EP3336257A1 - Anlaufspur-eisfräseinheit für eine skisprungschanze - Google Patents

Anlaufspur-eisfräseinheit für eine skisprungschanze Download PDF

Info

Publication number
EP3336257A1
EP3336257A1 EP16204138.8A EP16204138A EP3336257A1 EP 3336257 A1 EP3336257 A1 EP 3336257A1 EP 16204138 A EP16204138 A EP 16204138A EP 3336257 A1 EP3336257 A1 EP 3336257A1
Authority
EP
European Patent Office
Prior art keywords
track
cutting blades
rotation
milling head
eisfräseinheit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16204138.8A
Other languages
English (en)
French (fr)
Other versions
EP3336257B1 (de
Inventor
Peter Riedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peter Riedel Patent UG Haftungsbeschraenkt
Original Assignee
Peter Riedel Patent UG Haftungsbeschraenkt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peter Riedel Patent UG Haftungsbeschraenkt filed Critical Peter Riedel Patent UG Haftungsbeschraenkt
Priority to EP16204138.8A priority Critical patent/EP3336257B1/de
Publication of EP3336257A1 publication Critical patent/EP3336257A1/de
Application granted granted Critical
Publication of EP3336257B1 publication Critical patent/EP3336257B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H4/00Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow
    • E01H4/02Working on surfaces of snow or ice in order to make them suitable for traffic or sporting purposes, e.g. by compacting snow for sporting purposes, e.g. preparation of ski trails; Construction of artificial surfacings for snow or ice sports ; Trails specially adapted for on-the-snow vehicles, e.g. devices adapted for ski-trails

Definitions

  • the invention relates to a start-track Eisfräsech for a ski jump ice maker.
  • a start-track Eisfräsaku for the ski jumping sport has at least one right milling head and a left milling head, which are each arranged on a rotatable about a rotation axis drive shaft and each having a plurality of cutting blades. These cutting blades are each formed along a cutting edge width with Fräsmesserschneidkanten.
  • the Fräsmesserschneidkanten describe during a rotation of the left Fräskopfes a left Fräskopfmesseriety and with a rotation of the right Fräskopfes a right Fräskopfmesseriety.
  • On the right-hand milling head three or more than three cutting blades are mounted along the right-hand cutter blade periphery and on the left-hand milling head along the left-hand cutter blade periphery.
  • an ice cutter with such a start-track Eisfräsaku is from the DE102014108167A1 known.
  • the inrun track with defined surface profiles is milled into the prepared ice layer by rotation of the milling heads and their guidance along defined paths.
  • the surface profiles usually have a rutting surface with longitudinal grooves extending along the inrun track.
  • these longitudinal grooves are important because, because of the longitudinal grooves, the jumping skis do not make sliding contact with the ice underneath. Only the flat sections of the rut surface are in sliding contact with the jumping skis. Sectionwise, there is air under the jump skis in the area of the longitudinal grooves. The ski jumper can thereby achieve higher startup speeds.
  • the longitudinal grooves allow the channeled drainage of rainwater.
  • the track itself is usually actively cooled so that it can be used even at plus degrees. It can not be prevented that it can rain during the race on the inrun track.
  • the rainwater then follows the gravitational force, runs from the rutting surface into the longitudinal grooves and in this following the slope down the trail. Should the rainwater while draining again freeze, so it will happen in the lower areas of the grooves and thus not affect the areas that come into contact with the skis, which are referred to as rut inside surface.
  • the situation is similar with lower amounts of fresh snow falling on the inrun track and sliding down the longitudinal grooves, thus not affecting the track areas in contact with the skier's skis.
  • a disadvantage of the known start-track Eisfräsech for a ski jumping hill ice mill is in particular that the milled Rurrinnenober lake viewed along the start-up direction are not flat enough. Significantly too large unevennesses come about as a result of the fact that the ice is broken out of the rut surface by means of the rotating cutting blades. The ice itself is comparatively brittle as a material, so that often larger pieces break out, as would be the case with a good spanbaren material. This is disadvantageous for ski jump jumper, because the unevenness generated along the start-up direction of the track during startup transmitted by the jump skis for the jumper are irritatingly noticeable.
  • the present invention is therefore based on the object to provide a start-track Eisfräsussi for a ski jump ice machine for generating a run-up track on a ski jump, which overcomes the disadvantages mentioned.
  • At least one of the cutting blades with its cutting blade cutting edge is arranged relative to a parallel arrangement of the cutting blade cutting edge to the axis of rotation at an axial angle of 1 ° to 16 °, preferably 5 ° to 14 ° and more preferably 7 ° to 12 ° skewed to the axis of rotation ,
  • the milling cutter does not come into contact with the cutting edge of the ice at the same time as it hits the ice when it strikes the ice.
  • the cutting blade cutting edge meets successively with adjacent sections of the cutting edge width on the ice surface to be processed. This is due to the axially adjusted and thus, compared to a parallel arrangement of Fräsmesserschneidkante and axis of rotation, skewed arrangement of the axis of rotation to an imaginary line through the Fräsmesserschneidkante.
  • the position of two straight lines is called skew if you do not intersect and do not run in the same plane. If they do not intersect but run in the same plane, then the lines are parallel.
  • the machined ice surface is successively removed in a lateral scraping movement. It is not broken out as in the prior art by a simultaneously acting over the entire track width on the ice surface Fräskopfmesser simultaneously.
  • the scraping action produced by the inrun track ice milling unit as it travels along the inrun track also removes raised areas such as waves along the ruts, even with respect to an ideal plane.
  • the run-in tracks can be milled with rut surfaces, which are considered to be sufficiently level for the ski jumper along the entry direction and thus ensure a smooth start on the hill.
  • the groove surface is the imaginary plane of the flat areas between the longitudinal grooves of the inrun track. The run-up skis glides on these areas and has no mechanical contact with the ice in the area of the longitudinal grooves because of the longitudinal grooves.
  • the milling heads In the operational installation position of the milling heads in the one ground and two inrun side walls having milled inrun track, the milling heads each have two Fräskopfoxi, which are guided in operation along the run-track side walls and each have to a Anlaufspurif.
  • the cutting edge width is a dimension of the cutting blade, which differs from a Milling head side extends to the opposite Fräskopfseite the milling head and thus directly determines the width of the milled inrun track.
  • the cutter blade cutting edge is ideally considered a straight line. Starting from this straight line, projections in the form of teeth can be provided in order to realize the longitudinal grooves already mentioned in the introduction to the introduction in the inrun track.
  • the milled inrun track with longitudinal grooves represents an optimized variant.
  • Crucial is the production of a substantially flat rut surface, with which the ski of the ski jumper stands during the start in flat sliding contact.
  • this groove surface can be formed continuously over the entire width of the inrun track.
  • Optimized variants provide the aforementioned longitudinal grooves, so that the groove surface is divided by the one or more longitudinal grooves in several surface sections. Each of these surface sections is considered to be substantially planar in itself to allow a smooth sliding of the skis. Each of these surface sections is associated with a corresponding rectilinear section of the cutting blade cutting edge.
  • this straight line is arranged skewed in the mentioned angular range to the axis of rotation. If the rectilinear sections of the cutting blade cutting edge do not lie with respect to their respective extension direction on a common straight line, then the cutting blade has a plurality of Fräsmesserschneidkanten, each viewed in itself in the said angular range skew to the rotation axis are arranged.
  • the inrun track ice milling unit serves as a central component of an ice grinder for generating inrun track ruts with a rut inside surface.
  • the ice maker with such a start-up Eisfräsaku can be wired with electricity, or wirelessly powered by a battery or by means of a fuel-burning engine and has appropriate means for receiving power from a battery or fuel.
  • the inrun track ice milling unit is particularly suitable for ice working in ruts with ice layers up to 10 cm thick.
  • the inrun track surfaces Characterizing profile is determined by the structural design of the cutting blades. This usually depends on weather conditions. If a high volume of liquid, such as rain, is expected, a greater number of longitudinal grooves is preferred.
  • the inrun track ice milling unit with the ice grinder is moved on defined paths along the approach direction of the inrun track, ie following the track course.
  • the ice grinder preferably lies on the side walls of the run-in grooves themselves and / or on a rail system arranged adjacent to the run-in track.
  • a rail system can be constructed from tubular profiles.
  • the pipe profiles have different diameters and thicknesses depending on the requirements, in particular by the weight of the ice maker, by the absorption of forces caused by the milling process of the ice cutter. It is also possible to guide the ice cutter on already existing components of the hill.
  • These components are, for example, in cross-section box-like trained inrun tracking components. Viewed in cross-section, these track components have a box bottom bounded on both sides by wall elements. These wall elements extending along the inrun track are also suitable as rails for guiding the ice grinder along a defined path.
  • the right or the left milling head processes respectively the right and left ruts of the inrun track.
  • the milling heads are preferably designed in each case such that they can be inserted from above into the track groove to be machined.
  • the left and the right milling head are arranged around a rotation axis arranged parallel to the track surface rotatable drive shaft. The axis of rotation usually runs in a horizontal direction transversely to the inrun track.
  • the cutting blades preferably comprise a stable water-resistant material such as steel.
  • the cutting knives are preferably designed such that, when passing along the inrun track, along their cutting edge width, with their cutting knife cutting edges, they cover the entire length Track groove width, which is parallel to the axis of rotation and perpendicular or substantially perpendicular to the course of the inrun track.
  • the milling heads each have the at least three rigidly mounted, axially aligned cutting blades, which depending on the position of the axis of rotation on the track surfaces to be machined during milling more or less struck time on the ice.
  • each of the cutting blades is arranged with its Fräsmesserschneidkante in the axial angle of attack of 3 ° to 16 °, preferably 5 ° to 14 ° and particularly preferably 7 ° to 12 ° relative to the axis of rotation.
  • each of the cutting blades is arranged at the same axial angle of attack.
  • At least one of the cutting blades is arranged at a radial angle of attack of 5 ° to 15 ° to an imaginary radius line between the cutting blade cutting edge of the cutting blade and the axis of rotation.
  • the cutting blades are inserted obliquely with respect to an imaginary radius line between Fräsmesserschneidkante and rotation axis, so that they edit the inrun track during milling paddle or blade-shaped. This also makes it possible to mill starting tracks with rut surfaces, which are considered to be sufficiently flat for the ski jumper along the approach direction and thus ensure a smooth start on the hill. Due to the axial angle of attack and the resulting skewed arrangement of the cutting blade cutting edge to the axis of rotation varies the radial angle of attack along the cutting edge width.
  • Each of the cutting blades is preferably arranged over its cutting edge width at a radial angle of attack of 5 ° to 15 ° to an imaginary radius line between the cutting blade cutting edge of the cutting blade and the axis of rotation.
  • the right-hand milling head and the left-hand milling head have, in the region between adjacent milling blades, a milling-ice receiving section which extends from the adjacent milling blades and curves inwards towards the axis of rotation. Ice detached from the reamers by the cutter blades may be received in the cutter ice storage section. Thus, the ice, if it is not completely ejected from the rut, does not interfere with further milling. A jam of milled ice material could in extreme cases push the cutter upwards away from the inrun track, which, viewed in the start-up direction, can lead to unevenness in the rut surface.
  • the cutting blades of the right milling head and the left milling head are evenly distributed over the right milling cutter blade periphery and over the left milling cutter blade periphery.
  • a uniform removal of ice from the rutes can be achieved at a constant speed of movement of the inrun track ice unit.
  • the cutting knives depending on the position of the axis of rotation over the rut surfaces, the cutting knives more or less offset in time and dimension on the ice while the cutting knives moving away from the rut are arranged in reverse position to them, the paddle-like throwing away is supported by ice from the ruts advantageous.
  • two cutting blades are arranged on the milling head diametrically opposite each other.
  • the right milling head and the left milling head are coaxially arranged on the same drive shaft. They are thus rotatable about a common axis of rotation.
  • a simple construction of the start-track Eisfräsvik with only one axis to be driven and a uniform processing of the left and right inrun track can be realized.
  • an individual suspension of the two milling heads with separate rotation axes and separate drives is conceivable.
  • the right hand milling head and the left hand milling head continue to have the same number of cutting blades and are arranged along the common axis of rotation at an angle of 360 ° divided by twice the number of cutting blades along the right milling cutter periphery and offset along the left milling cutter blade periphery.
  • the cutting blades of the right and left milling heads always come alternately in material engagement with the ice on the inrun track.
  • the drive axle does not experience at the same time on both milling heads an upward force directed away from the inrun track.
  • the simultaneity of the material interference favors in the starting direction the formation of unevenness of the rut surfaces.
  • the cutting blades preferably have teeth along the cutting blade cutting edges to form grooves in the rut surface.
  • the number and shape of the teeth may vary depending on the rut dimensions. Usually, there are two to five teeth, in particular evenly spaced ruts produce with a depth of about one centimeter.
  • the cutting blades are each constructed from a plurality of Fräsmessklingen. Viewed in the direction of the right Fräsmess penetrates and in the direction of the left Fräsmesserriens the majority of Fräsmessklingen are flush next to each other on the right milling head and the left milling head fixed. Viewed in the direction of rotation of the milling heads, cutting blade cutting edges of rear cutter blades protrude in the radial direction beyond the cutting blade cutting edges of front cutter blades with a projection.
  • the supernatant is preferably 0.5 to 3 mm.
  • the front cutter blade scrapes a relatively large amount of ice when the material is engaged.
  • the immediately following rear cutter blade blades cut a significantly lower ice volume in comparison.
  • the surface of the brittle ice is after cutting out by means of the rear cutter blades in the Compared to the front cutter blades still smoother.
  • an even smoother milled ice surface is generated.
  • the cutter blades are then preferably arranged such that the teeth of the back and front cutter blades overlap one another in overlapping areas so that the teeth of the front cutter blades completely overlap the teeth of the rear cutter blades but the rear cutter blades protrude beyond the front cutter blades in the overhang.
  • the supernatant preferably each forms an exposed edge portion of the rear cutter blades which is not covered by the front cutter blades and which conforms to the contour of the front cutter blades.
  • the teeth of the front and rear cutter blades are preferably contacting each other, i. not offset from each other.
  • the contour and the number of teeth of the front and rear cutter blades are preferably the same.
  • the cutting blades are fixed via Messerfixierstoff releasably fixed to the right milling head and the left milling head.
  • Messerfixierstoff releasably fixed to the right milling head and the left milling head.
  • other milling cutters such as differently shaped or size-varying milling cutters, or other devices such as brushes, may also be attached to the milling head, thus extending the useful radius of the inrun ice milling unit.
  • the embodiment enables a layered processing of the track inner surfaces.
  • the start-track Eisfräsech in a milling process with a first cutter for "rough milling" ie milling for removing much ice from the rut, for example, with an acceptable smooth rut surface and in another milling process with a second cutter for "fine milling" ie milling for the production of Ruts with excellent smooth rut surface can be used.
  • this embodiment can be set using a single start-track Eisfräsech different cutting depths.
  • knife fixing means are screws and the like. The cutting blades and the milling heads each have suitable recesses for receiving the Messerfixierstoff.
  • the start-track Eisfräsech a plurality of cutting blades for replacing the mounted cutting blade, wherein the radial angle of attack and / or the axial angle of attack by the structurally structurally differently designed releasably fixed cutting blade is variable.
  • the one or more angles of attack is or are variable, for example, by variations in thickness of the cutting blades.
  • the Messerfixierstoff are designed such that, alternatively or in addition to the cutter blades brushing devices are fixed to the milling heads, with which a milled inrun track can brush out. With the brushing devices, the milled rutting surface surfaces can be further smoothed and / or cleaned with their grooves.
  • the milling heads and / or the cutting blades are formed heatable. If the milling head and / or the cutting blades are heated during milling, they will prevent the possibility of ice formation. It is also conceivable that other components of the inrun track Eisfräsvik are heated, so that the milling heads and / or cutting blades are heated indirectly in this way.
  • FIG. 1 shows a schematic not-to-scale plan view of an inventive inrun track Eisfräsritt in an upright installation position.
  • the start-track Eisfrästechnik has a left milling head 1 and a right milling head 1.
  • the right and left milling head 1 processes respectively the right and left ruts (not shown) of the inrun track (not shown), whereby they can be inserted from above into the ruts to be processed, with reference to the operational position of the inrun track.
  • the left milling head 1 and the right milling head 1 each have a bore (not visible) in the center, in which a drive shaft 2 is arranged, which is rotatable about a rotation axis A and which drives the left or right milling head 1 during milling.
  • the right milling head 1 and the left milling head 1 are arranged coaxially on the same drive shaft 2. They are thus rotatable about the common axis of rotation A.
  • the cutting blades 3 of the right milling head 1 and the left milling head 1 are evenly distributed over the right Fräskopfmesseriety and on the left Fräskopfmesseriety.
  • On the left milling head 1 and the right milling head 1 are each an equal number of cutting blades 3, purely exemplary three cutter blades 3, arranged along the Fräskopfmesseritess.
  • each of the cutting blades 3 is the cutting blades 3 of the left milling head 1 and right milling head 1 viewed along the common axis of rotation A evenly arranged, but preferably not shown here, however, they are offset by an angle of 360 ° divided by twice the number of cutting blades 3 arranged.
  • the cutting blades 3 are each arranged at an axial angle of attack of 3 ° to 16 ° relative to the axis of rotation A. Furthermore, each of the cutting blades 3 is arranged at a radial angle of attack of more than 10 ° to an imaginary radius line between the cutting blade 3 and the axis of rotation A.
  • Each of the cutting blades 3 is by Messerfixierschn 4 as For example, screws fixed.
  • the cutting blades 3 each have teeth 33, with which ruts in the track to be machined groove can be generated.
  • the teeth 33 are each formed on a Fräsmesserschneidkante 30 each cutter blade 3, wherein the Fräsmesserschneidkante 30 is shown in dashed lines, if only thought but due to the teeth 33 is not consistently formed physically.
  • the Schneidkantente extends at each cutting blade from right to left or left to right in plan view Fig.
  • the cutting blades 3 with their respective Fräsmesserschneidkante 30 are arranged relative to a parallel arrangement of the Fräsmesserschneidkante 30 to the rotation axis A at an axial angle of attack a skewed to the axis of rotation A, as shown in the case of a Fräsmessers 3.
  • FIG. 2 shows a schematic non-scale plan view of one of in Fig. 1 shown milling heads. Shown is a side view of the left or right milling head 1, wherein the drive shaft for clarity is not shown.
  • the left or right milling head 1 further have in the area between adjacent cutting blades 3 an outgoing from the adjacent cutting blades 3, inwardly to the axis of rotation A vaulted towards Fräseisingabterrorism 10.
  • the milling ice receiving portions 10 are adapted to receive milled ice during milling.
  • FIG. 3 shows a schematic non-scale perspective view of the in Fig. 2 shown milling head.
  • each cutting blade 3 is arranged at an axial angle of attack a of 3 ° to 16 ° relative to the axis of rotation A.
  • This is illustrated by a parallel shifted axis of rotation A *, which attaches to the rear end of the cutter blade 3 and thus the axial angle of attack a between the Fräsmesserschneidkante 30 and the rotation axis A, in contrast to a known from the prior art parallel arrangement of the Fräsmesserschneidkante 30 to the axis of rotation A clarifies.
  • the radial angle of attack of each cutter blade 3 can be seen, the exemplary drawings do not allow reading of angular sizes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Milling Processes (AREA)

Abstract

Die Erfindung betrifft eine Anlaufspur-Eisfräseinheit für eine Skisprungschanzen-Eisfräse mit einem rechten Fräskopf (1) und einem linken Fräskopf (1), die jeweils auf einer um eine Rotationsachse (A) rotierbaren Antriebswelle (2) angeordnet sind und jeweils eine Mehrzahl von Fräsmessern (3) aufweisen, die jeweils entlang einer Schneidkantenbreite mit Fräsmesserschneidkanten (30) ausgebildet sind, wobei die Fräsmesserschneidkanten (30) bei einer Rotation des linken Fräskopfes (1) einen linken Fräskopfmesserumfang beschreiben und bei einer Rotation des rechten Fräskopfes (1) einen rechten Fräskopfmesserumfang beschreiben und wobei am rechten Fräskopf (1) entlang des rechten Fräskopfmesserumfangs und am linken Fräskopf (1) entlang des linken Fräskopfmesserumfangs drei oder mehr als drei Fräsmesser (3) angebracht sind, dadurch gekennzeichnet, dass mindestens eines der Fräsmesser (3) mit seiner Fräsmesserschneidkante (30) relativ zu einer parallelen Anordnung der Fräsmesserschneidkante (30) zur Rotationsachse (A) in einem axialen Anstellwinkel (a) von 1° bis 16° bevorzugt 5° bis 14° und besonders bevorzugt 7° bis 12° windschief zur Rotationsachse (A) angeordnet ist.

Description

  • Die Erfindung betrifft eine Anlaufspur-Eisfräseinheit für eine Skisprungschanzen-Eisfräse. Eine derartige Anlaufspur-Eisfräseinheit für den Skisprungsport weist mindestens einen rechten Fräskopf und einen linken Fräskopf auf, die jeweils auf einer um eine Rotationsachse rotierbaren Antriebswelle angeordnet sind und jeweils eine Mehrzahl von Fräsmessern aufweisen. Diese Fräsmesser sind jeweils entlang einer Schneidkantenbreite mit Fräsmesserschneidkanten ausgebildet. Die Fräsmesserschneidkanten beschreiben bei einer Rotation des linken Fräskopfes einen linken Fräskopfmesserumfang und bei einer Rotation des rechten Fräskopfes einen rechten Fräskopfmesserumfang. Am rechten Fräskopf sind entlang des rechten Fräskopfmesserumfangs und am linken Fräskopf entlang des linken Fräskopfmesserumfangs drei oder mehr als drei Fräsmesser angebracht.
  • Eine Eisfräse mit einer derartigen Anlaufspur-Eisfräseinheit ist aus der DE102014108167A1 bekannt. Nachdem die Anlaufspur einer Skisprung-Anlage vereist worden ist, wird durch Rotation der Fräsköpfe und deren Führung entlang definierter Bahnen die Anlaufspur mit definierten Oberflächenprofilen in die präparierte Eisschicht eingefräst. Die Oberflächenprofile weisen üblicherweise eine Spurrinnenoberfläche mit Längsrillen auf, die sich entlang der Anlaufspur erstrecken. Diese Längsrillen sind einerseits wichtig, weil wegen der Längsrillen die Sprungskier nicht vollflächig mit dem darunter liegenden Eis in Gleitkontakt treten. Nur die flächigen Abschnitte der Spurrinnenoberfläche befinden sich in Gleitkontakt mit den Sprungskiern. Abschnittsweise befindet sich im Bereich der Längsrillen Luft unter den Sprungskiern. Der Skispringer kann dadurch höhere Anlaufgeschwindigkeiten erreichen. Andererseits ermöglichen die Längsrillen das kanalisierte Ableiten von Regenwasser. Die Spur selbst ist üblicherweise aktiv gekühlt, so dass diese auch bei Plusgraden nutzbar ist. Es ist nicht zu verhindern, dass es während eines Wettkampfs auf die Anlaufspur regnen kann. Das Regenwasser folgt dann der Gravitationskraft, rinnt von der Spurrinnenoberfläche in die Längsrillen hinein und in diesen dem Gefälle folgend die Spur herab. Sollte das Regenwasser während des Abfließens wieder gefrieren, so wird es in den unteren Bereichen der Rillen passieren und somit die mit den Skiern in Kontakt tretenden Bereiche, die als Spurrinnenoberfläche bezeichnet werden, nicht beeinflussen. Ähnlich verhält es sich mit geringeren Mengen an Neuschnee, die auf die Anlaufspur fallen und in den Längsrillen nach unten gleiten und somit die mit den Skiern des Springers in Kontakt tretenden Bereiche der Spur nicht beeinträchtigt.
  • Nachteilig an der bekannten Anlaufspur-Eisfräseinheit für eine Skisprungschanzen-Eisfräse ist insbesondere, dass die eingefrästen Spurrinnenoberflächen entlang der Anlaufrichtung betrachtet nicht eben genug sind. Spürbar zu große Unebenheiten kommen dadurch zustande, dass das Eis mittels der rotierenden Fräsmesser aus der Spurrinnenoberfläche herausgebrochen wird. Das Eis an sich ist als Material vergleichsweise spröde, so dass oftmals größere Stücke herausbrechen, als es bei einem gut spanbaren Material der Fall wäre. Das ist für Skisprungschanzenspringer nachteilig, weil die erzeugten Unebenheiten entlang der Anlaufrichtung der Spur während des Anlaufs übertragen durch die Sprungskier für den Springer irritierend spürbar werden.
  • Der vorliegenden Erfindung liegt somit die Aufgabe zu Grunde, eine Anlaufspur-Eisfräseinheit für eine Skisprungschanzen-Eisfräse zum Erzeugen einer Anlaufspur auf einer Skisprungschanze bereit zu stellen, die die genannten Nachteile überwindet.
  • Diese Aufgabe wird durch eine Anlaufspur-Eisfräseinheit mit den Merkmalen des Anspruchs 1 gelöst.
  • Erfindungsgemäß ist vorgesehen, dass mindestens eines der Fräsmesser mit seiner Fräsmesserschneidkante relativ zu einer parallelen Anordnung der Fräsmesserschneidkante zur Rotationsachse in einem axialen Anstellwinkel von 1° bis 16° bevorzugt 5° bis 14° und besonders bevorzugt 7° bis 12° windschief zur Rotationsachse angeordnet ist.
  • Das Fräsmesser tritt aufgrund des axialen Anstellwinkels mit seiner Fräsmesserschneidkante beim Auftreffen auf das Eis nicht gleichzeitig über die gesamte Schneidkantenbreite mit dem zu fräsenden Eis in Kontakt. Zeitlich versetzt trifft die Fräsmesserschneidkante sukzessiv mit benachbarten Abschnitten der Schneidkantenbreite auf die zu bearbeitende Eisoberfläche. Dies liegt an der axial angestellten und somit, im Vergleich zu einer parallelen Anordnung von Fräsmesserschneidkante und Rotationsachse, windschiefen Anordnung der Rotationsachse zu einer gedachten Geraden durch die Fräsmesserschneidkante. Die Lage zwei Geraden zueinander wird als windschief bezeichnet, wenn Sie sich nicht schneiden und auch nicht in der gleichen Ebene verlaufen. Wenn sie sich nicht schneiden, aber in der gleichen Ebene verlaufen, so sind die Geraden parallel. Durch die windschiefe Anordnung wird die bearbeitete Eisoberfläche in einer seitlichen SchabBewegung sukzessiv abgetragen. Es wird nicht wie im Stand der Technik durch ein gleichzeitig über die gesamte Spurbreite auf die Eisoberfläche einwirkendes Fräskopfmesser simultan herausgebrochen. Durch den von der Anlaufspur-Eisfräseinheit beim Entlangführen entlang der Anlaufspur erzeugten Schabvorgang können auch gegenüber einer idealen Ebene erhabene Stellen wie beispielsweise Wellen entlang der Spurrinnen abgetragen werden. Dadurch können die Anlaufspuren mit Spurrinnenoberflächen gefräst werden, die entlang der Anlaufrichtung betrachtet für den Skispringer als hinreichend eben empfunden werden und somit einen ruhigen Anlauf auf der Schanze gewährleisten. Als Spurrinnenoberfläche wird die gedachte Ebene der flachen Bereiche zwischen den Längsrillen der Anlaufspur bezeichnet. Der Anlaufski gleitet auf diesen Bereichen ab und hat im Bereich der Längsrillen wegen der Längsrillen keinen mechanischen Kontakt zum Eis.
  • In der betriebsgemäßen Aufstellposition der Fräsköpfe in der einen Boden und zwei Anlaufspur-Seitenwände aufweisenden, eingefrästen Anlaufspur weisen die Fräsköpfe jeweils zwei Fräskopfseiten auf, die bei Betrieb entlang der Anlaufspur-Seitenwände geführt werden und jeweils zu einer Anlaufspurseitenwand weisen. Im Sinne der Erfindung ist die Schneidkantenbreite eine Abmessung des Fräsmessers, die sich von einer Fräskopfseite zur gegenüberliegenden Fräskopfseite des Fräskopfes erstreckt und somit unmittelbar die Breite der einzufräsenden Anlaufspur bedingt. Die Fräsmesserschneidkante ist idealisiert betrachtet eine Gerade. Von dieser Geraden ausgehend können Vorsprünge in Form von Zähnen vorgesehen sein, um die bereits in der Beschreibungseinleitung erwähnten Längsrillen in der Anlaufspur zu realisieren. Die gefräste Anlaufspur mit Längsrillen stellt jedoch eine optimierte Variante dar. Entscheidend ist die Herstellung einer im Wesentlichen ebenen Spurrinnenoberfläche, mit denen der Ski des Skispringers beim Anlauf in flächigem Gleitkontakt steht. Diese Spurrinnenoberfläche kann im einfachsten Fall über die komplette Breite der Anlaufspur durchgängig ausgebildet sein. Optimierte Varianten sehen die genannten Längsrillen vor, so dass die Spurrinnenoberfläche durch die eine oder mehrere Längsrillen in mehrere Oberflächen-Abschnitte aufgeteilt ist. Jeder dieser Oberflächen-Abschnitte ist für sich betrachtet im Wesentlichen eben ausgebildet um ein ruhiges Abgleiten der Skier zu ermöglichen. Jedem dieser Oberflächen-Abschnitte ist ein entsprechender geradliniger Abschnitt der Fräsmesserschneidkante zugeordnet. Verbindet man in einer gedachten Geraden diese geradlinigen Abschnitte der Fräsmesserschneidkante, so ist diese Gerade im genannten Winkelbereich windschief zur Rotationsachse angeordnet. Wenn die geradlinigen Abschnitte der Fräsmesserschneidkante bezüglich ihrer jeweiligen Erstreckungsrichtung nicht auf einer gemeinsamen Gerade liegen, so weist das Fräsmesser eine Mehrzahl an Fräsmesserschneidkanten auf, die jeweils für sich allein betrachtet im genannten Winkelbereich windschief zur Rotationsachse angeordnet sind.
  • Die Anlaufspur-Eisfräseinheit dient als zentrales Bauteil einer Eisfräse zur Erzeugung von Anlaufspur-Spurrinnen mit einer Spurrinnenoberfläche. Die Eisfräse mit einer solchen Anlaufspur-Eisfräseinheit kann kabelgebunden mit Strom, oder kabellos mit einer Batterie oder mittels eines Kraftstoffverbrennungsmotors betrieben werden und weist entsprechende Einrichtungen zur Aufnahme von Strom einer Batterie oder Kraftstoff auf. Die Anlaufspur-Eisfräseinheit eignet sich insbesondere zur Eisbearbeitung in den Spurrinnen bei Eisschichten bis zu 10 cm Stärke. Das die Anlaufspuroberflächen charakterisierende Profil wird durch die strukturelle Ausgestaltung der Fräsmesser bestimmt. Diese hängt üblicherweise von Witterungsbedingungen ab. Wenn mit einem hohen Aufkommen an Flüssigkeit, beispielsweise durch Regen, zu rechnen ist, wird eine größere Zahl von Längsrillen bevorzugt. Beim Fräsen wird die Anlaufspur-Eisfräseinheit mit der Eisfräse entlang der Anlaufrichtung der Anlaufspur d.h. dem Spurverlauf folgend auf definierten Bahnen bewegt. Dazu liegt die Eisfräse bevorzugt insbesondere auf den Seitenwänden der Anlaufspurrinnen selbst und/oder an einem zur Anlaufspur benachbart angeordneten Schienensystem auf. Zum Festlegen definierter Bahnen kann ein solches Schienensystem aus Rohrprofilen aufgebaut sein. Die Rohrprofile haben je nach Anforderung, insbesondere durch die Gewichtskraft der Eisfräse, durch die Aufnahme von Kräften verursacht durch den Fräsvorgang der Eisfräse, unterschiedliche Durchmesser und Stärken. Ebenso ist es möglich, die Eisfräse auf ohnehin vorhandenen Bauelementen der Schanze zu führen. Diese Bauelemente sind beispielsweise im Querschnitt kastenartig ausgebildete Anlaufspur-Bauelemente. Diese Spurbauelemente weisen im Querschnitt betrachtet einen beidseitig von Wandelementen begrenzten Kastenboden auf. Diese sich entlang der Anlaufspur erstreckenden Wandelemente eignen sich auch als Schienen zur Führung der Eisfräse entlang einer definierten Bahn.
  • Der rechte bzw. der linke Fräskopf bearbeitet jeweils die rechte bzw. linke Spurrinne der Anlaufspur. Die Fräsköpfe sind vorzugsweise jeweils derart ausgestaltet, dass sie von oben in die zu bearbeitende Spurrinne einsetzbar sind. Der linke und der rechte Fräskopf sind um eine parallel zur Spurrinnenoberfläche angeordneten Rotationsachse rotierbaren Antriebswelle angeordnet. Die Rotationsachse verläuft üblicherweise in horizontaler Richtung quer zur Anlaufspur.
  • Die Fräsmesser weisen vorzugsweise ein stabiles wasserresistentes Material wie beispielsweise Stahl auf. Die Fräsmesser sind vorzugsweise derart ausgestaltet, dass sie beim Entlangführen entlang der Anlaufspur entlang ihrer Schneidkantenbreite mit ihren Fräsmesserschneidkanten die gesamte Spurrinnenbreite bearbeiten, die parallel zur Rotationsachse und senkrecht oder im Wesentlichen senkrecht zum Verlauf der Anlaufspur ist.
  • Die Fräsköpfe weisen jeweils die mindestens drei starr befestigten, axial ausgerichteten Fräsmesser auf, die je nach Lage der Rotationsachse über den zu bearbeitenden Spurrinnenoberflächen beim Fräsen mehr oder weniger zeitlich versetzt auf dem Eis aufschlagen.
  • In einer bevorzugten Ausführungsform ist jedes der Fräsmesser mit seiner Fräsmesserschneidkante in dem axialen Anstellwinkel von 3° bis 16° bevorzugt 5° bis 14° und besonders bevorzugt 7° bis 12° relativ zur Rotationsachse angeordnet. Besonders bevorzugt ist jedes der Fräsmesser im gleichen axialen Anstellwinkel angeordnet. Durch diese Ausbildungen kann das Abtragen von Eis mittels eines Schabvorgangs weiterhin optimiert werden.
  • In einer bevorzugten Ausführungsform ist mindestens eines der Fräsmesser in einem radialen Anstellwinkel von 5° bis 15° zu einer gedachten Radiuslinie zwischen der Fräsmesserschneidkante des Fräsmessers und der Rotationsachse angeordnet. Die Fräsmesser sind schräg in Bezug zu einer gedachten Radiuslinie zwischen Fräsmesserschneidkante und Rotationsachse eingesetzt, so dass sie die Anlaufspur beim Fräsen paddel- bzw. schaufelförmig bearbeiten. Dadurch wird weiterhin ermöglicht, Anlaufspuren mit Spurrinnenoberflächen zu fräsen, die entlang der Anlaufrichtung betrachtet für den Skispringer als hinreichend eben empfunden werden und somit einen ruhigen Anlauf auf der Schanze gewährleisten. Durch den axialen Anstellwinkel und die daraus resultierende windschiefe Anordnung der Fräsmesserschneidkante zur Rotationsachse variiert der radiale Anstellwinkel entlang der Schneidkantenbreite.
  • Bevorzugt ist jedes der Fräsmesser über seine Schneidkantenbreite hinweg in einem radialen Anstellwinkel von 5° bis 15° zu einer gedachten Radiuslinie zwischen Fräsmesserschneidkante des Fräsmessers und der Rotationsachse angeordnet.
  • In einer bevorzugten Ausführungsform weisen der rechte Fräskopf und der linke Fräskopf im Bereich zwischen benachbarten Fräsmessern einen von den benachbarten Fräsmessern ausgehenden, nach innen zur Rotationsachse hin eingewölbten Fräseisaufnahmeabschnitt auf. Von den Fräsmessern aus den Spurrinnen abgelöstes Eis kann in dem Fräseisaufnahmeabschnitt aufgenommen werden. Damit stört das Eis, wenn es nicht vollständig aus der Spurrinne herausgeschleudert wird, während des weiteren Fräsens nicht. Ein Stau an abgefrästem Eismaterial könnte im Extremfall die Fräse nach oben hin von der Anlaufspur weg drängen, was in Anlaufrichtung betrachtet zu Unebenheiten in der Spurrinnenoberfläche führen kann.
  • Vorzugsweise sind die Fräsmesser des rechten Fräskopfes und des linken Fräskopfes über den rechten Fräskopfmesserumfang und über den linken Fräskopfmesserumfang gleichmäßig verteilt. Mittels der gleichmäßigen Verteilung der Fräsmesser kann eine bei konstanter Bewegungsgeschwindigkeit der Anlaufspur-Eisfräseinheit gleichmäßige Entfernung von Eis aus den Spurrinnen realisiert werden. Insbesondere in dieser Ausführungsform schlagen die Fräsmesser je nach Lage der Rotationsachse über den Spurrinnenoberflächen mehr oder weniger zeit- und dimensionsversetzt auf dem Eis auf, während sich aus den Spurrinne wegbewegende Fräsmesser in umgekehrter Position zu ihnen angeordnet sind, wobei das paddel- bzw. schaufelartige Wegschleudern von Eis aus den Spurrinnen vorteilhaft unterstützt wird. Insbesondere bei einer geraden Anzahl von Fräsmessern sind vorzugsweise jeweils zwei Fräsmesser an dem Fräskopf diametral zueinander gegenüber angeordnet.
  • In einer bevorzugten Ausführungsform sind der rechte Fräskopf und der linke Fräskopf koaxial auf der gleichen Antriebswelle angeordnet. Sie sind somit um eine gemeinsame Rotationsachse drehbar. Dadurch sind ein einfacher Aufbau der Anlaufspur-Eisfräseinheit mit nur einer anzutreibenden Achse und eine gleichmäßige Bearbeitung der linken und rechten Anlaufspur realisierbar. Ebenso ist aber auch eine Einzelaufhängung der beiden Fräsköpfe mit separaten Rotationsachsen und separaten Antrieben denkbar.
  • Vorzugsweise weisen der rechte Fräskopf und der linke Fräskopf weiterhin die gleiche Anzahl an Fräsmessern auf und sind entlang der gemeinsamen Rotationsachse betrachtet um einen Winkel von 360° dividiert durch die doppelte Anzahl der Fräsmesser entlang des rechten Fräskopfmesserumfangs und entlang des linken Fräskopfmesserumfangs versetzt angeordnet. Hierdurch kommen die Fräsmesser des rechten und des linken Fräskopfes immer abwechselnd in Materialeingriff mit dem Eis auf der Anlaufspur. Die Antriebsachse erfährt in dieser Konfiguration nicht zeitgleich an beiden Fräsköpfen eine nach oben von der Anlaufspur weg orientiert Kraft. Die Gleichzeitigkeit des Materialeingriffs begünstigt in Anlaufrichtung betrachtet die Entstehung von Unebenheiten der Spurrinnenoberflächen.
  • Die Fräsmesser weisen entlang der Fräsmesserschneidkanten betrachtet vorzugsweise Zähne zur Bildung von Rillen in der Spurrinnenoberfläche auf. Die Anzahl und Form der Zähne können je nach Spurrinnenabmessungen variieren. Üblicherweise sind es zwei bis fünf Zähne, die insbesondere gleichmäßig beabstandet Spurrinnen mit einer Tiefe von rund einem Zentimeter erzeugen.
  • In einer bevorzugten Ausführungsform sind die Fräsmesser jeweils aus einer Mehrzahl von Fräsmesserklingen aufgebaut. In Richtung des rechten Fräsmesserumfangs und in Richtung des linken Fräsmesserumfangs betrachtet sind die Mehrzahl von Fräsmesserklingen bündig nebeneinander am rechten Fräskopf und am linken Fräskopf fixiert. In Rotationsrichtung der Fräsköpfe betrachtet ragen Fräsmesserschneidkanten hinterer Fräsmesserklingen in radialer Richtung über Fräsmesserschneidkanten vorderer Fräsmesserklingen mit einem Überstand hinaus. Der Überstand beträgt vorzugsweise 0,5 bis 3 mm. Durch diese Ausgestaltung kann beim Fräsen ein Doppel- oder Mehrfachklingeneffekt ausgenutzt werden. Die vordere Fräsmesserklinge schabt beim Materialeingriff eine vergleichsweise große Menge an Eis ab. Das oder die unmittelbar nachfolgenden hinteren Fräsmesserklingen schneiden ein im Vergleich deutlich geringeres Eisvolumen. Die Oberfläche des spröden Eises ist nach dem Herausschneiden mittels der hinteren Fräsmesserklingen im Vergleich zu den vorderen Fräsmesserklingen weiterhin glatter. Durch die aufgrund des axialen Anstellwinkels verursachte seitliche Schabbewegung der Fräsmesserschneidkante über die Eisoberfläche hinweg wird eine noch glattere gefräste Eisoberfläche generiert.
  • Wenn die Fräsmesser Zähne aufweisen, sind diese an den Fräsmesserschneidkanten der Fräsmesserklingen ausgebildet. Die Fräsmesserklingen sind dann vorzugsweise derart angeordnet, dass die Zähne hinterer und vorderer Fräsmesserklingen in Überlappungsbereichen aufeinander aufliegend angeordnet sind, so dass die Zähne der vorderen Fräsmesserklingen mit den Zähnen der hinteren Fräsmesserklingen vollkommen überlappen aber die hinteren Fräsmesserklingen in dem Überstand über die vorderen Fräsmesserklingen hinausragen. Der Überstand bildet vorzugsweise jeweils einen nicht von den vorderen Fräsmesserklingen bedeckten freiliegenden Randbereich der hinteren Fräsmesserklingen, der an die Kontur der vorderen Fräsmesserklingen angepasst ist. Die Zähne der vorderen und hinteren Fräsmesserklingen sind vorzugsweise einander berührend d.h. nicht versetzt zueinander angeordnet. Die Kontur und die Anzahl der Zähne der vorderen und hinteren Fräsmesserklingen sind vorzugsweise gleich.
  • In einer bevorzugten Ausführungsform sind die Fräsmesser über Messerfixiermittel lösbar am rechten Fräskopf und am linken Fräskopf fixiert. Einerseits können so leicht fehlerhafte Fräsmesser ausgetauscht werden. Andererseits können so auch anstelle der Fräsmesser auch andere Fräsmesser wie beispielsweise anders geformte oder in der Größe variierende Fräsmesser oder andere Einrichtungen wie beispielsweise Bürsten an dem Fräskopf befestigt werden, was den Nutzungsradius der Anlaufspur-Eisfräseinheit erweitert. Die Ausgestaltung ermöglicht eine schichtweise Bearbeitung der Spurinnenoberflächen. Beispielsweise kann die Anlaufspur-Eisfräseinheit in einem Fräsvorgang mit einem ersten Fräsmesser zur "Grobfräsung" d.h. Fräsen zum Abtragen von viel Eis aus den Spurrinnen beispielsweise mit akzeptabel glatter Spurrinnenoberfläche und in einem weiteren Fräsvorgang mit einem zweiten Fräsmesser zur "Feinfräsung" d.h. Fräsen zur Erzeugung von Spurrinnen mit hervorragend glatter Spurrinnenoberfläche verwendet werden. Weiterhin lassen sich durch diese Ausführungsform unter Benutzung einer einzigen Anlaufspur-Eisfräseinheit verschiedene Frästiefen einstellen. Beispiele für Messerfixiermittel sind Schrauben und dergleichen. Die Fräsmesser und die Fräsköpfe weisen jeweils geeignete Aussparungen zur Aufnahme der Messerfixiermittel auf.
  • Bevorzugt weist die Anlaufspur-Eisfräseinheit eine Mehrzahl von Fräsmessern zum Auswechseln der montierten Fräsmesser auf, wobei der radiale Anstellwinkel und/oder der axiale Anstellwinkel durch das Fixieren strukturell unterschiedlich ausgebildeter lösbar fixierter Fräsmesser veränderbar ist. Der oder die Anstellwinkel ist oder sind beispielsweise durch Dickenvariationen der Fräsmesser veränderbar.
  • Alternativ oder zusätzlich sind die Messerfixiermittel derart ausgebildet, dass alternativ oder ergänzend zu den Fräsmessern Bürstvorrichtungen an den Fräsköpfen fixierbar sind, mit denen sich eine gefräste Anlaufspur ausbürsten lässt. Mit den Bürstvorrichtungen lassen sich die eingefrästen Spurrinnenoberflächen mit ihren Rillen weiterhin glätten und/oder reinigen.
  • In einer bevorzugten Ausführungsform sind die Fräsköpfe und/oder die Fräsmesser beheizbar ausgebildet. Wenn der Fräskopf und/oder die Fräsmesser während des Fräsens beheizt werden, wird einer potenziellen Eisbildung an ihnen vorgebeugt. Ebenso ist denkbar, dass andere Bauteile der Anlaufspur-Eisfräseinheit beheizt sind, so dass die Fräsköpfe und/oder Fräsmesser auf diese Weise indirekt beheizt sind.
  • Nachfolgend werden beispielhaft mögliche Ausführungsformen der Anlaufspur-Eisfräseinheit anhand der Figuren beschrieben. Gleiche oder ähnliche Elemente werden mit gleichem Bezugszeichen bezeichnet.
  • Es zeigt:
  • Figur 1
    eine schematische nicht-maßstabsgerechte Draufsicht auf eine erfindungsgemäße Anlaufspur-Eisfräseinheit;
    Figur 2
    eine schematische nicht-maßstabsgerechte Draufsicht auf einen der in Fig. 1 gezeigten Fräsköpfe; und
    Figur 3
    eine schematische nicht-maßstabsgerechte perspektivische Ansicht auf den in Fig. 2 gezeigten Fräskopf.
  • Figur 1 zeigt eine schematische nicht-maßstabsgerechte Draufsicht auf eine erfindungsgemäße Anlaufspur-Eisfräseinheit in einer betriebsgemäßen Aufstellposition. Die Anlaufspur-Eisfräseinheit weist einen linken Fräskopf 1 und einen rechten Fräskopf 1 auf. Der rechte bzw. linke Fräskopf 1 bearbeitet jeweils die rechte bzw. linke Spurrinne (nicht gezeigt) der Anlaufspur (nicht gezeigt), wobei sie von oben in die zu bearbeitende Spurrinne einsetzbar sind, bezogen auf die betriebsgemäße Position der Anlaufspur. Der linke Fräskopf 1 und der rechte Fräskopf 1 weisen jeweils mittig eine Bohrung (nicht sichtbar) auf, in der eine Antriebswelle 2 angeordnet ist, die um eine Rotationsachse A rotierbar ist und die den linken bzw. den rechten Fräskopf 1 beim Fräsen antreibt. Der rechte Fräskopf 1 und der linke Fräskopf 1 sind koaxial auf der gleichen Antriebswelle 2 angeordnet. Sie sind somit um die gemeinsame Rotationsachse A drehbar. Die Fräsmesser 3 des rechten Fräskopfes 1 und des linken Fräskopfes 1 sind über den rechten Fräskopfmesserumfang und über den linken Fräskopfmesserumfang gleichmäßig verteilt. An dem linken Fräskopf 1 und dem rechten Fräskopf 1 sind jeweils eine gleiche Anzahl an Fräsmessern 3, rein beispielshaft drei Fräsmesser 3, entlang des Fräskopfmesserumfangs angeordnet. In Figur 1 sind die Fräsmesser 3 des linken Fräskopfs 1 und rechten Fräskopfs 1 entlang der gemeinsamen Rotationsachse A betrachtet gleichmäßig angeordnet, vorzugsweise aber hier nicht gezeigt sind sie jedoch um einen Winkel von 360° dividiert durch die doppelte Anzahl der Fräsmesser 3 versetzt angeordnet. Die Fräsmesser 3 sind jeweils in einem axialen Anstellwinkel von 3° bis 16° relativ zur Rotationsachse A angeordnet. Weiterhin ist jedes der Fräsmesser 3 ist in einem radialen Anstellwinkel von mehr als 10° zu einer gedachten Radiuslinie zwischen dem Fräsmesser 3 und der Rotationsachse A angeordnet. Jedes der Fräsmesser 3 ist mittels Messerfixiermitteln 4 wie beispielsweise Schrauben fixiert. Die Fräsmesser 3 weisen jeweils Zähne 33 auf, mit denen Spurrillen in der zu bearbeitenden Spurrinne erzeugt werden können. Die Zähne 33 sind jeweils an einer Fräsmesserschneidkante 30 jedes Fräsmessers 3 ausgebildet, wobei die Fräsmesserschneidkante 30 gestrichelt dargestellt ist, wenn sie nur gedacht aber aufgrund der Zähne 33 nicht durchgängig körperlich ausgebildet ist. Die Schneidkantenbereite erstreckt sich an jedem Fräsmesser von rechts nach links bzw. links nach rechts in Draufsicht auf Fig. 1. Die Fräsmesser 3 mit ihrer jeweiligen Fräsmesserschneidkante 30 sind relativ zu einer parallelen Anordnung der Fräsmesserschneidkante 30 zur Rotationsachse A in einem axialen Anstellwinkel a windschief zur Rotationsachse A angeordnet ist, wie es in dem Fall des einen Fräsmessers 3 dargestellt ist.
  • Figur 2 zeigt eine schematische nicht-maßstabsgerechte Draufsicht auf einen der in Fig. 1 gezeigten Fräsköpfe. Gezeigt ist eine Seitenansicht auf den linken oder rechten Fräskopf 1, wobei die Antriebswelle der Übersichtlichkeit halber nicht gezeigt ist. Der linke oder rechte Fräskopf 1 weisen weiterhin im Bereich zwischen benachbarten Fräsmessern 3 einen von den benachbarten Fräsmessern 3 ausgehenden, nach innen zur Rotationsachse A hin eingewölbten Fräseisaufnahmeabschnitt 10 auf. Die Fräseisaufnahmeabschnitte 10 sind geeignet, während des Fräsens abgefrästes Eis aufzunehmen.
  • Figur 3 zeigt eine schematische nicht-maßstabsgerechte perspektivische Ansicht auf den in Fig. 2 gezeigten Fräskopf. In dieser Ansicht ist deutlich erkennbar, dass jedes Fräsmesser 3 in einem axialen Anstellwinkel a von 3° bis 16° relativ zur Rotationsachse A angeordnet ist. Dies ist dargestellt anhand einer parallel verschobenen Rotationsachse A*, die an hinteren Ende des Fräsmessers 3 ansetzt und somit den axialen Anstellwinkel a zwischen der Fräsmesserschneidkante 30 und der Rotationsachse A im Unterschied zu einer aus dem Stand der Technik bekannten parallelen Anordnung der Fräsmesserschneidkante 30 zur Rotationsachse A verdeutlicht. Weiterhin ist der radiale Anstellwinkel jedes Fräsmessers 3 zu erkennen, wobei die beispielhaften Zeichnungen kein Ablesen von Winkelgrößen erlauben.
  • Bezugszeichenliste:
  • a
    axialer Anstellwinkel
    A
    Rotationsachse
    A*
    parallel verschobene Rotationsachse
    1
    Fräskopf
    10
    Fräseisaufnahmeabschnitt
    2
    Antriebswelle
    3
    Fräsmesser
    30
    Fräsmesserschneidkante
    33
    Zähne
    4
    Messerfixiermittel

Claims (14)

1. Anlaufspur-Eisfräseinheit für eine Skisprungschanzen-Eisfräse mit einem rechten Fräskopf (1) und einem linken Fräskopf (1), die jeweils auf einer um eine Rotationsachse (A) rotierbaren Antriebswelle (2) angeordnet sind und jeweils eine Mehrzahl von Fräsmessern (3) aufweisen, die jeweils entlang einer Schneidkantenbreite mit Fräsmesserschneidkanten (30) ausgebildet sind, wobei die Fräsmesserschneidkanten (30) bei einer Rotation des linken Fräskopfes (1) einen linken Fräskopfmesserumfang beschreiben und bei einer Rotation des rechten Fräskopfes (1) einen rechten Fräskopfmesserumfang beschreiben und wobei
am rechten Fräskopf (1) entlang des rechten Fräskopfmesserumfangs und am linken Fräskopf (1) entlang des linken Fräskopfmesserumfangs drei oder mehr als drei Fräsmesser (3) angebracht sind,
dadurch gekennzeichnet, dass mindestens eines der Fräsmesser (3) mit seiner Fräsmesserschneidkante (30) relativ zu einer parallelen Anordnung der Fräsmesserschneidkante (30) zur Rotationsachse (A) in einem axialen Anstellwinkel (a) von 1° bis 16° bevorzugt 5° bis 14° und besonders bevorzugt 7° bis 12° windschief zur Rotationsachse (A) angeordnet ist.
2. Anlaufspur-Eisfräseinheit gemäß Anspruch 1, dadurch gekennzeichnet, dass jedes der Fräsmesser (3) mit seiner Fräsmesserschneidkante (30) in dem axialen Anstellwinkel (a) von 1° bis 16° bevorzugt 5° bis 14° und besonders bevorzugt 7° bis 12° relativ zur Rotationsachse (A) angeordnet ist.
3. Anlaufspur-Eisfräseinheit gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass mindestens eines der Fräsmesser (3) in einem radialen Anstellwinkel von 5° bis 15° zu einer gedachten Radiuslinie zwischen Fräsmesserschneidkante des Fräsmessers (3) und der Rotationsachse (A) angeordnet ist.
4. Anlaufspur-Eisfräseinheit gemäß Anspruch 3, dadurch gekennzeichnet, dass jedes der Fräsmesser (3) über seine Schneidkantenbreite hinweg in einem radialen Anstellwinkel von 5° bis 15° zu einer gedachten Radiuslinie zwischen Fräsmesserschneidkante des Fräsmessers (3) und der Rotationsachse (A) angeordnet ist.
6. Anlaufspur-Eisfräseinheit, dadurch gekennzeichnet, dass der rechte Fräskopf (1) und der linke Fräskopf (1) im Bereich zwischen benachbarten Fräsmessern (3) einen von den benachbarten Fräsmessern (3) ausgehenden, nach innen zur Rotationsachse (A) hin eingewölbten Fräseisaufnahmeabschnitt (10) aufweisen.
7. Anlaufspur-Eisfräseinheit gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Fräsmesser (3) des rechten Fräskopfes (1) über den rechten Fräskopfmesserumfang und die Fräsmesser (3) des linken Fräskopfes (1) über den linken Fräskopfmesserumfang gleichmäßig verteilt sind.
8. Anlaufspur-Eisfräseinheit gemäß Anspruch 7, dadurch gekennzeichnet, dass der rechte Fräskopf (1) und der linke Fräskopf (1) koaxial auf der gleichen Antriebswelle (2) angeordnet sind und somit um eine gemeinsame Rotationsachse (A) drehbar sind.
9. Anlaufspur-Eisfräseinheit gemäß Anspruch 8, dadurch gekennzeichnet, dass der rechte Fräskopf (1) und der linke Fräskopf (1) die gleiche Anzahl an Fräsmessern (3) aufweisen und entlang der gemeinsamen Rotationsachse (A) betrachtet um einen Winkel von 360° dividiert durch die doppelte Anzahl der Fräsmesser entlang des rechten Fräskopfmesserumfangs und entlang des linken Fräskopfmesserumfangs versetzt zueinander angeordnet sind.
10. Anlaufspur-Eisfräseinheit gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Fräsmesser entlang der Fräsmesserschneidkanten betrachtet vorzugsweise Zähne zur Bildung von Rillen in der Spurrinnenoberfläche aufweisen.
11. Anlaufspur-Eisfräseinheit gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Fräsmesser (3) jeweils aus einer Mehrzahl von Fräsmesserklingen aufgebaut sind, wobei in Richtung des rechten Fräsmesserumfangs und in Richtung des linken Fräsmesserumfangs betrachtet die Mehrzahl von Fräsmesserklingen bündig nebeneinander am rechten Fräskopf (1) und am linken Fräskopf (1) fixiert sind und wobei in Rotationsrichtung der Fräsköpfe (1) betrachtet hintere Fräsmesserklingen mit ihrer Fräsmesserschneidkante (30) in radialer Richtung über die Fräsmesserschneidkanten (30) vorderer Fräsmesserklingen mit einem Überstand hinausragen.
12. Anlaufspur-Eisfräseinheit gemäß Anspruch 11, dadurch gekennzeichnet, dass der Überstand 0,5 bis 3 mm beträgt.
13. Anlaufspur-Eisfräseinheit gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Fräsmesser (3) über Messerfixiermittel (4) lösbar am rechten Fräskopf (1) und am linken Fräskopf (1) fixiert sind.
14. Anlaufspur-Eisfräseinheit gemäß Anspruch 13, dadurch gekennzeichnet, dass die Eisfräseinheit eine Mehrzahl von Fräsmessern (3) zum Auswechseln montierter Fräsmesser (3) aufweist, wobei der radiale Anstellwinkel und/oder der axiale Anstellwinkel (a) durch das Fixieren strukturell unterschiedlich ausgebildeter lösbar fixierter Fräsmesser (3) veränderbar ist.
15. Anlaufspur-Eisfräseinheit gemäß einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Messerfixiermittel (4) derart ausgebildet sind, dass alternativ oder ergänzend zu den Fräsmessern (3) Bürstvorrichtungen an den Fräsköpfen (1) fixierbar sind, mit denen sich eine gefräste Anlaufspur ausbürsten lässt.
EP16204138.8A 2016-12-14 2016-12-14 Anlaufspur-eisfräseinheit für eine skisprungschanze Active EP3336257B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16204138.8A EP3336257B1 (de) 2016-12-14 2016-12-14 Anlaufspur-eisfräseinheit für eine skisprungschanze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16204138.8A EP3336257B1 (de) 2016-12-14 2016-12-14 Anlaufspur-eisfräseinheit für eine skisprungschanze

Publications (2)

Publication Number Publication Date
EP3336257A1 true EP3336257A1 (de) 2018-06-20
EP3336257B1 EP3336257B1 (de) 2019-08-07

Family

ID=57629280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16204138.8A Active EP3336257B1 (de) 2016-12-14 2016-12-14 Anlaufspur-eisfräseinheit für eine skisprungschanze

Country Status (1)

Country Link
EP (1) EP3336257B1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29913857U1 (de) * 1999-08-09 2000-12-21 Kässbohrer Geländefahrzeug AG, 89250 Senden Fräswelle
AT12434U1 (de) * 2011-01-14 2012-05-15 Wiedemaier Hans Peter Fräswelle für ein pisten- und/oder loipenpräparierungsgerät
DE102014108167A1 (de) 2014-06-11 2016-01-07 Peter Riedel Patent UG (haftungsbeschränkt) Anlaufspur-Eisfräse für eine Skisprungschanze

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29913857U1 (de) * 1999-08-09 2000-12-21 Kässbohrer Geländefahrzeug AG, 89250 Senden Fräswelle
AT12434U1 (de) * 2011-01-14 2012-05-15 Wiedemaier Hans Peter Fräswelle für ein pisten- und/oder loipenpräparierungsgerät
DE102014108167A1 (de) 2014-06-11 2016-01-07 Peter Riedel Patent UG (haftungsbeschränkt) Anlaufspur-Eisfräse für eine Skisprungschanze

Also Published As

Publication number Publication date
EP3336257B1 (de) 2019-08-07

Similar Documents

Publication Publication Date Title
EP1108093B1 (de) Hobelvorrichtung an maschinen zur eisaufbereitung
DE2713460A1 (de) Verfahren und vorrichtung zur abtragen einer strassendecke in einer vorgegebenen ebene
DE3333941A1 (de) Fraese
EP3336257B1 (de) Anlaufspur-eisfräseinheit für eine skisprungschanze
DE102014108167B4 (de) Anlaufspur-Eisfräse für eine Skisprungschanze
EP2319988B1 (de) Heckanbaubaugerät für eine Pistenraupe
DE2933223A1 (de) Verfahren zum ernten von zuckerrohr und vorrichtung zur durchfuehrung des verfahrens
EP3195934B1 (de) Zerkleinerungsvorrichtung und verfahren zum betrieb einer solchen zerkleinerungsvorrichtung
DE102009052924B3 (de) Vorrichtung zur Bearbeitung von Skisprungschanzen-Anlaufspuren
EP0973973B1 (de) Schneefrässchleuder
DE69706362T2 (de) Egalisiereinrichtung für Tabak in einer Zigarettenherstellungsmaschine
AT500034B1 (de) Auflockerungs- bzw. fräsvorrichtung, damit ausgestattetes fahrzeug und verfahren zur präparierung von pisten
DE1759134A1 (de) Verfahren zum Aufbereiten einer harten oder eisaehnlichen Schneeoberflaeche und dazugehoeriges Geraet
DE2753993C2 (de) Spiel mit Fahrzeugen
EP2639354A2 (de) Pistenraupe zur Schneeflächenbearbeitung
DE2713428A1 (de) Rasenbearbeitungsgeraet
DE948233C (de) Streckenvortriebsmaschine fuer den Braunkohlen-Tiefbau
DE102018129368B4 (de) Bohrer zum Entfernen eines Strunks bei Gemüse
DE3206976A1 (de) Langlauf-spurgeraet
DE60034352T2 (de) Armanordnung für Fahrzeug
DE820340C (de) Entrindemaschine fuer Baumstaemme und andere Rundhoelzer
DE102004010280B3 (de) Fahrbare Schneeerzeugungsmaschine zur Gewinnung von Schnee aus Eisblöcken zur Beschneiung von Skipisten
DE2301978A1 (de) Vorrichtung zum zerschneiden von fleischbloecken
DE641441C (de) Speiseeismaschine mit umlaufender Spatelschnecke
AT151555B (de) Speiseeismaschine mit umlaufender Spatelschnecke.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01H 4/02 20060101AFI20190118BHEP

INTG Intention to grant announced

Effective date: 20190214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005914

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016005914

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191214

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161214

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1164082

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016005914

Country of ref document: DE

Owner name: PETER RIEDEL GMBH, DE

Free format text: FORMER OWNER: PETER RIEDEL PATENT UG (HAFTUNGSBESCHRAENKT), 08340 SCHWARZENBERG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231205

Year of fee payment: 8