EP3377840B1 - Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation - Google Patents
Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation Download PDFInfo
- Publication number
- EP3377840B1 EP3377840B1 EP16778410.7A EP16778410A EP3377840B1 EP 3377840 B1 EP3377840 B1 EP 3377840B1 EP 16778410 A EP16778410 A EP 16778410A EP 3377840 B1 EP3377840 B1 EP 3377840B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weapon
- point
- impact
- display system
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000004590 computer program Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 5
- 230000007613 environmental effect Effects 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000003909 pattern recognition Methods 0.000 claims description 3
- 238000001931 thermography Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/14—Indirect aiming means
- F41G3/142—Indirect aiming means based on observation of a first shoot; using a simulated shoot
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/06—Aiming or laying means with rangefinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/14—Indirect aiming means
- F41G3/16—Sighting devices adapted for indirect laying of fire
- F41G3/165—Sighting devices adapted for indirect laying of fire using a TV-monitor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G5/00—Elevating or traversing control systems for guns
- F41G5/14—Elevating or traversing control systems for guns for vehicle-borne guns
- F41G5/20—Elevating or traversing control systems for guns for vehicle-borne guns for guns on ships
- F41G5/22—Elevating or traversing control systems for guns for vehicle-borne guns for guns on ships to compensate for rolling or pitching
Definitions
- the present invention relates to a remote-controlled weapon station with a weapon, which is mounted in a carriage so that it can be adjusted in azimuth and elevation, for combating a target object. Furthermore, the present invention relates to a military vehicle with such a remote-controlled weapon station and a method for operating a remote-controlled weapon station.
- Military vehicles such as ships or land vehicles, are often equipped with a weapon arranged on the outer shell of the vehicle, which is mounted in a mount so that it can be adjusted in azimuth and elevation.
- Such carriages are often designed as remote-controlled weapon stations, which can be actuated from the ballistic-protected interior of the vehicle.
- Such remote-controlled weapon stations are, for example, from DE 10 2011 050 277 A1 and from the DE 10 2006 034 689 A1 known. Individual shots or volleys can be fired from the remote-controlled weapon station.
- a remote-controlled weapon station which comprises a control device with a display device and a memory device.
- the display device shows a stored view of a target device and the storage device stores the information about the offset between the line of fire (LOF) and the line of sight (LOS).
- LEF line of fire
- LOS line of sight
- a disadvantage of the conventional solutions is that the offset has to be determined and corrected manually by the operator or user of the remote-controlled weapon station.
- the disadvantage of this is that there is a certain inaccuracy in determining the offset. Furthermore, this is time-consuming and error-prone and offset cannot be determined and corrected in real time.
- a conventional remotely controllable weapon station with a weapon which is mounted so that it can be directed in azimuth and elevation is known from the document WO 2013/153306 A1 known.
- a remotely controllable weapon station with a weapon for attacking a target object, which is mounted in a carriage so that it can be adjusted in azimuth and elevation.
- the remote-controlled weapon station comprises a display system for optically displaying a target area of the weapon, a first unit for determining a pixel displayed on the display system of a target point of impact of a projectile of the weapon, a second unit for determining a pixel displayed on the display system of an actual point of impact in Depending on image data recorded by a recording device of the actual point of impact of the projectile, and a third unit for determining a deflection of the weapon depending on the specific pixel of the target point of impact and the specific pixel of the actual point of impact on the display system.
- the current location of the weapon can be determined automatically and taken over by the fire control computer for controlling the weapon of the remote-controlled weapon station.
- the first unit, the second unit and the third unit can together calculate or determine the offset in real time.
- the parameters set for firing and the data transmitted by the ship via the data interface for firing the shot are used to calculate at which point on the display system or screen the projectile should hit the water surface (target point of impact of the projectile).
- This theoretical point of impact or target point of impact for example determined by the pixel coordinates on the display system screen, is compared to the actual point of impact of the projectile (actual point of impact) according to the pixel coordinates on the display system screen.
- the deviation can now preferably be determined by means of a delta calculation of the two pixel coordinates and their conversion into millirads.
- the resulting result indicates, in particular, which specific repository is present at the present weapon station.
- the remote-controlled weapon station is arranged in particular on a military vehicle.
- the military vehicle is, for example, a warship.
- the command center of the warship includes a fire control computer, by means of which the weapon station can be operated remotely.
- the target object is, for example, an enemy military vehicle, for example an enemy warship.
- the weapon is a naval gun.
- the respective unit for example the first unit, can be implemented in terms of hardware and/or software.
- the respective unit can be designed as a device or as part of a device, for example as a computer or as a microprocessor or as a fire control computer.
- the respective unit can be designed as a computer program product, as a function, as a routine, as part of a program code or as an executable object.
- the display system includes a screen, for example a touchscreen, and a user interface with input means for entering commands for the display system.
- the display system is connected to a number of cameras which record the surroundings of the weapon.
- the third unit is set up to determine the placement of the weapon based on a difference between the pixel of the target point of impact and the pixel of the actual point of impact on the display system.
- the weapon station is mounted on a military vehicle, with the first unit being set up to determine the pixel of the target point of impact on the display system as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters.
- the weapon-specific parameters include a target distance of the target object, a physical target extension of the target object, a type and/or a dispersion of ammunition used in the weapon, a variance in a mechanism of the weapon and/or at least one maintenance parameter of the weapon.
- the environment parameters and ship parameters mentioned above are used.
- the theoretically determined impact distance of the projectiles is preferably used as a base variable.
- the sea state is preferably not greater than 2, since otherwise the automated, error-free localization of the impact position of calibration shots, ie the resulting water fountains, is not optimal.
- templates or reference templates of typical water fountains when projectiles hit the water can also be stored in a database and used.
- the weapon is warmed up with a number of shots. For example, this number is 5.
- the system is preferably placed in a manual mode and the weapon placed in a predetermined elevation/azimuth position.
- no stabilization is selected and no target is tracked. Consequently, preferably no dynamic derivative action is calculated either.
- a spin offset is preferably taken into account.
- the system is set to fire mode HP (HP; High Precision).
- the weapon station also includes a laser range finder for determining the target range of the target object.
- the vehicle-specific parameters include a course of the vehicle, a speed of the vehicle, a parameter relating to heaving, a parameter relating to heaving, a parameter relating to diving, a parameter relating to rolling, a parameter relating to pitching and/or a parameter related to yaw.
- the recording device comprises a camera, a thermal imaging camera, a radar device and/or a sonar device.
- the pixel of the target meeting point on the display system comprises a pixel or an area of a plurality of pixels and/or the pixel of the actual meeting point on the display system comprises a pixel or an area of a plurality of pixels.
- the second unit is set up to determine the pixel of the actual point of impact on the display system based on pattern recognition using the image data recorded by the recording device and reference templates for projectile impacts stored in a database.
- the water fountains caused by the impact of the bullets on the water have a typical character and can be stored as templates or reference templates in the database for automatic recognition and position determination.
- the third unit is set up to determine an azimuth offset and an elevation offset based on the determined pixel of the target point of impact and the determined pixel of the actual point of impact on the display system.
- the third unit for determining the azimuth offset is set up to set the elevation angle to 0° in each case for a plurality M of successive shots by the weapon and to change the azimuth angle in each case by a predetermined number of degrees. determine a respective value for the azimuth offset for each of the successive shots based on the determined target point of impact pixel and on the determined actual point of impact pixel on the display system, and determine the azimuth offset using a referenced to the M To determine values for the azimuth offset applied probabilistic method.
- the third unit for determining the elevation offset is set up to set the azimuth angle to 270° and increase the elevation angle by a predetermined number of degrees for a plurality M of successive shots by the weapon vary, respectively determine a value for the elevation offset for each of the successive shots based on the determined pixel of the target point of impact and on the determined pixel of the actual point of impact on the display system, and the elevation offset using a on to determine the M values for the elevation offset probabilistic method used.
- a military vehicle which has a number N of remotely controllable weapon stations according to the first aspect, with N ⁇ 1.
- the military vehicle is, for example, a warship.
- the military vehicle can also be a land vehicle, such as a tank, in particular a remote-controlled tank.
- a computer program product which causes the execution of the method as explained above according to the third aspect on a program-controlled device.
- a computer program product such as a computer program means
- FIG. 1 is a schematic block diagram of a first embodiment of a remote-controlled weapon station 1 is shown.
- the remote-controlled weapon station 1 includes a weapon 2 for combating a target object, which is mounted in a carriage 3 so that it can be adjusted in azimuth and elevation.
- the remote-controlled weapon station 1 is installed in particular on a military vehicle.
- the military vehicle can include a plurality of remotely controllable weapon stations 1 .
- the military vehicle is, for example, a warship.
- the remote-controlled weapon station 1 includes a display system 4 for the visual display of a target area of the weapon 2.
- the display system 4 is shown as a screen on which the horizon, a target Z and a bullet impact G are shown.
- the bullet-impact G is illustrated as a water-fountain by way of example.
- T1 a pixel of a target point of impact of a projectile of weapon 2
- T2 a pixel of an actual point of impact of the projectile of weapon 2.
- the remote-controlled weapon station 1 comprises a first unit 5, a second unit 6, which can be coupled to a receiving device 7, and a third unit 8.
- the first unit 5, the second unit 6 and the third unit 8 are in particular in a fire control computer 9 integrated into weapon station 1.
- the first unit 5 is set up to determine the image point T1 of the target point of impact of the projectile of the weapon 2 shown on the display system 4 .
- the second unit 6 can be coupled to the recording device 7 and is also set up to receive image data BD recorded by the recording device 7 of the actual point of impact of the projectile.
- the actual meeting point of the projectile corresponds in particular to the projectile impact G of the 1 .
- the second unit 6 is set up to determine the pixel T2 of the actual meeting point shown on the display system 4 as a function of the image data BD recorded by the recording device 7 .
- the third unit 8 is set up to display a location, in particular an azimuth location and an elevation location, of the weapon 2 depending on the specific pixel T1 of the target point of impact on the display system 4 and on the specific pixel T2 of the actual point of impact on the display system 4 to be determined.
- the third unit 8 is set up in particular to determine the placement of the weapon 2 based on a difference between the pixel T1 of the target point of impact and the pixel T2 of the actual point of impact on the display system 4 .
- the difference can be a difference vector, for example, in particular a two-dimensional or a three-dimensional difference vector.
- the first unit 5 is set up to to determine the pixel T1 of the target meeting point on the display system 4 as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters.
- the environmental parameters are meteorological data such as ambient temperature, wind direction and wind speed.
- weapon-specific parameters are the target distance of the target Z or target object, a physical target extension of the target object, a type and/or a spread of ammunition used in the weapon 2, a variance in a mechanism of the weapon 2 and/or maintenance parameters of the weapon, such as such as maintenance intervals.
- vehicle-specific parameters examples include a course of the vehicle, e.g /or a parameter related to yaw.
- the recording device 7, which is coupled to the second unit 6, includes, for example, a camera, a thermal imaging camera, a radar device and/or a sonar device.
- the pixel T1 of the target meeting point on the display device 4 is, for example, a pixel or an area made up of a plurality of pixels.
- the image point T2 of the actual meeting point on the display system 4 is also a pixel or an area made up of a plurality of pixels.
- FIG. 2 shows a schematic block diagram of a second exemplary embodiment of a remote-controlled weapon station 1.
- the second embodiment of the 2 the remote-controlled weapon station 1 includes all the features of the first embodiment 1 .
- the weapon station includes 1 of the 2 a database 10 for storing reference templates RT for projectile impacts G.
- the second unit 6 of 2 is set up to determine the pixel T2 of the actual meeting point on the display system 4 based on pattern recognition using the image data BD recorded by the recording device 7 and the reference templates RT stored in the database 10 for the projectile impacts G.
- the third unit 8 is set up to determine an azimuth deviation ⁇ A and an elevation deviation ⁇ E based on the determined pixel T1 of the target meeting point and from the determined pixel T2 of the actual meeting point on the display system 4 .
- the third unit 8 for determining the azimuth offset ⁇ A is set up to set the elevation angle to 0° and to change the azimuth angle to a predetermined number in each case for a plurality M of successive shots by the weapon 2. to determine a value for the azimuth offset ⁇ A for each of the successive shots based on the determined pixel T1 of the target hit point and on the determined pixel T2 of the actual hit point on the display system 4 and the azimuth offset ⁇ A using a probabilistic method applied to the M values for the azimuth offset.
- the elevation angle is set to 0° and the azimuth angle is set to five different shot angles.
- the azimuth angles 285°, 275°, 270°, 265° and 255°.
- a shot is fired at each angular setting of the azimuth angle and the actual hit point according to pixel T2 of the actual hit point is compared with the theoretical hit point according to pixel T1 of the target hit point using the pixel positions present in the display system 4 .
- the azimuth offset ⁇ A that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular converted into millirads.
- the ship's course for the example of a ship as a military vehicle should preferably be chosen in such a way that the meteorological wind blows either in the direction of the shot or from the direction of the shot (no cross wind).
- the ship's speed and course should preferably be kept constant throughout the determination of the five values for the azimuth deviation ⁇ A.
- a speed between 10 and 20 knots is preferably selected as the ship speed.
- the elevation angle for five consecutive shots is set to the following shot angles: -1°; -0.5°; 0°; +0.5°; and +1°.
- the azimuth angle is set to 270°, for example.
- a shot is fired and the actual meeting point according to the pixel T1 is compared with the theoretical meeting point according to the pixel T2 on the display system 4 based on the existing pixel positions. An example of this is shown in the schematic views of the display system 4 according to FIG Figures 8 to 12 .
- the elevation deviation ⁇ E that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular those converted into millirads.
- the ship's course is to be selected in such a way that the meteorological wind blows transversely to the firing direction (no tailwind or headwind).
- the ship's speed and course are to be kept constant throughout the determination of the five elevation deviations.
- a speed of between 10 and 15 knots should preferably be selected as the ship speed.
- FIGS 1 and 2 show a schematic flow chart of an exemplary embodiment of a method for operating a remotely controllable weapon station 1. Examples of the remotely controllable weapon station 1 are in FIGS 1 and 2 shown.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Description
- Die vorliegende Erfindung betrifft eine fernbedienbare Waffenstation mit einer Waffe, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist, zur Bekämpfung eines Zielobjekts. Des Weiteren betrifft die vorliegende Erfindung ein militärisches Fahrzeug mit einer solchen fernbedienbaren Waffenstation sowie ein Verfahren zum Betreiben einer fernbedienbaren Waffenstation.
- Militärische Fahrzeuge, wie beispielsweise Schiff oder Landfahrzeuge, sind häufig mit einer an der Außenhülle des Fahrzeugs angeordneten Waffe ausgerüstet, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist. Derartige Lafetten sind häufig als fernbedienbare Waffenstationen ausgebildet, welche aus dem ballistisch geschützten Inneren des Fahrzeugs betätigbar sind.
- Solche fernbedienbaren Waffenstationen sind beispielsweise aus der
DE 10 2011 050 277 A1 und aus derDE 10 2006 034 689 A1 bekannt. Dabei können aus der fernbedienbaren Waffenstation einzelne Schüsse oder Salven abgegeben werden. - Ferner ist aus der
KR 2012 006 44 29 - Nachteilig bei den herkömmlichen Lösungen ist, dass die Ablage vom Operator oder Benutzer der fernbedienbaren Waffenstation manuell bestimmt und korrigiert werden muss. Daraus ergibt sich nachteiligerweise eine gewisse Ungenauigkeit bei der Bestimmung der Ablage. Des Weiteren ist dies zeitaufwändig, fehleranfällig und die Ablage kann nicht in Echtzeit bestimmt und korrigiert werden.
- Eine herkömmliche fernbedienbare Waffenstation mit einer Waffe, welche in Azimut und Elevation richtbar gelagert ist, ist aus dem Dokument
WO 2013/153306 A1 bekannt. - Vor diesem Hintergrund besteht eine Aufgabe der vorliegenden Erfindung darin, eine verbesserte fernbedienbare Waffenstation zu schaffen.
- Gemäß einem ersten Aspekt wird eine fernbedienbare Waffenstation mit einer Waffe zur Bekämpfung eines Zielobjekts vorgeschlagen, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist. Die fernbedienbare Waffenstation umfasst ein Anzeigesystem zur optischen Darstellung eines Zielbereichs der Waffe, eine erste Einheit zum Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Soll-Treffpunkts eines Geschosses der Waffe, eine zweite Einheit zum Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung aufgenommenen Bilddaten des Ist-Treffpunkts des Geschosses, und eine dritte Einheit zum Bestimmen einer Ablage der Waffe in Abhängigkeit von dem bestimmten Bildpunkt des Soll-Treffpunkts und von dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem.
- Vorteilhafterweise kann die aktuelle Ablage der Waffe automatisch bestimmt werden und von dem Feuerleitrechner zur Ansteuerung der Waffe der fernbedienbaren Waffenstation übernommen werden. Insbesondere können die erste Einheit, die zweite Einheit und die dritte Einheit zusammen die Ablage in Echtzeit berechnen beziehungsweise bestimmen.
- Insbesondere können aufgrund von Fertigungstoleranzen nicht vermeidbare, individuelle Ablagen der jeweils auf einem militärischen Fahrzeug installierten Waffenstationen automatisch ermittelt werden.
- Neben dieser automatischen Ermittlung der Ablage besteht ein weiterer Vorteil darin, dass keine weiteren Hilfsmittel, wie zum Beispiel eine Zielscheibe, zur Bestimmung der Ablage benötigt werden. Beispielsweise bei einem MLG-27-System (MLG; Marine-Leicht-Geschütz) werden die zur Schussabgabe eingestellten Parameter und die vom Schiff via Datenschnittstelle zur Schussabgabe übermittelten Daten verwendet, um zu berechnen, an welcher Stelle auf dem Anzeigesystem oder Bildschirm das Geschoss auf der Wasseroberfläche auftreten sollte (Soll-Treffpunkt des Geschosses). Dieser theoretische Treffpunkt oder Soll-Treffpunkt, beispielsweise bestimmt durch die Pixelkoordinaten auf dem Bildschirm des Anzeigesystems, wird mit dem tatsächlichen Treffpunkt des Geschosses (Ist-Treffpunkt) gemäß der Pixelkoordinaten auf dem Bildschirm des Anzeigesystems verglichen. Die Ermittlung der Ablage kann nunmehr vorzugsweise mittels einer Delta-Berechnung der beiden Pixelkoordinaten und deren Umrechnung in Millirad erfolgen. Das daraus resultierende Ergebnis gibt insbesondere an, welche spezifische Ablage bei der vorliegenden Waffenstation vorliegt.
- Die fernbedienbare Waffenstation ist insbesondere auf einem Militärfahrzeug angeordnet. Das Militärfahrzeug ist beispielsweise ein Kriegsschiff. Beispielsweise umfasst die Kommandozentrale des Kriegsschiffes einen Feuerleitrechner, mittels welchem die Waffenstation fernbedienbar ist.
- Das Zielobjekt ist beispielsweise ein feindliches militärisches Fahrzeug, beispielsweise ein feindliches Kriegsschiff. Die Waffe ist beispielsweise ein Marinegeschütz.
- Die jeweilige Einheit, zum Beispiel die erste Einheit, kann hardwaretechnisch und/oder softwaretechnisch implementiert sein. Bei einer hardwaretechnischen Implementierung kann die jeweilige Einheit als Vorrichtung oder als Teil einer Vorrichtung, zum Beispiel als Computer oder als Mikroprozessor oder als Feuerleitrechner ausgebildet sein. Bei einer softwaretechnischen Implementierung kann die jeweilige Einheit als Computerprogrammprodukt, als eine Funktion, als eine Routine, als Teil eines Programmcodes oder als ausführbares Objekt ausgebildet sein.
- Das Anzeigesystem umfasst insbesondere einen Bildschirm, beispielsweise einen Touchscreen, und eine Benutzerschnittstelle mit Eingabemitteln zum Eingeben von Befehlen für das Anzeigesystem. Das Anzeigesystem ist insbesondere mit einer Anzahl von Kameras verbunden, welche die Umgebung der Waffe aufnehmen.
- Gemäß einer Ausführungsform ist die dritte Einheit dazu eingerichtet, die Ablage der Waffe basierend auf einer Differenz zwischen dem Bildpunkt des Soll-Treffpunkts und dem Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen.
- Gemäß einer weiteren Ausführungsform ist die Waffenstation auf einem militärischen Fahrzeug angebracht, wobei die erste Einheit dazu eingerichtet ist, den Bildpunkt des Soll-Treffpunkts auf dem Anzeigesystem in Abhängigkeit von waffenspezifischen Parametern, von fahrzeugspezifischen Parametern und/oder von Umgebungs-Parametern zu bestimmen.
- Gemäß einer weiteren Ausführungsform umfassen die waffenspezifischen Parameter eine Zielentfernung des Zielobjekts, eine physikalische Zielausdehnung des Zielobjekts, eine Art und/oder eine Streuung einer in der Waffe verwendeten Munition, eine Varianz in einer Mechanik der Waffe und/oder zumindest einen Wartungsparameter der Waffe.
- Für das Beispiel eines Schiffes als militärisches Fahrzeug und eines MLG-27-Systems als fernbedienbare Waffenstation werden die Umgebungs-Parameter und oben genannten Schiffsparameter genutzt. Ferner wird vorzugsweise als eine Basisgröße die theoretisch ermittelte Aufschlagsentfernung der Geschosse genutzt. Bei der Durchführung zur Bestimmung der Ablage ist der Seegang vorzugsweise nicht größer 2, da ansonsten die automatisierte fehlerfreie Lokalisierung der Aufschlagposition von Kalibrierschüssen, das heißt die dadurch entstehenden Wasserfontänen, nicht optimal ist.
- Wie im Weiteren ausgeführt, können auch Templates oder Referenz-Templates von typischen Wasserfontänen bei Aufschlägen von Geschossen im Wasser in einer Datenbank hinterlegt und verwendet werden. Vorzugsweise wird vor Beginn der Bestimmung der Ablage die Waffe mit einer Anzahl von Schüssen warm geschossen. Diese Anzahl ist beispielsweise 5.
- Zur Parametereinstellung der MLG-27-Waffenstation wird das System vorzugsweise in einen manuellen Modus gestellt und die Waffe in eine vorgegebene Elevations-/Azimut-Position gestellt. Es wird insbesondere keine Stabilisierung angewählt und auch kein Ziel getrackt. Demzufolge wird vorzugsweise auch kein dynamischer Vorhalt berechnet. Bei der Ermittlung des Soll-Treffpunkts wird vorzugsweise eine Drall-Ablage berücksichtigt. Im Folgenden wird das System in den Feuermodus HP (HP; High Precision) gestellt.
- Gemäß einer weiteren Ausführungsform umfasst die Waffenstation außerdem einen Laserentfernungsmesser zur Bestimmung der Zielentfernung des Zielobjekts.
- Gemäß einer weiteren Ausführungsform umfassen die fahrzeugspezifischen Parameter einen Kurs des Fahrzeuges, eine Geschwindigkeit des Fahrzeuges, einen ein Wogen betreffenden Parameter, einen ein Schwoien betreffenden Parameter, einen ein Tauchen betreffenden Parameter, einen ein Rollen betreffenden Parameter, einen ein Stampfen betreffenden Parameter und/oder einen ein Gieren betreffenden Parameter.
- Gemäß einer weiteren Ausführungsform umfasst die Aufnahmeeinrichtung eine Kamera, eine Wärmebildkamera, ein Radargerät und/oder ein Sonargerät.
- Gemäß einer weiteren Ausführungsform umfasst der Bildpunkt des Soll-Treffpunkts auf dem Anzeigesystem ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln und/oder der Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem umfasst ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln.
- Gemäß einer weiteren Ausführungsform ist die zweite Einheit dazu eingerichtet, den Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem basierend auf einer Mustererkennung unter Verwendung der mittels der Aufnahmeeinrichtung aufgenommenen Bilddaten und von in einer Datenbank hinterlegten Referenz-Templates für Geschoss-Einschläge zu bestimmen.
- Die durch den Einschlag der Geschosse auf dem Wasser entstehenden Wasserfontänen haben einen typischen Charakter und können als Templates oder Referenz-Templates in der Datenbank zur automatischen Erkennung und Positionsbestimmung hinterlegt werden.
- Gemäß einer weiteren Ausführungsform ist die dritte Einheit dazu eingerichtet, eine Azimut-Ablage und eine Elevations-Ablage basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen.
- Gemäß einer weiteren Ausführungsform ist die dritte Einheit zur Bestimmung der Azimut-Ablage dazu eingerichtet, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe den Elevations-Winkel jeweils auf 0° einzustellen und den Azimut-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Azimut-Ablage zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und auf dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen, und die Azimut-Ablage unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.
- Gemäß einer weiteren Ausführungsform ist die dritte Einheit zur Bestimmung der Elevations-Ablage dazu eingerichtet, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe den Azimut-Winkel jeweils auf 270° einzustellen und den Elevations-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Elevations-Ablage zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und auf dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen, und die Elevations-Ablage unter Verwendung eines auf die M Werte für die Elevations-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.
- Gemäß einem zweiten Aspekt wird ein militärisches Fahrzeug vorgeschlagen, welches eine Anzahl N von fernbedienbaren Waffenstationen gemäß dem ersten Aspekt aufweist, mit N ≥ 1.
- Das militärische Fahrzeug ist beispielsweise ein Kriegsschiff. Alternativ kann das militärische Fahrzeug auch ein Landfahrzeug, wie ein Panzer, insbesondere ein fernbedienbarer Panzer, sein.
- Gemäß einem dritten Aspekt wird ein Verfahren zum Betreiben einer fernbedienbaren Waffenstation mit einer Waffe zur Bekämpfung eines Zielobjekts, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist, und mit einem Anzeigesystem zur optischen Darstellung eines Zielbereichs der Waffe vorgeschlagen. Das Verfahren umfasst die folgenden Schritte:
- Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Soll-Treffpunkts eines Geschosses der Waffe,
- Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung aufgenommenen Bilddaten des Ist-Treffpunkts des Geschosses, und
- Bestimmen einer Ablage der Waffe in Abhängigkeit von dem bestimmten Bildpunkt des Soll-Treffpunkts und von dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem.
- Die für die vorgeschlagene Waffenstation beschriebenen Ausführungsformen und Merkmale gelten für das vorgeschlagene Verfahren entsprechend.
- Gemäß einem vierten Aspekt wird ein Computerprogrammprodukt vorgeschlagen, welches auf einer programmgesteuerten Einrichtung die Durchführung des wie oben erläuterten Verfahrens gemäß dem dritten Aspekt veranlasst.
- Ein Computerprogrammprodukt, wie z.B. ein Computerprogramm-Mittel, kann beispielsweise als Speichermedium, wie z.B. Speicherkarte, USB-Stick, CD-ROM, DVD, oder auch in Form einer herunterladbaren Datei von einem Server in einem Netzwerk bereitgestellt oder geliefert werden. Dies kann zum Beispiel in einem drahtlosen Kommunikationsnetzwerk durch die Übertragung einer entsprechenden Datei mit dem Computerprogrammprodukt oder dem Computerprogramm-Mittel erfolgen.
- Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale oder Ausführungsformen. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der Erfindung hinzufügen.
- Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung.
- Im Weiteren wird die Erfindung anhand von bevorzugten Ausführungsbeispielen unter Bezugnahme auf die beigelegten Figuren näher erläutert.
- Fig. 1
- zeigt ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels einer fernbedienbaren Waffenstation;
- Fig. 2
- zeigt ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels einer fernbedienbaren Waffenstation;
- Fig. 3 bis 7
- zeigen schematische Ansichten eines Anzeigesystems bei einer Abfolge von Schüssen zur Bestimmung der Azimut-Ablage;
- Fig. 8 bis 12
- zeigen schematische Ansichten eines Anzeigesystems bei einer Abfolge von Schüssen zur Bestimmung der Elevations-Ablage; und
- Fig. 13
- zeigt ein schematisches Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer fernbedienbaren Waffenstation.
- In den Figuren sind gleiche oder funktionsgleiche Elemente mit denselben Bezugszeichen versehen worden, sofern nichts anderes angegeben ist.
- In
Fig. 1 ist ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels einer fernbedienbaren Waffenstation 1 dargestellt. Die fernbedienbare Waffenstation 1 umfasst eine Waffe 2 zur Bekämpfung eines Zielobjekts, welche in einer Lafette 3 in Azimut und Elevation richtbar gelagert ist. Die fernbedienbare Waffenstation 1 ist insbesondere auf einem militärischen Fahrzeug installiert. Das militärische Fahrzeug kann eine Mehrzahl von fernbedienbaren Waffenstationen 1 umfassen. Das militärische Fahrzeug ist beispielsweise ein Kriegsschiff. - Die fernbedienbare Waffenstation 1 umfasst ein Anzeigesystem 4 zur optischen Darstellung eines Zielbereichs der Waffe 2.
- In
Fig. 1 ist das Anzeigesystem 4 beispielhaft als ein Bildschirm dargestellt, auf welchem der Horizont, ein Ziel Z und ein Geschoss-Einschlag G dargestellt sind. Der Geschoss-Einschlag G ist als eine Wasserfontäne beispielhaft illustriert. Ferner bezeichnet inFig. 1 T1 einen Bildpunkt eines Soll-Treffpunkts eines Geschosses der Waffe 2 und T2 einen Bildpunkt eines Ist-Treffpunkts des Geschosses der Waffe 2. - Ferner umfasst die fernbedienbare Waffenstation 1 eine erste Einheit 5, eine zweite Einheit 6, welche mit einer Aufnahmeeinrichtung 7 koppelbar ist, und eine dritte Einheit 8. Die erste Einheit 5, die zweite Einheit 6 und die dritte Einheit 8 sind insbesondere in einem Feuerleitrechner 9 der Waffenstation 1 integriert.
- Die erste Einheit 5 ist dazu eingerichtet, den auf dem Anzeigesystem 4 dargestellten Bildpunkt T1 des Soll-Treffpunkts des Geschosses der Waffe 2 zu bestimmen.
- Wie oben bereits ausgeführt, ist die zweite Einheit 6 mit der Aufnahmeeinrichtung 7 koppelbar und ferner dazu eingerichtet, von der Aufnahmeeinrichtung 7 aufgenommene Bilddaten BD des Ist-Treffpunkts des Geschosses zu empfangen. Dabei entspricht der Ist-Treffpunkt des Geschosses insbesondere dem Geschoss-Einschlag G der
Fig. 1 . Die zweite Einheit 6 ist dabei dazu eingerichtet, den auf dem Anzeigesystem 4 dargestellten Bildpunkt T2 des Ist-Treffpunkts in Abhängigkeit der von der Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD zu bestimmen. - Die dritte Einheit 8 ist dazu eingerichtet, eine Ablage, insbesondere eine Azimut-Ablage und eine Elevations-Ablage, der Waffe 2 in Abhängigkeit von dem bestimmten Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen. Dabei ist die dritte Einheit 8 insbesondere dazu eingerichtet, die Ablage der Waffe 2 basierend auf einer Differenz zwischen dem Bildpunkt T1 des Soll-Treffpunkts und dem Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen. Die Differenz kann beispielsweise ein Differenzvektor, insbesondere ein zweidimensionaler oder ein dreidimensionaler Differenzvektor sein.
- Für das Beispiel, dass die Waffenstation 1 auf einem militärischen Fahrzeug, wie beispielsweise auf einem Schiff, angeordnet ist, ist die erste Einheit 5 dazu eingerichtet, den Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 in Abhängigkeit von waffenspezifischen Parametern, von fahrzeugspezifischen Parametern und/oder von Umgebungs-Parametern zu bestimmen. Beispiele für die Umgebungs-Parameter sind meteorologische Daten, wie Umgebungstemperatur, Windrichtung und Windstärke.
- Beispiele für waffenspezifische Parameter sind die Zielentfernung des Ziels Z oder Zielobjekts, eine physikalische Zielausdehnung des Zielobjekts, eine Art und/oder eine Streuung einer in der Waffe 2 verwendeten Munition, eine Varianz in einer Mechanik der Waffe 2 und/oder Wartungsparameter der Waffe, wie beispielsweise Wartungsintervalle.
- Beispiele für die fahrzeugspezifischen Parameter umfassen einen Kurs des Fahrzeugs, beispielsweise einen Schiffskurs, eine Geschwindigkeit des Fahrzeugs, einen ein Wogen betreffenden Parameter, einen ein Schwoien betreffenden Parameter, einen ein Tauchen betreffenden Parameter, einen ein Rollen betreffenden Parameter, einen ein Stampfen betreffenden Parameter und/oder einen ein Gieren betreffenden Parameter.
- Die Aufnahmeeinrichtung 7, welche mit der zweiten Einheit 6 gekoppelt ist, umfasst beispielsweise eine Kamera, eine Wärmebildkamera, ein Radargerät und/oder ein Sonargerät.
- Der Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigegerät 4 ist beispielsweise ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln. Entsprechend ist auch der Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln.
-
Fig. 2 zeigt ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels einer fernbedienbaren Waffenstation 1. - Das zweite Ausführungsbeispiel der
Fig. 2 der fernbedienbaren Waffenstation 1 umfasst alle Merkmale des ersten Ausführungsbeispiels derFig. 1 . Darüber hinaus umfasst die Waffenstation 1 derFig. 2 eine Datenbank 10 zur Speicherung von Referenz-Templates RT für Geschoss-Einschläge G. - Die zweite Einheit 6 der
Fig. 2 ist dazu eingerichtet, den Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 basierend auf einer Mustererkennung unter Verwendung der mittels der Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD und den in der Datenbank 10 hinterlegten Referenz-Templates RT für die Geschoss-Einschläge G zu bestimmen. - Ferner ist die dritte Einheit 8 dazu eingerichtet, eine Azimut-Ablage ΔA und eine Elevations-Ablage ΔE basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen.
- Insbesondere ist die dritte Einheit 8 für die Bestimmung der Azimut-Ablage ΔA dazu eingerichtet, bei einer Mehrzahl M von aufeinanderfolgenden Schüssen durch die Waffe 2 den Elevations-Winkel jeweils auf 0° einzustellen und den Azimut-Winkel jeweils auf eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Azimut-Ablage ΔA zu einem jeden der aufeinanderfolgenden Schüsse basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und auf dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen und die Azimut-Ablage ΔA unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.
- Hierzu zeigen die
Fig. 3 bis 7 schematische Ansichten des Anzeigesystems 4 bei einer Abfolge von fünf Schüssen (M = 5) zur Bestimmung der Azimut-Ablage ΔA. Bei den fünf Schüssen wird der Elevations-Winkel jeweils auf 0° eingestellt und der Azimut-Winkel wird auf fünf verschiedene Schusswinkel eingestellt. In dem Beispiel dargestellt in denFig. 3 bis 7 sind das die Azimut-Winkel 285°, 275°, 270°, 265° und 255°. Unter jeder Winkeleinstellung des Azimut-Winkels wird ein Schuss abgegeben und der tatsächliche Treffpunkt gemäß dem Bildpunkt T2 des Ist-Treffpunkts mit dem theoretischen Treffpunkt gemäß dem Bildpunkt T1 des Soll-Treffpunkts anhand der in dem Anzeigesystem 4 vorliegenden PixelPositionen verglichen. Nach Abschluss der fünf Schüsse wird aus den fünf, insbesondere in Millirad umgerechneten vorliegenden Werten die statistisch am wahrscheinlichsten anzunehmende Azimut-Ablage ΔA als Offset-Wert von dem Feuerleitrechner 9 übernommen. - Bei der Abfolge der fünf Schüsse ist der Schiffskurs für das Beispiel eines Schiffs als militärisches Fahrzeug vorzugsweise derart zu wählen, dass der meteorologische Wind entweder in Schussrichtung oder aus der Schussrichtung weht (kein Querwind). Die Schiffsgeschwindigkeit und der Kurs sind vorzugsweise während der gesamten Ermittlung der fünf Werte für die Azimut-Ablage ΔA konstant zu halten. Als Schiffsgeschwindigkeit wird vorzugsweise eine Geschwindigkeit zwischen 10 und 20 Knoten gewählt.
- Des Weiteren ist die dritte Einheit 8 der
Fig. 2 für die Bestimmung der Elevations-Ablage ΔE dazu eingerichtet, bei einer Mehrzahl M (beispielsweise M = 5) von aufeinanderfolgenden Schüssen durch die Waffe 2 den Azimut-Winkel jeweils auf 270° einzustellen und den Elevations-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Elevations-Ablage ΔE zu einem jeden der aufeinanderfolgenden Schüsse basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und auf dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen und die Elevations-Ablage ΔE unter Verwendung eines auf die M Werte für die Elevations-Ablage ΔE angewendeten probabilistischen Verfahrens zu bestimmen. - Beispielsweise wird der Elevations-Winkel für fünf aufeinanderfolgende Schüsse auf folgende Schusswinkel gestellt: -1°; -0,5°; 0°; +0,5°; und +1°. Während der Ermittlung der Elevations-Ablage wird, wie oben ausgeführt, der Azimut-Winkel beispielsweise auf 270° gestellt. Unter einer jeden Winkeleinstellung für den Elevations-Winkel wird ein Schuss abgegeben und der tatsächliche Treffpunkt gemäß dem Bildpunkt T1 wird mit dem theoretischen Treffpunkt gemäß dem Bildpunkt T2 auf dem Anzeigesystem 4 anhand der vorliegenden Pixelpositionen verglichen. Ein Beispiel hierfür zeigen die schematischen Ansichten des Anzeigesystems 4 gemäß der
Fig. 8 bis 12 . - Nach Abschluss dieser fünf Schüsse wird aus den fünf vorliegenden, insbesondere in Millirad umgerechneten Werten die statistisch am wahrscheinlichsten anzunehmende Elevations-Ablage ΔE als Offset-Wert von dem Feuerleitrechner 9 übernommen.
- Für das Beispiel eines Schiffs als militärisches Fahrzeug, auf welchem die fernbedienbare Waffenstation 1 installiert ist, ist der Schiffskurs derart zu wählen, dass der meteorologische Wind quer zu der Schussrichtung (kein Rücken- oder Gegenwind) weht. Die Schiffsgeschwindigkeit und der Kurs sind während der gesamten Ermittlung der fünf Elevations-Ablagen konstant zu halten. Als Schiffsgeschwindigkeit ist vorzugsweise eine Geschwindigkeit zwischen 10 bis 15 Knoten zu wählen.
-
Fig. 13 zeigt ein schematisches Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer fernbedienbaren Waffenstation 1. Beispiele für die fernbedienbare Waffenstation 1 sind in denFig. 1 und2 dargestellt. - Das Ausführungsbeispiel des Verfahrens gemäß
Fig. 13 umfasst die folgenden Schritte 1301, 1302 und 1303: - In Schritt 1301 wird ein auf dem Anzeigesystem 4 dargestellter Bildpunkt T1 eines Soll-Treffpunkts eines Geschosses der Waffe 2 bestimmt.
- In Schritt 1302 wird ein auf dem Anzeigesystem 4 dargestellter Bildpunkt T2 eines Ist-Treffpunkts des Geschosses in Abhängigkeit von mittels einer Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD des Ist-Treffpunkts des Geschosses bestimmt.
- In Schritt 1303 wird eine Ablage, insbesondere umfassend eine Azimut-Ablage ΔA und eine Elevations-Ablage ΔE, der Waffe 2 in Abhängigkeit von dem bestimmten Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 bestimmt.
- Obwohl die vorliegende Erfindung anhand von Ausführungsbeispielen beschrieben wurde, ist sie vielfältig modifizierbar.
-
- 1
- fernbedienbare Waffenstation
- 2
- Waffe
- 3
- Lafette
- 4
- Anzeigesystem
- 5
- erste Einheit
- 6
- zweite Einheit
- 7
- Aufnahmeeinrichtung
- 8
- dritte Einheit
- 9
- Feuerleitrechner
- 10
- Datenbank
- 1301
- Verfahrensschritt
- 1302
- Verfahrensschritt
- 1303
- Verfahrensschritt
- A1
- Soll-Azimut-Position
- A2
- Ist-Azimut-Position
- BD
- Bilddaten
- ΔA
- Azimut-Ablage
- ΔE
- Elevations-Ablage
- E1
- Soll-Elevation-Position
- E2
- Ist-Elevation-Position
- G
- Geschoss-Einschlag
- RT
- Referenz-Template
- T1
- Bildpunkt des Soll-Treffpunkts
- T2
- Bildpunkt des Ist-Treffpunkts
- Z
- Zielobjekt
Claims (12)
- Fernbedienbare Waffenstation (1) mit einer Waffe (2), welche in einer Lafette (3) in Azimut und Elevation richtbar gelagert ist, zur Bekämpfung eines Zielobjekts, mit:einem Anzeigesystem (4) zur optischen Darstellung eines Zielbereichs der Waffe (2),einer ersten Einheit (5) zum Bestimmen eines auf dem Anzeigesystem (4) dargestellten Bildpunkts (T1) eines Soll-Treffpunkts eines Geschosses der Waffe (2),einer zweiten Einheit (6) zum Bestimmen eines auf dem Anzeigesystem (4) dargestellten Bildpunkts (T2) eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung (7) aufgenommenen Bilddaten (BD) des Ist-Treffpunkts des Geschosses, undeiner dritten Einheit (8) zum Bestimmen einer Ablage der Waffe (2) in Abhängigkeit von dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und von dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4),wobei die dritte Einheit (8) dazu eingerichtet ist, eine Azimut-Ablage (ΔA) und eine Elevations-Ablage (ΔE) basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und von dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) zu bestimmen,dadurch gekennzeichnet, dassdie dritte Einheit (8) zur Bestimmung der Azimut-Ablage (ΔA) dazu eingerichtet ist, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe (2) den Elevations-Winkel jeweils auf 0° einzustellen und den Azimut-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Azimut-Ablage (ΔA) zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und auf dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) zu bestimmen, und die Azimut-Ablage (ΔA) unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens zu bestimmen, und
Rheinmetall Defence Electronics GmbHdie dritte Einheit (8) zur Bestimmung der Elevations-Ablage (ΔE) dazu eingerichtet ist, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe (2) den Azimut-Winkel jeweils auf 270° einzustellen und den Elevations-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Elevations-Ablage (ΔE) zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und auf dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) zu bestimmen, und die Elevations-Ablage (ΔE) unter Verwendung eines auf die M Werte für die Elevations-Ablage angewendeten probabilistischen Verfahrens zu bestimmen und ein Feuerleitrechner (9) zur Ansteuerung der Waffe (2) unter Verwendung der bestimmten Azimut-Ablage (ΔA) und der bestimmten Elevations-Ablage (ΔE) vorgesehen ist. - Waffenstation nach Anspruch 1,
dadurch gekennzeichnet,
dass die dritte Einheit (8) dazu eingerichtet ist, die Ablage der Waffe (2) basierend auf einer Differenz zwischen dem Bildpunkt (T1) des Soll-Treffpunkts und dem Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) zu bestimmen. - Waffenstation nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Waffenstation (1) auf einem militärischen Fahrzeug, insbesondere auf einem Schiff, angebracht ist, wobei die erste Einheit (5) dazu eingerichtet ist, den Bildpunkt (T1) des Soll-Treffpunkts auf dem Anzeigesystem (4) in Abhängigkeit von waffenspezifischen Parametern, von fahrzeugspezifischen Parametern und/oder von Umgebungs-Parametern zu bestimmen. - Waffenstation nach Anspruch 3,
dadurch gekennzeichnet,
dass die waffenspezifischen Parameter eine Zielentfernung des Zielobjekts, eine physikalische Zielausdehnung des Zielobjekts, eine Art und/oder eine Streuung einer in der Waffe (2) verwendeten Munition, eine Varianz in einer Mechanik der Waffe (2) und/oder zumindest einen Wartungsparameter der Waffe (2) umfassen. - Waffenstation nach Anspruch 3 oder 4,
dadurch gekennzeichnet,
dass die fahrzeugspezifischen Parameter einen Kurs des Fahrzeuges, eine Geschwindigkeit des Fahrzeuges, einen ein Wogen betreffenden Parameter, einen ein Schwoien betreffenden Parameter, einen ein Tauchen betreffenden Parameter, einen ein Rollen betreffenden Parameter, einen ein Stampfen betreffenden Parameter und/oder einen ein Gieren betreffenden Parameter umfassen. - Waffenstation nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die Aufnahmeeinrichtung (7) eine Kamera, eine Wärmebildkamera, ein Radargerät und/oder ein Sonargerät umfasst. - Waffenstation nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass der Bildpunkt (T1) des Soll-Treffpunkts auf dem Anzeigesystem (4) ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln umfasst und/oder dass der Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln umfasst. - Waffenstation nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass die zweite Einheit (6) dazu eingerichtet ist, den Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) basierend auf einer Mustererkennung unter Verwendung der mittels der Aufnahmeeinrichtung (7) aufgenommenen Bilddaten (BD) und von in einer Datenbank (10) hinterlegten Referenz-Templates (RT) für Geschoss-Einschläge (G) zu bestimmen. - Militärisches Fahrzeug mit einer Anzahl N von fernbedienbaren Waffenstationen (1) nach einem der Ansprüche 1 bis 8, mit N ≥ 1.
- Militärisches Fahrzeug nach Anspruch 9,
dadurch gekennzeichnet,
dass das militärische Fahrzeug ein Kriegsschiff ist. - Verfahren zum Betreiben einer fernbedienbaren Waffenstation (1) mit einer Waffe (2), welche in einer Lafette (3) in Azimut und Elevation richtbar gelagert ist, zur Bekämpfung eines Zielobjekts und mit einem Anzeigesystem (4) zur optischen Darstellung eines Zielbereichs der Waffe (2), mit:Bestimmen (1301) eines auf dem Anzeigesystem (4) dargestellten Bildpunkts (T1) eines Soll-Treffpunkts eines Geschosses der Waffe (2),Bestimmen (1302) eines auf dem Anzeigesystem (4) dargestellten Bildpunkts (T2) eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung (7) aufgenommenen Bilddaten (BD) des Ist-Treffpunkts des Geschosses, undBestimmen (1303) einer Ablage der Waffe (2) in Abhängigkeit von dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und von dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4),wobei eine Azimut-Ablage (ΔA) und eine Elevations-Ablage (ΔE) basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und von dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) bestimmt werden,dadurch gekennzeichnet, dasszur Bestimmung der Azimut-Ablage (ΔA) bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe (2) der Elevations-Winkel jeweils auf 0° eingestellt wird und der Azimut-Winkel jeweils um eine vorbestimmte Gradzahl verändert wird, jeweils ein Wert für die Azimut-Ablage (ΔA) zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und auf dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) bestimmt wird, und die Azimut-Ablage (ΔA) unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens bestimmt wird, und
Rheinmetall Defence Electronics GmbHzur Bestimmung der Elevations-Ablage (ΔE) bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe (2) der Azimut-Winkel jeweils auf 270° eingestellt wird und der Elevations-Winkel jeweils um eine vorbestimmte Gradzahl verändert wird, jeweils ein Wert für die Elevations-Ablage (ΔE) zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt (T1) des Soll-Treffpunkts und auf dem bestimmten Bildpunkt (T2) des Ist-Treffpunkts auf dem Anzeigesystem (4) bestimmt wird, und die Elevations-Ablage (ΔE) unter Verwendung eines auf die M Werte für die Elevations-Ablage angewendeten probabilistischen Verfahrens bestimmt wird, und die Waffe (2) mittels eines Feuerleitrechners (9) unter Verwendung der bestimmten Azimut-Ablage (ΔA) und der bestimmten Elevations-Ablage (ΔE) angesteuert wird. - Computerprogrammprodukt, welches auf einer programmgesteuerten Einrichtung die Durchführung des Verfahrens gemäß Anspruch 11 veranlasst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015120036.8A DE102015120036A1 (de) | 2015-11-19 | 2015-11-19 | Fernbedienbare Waffenstation und Verfahren zum Betreiben einer fernbedienbaren Waffenstation |
PCT/EP2016/074169 WO2017084806A1 (de) | 2015-11-19 | 2016-10-10 | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3377840A1 EP3377840A1 (de) | 2018-09-26 |
EP3377840B1 true EP3377840B1 (de) | 2022-01-26 |
EP3377840B9 EP3377840B9 (de) | 2022-04-20 |
Family
ID=57113366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16778410.7A Active EP3377840B9 (de) | 2015-11-19 | 2016-10-10 | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3377840B9 (de) |
DE (1) | DE102015120036A1 (de) |
HU (1) | HUE059023T2 (de) |
WO (1) | WO2017084806A1 (de) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19716199A1 (de) * | 1997-04-18 | 1998-10-22 | Rheinmetall Ind Ag | Verfahren zum Richten der Waffe einer Waffenanlage und Waffenanlage zur Durchführung des Verfahrens |
US6125308A (en) * | 1997-06-11 | 2000-09-26 | The United States Of America As Represented By The Secretary Of The Army | Method of passive determination of projectile miss distance |
US20080022575A1 (en) * | 2006-05-08 | 2008-01-31 | Honeywell International Inc. | Spotter scope |
DE102006034689A1 (de) | 2006-07-24 | 2008-01-31 | Rheinmetall Landsysteme Gmbh | Schutzeinrichtung für ein militärisches Fahrzeug, welches als Unterstützungsfahrzeug fungiert und alle pionier- und bergtechnischen Arbeiten ausführen kann |
US8074555B1 (en) * | 2008-09-24 | 2011-12-13 | Kevin Michael Sullivan | Methodology for bore sight alignment and correcting ballistic aiming points using an optical (strobe) tracer |
KR101472445B1 (ko) | 2010-12-09 | 2014-12-12 | 삼성테크윈 주식회사 | 무장 시스템 및 무장 유니트의 제어방법 |
DE102011050277B4 (de) | 2011-05-11 | 2012-11-29 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Adapter zur Befestigung einer Lafette an einem Objekt, Lafette und militärisches Fahrzeug |
FR2989456B1 (fr) * | 2012-04-12 | 2018-05-04 | Philippe Levilly | Systeme teleopere de traitement de cibles |
DE102014019200A1 (de) * | 2014-12-19 | 2016-06-23 | Diehl Bgt Defence Gmbh & Co. Kg | Maschinenwaffe |
-
2015
- 2015-11-19 DE DE102015120036.8A patent/DE102015120036A1/de not_active Ceased
-
2016
- 2016-10-10 EP EP16778410.7A patent/EP3377840B9/de active Active
- 2016-10-10 WO PCT/EP2016/074169 patent/WO2017084806A1/de unknown
- 2016-10-10 HU HUE16778410A patent/HUE059023T2/hu unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2017084806A1 (de) | 2017-05-26 |
EP3377840B9 (de) | 2022-04-20 |
HUE059023T2 (hu) | 2022-10-28 |
DE102015120036A1 (de) | 2017-05-24 |
EP3377840A1 (de) | 2018-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005007910A1 (de) | Feuerwaffe für langsam fliegende Geschosse | |
DE2805903A1 (de) | Schussteuerungseinrichtung fuer ein flugzeugabwehr-waffensystem | |
DE2936643A1 (de) | Verfahren und anordnung fuer die abschaetzung der richtgenauigkeit einer waffe | |
DE2658501B2 (de) | Verfahren zur Simulation eines beweglichen Zieles | |
EP3377840B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
CH665493A5 (de) | Feuerleiteinrichtung fuer ein mobiles flugabwehrsystem. | |
EP3350536B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
DE1951622A1 (de) | Anordnung zur Simulation von Schussbahnen | |
DE102010052202A1 (de) | Verfahren zum Steuern eines Gefechtsflugkörpers | |
EP0090323A1 (de) | Übungsvorrichtung für die Schiessausbildung an Lenkflugkörpern, insbesondere Boden-Boden-Flugkörperwaffen | |
DE2143873A1 (de) | Vorrichtung für Visiereinrichtungen | |
DE3734758C2 (de) | ||
EP4229352A1 (de) | Ermittlung einer feuerleitlösung einer artilleristischen waffe | |
CH656453A5 (en) | Device for firing simulation using light pulses | |
DE102013111644A1 (de) | Verfahren zur Steuerung einer richtbaren Waffe eines Fahrzeugs bei Schießübungen | |
EP3593081A1 (de) | Simulator und verfahren zur simulation eines einsatzes eines flugkörpers | |
EP3350534B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
DE2740655A1 (de) | Automatische suchkopfeinweisung | |
EP3367045A1 (de) | Verfahren und vorrichtung zur verbesserung der präzision von feuerleitlösungen | |
EP3350535B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
DE102018128517A1 (de) | Fernbedienbare Waffenstation und Verfahren zum Betreiben einer fernbedienbaren Waffenstation | |
DE19912093A1 (de) | Verfahren zur Schußsimulation | |
DE102020003080A1 (de) | Verfahren und Steuersystem zum Ansteuern eines Flugkörpers auf ein Zielobjekt | |
DE19806911C2 (de) | Verfahren zur Überwachung der Ausichtung einer Artilleriewaffe | |
DE102022122842A1 (de) | Vorrichtung zum Bestimmen einer Winkelabweichung, Fahrzeug und Verfahren zur Bestimmung einer Winkelabweichung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180313 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200130 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F41G 3/14 20060101AFI20210720BHEP Ipc: F41G 3/06 20060101ALI20210720BHEP Ipc: F41G 3/16 20060101ALN20210720BHEP Ipc: F41G 5/22 20060101ALN20210720BHEP |
|
INTG | Intention to grant announced |
Effective date: 20210810 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1465591 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016014465 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: BERICHTIGUNG B9 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016014465 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E059023 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231019 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1465591 Country of ref document: AT Kind code of ref document: T Effective date: 20221010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20231003 Year of fee payment: 8 Ref country code: HU Payment date: 20231024 Year of fee payment: 8 Ref country code: DE Payment date: 20231020 Year of fee payment: 8 Ref country code: CZ Payment date: 20231004 Year of fee payment: 8 Ref country code: BG Payment date: 20231020 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |