermedaemmbauteil | |
DE2116944A1 (de) | Überdachungsvorrichtung | |
DE102010026477A1 (de) | Anschlussprofilelement zur Verwendung bei der Installation eines Fensters oder einer Tür in einem Gebäude | |
DE2339449A1 (de) | Getragene waende, wie zum beispiele daecher | |
DE202005000963U1 (de) | Vorgefertiges Dachflächenelement für ein Gebäude | |
DE3410425A1 (de) | Gebaeudesystem mit zugeordneter, in sich geschlossener niedertemperaturheizung bzw. aequivalenter kuehlung | |
AT11254U1 (de) | Lärmschutzeinhausung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180709 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190513 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210722 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNGEN Ref country code: AT Ref legal event code: REF Ref document number: 1465414 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016014475 Country of ref document: DE |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: MING, NIKOLAUS |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220126 |
|
GRAT | Correction requested after decision to grant or after decision to maintain patent in amended form |
Free format text: ORIGINAL CODE: EPIDOSNCDEC |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNG B8 |
|
RAP4 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MING, NIKOLAUS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016014475 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240607 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240606 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240606 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240606 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016014475 Country of ref document: DE Owner name: PARANET SWISS AG, CH Free format text: FORMER OWNER: MING, KLAUS, MEIRINGEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240530 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240606 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20240822 AND 20240828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |