EP3280558A1 - Verfahren zur herstellung eines weichmagnetischen körpers - Google Patents

Verfahren zur herstellung eines weichmagnetischen körpers

Info

Publication number
EP3280558A1
EP3280558A1 EP16715832.8A EP16715832A EP3280558A1 EP 3280558 A1 EP3280558 A1 EP 3280558A1 EP 16715832 A EP16715832 A EP 16715832A EP 3280558 A1 EP3280558 A1 EP 3280558A1
Authority
EP
European Patent Office
Prior art keywords
soft magnetic
coating
powder particles
sintering
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16715832.8A
Other languages
English (en)
French (fr)
Other versions
EP3280558B1 (de
Inventor
Branislav Zlatkov
Marcus Menzel
Henrike Harstick
Henning Wöhl-Bruhn
Eike Hermann Timm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3280558A1 publication Critical patent/EP3280558A1/de
Application granted granted Critical
Publication of EP3280558B1 publication Critical patent/EP3280558B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • B22F2203/11Controlling temperature, temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing a soft magnetic body. Furthermore, the invention relates to a soft magnetic body and to a soft magnet having a soft magnetic body.
  • soft magnetic bodies and soft magnets made of soft magnetic materials for the manufacture and use of soft magnetic cores of electric motors, electric valves in injection systems, actuators and sensors or the like.
  • Such soft magnetic body z. B. be formed as toroidal cores, ground cores or powder cores.
  • the soft magnetic core consists of a powder composite material.
  • the powder composite is prepared by mixing a ferromagnetic amorphous or nanocrystalline alloy powder with a ferromagnetic dielectric powder and a thermoplastic or thermosetting polymer.
  • the disadvantage is that the production of known soft magnetic body or soft magnets made of a soft magnetic body is often very expensive and expensive. Also, the robustness of the soft magnetic body is often reduced, the temperature and / or corrosion resistance may not be sufficient. In an operation of the soft magnetic body or soft magnets or electric sheets in an alternating magnetic field - especially at higher frequencies - the soft magnetic body often have a high power loss due to the occurrence of eddy currents. It creates high temperatures, which have a negative impact on operation and reliability. Furthermore, during the production process, in particular by the powder metallurgical route (during sintering), undesired or uncontrollable crystal growth of the particles of the soft magnetic material takes place typically.
  • a further object is the reduction of the energy losses arising in the soft magnet.
  • a soft magnetic body is understood in particular to be a body made of a soft magnetic material and / or a soft magnetic material.
  • the body may preferably have a specific design and thus be formed, for example, as a toroidal core, ground core, powder core and / or as a molded or solid part.
  • a soft magnet is also understood to mean, in particular, a soft magnetic body which has a low coercive field strength and is therefore unsuitable for use as a permanent magnet or permanent magnet.
  • the soft magnet or the soft magnetic body has the soft magnetic material which can be easily magnetized (magnetic polarization) in a magnetic field, for example, as a ferromagnetic material and thus serves to "amplify" the magnetic field
  • magnetisation does not last for a long time, so that after the omission of the magnetic field there is no significant magnetization, the coercitive field strength of a soft magnetic material is therefore substantially lower than that of a hard magnetic material.
  • the object is achieved in particular by a method for producing a soft-magnetic body and in particular a soft magnet, comprising the following steps:
  • the powder particles b) coating the powder particles with an insulating (ie electrically non-conductive), in particular thermally stable coating material.
  • the sintering temperature of the coating material is lower than the sintering temperature of the soft magnetic material.
  • step c) The steps are preferably carried out sequentially, in particular step c) being carried out after step b).
  • the temperature increase resulting from the heat treatment relates in particular to the coated powder, ie the temperature increase takes place both for the coating material and for the powder particles.
  • the heat treatment in particular both the coating material and the soft magnetic material maximum one used for heat treatment process temperature.
  • a heat treatment of the powder particles coated in step b) takes place, wherein preferably only the coating material according to step c) is sintered or vitrified.
  • the term sintering temperature refers to a temperature suitable for sintering and / or vitrification (ie conversion into the glass phase) of the respective material (ie the soft magnetic material or the coating material).
  • the sintering temperature is, for example, in a range below the transformation temperature (in particular also glass transition temperature) or the melting temperature of the respective material. It is further conceivable that the sintering temperature is substantially proportional to the melting temperature and / or transformation temperature and / or a solidus temperature of the respective material.
  • the transformation temperature of the coating material is lower than the melting temperature or sintering temperature of the soft magnetic material in order to prevent sintering or melting of the powder particles.
  • the coating material is preferably thermally stable at up to 600 ° C (Celsius) and / or up to 800 ° C and / or up to 1200 ° C and / or up to 1400 ° C.
  • step b) is preferably such a coating material chosen that the adjacent powder particles can not grow together in step b) or step c) by the heat treatment.
  • the method according to the invention which is in particular a powder metallurgy method, the corrosion resistance of the soft magnetic body is increased due to the coating.
  • a passivation of the particle surfaces As a result, impurities such.
  • the isolation of the powder particles by the coating material also allows the formation of an insulating, ie electrically non-conductive barrier.
  • the coating material serves this particular as an insulator or binder, which z. B. is formed from a starting material and / or used to produce a matrix material.
  • the starting material in this sense preferably represents a precursor for the coating material and / or the coating material is a precursor for the matrix material.
  • the process temperature used for the heat treatment or sintering is preferably chosen such that the coating material is incorporated into a matrix (a diamagnetic) or paramagnetic material) that embeds the powder particles.
  • the heat treatment or sintering of the coating material or the entire process according to the invention takes place here under conditions in which no sintering of the soft magnetic material takes place.
  • eddy current losses can be significantly reduced and a rise in temperature or a heating of the soft magnet can be reduced during operation with higher frequency alternating magnetic fields.
  • further energy losses such as hysteresis or repercussion losses, due to the insulating effect of the coating can be reduced.
  • Sintered powder particles thus isolated have high temperature stability against soft magnetic components mixed together with a polymer as a binder.
  • a post-treatment in particular a further heat treatment and / or a shaping of the heat-treated powder, can take place.
  • the heat treatment of the coating material according to step c) corresponds in particular to a heat treatment of the entire powder or of the powder particles with the aim of sintering the coating material, although the melting and / or sintering of the powder particles and / or the soft magnetic material avoided and / or prevented becomes. This allows adaptation of the soft magnet produced for a wide variety of uses.
  • the soft magnetic powder is previously produced.
  • the powder may in particular be crystalline soft magnetic materials (such as soft iron, carbon steels, FeAl, FeAlSi, FeNi, FeCo or the like alloys) and / or amorphous soft magnetic materials (such as FeNiBSi, FeBSi or the like) and / or soft magnetic ferrite materials (eg MnZn ferrites, MgZn ferrites or the like), spinel materials (eg MnMgZn, NiZn or the like) and / or garnet materials (BiCa, YGd or the like) and / or the like.
  • crystalline soft magnetic materials such as soft iron, carbon steels, FeAl, FeAlSi, FeNi, FeCo or the like alloys
  • amorphous soft magnetic materials such as FeNiBSi, FeBSi or the like
  • soft magnetic ferrite materials eg MnZn ferrites, MgZn ferrites or the like
  • spinel materials eg M
  • the coated powder particles are shaped into a compact, in particular by pressing.
  • the advantage is achieved that reliably the desired shape of the soft magnetic body, the properties of the material and the packing density can be adjusted or improved.
  • the term "compact” here refers generally to the resulting shaped body or green body and is thus not limited to pressing, for example by molding and / or pressing and / or pouring and / or die pressing and / or hot pressing and / or cold isostatic pressing and / or hot isostatic pressing and / or ultrasonic pressing or the like .
  • the coated powder particles result from the uncoated powder particles, which were coated according to step b) and thus have powder particles coated by the coating material. so that the molding can optionally be carried out together with the sintering and / or the heat treatment according to step c) . This affords the advantage that the temperature required for sintering can be reduced, but then it has to be taken into account that for sintering respectively.
  • process temperature is adjusted so that the lower sintering temperature of the soft magnetic material is not achieved in the heat treatment.
  • the heating of the compact is carried out according to step c), for example, up to a temperature below the melting temperature of the soft magnetic material, but at least to a temperature which sinters the coating material and / or transferred to the glass phase, ie vitrified.
  • the process temperature for heat treatment according to step c) is in particular in the transformation region of the coating material, in particular glass (if this is used as a coating material).
  • the heat treatment according to step c) can be carried out in vacuo or in a neutral or a reducing atmosphere.
  • the heat treatment and in particular the sintering under air and / or nitrogen and / or argon and / or hydrogen can take place, since the surface of the powder particles is passivated.
  • the process temperature and / or the sintering temperature of the coating material is at least 50 K (Kelvin) and / or 100 K and / or 150 K and / or 200 K and / or 220 K below the sintering temperature of the soft magnetic material.
  • a process temperature used for the heat treatment, in particular for sintering, and / or a process pressure used for the heat treatment are adapted such that sintering and / or melting of the powder particles is avoided
  • the process temperature is below the sintering temperature suitable for sintering the soft magnetic material.
  • the heat treatment is preferably carried out, ie in particular sintering and / or vitrification, in such a way that the process temperature used and the process pressure together influence the sintering temperature.
  • the compact or the coating material is heated to a maximum of one process temperature, wherein in this process the maximum process pressure is selected such that sintering and / or melting of the powder particles and / or the soft magnetic material is always avoided and / or prevented.
  • the heat treatment is preferably carried out in such a way that a phase transition of the powder particles is always avoided. As a result, a substantial change of the powder particles (crystal growth or contact closure) is prevented, whereby the performance of the soft magnet is increased.
  • the coating material at least partially in a matrix (ie a matrix material) of a diamagnetic and / or paramagnetic, in particular insulating material is transferred, in particular such that the matrix embeds the powder particles.
  • a coating of the coating material or of the matrix material forms, which completely surrounds the powder particles (that is, in particular the predominant number of the powder particles of the powder), for example.
  • the coating increases the corrosion resistance of the soft magnetic material.
  • the coating leads to a passivation of the particle surfaces of the powder particles. Thus, impurities such.
  • the coating by the coating material takes place in particular such that forms a non-conductive barrier, which leads to an isolation of the powder particles. As a result, eddy currents can be significantly reduced and reduce the unwanted heating of the soft magnetic body at higher frequency alternating magnetic fields.
  • the coating is carried out by a dry deposition method, in particular by a chemical and / or physical gas deposition method.
  • the coating can be carried out by chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the deposition process in particular a starting material for. B. the starting material used to produce the coating material.
  • Physical vapor deposition processes ie PVD are understood to mean vacuum-based coating processes in which the starting material is converted into the gas phase and deposited on the substrate to be coated (ie the powder particles). For example, is deposited by way of condensation.
  • evaporation processes such as thermal evaporation, laser beam evaporation, arc evaporation, electron beam evaporation
  • sputtering ie sputter deposition or cathode sputtering
  • CVD chemical vapor deposition
  • the starting material is transferred by various techniques in the gas phase, in which case, if necessary, electron or ion beams are used for the deposition.
  • the deposition of the coating material on the surface of the substrate due to a chemical reaction of the component present in the gas phase) takes place to form a solid component.
  • the starting material is thus in a volatile form in the gas phase and precipitates as a less volatile compound, for example elementally or as an oxide.
  • the dry process have the advantage that no expensive solvents are needed and no measures for solvent disposal or solvent recovery are required.
  • energy-intensive drying processes are eliminated, so that the coating methods described have a high degree of flexibility with regard to the applicable coating materials.
  • nasal techniques such as sol-gel coating can be used.
  • the coating may preferably have at least one or an additional oxide layer and be produced in particular by the oxidation of the powder and subsequent coating by glass and / or ceramic glass and / or ceramic. This results in a particularly advantageous embodiment and isolation of the soft magnetic powder particles.
  • the energy losses arising in the soft magnet due to the electrical insulation effect of the coating can be reduced in conjunction with the individual particles, so that no short circuit of individual soft magnetic particles.
  • the coating material is obtained in particular from a starting material and after coating, the coating material, in particular in oxidic and / or fine particulate structure, is present, wherein preferably by heat treatment and / or sintering, the coating material is vitr .
  • vitrification refers to the solidification of a liquid by increasing the viscosity while it is being cooled.
  • a crystallization remains and there is an amorphous material.
  • the starting material in particular is used as starting material. From the starting material, for example, the coating material and from the Coating material generates the matrix material (matrix).
  • the materials, in particular the matrix material may preferably comprise and / or consist of glass, a glass ceramic and / or a ceramic.
  • the materials used for the coating, ie the coating material and / or the starting material and / or the matrix material may further comprise and / or consist of di- or paramagnetic materials, in particular glass materials and / or glass ceramics and / or ceramics and / or oxides and / or mixtures of the materials mentioned.
  • the matrix material can be a glass and / or a glass ceramic and / or a ceramic and / or a combination of the materials mentioned.
  • the material used for the coating comprises in particular SiO 2 and / or other metal oxides, in particular Al 2 O 3, Na 2 O, K 2 O, MgO, CaO, B 2 O 3, CO 2, PbO and / or the like, and particularly preferably quartz and / or crown glass and / or lime.
  • the materials may optionally have mixtures of different oxides with variable SiO 2 content.
  • the oxides in the glass may not be in the form of separate low molecular weight molecules but as extended networks. So is z.
  • Ceramic materials include, in particular, mineral silicate materials, ie, such as the glasses or glass ceramics, SiO 2 or SiO 4-based materials, such as kaolins or clay minerals, and / or oxide ceramics based on aluminum oxide, beryllium oxide or the like. Furthermore, the ceramic materials may also comprise non-oxidic materials and / or carbides and / or nitrides, such as silicon carbide SiC, boron carbide BC or boron nitride BN. It is also conceivable to make distinctions between the chemical composition of the ceramic materials and the glasses or glass ceramics.
  • the transformation temperature or melting temperature can be determined, for example, by calorimetric methods (such as differential scanning calorimetry or DCS).
  • the transformation temperature and / or melting temperature of the matrix material is preferably chosen to be at least 100 K and preferably at least 200 K below the melting temperature of the soft magnetic material.
  • salts and / or volatile compounds such as hydrides are used for the production of the glasses, glass ceramics and / or ceramics.
  • the corresponding elemental components which may still be formed in the gas phase or after Deposition on the particle surface of the powder particles to the corresponding oxides react.
  • step b) ie after the coating
  • step c) ie after sintering or heat treatment
  • a thermal aftertreatment takes place in particular by hot isostatic pressing.
  • the hot isostatic pressing can alternatively or additionally also take place simultaneously with step c).
  • the compact is, for example, in the compression space of the plant or optionally also z. B. set in a deformable container, which z. B. to a heat treatment temperature, which may be low or higher than the sintering temperature is heated.
  • the compact is subjected to a pressure of up to 50 MPa and / or 100 MPa and / or 200 MPa and / or 300 MPa.
  • a magnetic field treatment and / or a thermal treatment can take place.
  • a soft magnetic body comprising:
  • Powder particles, in particular cores, of a soft magnetic material are provided.
  • Coating (especially the cores) of a heat-treated insulating coating material, wherein the coating surrounds the powder particles.
  • the soft-magnetic body is produced in particular in such a way by the method according to the invention that the production always takes place without magnetic field (ie no external magnetic field is used).
  • the core in this case preferably has a diameter which essentially corresponds to the diameter of the powder particles in step a), d. H. before the heat treatment, preferably in the range of 0.5 ⁇ to 250 ⁇ (depending on the material and intended use of the body).
  • the soft magnetic body according to the invention brings about the same advantages as have been described in detail with reference to a method according to the invention.
  • the soft magnetic body may preferably be produced by a method according to the invention.
  • a layer thickness of the coating is in the range of 1 nm to 10 ⁇ m, preferably in the range of 2 nm and 50 nm.
  • the diameter of the powder particles before sintering according to step c) substantially corresponds to the diameter of the powder particles after sintering according to step c) and / or the diameter of the powder particles of the soft magnetic body according to the invention or of the soft magnet according to the invention. The diameter remains substantially constant, in particular during the entire process according to the invention, if appropriate with a certain distribution (or tolerance).
  • the layer thicknesses and diameters are preferably matched to one another such that sufficient electrical insulation and passivation of the powder particles is ensured, wherein the layer thicknesses must be small enough so as not to restrict the magnetic field density of the soft magnet too much.
  • the soft magnet has a soft magnetic body according to the invention and / or is produced by a method according to the invention.
  • the soft magnet may optionally be produced by further post-treatment steps and / or by an exciting manufacturing process (such as cutting and grinding).
  • an exciting manufacturing process such as cutting and grinding.
  • Fig. 1 is a schematic representation of an uncoated, soft magnetic powder in
  • Fig. 3 is a schematic representation of a coated soft magnetic powder with
  • 4 shows a schematic representation of a coated soft magnetic powder in irregular form
  • 5 is a schematic representation of a compact of a regular, spherical and coated powder
  • Fig. 6 is a schematic representation of a compact of an irregular, coated
  • Fig. 8 is a schematic representation of a heat treated, irregular, coated
  • FIG. 10 shows a schematic illustration of exemplary embodiments of a soft-magnetic body according to the invention and soft magnets according to the invention.
  • a soft magnetic powder 20 may comprise a plurality of powder particles 21, which are formed for example as a spherical and / or ellipsoid of revolution and / or irregular with any shape ( Figure 2).
  • the powder particles 21 each have a diameter P of substantially 1 ⁇ to 250 ⁇ . In particular, it is conceivable that the diameters P of the individual powder particles 21 vary at most in this range mentioned and / or in a range of at most 0.1 ⁇ m to 50 ⁇ m.
  • the powder particles 21 have a soft magnetic material 22, which z. B. may have a crystalline soft magnetic material such as soft iron or carbon steels.
  • the powder particles 21 shown in FIGS. 1 and 2 correspond to uncoated powder particles 21, so that this is an uncoated powder 20a.
  • FIGS. 3 and 4 show a coated powder 20b which has a coating material 31.
  • the coating material 31 surrounds the powder particles 21 (or cores) as coating 30, the coating 30 having a layer thickness D of at least 1 nm and / or at most 10 nm and / or at most 1 ⁇ and / or at most 10 ⁇ with a tolerance of at most 1 nm and / or 10 nm. It is clearly evident that due to the coating 30, the powder particles 21 are isolated from each other (electrically), whereby eddy current losses can be significantly reduced.
  • Figures 5 and 6 show schematically each a compact 40, which has the coated powder 20b.
  • the compact is formed, for example, by molding and in particular pressing to obtain a desired shape. The molding or pressing can also be done simultaneously to a heat treatment of the compact. By the heat treatment, in particular by sintering the coated powder 20b or the coating 30, vitrification of the coating material 31 is effected in particular.
  • a soft-magnetic body 10 according to the invention is shown (virtually a cut-out after sintering), which has been produced by the method 100 according to the invention.
  • the coating material 31 was converted into a matrix material or a matrix 32.
  • no significant grain growth has occurred since the process temperature during the heat treatment is below a sintering temperature of the soft magnetic material 22.
  • the powder particles 21 have in this case been isolated from one another by an amorphous phase, wherein a contact closure between powder particles is excluded.
  • FIG. 9 schematically illustrates method steps of a method 100 according to the invention.
  • provision of a soft magnetic powder 20 takes place.
  • the soft magnetic powder 20 has powder particles 21 made of a soft magnetic material 22.
  • the soft magnetic powder 20 is produced from crystalline, soft-magnetic materials.
  • coating of the powder particles 21 with a coating material 31 takes place.
  • a coating material 31 and / or a starting material is produced and / or provided.
  • the coated powder 20b is pressed to form a compact 40.
  • the coated powder 20b or the compact 40 is then heat-treated or sintered, the process temperature used for the heat-treatment being below a sintering temperature of the soft-magnetic material 22.
  • the heat treatment is carried out in particular such that a crystal growth of the powder particles 21 is avoided.
  • the coating 30 ensures that adjacent powder particles 21 can not grow together.
  • an after-treatment eg. B. a hot isostatic pressing.
  • a soft magnetic body 10 and a soft magnet 1 1 is shown, which can be used for example for electric motors.
  • the desired shape can be achieved, for example, by molding and / or after treatment, which z. B. can be done during sintering or after sintering.
  • the soft-magnetic body 10 according to the invention and / or the soft magnet 11 according to the invention can have arbitrary shapes depending on the intended use and is therefore not limited to the shapes shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Verfahren (100) zur Herstellung eines weichmagnetischen Körpers (10), umfassend die folgenden Schritte: a) Bereitstellen eines weichmagnetischen Pulvers (20) mit Pulverpartikeln (21) aus einem weichmagnetischen Material (22), b) Beschichten der Pulverpartikel (21) mit einem isolierenden Beschichtungsmaterial (31), wobei die Sintertemperatur des Beschichtungsmaterials (31) geringer ist als die Sintertemperatur des weichmagnetischen Materials (22), c) Wärmebehandeln des Beschichtungsmaterials (31) derart, dass während der Wärmebehandlung eine Sinterung und/oder ein Schmelzen der Pulverpartikel (21) vermieden wird.

Description

Beschreibung
Verfahren zur Herstellung eines weichmagnetischen Körpers
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines weichmagnetischen Körpers. Ferner bezieht sich die Erfindung auf einen weichmagnetischen Körper sowie auf einen Weichmagnet, welcher einen weichmagnetischen Körper aufweist.
Es ist aus dem Stand der Technik bekannt, weichmagnetische Körper und Weichmagnete aus weichmagnetischen Werkstoffen zur Herstellung und zum Einsatz für weichmagnetische Kerne von Elektromotoren, elektrischen Ventilen in Einspritzsystemen, Aktoren und Sensoren oder dergleichen zu nutzen. Dabei können solche weichmagnetischen Körper z. B. als Ringbandkerne, Massekerne oder Pulverkerne ausgebildet sein.
Aus der DE 101 28 004 A1 ist z. B. ein induktives Bauelement bekannt, dessen weichmagnetischer Kern aus einem Pulververbundwerkstoff besteht. Der Pulververbundwerkstoff wird durch Mischen eines ferromagnetischen amorphen oder nanokristallinen Legierungspulvers mit einem ferromagnetischen dielektrischen Pulver sowie einem thermoplastischen oder duroplastischen Polymer hergestellt.
Nachteilig ist, dass die Herstellung bekannter weichmagnetischer Körper bzw. Weichmagnete aus einem weichmagnetischen Körper oft sehr aufwendig und mit hohen Kosten verbunden ist. Auch ist häufig die Robustheit der weichmagnetischen Körper reduziert, wobei die Temperatur- und/oder Korrosionsbeständigkeit ggf. nicht ausreichend ist. Bei einem Betrieb der weichmagnetischen Körper bzw. Weichmagnete oder Elektrobleche in einem magnetischen Wechselfeld - insbesondere bei höheren Frequenzen - weisen die weichmagnetischen Körper oft eine hohe Verlustleistung aufgrund des Auftretens von Wirbelströmen auf. Es entstehen hohe Temperaturen, welche sich negativ auf den Betrieb und die Zuverlässigkeit auswirken. Ferner findet typischerweise während des Herstellungsprozesses insbesondere durch die pulvermetallurgische Route (beim Sintern) ein unerwünschter bzw. nicht kontrolierbarer Kristallwachstum der Partikel des weichmagnetischen Materials statt.
Es ist daher eine Aufgabe der vorliegenden Erfindung, die voranstehend beschriebenen Nachteile zumindest teilweise zu beheben. Insbesondere ist es Aufgabe der vorliegenden Erfindung, die Kosten und die Komplexität zur Herstellung der weichmagnetischen Körper und/oder Weichmagnete (weichmagnetische Bauteile) zu reduzieren. Weiter soll die Temperatur- und/oder Korrosionsbeständigkeit sowie die Robustheit erhöht und/oder die Verlustleistung bzw. die Wirbelstromverluste reduziert werden. Insbesondere ist eine weitere Aufgabe die Reduzierung der im Weichmagneten entstehenden Energieverluste.
Die voranstehende Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 , einen weichmagnetischen Körper mit den Merkmalen des Anspruchs 8 sowie durch einen Weichmagnet mit den Merkmalen des Anspruchs 10. Weitere Merkmale und Details der Erfindung ergeben sich aus den jeweiligen Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem erfindungsgemäßen Verfahren beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen weichmagnetischen Körper sowie dem erfindungsgemäßen Weichmagnet, und jeweils umgekehrt, so dass bzgl. der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.
Unter einem weichmagnetischen Körper wird im Folgenden insbesondere ein Körper aus einem weichmagnetischen Werkstoff und/oder einem weichmagnetischen Material verstanden. Der Körper kann dabei vorzugsweise eine bestimmte Bauform aufweisen und somit beispielsweise als Ringbandkern, Massekern, Pulverkern und/oder als Form- oder Massivteil ausgebildet sein. Unter einem Weichmagneten wird insbesondere ebenfalls ein weichmagnetischer Körper verstanden, welcher eine geringe Koerzitivfeldstärke aufweist und damit für einen Einsatz als Dauermagnet bzw. Permanentmagnet ungeeignet ist. Insbesondere weist der Weichmagnet bzw. der weichmagnetische Körper das weichmagnetische Material auf, welches sich beispielsweise als ferromagnetisches Material in einem Magnetfeld leicht magnetisieren lässt (magnetische Polarisation) und damit der„Verstärkung" des magnetischen Feldes dient. Im Gegensatz zu Permanentmagneten und hartmagnetischen Werkstoffen erfolgt die Magnetisierung jedoch nicht auf Dauer, so dass nach dem Wegfall des magnetischen Feldes keine signifikante Magnetisierung bestehen bleibt. Die Koerzitivfeldstärke ist bei einem weichmagnetischen Material daher wesentlich geringer als bei einem hartmagnetischen Material.
Die Aufgabe wird insbesondere gelöst durch ein Verfahren zur Herstellung eines weichmagnetischen Körpers und insbesondere eines Weichmagneten, umfassend die folgenden Schritte:
a) Bereitstellen eines weichmagnetischen Pulvers mit Pulverpartikeln aus einem weichmagnetischen Material,
b) Beschichten der Pulverpartikel mit einem isolierenden (d. h. elektrisch nicht-leitenden), insbesondere thermisch stabilen Beschichtungsmaterial. Hierbei ist insbesondere vorgesehen, dass die Sintertemperatur des Beschichtungsmaterials geringer ist als die Sintertemperatur des weichmagnetischen Materials. c) Wärmebehandeln, insbesondere Sintern, des Beschichtungsmaterials, insbesondere zur Vitrifizierung des Beschichtungsmaterials, derart, dass während der Wärmebehandlung eine Sinterung und/oder ein Schmelzen der Pulverpartikel und/oder des weichmagnetischen Materials vermieden, d. h. teilweise oder (im Wesentlichen) vollständig verhindert wird.
Die Schritte werden dabei vorzugsweise nacheinander durchgeführt, wobei insbesondere Schritt c) zeitlich nach Schritt b) durchgeführt wird. Dabei betrifft die durch das Wärmebehandeln entstehende Temperaturerhöhung insbesondere das beschichtete Pulver, d. h. es erfolgt die Temperaturerhöhung sowohl für das Beschichtungsmaterial als auch für die Pulverpartikel. Hierbei erhalten durch die Wärmebehandlung insbesondere sowohl das Beschichtungsmaterial als auch das weichmagnetische Material maximal eine zur Wärmebehandlung genutzte Prozesstemperatur. Mit anderen Worten erfolgt gemäß Schritt c) eine Wärmebehandlung der in Schritt b) beschichteten Pulverpartikel, wobei vorzugsweise ausschließlich das Beschichtungsmaterial gemäß Schritt c) gesintert bzw. vitrifiziert wird. Der Ausdruck Sintertemperatur bezieht sich insbesondere auf eine Temperatur, die zur Sinterung und/oder Vitrifizierung (d. h. Überführung in die Glasphase) des jeweiligen Materials (d. h. des weichmagnetischen Materials bzw. des Beschichtungsmaterials) geeignet ist. Die Sintertemperatur liegt beispielsweise in einem Bereich unterhalb der Transformationstemperatur (insbesondere auch Glasübergangstemperatur) bzw. der Schmelztemperatur des jeweiligen Materials. Es ist weiter denkbar, dass die Sintertemperatur sich im Wesentlichen proportional zur Schmelztemperatur und/oder Transformationstemperatur und/oder einer Solidustemperatur des jeweiligen Materials verhält. Insbesondere ist auch die Transformationstemperatur des Beschichtungsmaterials geringer als die Schmelztemperatur bzw. Sintertemperatur des weichmagnetischen Materials, um eine Sinterung oder ein Schmelzen der Pulverpartikel zu verhindern. Dabei ist das Beschichtungsmaterial bevorzugt thermisch stabil bei bis zu 600° C (Celsius) und/oder bis zu 800° C und/oder bis zu 1200° C und/oder bis zu 1400° C. Gemäß Schritt b) wird bevorzugt ein derartiges Beschichtungsmaterial gewählt, dass die benachbarten Pulverpartikel weder bei Schritt b) noch bei Schritt c) durch die Wärmebehandlung zusammenwachsen können. Somit wird ein unerwünschtes Kristallwachstum der Pulverpartikel, d. h. der Magnetpartikel, aber auch Kontaktschluss von mehreren Teilchen verhindert. Weiter wird durch das erfindungsgemäße Verfahren, welches insbesondere ein pulvermetallurgisches Verfahren ist, die Korrosionsbeständigkeit des weichmagnetischen Körpers aufgrund der Beschichtung erhöht. Auch erfolgt durch die Beschichtung gemäß Schritt b) eine Passivierung der Partikeloberflächen. Hierdurch werden Verunreinigungen, wie z. B. in Abhängigkeit vom weichmagnetischen Werkstofftyp durch Kohlenstoff, Sauerstoff, Phosphor verhindert. Die Isolierung der Pulverpartikel durch das Beschichtungsmaterial ermöglicht ferner die Entstehung einer isolierenden, d. h. elektrisch nicht leitenden Barriere. Das Beschichtungsmaterial dient hierbei insbesondere als Isolator bzw. Bindemittel, welches z. B. aus einem Ausgangsmaterial gebildet wird und/oder zur Erzeugung eines Matrixmaterials genutzt wird. Das Ausgangsmaterial stellt in diesem Sinne bevorzugt einen Präkursor (Vorläufer) für das Beschichtungsmaterial und/oder das Beschichtungsmaterial einen Präkursor für das Matrixmaterial dar. Die zur Wärmebehandlung bzw. Sintern genutzte Prozesstemperatur ist dabei bevorzugt derart gewählt, dass das Beschichtungsmaterial in eine Matrix (eines diamagnetischen oder paramagnetischen Materials) überführt wird, das die Pulverpartikel einbettet. Vorzugsweise erfolgt dennoch die Wärmebehandlung bzw. Sinterung des Beschichtungsmaterials bzw. das gesamte erfindungsgemäße Verfahren hierbei unter Bedingungen, bei denen keine Sinterung des weichmagnetischen Materials erfolgt. Somit können Wirbelstromverluste deutlich reduziert und ein Temperaturanstieg bzw. eine Erwärmung des Weichmagneten während des Betriebs mit höherfrequenten magnetischen Wechselfeldern reduziert werden. Auch können weitere Energieverluste, wie Hysterese oder Nachwirkungsverluste, aufgrund der Isolationswirkung der Beschichtung reduziert werden. So isolierte gesinterte Pulverteilchen haben hohe Temperatustabilität gegenüber von weichmagnetischen Bauteilen, die mit einem Polymer als Binder zusammengemischt sind.
Vorzugsweise kann nach Schritt c) eine Nachbehandlung, insbesondere eine weitere Wärmebehandlung und/oder ein Formen des wärmebehandelten Pulvers erfolgen. Die Wärmebehandlung des Beschichtungsmaterials gemäß Schritt c) entspricht dabei insbesondere einer Wärmebehandlung des gesamten Pulvers bzw. der Pulverpartikel mit dem Ziel, das Beschichtungsmaterial zu sintern, wobei allerdings das Schmelzen und/oder Sintern der Pulverpartikel und/oder des weichmagnetischen Materials vermieden und/oder verhindert wird. Dies ermöglicht eine Anpassung des hergestellten Weichmagneten für unterschiedlichste Verwendungszwecke.
Weiter ist es denkbar, dass bei Schritt a) zum Bereitstellen des weichmagnetischen Pulvers zuvor eine Herstellung des weichmagnetischen Pulvers erfolgt. Dabei kann das Pulver insbesondere kristalline weichmagnetische Werkstoffe (wie Weicheisen, Kohlenstoffstähle, Legierungen auf der Basis von FeAl, FeAlSi, FeNi, FeCo oder dergleichen) und/oder aus amorphen weichmagnetischen Werkstoffen (wie FeNiBSi, FeBSi oder dergleichen) und/oder weichmagnetische Ferritwerkstoffe (z. B. MnZn-Ferrite, MgZn-Ferrite oder dergleichen), Spinellwerkstoffe (z. B. MnMgZn, NiZn oder dergleichen) und/oder Granatwerkstoffe (BiCa, YGd oder dergleichen) und/oder dergleichen aufweisen. Hierdurch ergibt sich eine Verbesserung der Leistungsfähigkeit des Weichmagneten. Ferner kann im Rahmen der Erfindung vorgesehen sein, dass insbesondere nach Schritt b) und/oder vor Schritt c) ein Formen der beschichteten Pulverpartikel zu einem Pressling, insbesondere durch Pressen, erfolgt. Somit wird der Vorteil erzielt, dass zuverlässig die gewünschte Form des weichmagnetischen Körpers, die Eigenschaften des Materials und die Packungsdichte angepasst bzw. verbessert werden kann. Der Ausdruck„Pressling" bezieht sich hierbei allgemein auf den resultierenden geformten Körper bzw. den Grünkörper und ist somit nicht auf das Pressen beschränkt. Das Formen kann beispielsweise auch durch Abformen und/oder Pressen und/oder Schütten und/oder Matrizenpressen und/oder Warmpressen und/oder kaltisostatisches Pressen und/oder heißisostatisches Pressen und/oder Ultraschallpressen oder dergleichen erfolgen. Die beschichteten Pulverpartikel resultieren dabei aus den unbeschichteten Pulverpartikeln, welche gemäß Schritt b) beschichtet wurden und somit durch das Beschichtungsmaterial umhüllte Pulverpartikel aufweisen. Weiter ist die Sintertemperatur druckabhängig, so dass das Formen ggf. zusammen mit dem Sintern und/oder der Wärmebehandlung gemäß Schritt c) durchgeführt werden kann. Hierdurch lässt sich der Vorteil erzielen, dass die zum Sintern notwendige Temperatur herabgesetzt werden kann. Allerdings muss dann berücksichtigt werden, dass die zum Sintern bzw. zur Wärmebehandlung gemäß Schritt c) verwendete Prozesstemperatur entsprechend angepasst wird, sodass die geringere Sintertemperatur des weichmagnetischen Materials bei der Wärmebehandlung nicht erreicht wird. Die Erwärmung des Presslings erfolgt gemäß Schritt c) beispielsweise bis zu einer Temperatur unterhalb der Schmelztemperatur des weichmagnetischen Materials, jedoch mindestens auf eine Temperatur, die das Beschichtungsmaterial sintert und/oder in die Glasphase überführt, d. h. vitrifiziert. Somit liegt die Prozesstemperatur zur Wärmebehandlung gemäß Schritt c) insbesondere im Transformationsbereich des Beschichtungsmaterials, insbesondere Glas (wenn dieses als Beschichtungsmaterial eingesetzt wird). Die Wärmebehandlung gemäß Schritt c) kann dabei im Vakuum oder in einer neutralen bzw. einer reduzierenden Atmosphäre durchgeführt werden. Auch ist es denkbar, dass die Wärmebehandlung und insbesondere das Sintern unter Luft und/oder Stickstoff und/oder Argon und/oder Wasserstoff erfolgen kann, da die Oberfläche der Pulverpartikel passiviert ist. Bevorzugt liegt die Prozesstemperatur und/oder die Sintertemperatur des Beschichtungsmaterials mindestens 50 K (Kelvin) und/oder 100 K und/oder 150 K und/oder 200 K und/oder 220 K unterhalb der Sintertemperatur des weichmagnetischen Materials.
Ferner kann im Rahmen der Erfindung vorgesehen sein, dass gemäß Schritt c) eine für die Wärmebehandlung, insbesondere für ein Sintern, verwendete Prozesstemperatur und/oder ein für die Wärmebehandlung verwendeter Prozessdruck derart angepasst sind, dass eine Sinterung und/oder ein Schmelzen der Pulverpartikel vermieden wird, wobei die Prozesstemperatur insbesondere unterhalb der zum Sintern des weichmagnetischen Materials geeigneten Sintertemperatur liegt. Bevorzugt erfolgt die Wärmebehandlung, d. h. insbesondere das Sintern und/oder die Vitrifizierung, dabei derart, dass die verwendete Prozesstemperatur und der Prozessdruck gemeinsam die Sintertemperatur beeinflussen. Hierbei wird vorzugsweise der Pressling bzw. das Beschichtungsmaterial maximal auf eine Prozesstemperatur erhitzt, wobei bei diesem Vorgang der maximale Prozessdruck derart gewählt wird, dass ein Sintern und/oder ein Schmelzen der Pulverpartikel und/oder des weichmagnetischen Materials stets vermieden und/oder verhindert wird. Mit anderen Worten erfolgt die Wärmebehandlung vorzugsweise derart, dass ein Phasenübergang der Pulverpartikel stets vermieden wird. Hierdurch wird eine wesentliche Veränderung der Pulverpartikel (Kristallwachstum bzw. Kontaktschluss) verhindert, wodurch die Leistungsfähigkeit des Weichmagneten erhöht wird.
Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass durch die Wärmebehandlung bei Schritt c) und/oder einer weiteren thermischen Behandlung des Beschichtungsmaterials vor und/oder nach Schritt c) das Beschichtungsmaterial zumindest teilweise in eine Matrix (d. h. ein Matrixmaterial) eines diamagnetischen und/oder paramagnetischen, insbesondere isolierenden Materials, überführt wird, insbesondere derart, dass die Matrix die Pulverpartikel einbettet. Hierdurch bildet sich eine Beschichtung aus dem Beschichtungsmaterial bzw. dem Matrixmaterial, welche die Pulverpartikel (d. h. insbesondere die überwiegende Zahl der Pulverpartikel des Pulvers) beispielsweise vollständig umgibt. Durch die Beschichtung wird die Korrosionsbeständigkeit des weichmagnetischen Materials erhöht. Weiter ergibt sich der Vorteil, dass die Beschichtung zu einer Passivierung der Partikeloberflächen der Pulverpartikel führt. Somit können Verunreinigungen, wie z. B. durch Kohlenstoff, Sauerstoff, Phosphor, die zu einer Verschlechterung der weichmagnetischen Eigenschaften führen, verhindert werden. Das Beschichten durch das Beschichtungsmaterial erfolgt insbesondere derart, dass sich eine nichtleitende Barriere ausbildet, welche zu einer Isolierung der Pulverpartikel führt. Hierdurch lassen sich Wirbelströme deutlich reduzieren und die unerwünschte Erwärmung des weichmagnetischen Körpers bei höherfrequenten magnetischen Wechselfeldern verringern.
Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass gemäß Schritt b) das Beschichten durch ein trockenes Abscheidungsverfahren, insbesondere durch ein chemisches und/oder physikalisches Gasabscheidungsverfahren erfolgt. So kann das Beschichten beispielsweise durch die chemische Gasphasenabscheidung (CVD, engl, chemical vapour deposition) oder die physikalische Gasphasenabscheidung (PVD, engl, physical vapour deposition) erfolgen. Hierbei wird als für die Abscheidungsverfahren insbesondere ein Edukt, z. B. das Ausgangsmaterial zur Erzeugung des Beschichtungsmaterials verwendet. Unter physikalischen Gasabscheidungsverfahren (d. h. PVD) werden dabei vakuumbasierte Beschichtungsverfahren verstanden, bei denen das Ausgangsmaterial in die Gasphase überführt wird und auf dem zu beschichtenden Substrat (d. h. den Pulverpartikeln) beispielsweise im Wege der Kondensation abgeschieden wird. Weiter können auch bei dem Beschichten Verdampfungsverfahren (wie thermisches Verdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen, Elektronenstrahlverdampfen) und Sputtern (d. h. Sputterdeposition bzw. Kathodenzerstäubung) genutzt werden, wobei bei dem Sputtern das Ausgangsmaterial durch lonenbeschuss zerstäubt wird. Durch die chemischen Gasabscheidungsverfahren (d. h. CVD) wird das Ausgangsmaterial durch verschiedene Techniken in die Gasphase überführt, wobei hier auch ggf. Elektronen- oder lonenstrahlen zur Abscheidung genutzt werden. Bei der CVD erfolgt insbesondere das Abscheiden des Beschichtungsmaterials auf der Oberfläche des Substrats (aufgrund einer chemischen Reaktion der in der Gasphase vorliegenden Komponente) zu einer Feststoffkomponente. Das Ausgangsmaterial liegt somit in einer flüchtigen Form in der Gasphase vor und scheidet sich als eine weniger flüchtige Verbindung, beispielsweise elementar oder als Oxid, ab. Die trockenen Verfahren haben dabei den Vorteil, dass keine teuren Lösungsmittel benötigt werden und auch keine Maßnahmen zur Lösungsmittelentsorgung oder zur Lösungsmittelwiederaufreinigung erforderlich sind. Zudem entfallen energieintensive Trocknungsprozesse, sodass die beschriebenen Beschichtungsverfahren eine hohe Flexibilität hinsichtlich der einsetzbaren Beschichtungsmaterialien besitzen. Ferner können auch Nasstechniken, wie Sol-Gel-Verfahren zum Beschichten verwendet werden.
Weiter ist es denkbar, dass eine einschichtige Beschichtung und/oder eine zweischichtige Beschichtung erfolgt. Die Beschichtung kann vorzugsweise zumindest eine oder eine zusätzliche Oxidschicht aufweisen und insbesondere durch das Oxidieren des Pulvers und anschließender Beschichtung durch Glas und/oder Keramik-Glas und/oder Keramik hergestellt werden. Hierdurch ergibt sich eine besonders vorteilhafte Ausgestaltung und Isolation der weichmagnetischen Pulverpartikel. Somit können die im Weichmagneten entstehenden Energieverluste aufgrund der elektrischen Isolationswirkung der Beschichtung in Verbindung mit den Einzelpartikeln reduziert werden, so dass kein Kurzschluss von einzelnen weichmagnetischen Teilchen entsteht.
Vorteilhafterweise kann bei der Erfindung vorgesehen sein, dass das Beschichtungsmaterial insbesondere aus einem Ausgangsmaterial gewonnen wird und nach dem Beschichten das Beschichtungsmaterial, insbesondere in oxidischer und/oder feinpartikulärer Struktur, vorliegt, wobei vorzugsweise durch das Wärmebehandeln und/oder Sintern das Beschichtungsmaterial vitrifiziert wird. Die Vitrifizierung bezieht sich hierbei insbesondere auf das Festwerden einer Flüssigkeit durch Erhöhung der Viskosität, während sie abgekühlt wird. Hierbei bleibt eine Kristallisation aus und es entsteht ein amorphes Material. Zur Erzeugung der Beschichtung wird dabei insbesondere das Ausgangsmaterial als Edukt herangezogen. Aus dem Ausgangsmaterial wird beispielsweise das Beschichtungsmaterial und aus dem Beschichtungsmaterial das Matrixmaterial (Matrix) erzeugt. Die Materialien, insbesondere das Matrixmaterial, können vorzugsweise Glas, eine Glaskeramik und/oder eine Keramik aufweisen und/oder hieraus bestehen. Die für die Beschichtung verwendeten Materialien, d. h. das Beschichtungsmaterial und/oder das Ausgangsmaterial und/oder das Matrixmaterial, können weiter auch dia- oder paramagnetische Materialien aufweisen und/oder hieraus bestehen, insbesondere Glasmaterialien und/oder Glaskeramiken und/oder Keramiken und/oder Oxide und/oder Mischungen aus den genannten Materialien. Besonders bevorzugt kann das Matrixmaterial ein Glas und/oder eine Glaskeramik und/oder eine Keramik und/oder eine Kombination aus den genannten Materialien sein. Weiter weist das für die Beschichtung verwendete Material insbesondere Si02 und/oder andere Metalloxide, insbesondere AI203, Na20, K20, MgO, CaO, B203, ΤΊ02, PbO und/oder dergleichen auf und besonders bevorzugt Quarz und/oder Kronglas und/oder Kalk-Natron-Glas und/oder Floatglas und/oder Borosilikatglas. Dabei können die Materialien ggf. Mischungen verschiedener Oxide mit variablen Si02-Anteilen aufweisen. Weiter können die Oxide im Glas nicht in Form separater niedermolekularer Moleküle, sondern als ausgedehnte Netzwerke vorliegen. So liegt z. B. das Siliziumoxid als Silikat in Form miteinander verketteter Si04-Tetraeder vor. Glaskeramiken unterscheiden sich insbesondere von den Gläsern darin, dass neben glasigen Phasen auch polykristalline Phasen vorhanden sind. Keramische Materialien umfassen insbesondere mineralische Silikatmaterialien, d. h. wie die Gläser oder Glaskeramiken Si02 bzw. Si04 basierte Materialien wie Kaoline oder Tonmineralien und/oder oxidische Keramiken, die auf Aluminiumoxid, Berylliumoxid oder dergleichen beruhen. Weiter können die keramischen Materialien auch nicht-oxidische Materialien und/oder Carbide und/oder Nitride, wie Siliziumcarbid SiC, Borcarbid BC oder Bornitrid BN aufweisen. Auch sind Überscheidungen der chemischen Zusammensetzung der keramischen Materialien zu den Gläsern oder Glaskeramiken denkbar. Entscheidend ist hierbei, das Matrixmaterial derart zu wählen, dass es eine niedrigere Transformationstemperatur bzw. Schmelztemperatur aufweist als das weichmagnetische Material, damit es während Schritt c) nicht zu einer Sinterung oder Schmelzung des weichmagnetischen Materials kommt. Die Transformationstemperatur oder Schmelztemperatur kann beispielsweise mittels kalorimetrischer Verfahren (wie Differentialscanningkalorimetrie bzw. DCS) bestimmt werden. Bevorzugt wird die Transformationstemperatur und/oder Schmelztemperatur des Matrixmaterials mindestens 100 K und bevorzugt mindestens 200 K unterhalb der Schmelztemperatur des weichmagnetischen Materials gewählt. Für die Erzeugung der Gläser, Glaskeramiken und/oder Keramiken kommen in Abhängigkeit vom Beschichtungsverfahren beispielsweise Salze und/oder flüchtige Verbindungen wie Hydride zum Einsatz. Vorzugsweise werden dabei Vorläuferverbindungen zumindest eines der folgenden Elemente oder dergleichen eingesetzt: Si, AI, Na, K, Mg, Ca, B, P, Pb, Ti, Li, Be. Nach der Zersetzung entstehen dann aus diesen Verbindungen ggf. die entsprechenden elementaren Komponenten, die noch in der Gasphase oder nach der Abscheidung auf der Partikeloberfläche der Pulverpartikel zu den entsprechenden Oxiden reagieren. Diese liegen z. B. nach Schritt b) (d. h. nach der Beschichtung) in oxidischer Form bzw. in feinpartikulärer Struktur vor (d. h. als„weißer Ruß"). Insbesondere nach Schritt c) (d. h. nach der Sinterung bzw. Wärmebehandlung) entsteht dann aus den Oxiden das Glas-, Keramik- oder Glaskeramik-Material.
In einer weiteren Möglichkeit kann vorgesehen sein, dass nach Schritt c) ein thermisches Nachbehandeln insbesondere durch heißisostatisches Pressen erfolgt. Weiter kann das heißisostatische Pressen alternativ oder zusätzlich auch gleichzeitig mit Schritt c) erfolgen. Der Pressling wird dabei beispielsweise im Verdichtungsraum der Anlage oder optional auch z. B. in einen deformierbaren Behälter gesetzt, welcher z. B. auf eine Wärmebehandlungstemperatur, die niedrig oder höher als die Sintertemperatur sein kann, erhitzt wird. Dabei wird der Pressling einem Druck bis zu 50 MPa und/oder 100 MPa und/oder 200 MPa und/oder 300 MPa ausgesetzt. Hierdurch kann das Gefügte des weichmagnetischen Körpers noch weiter verdichtet werden. Weiter kann beispielsweise auch eine Magnetfeldbehandlung und/oder eine thermische Behandlung erfolgen.
Ebenfalls Gegenstand der Erfindung ist ein weichmagnetischer Körper, aufweisend:
Pulverpartikel, insbesondere Kerne, aus einem weichmagnetischen Material,
Beschichtung (insbesondere der Kerne) aus einem wärmebehandelten isolierenden Beschichtungsmaterial, wobei die Beschichtung die Pulverpartikel umgibt.
Hierbei ist insbesondere vorgesehen, dass die Sintertemperatur des Beschichtungsmaterials geringer ist als die Sintertemperatur des weichmagnetischen Materials. Dabei wird der weichmagnetische Körper insbesondere derart durch das erfindungsgemäße Verfahren hergestellt, dass die Herstellung stets magnetfeldfrei erfolgt (also kein äußeres Magnetfeld genutzt wird). Der Kern weist hierbei vorzugsweise einen Durchmesser auf, welcher im Wesentlichen dem Durchmesser der Pulverpartikel bei Schritt a), d. h. vor der Wärmebehandlung entspricht, bevorzugt im Bereich von 0,5 μηη bis 250 μηη (abhängig vom Werkstoff und Einsatzzweck des Körpers). Damit bringt der erfindungsgemäße weichmagnetische Körper die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf ein erfindungsgemäßes Verfahren beschrieben worden sind. Zudem kann der weichmagnetische Körper vorzugsweise durch ein erfindungsgemäßes Verfahren hergestellt werden.
In einer weiteren Möglichkeit kann vorgesehen sein, dass eine Schichtdicke der Beschichtung im Bereich von 1 nm bis 10 μηη, vorzugsweise im Bereich von 2 nm und 50 nm liegt. Hierdurch ergibt sich eine besonders vorteilhafte elektrische Isolierung und/oder Passivierung der Pulverpartikel, d. h. der Kerne, welche durch die Beschichtung umhüllt werden. Vorteilhafterweise entspricht der Durchmesser der Pulverpartikel vor dem Sintern gemäß Schritt c) im Wesentlichen dem Durchmesser der Pulverpartikel nach dem Sintern gemäß Schritt c) und/oder dem Durchmesser der Pulverpartikel des erfindungsgemäßen weichmagnetischen Körpers bzw. des erfindungsgemäßen Weichmagnets. Der Durchmesser bleibt insbesondere während des gesamten erfindungsgemäßen Verfahrens im Wesentlichen konstant, ggf. mit einer gewissen Verteilung (bzw. Toleranz). Dabei werden die Schichtdicken und Durchmesser bevorzugt derart aufeinander abgestimmt, dass eine ausreichende elektrische Isolierung und Passivierung der Pulverpartikel gewährleistet ist, wobei die Schichtdicken klein genug sein müssen, um die Magnetfelddichte des Weichmagneten nicht zu sehr zu beschränken.
Ebenfalls Gegenstand der Erfindung ist ein Weichmagnet. Hierbei kann vorgesehen sein, dass der Weichmagnet einen erfindungsgemäßen weichmagnetischen Körper aufweist und/oder durch ein erfindungsgemäßes Verfahren hergestellt wird. Der Weichmagnet kann dabei ggf. durch weitere Nachbehandlungsschritte und/oder durch ein spannendes Fertigungsverfahren (wie Trennen und Schleifen) hergestellt werden. Damit bringt der erfindungsgemäße Weichmagnet die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf ein erfindungsgemäßes Verfahren und/oder einen erfindungsgemäßen weichmagnetischen Körper beschrieben worden sind.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein. Es zeigen:
Fig. 1 eine schematische Darstellung eines unbeschichteten, weichmagnetischen Pulvers in
Kugelform mit Angabe des Partikeldurchmessers,
Fig. 2 eine schematische Darstellung eines unbeschichteten, weichmagnetischen Pulvers in irregulärer Form,
Fig. 3 eine schematische Darstellung eines beschichteten weichmagnetischen Pulvers mit
Angabe der Schichtdicke,
Fig. 4 eine schematische Darstellung eines beschichteten weichmagnetischen Pulvers in irregulärer Form, Fig. 5 eine schematische Darstellung eines Pressling aus einem regulären, kugeligen und beschichteten Pulver,
Fig. 6 eine schematische Darstellung eines Presslings aus einem irregulären, beschichteten
Pulver,
Fig. 7 eine schematische Darstellung eines wärmebehandelten beschichteten Pulvers,
Fig. 8 eine schematische Darstellung eines wärmebehandelten, irregulären, beschichteten
Pulvers
Fig. 9 eine schematische Darstellung zur Visualisierung von Verfahrensschritten eines erfindungsgemäßen Verfahrens,
Fig. 10 eine schematische Darstellung von Ausführungsbeispielen eines erfindungsgemäßen weichmagnetischen Körpers und erfindungsgemäßen Weichmagneten.
Wie in den Figuren 1 und 2 gezeigt ist, kann ein weichmagnetisches Pulver 20 eine Vielzahl Pulverpartikel 21 aufweisen, welche beispielsweise als Kugel und/oder Rotationsellipsoid und/oder irregulär mit einer beliebigen Form (Figur 2) ausgebildet sind. Die Pulverpartikel 21 weisen dabei jeweils einen Durchmesser P von im Wesentlichen 1 μηη bis 250 μηη auf. Insbesondere ist es denkbar, dass die Durchmesser P der einzelnen Pulverpartikel 21 maximal in diesem genannten Bereich und/oder in einem Bereich von maximal 0,1 μηη bis 50 μηη variieren. Die Pulverpartikel 21 weisen dabei ein weichmagnetisches Material 22 auf, welches z. B. einen kristallinen weichmagnetischen Werkstoff wie Weicheisen oder Kohlenstoffstähle aufweisen kann. Die in den Figuren 1 und 2 gezeigten Pulverpartikel 21 entsprechen dabei unbeschichteten Pulverpartikeln 21 , sodass es sich hierbei um ein unbeschichtetes Pulver 20a handelt.
In den Figuren 3 und 4 ist dagegen ein beschichtetes Pulver 20b dargestellt, welches ein Beschichtungsmaterial 31 aufweist. Das Beschichtungsmaterial 31 umgibt dabei als Beschichtung 30 die Pulverpartikel 21 (bzw. Kerne), wobei die Beschichtung 30 eine Schichtdicke D von mindestens 1 nm und/oder maximal 10 nm und/oder maximal 1 μηη und/oder maximal 10 μηη mit einer Toleranz von maximal 1 nm und/oder 10 nm aufweist. Es ist dabei deutlich erkennbar, dass aufgrund der Beschichtung 30 die Pulverpartikel 21 voneinander (elektrisch) isoliert werden, wodurch Wirbelstromverluste deutlich reduziert werden können. Die Figuren 5 und 6 zeigen schematisch jeweils einen Pressling 40, welcher das beschichtete Pulver 20b aufweist. Der Pressling ist dabei beispielsweise durch Formen und insbesondere Pressen entstanden, um eine gewünschte Form zu erhalten. Das Formen bzw. Pressen kann dabei auch gleichzeitig zu einer Wärmebehandlung des Presslings erfolgen. Durch die Wärmebehandlung, insbesondere durch ein Sintern des beschichteten Pulvers 20b bzw. der Beschichtung 30 wird insbesondere eine Vitrifizierung des Beschichtungsmaterials 31 bewirkt.
In den Figuren 7 und 8 ist ein erfindungsgemäßer weichmagnetischer Körper 10 gezeigt (quasi ein Auschnitt nach dem Sintern), welcher durch das erfindungsgemäße Verfahren 100 entstanden ist. Durch die Wärmebehandlung bzw. Sinterung gemäß Schritt c) wurde beispielsweise das Beschichtungsmaterial 31 in ein Matrixmaterial bzw. eine Matrix 32 überführt. Erfindungsgemäß ist hierbei kein wesentliches Kornwachstum erfolgt, da die Prozesstemperatur bei der Wärmebehandlung unterhalb einer Sintertemperatur des weichmagnetischen Material 22 liegt. Die Pulverpartikel 21 sind hierbei durch eine amorphe Phase voneinander isoliert worden, wobei ein Kontaktschluss zwischen Pulverteilchen ausgeschlossen ist.
In Figur 9 sind schematisch Verfahrensschritte eines erfindungsgemäßen Verfahrens 100 visualisiert. Dabei erfolgt gemäß dem Verfahrensschritt 100.1 eine Bereitstellung eines weichmagnetischen Pulvers 20. Das weichmagnetische Pulver 20 weist dabei Pulverpartikel 21 aus einem weichmagnetischen Material 22 auf. Gemäß dem Verfahrensschritt 100.6 wird das weichmagnetische Pulver 20 dabei aus kristallinen, weichmagnetischen Werkstoffen, hergestellt. Anschließend erfolgt gemäß dem Verfahrensschritt 100.2 ein Beschichten der Pulverpartikel 21 mit einem Beschichtungsmaterial 31 . Hierfür wird gemäß Verfahrensschritt 100.7 ein Beschichtungsmaterial 31 und/oder ein Ausgangsmaterial hergestellt und/oder bereitgestellt. Optional kann anschließend im Verfahrensschritt 100.3 ein Pressen des beschichteten Pulvers 20b zu einem Pressling 40 erfolgen. Im Verfahrensschritt 100.4 wird sodann das beschichtete Pulver 20b bzw. der Pressling 40 wärmebehandelt bzw. gesintert, wobei die zum Wärmebehandeln genutzte Prozesstemperatur unterhalb einer Sintertemperatur des weichmagnetischen Materials 22 liegt. Die Wärmebehandlung erfolgt insbesondere derart, dass ein Kristallwachstum der Pulverpartikel 21 vermieden wird. Die Beschichtung 30 gewährleistet hierbei, dass benachbarte Pulverpartikel 21 nicht zusammenwachsen können. Anschließend erfolgt optional gemäß Verfahrensschritt 100.5 eine Nachbehandlung, z. B. ein heißisostatisches Pressen.
In Figur 10 ist ein weichmagnetischer Körper 10 bzw. ein Weichmagnet 1 1 gezeigt, welcher beispielsweise für Elektromotoren verwendet werden kann. Die gewünschte Form kann beispielsweise durch das Formen und/oder die Nachbehandlung erzielt werden, welche z. B. beim Sintern oder im Anschluss an das Sintern erfolgen kann. Der erfindungsgemäße weichmagnetische Körper 10 und/oder der erfindungsgemäße Weichmagnet 1 1 kann je nach Anwendungszweck dabei beliebige Formen aufweisen und ist somit nicht auf die dargestellten Formen beschränkt.
Die voranstehende Erläuterung der Ausführungsformen beschreibt die vorliegende Erfindung ausschließlich im Rahmen von Beispielen. Selbstverständlich können einzelne Merkmale der Ausführungsformen, sofern technisch sinnvoll, frei miteinander kombiniert werden, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bezugszeichenliste
10 weichmagnetischer Körper
1 1 Weichmagnet 0 weichmagnetisches Pulver
0a unbeschichtetes Pulver
0b beschichtetes Pulver
1 Pulverpartikel
2 weichmagnetisches Material 0 Beschichtung
1 Beschichtungsmaterial
2 Matrix 0 Pressling
100 Verfahren
100.1 erster Verfahrensschritt
100.2 zweiter Verfahrensschritt
100.3 dritter Verfahrensschritt
100.4 vierter Verfahrensschritt
100.5 fünfter Verfahrensschritt
100.6 sechster Verfahrensschritt
100.7 siebter Verfahrensschritt
D Schichtdicke
P Partikeldurchmesser

Claims

Patentansprüche
1 . Verfahren (100) zur Herstellung eines weichmagnetischen Körpers (10), umfassend die folgenden Schritte:
a) Bereitstellen eines weichmagnetischen Pulvers (20) mit Pulverpartikeln (21 ) aus einem weichmagnetischen Material (22),
b) Beschichten der Pulverpartikel (21 ) mit einem isolierenden Beschichtungsmaterial (31 ), wobei die Sintertemperatur des Beschichtungsmaterials (31 ) geringer ist als die Sintertemperatur des weichmagnetischen Materials (22),
c) Wärmebehandeln des Beschichtungsmaterials (31 ) derart, dass während der
Wärmebehandlung eine Sinterung und/oder ein Schmelzen der Pulverpartikel (21 ) vermieden wird.
2. Verfahren (100) nach Anspruch 1 ,
dadurch gekennzeichnet,
dass insbesondere nach Schritt b) ein Formen der beschichteten Pulverpartikel (21 ) zu einem Pressling (40), insbesondere durch Pressen, erfolgt.
3. Verfahren (100) nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass gemäß Schritt c) eine für die Wärmebehandlung, insbesondere für ein Sintern, verwendete Prozesstemperatur und/oder ein für die Wärmebehandlung verwendeter Prozessdruck derart angepasst sind, dass eine Sinterung und/oder ein Schmelzen der Pulverpartikel (21 ) vermieden wird, wobei die Prozesstemperatur insbesondere unterhalb der zum Sintern des weichmagnetischen Materials (22) geeigneten
Sintertemperatur liegt.
4. Verfahren (100) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass durch die Wärmebehandlung bei Schritt c) und/oder einer weiteren thermischen Behandlung des Beschichtungsmaterials (31 ) vor und/oder nach Schritt c) das
Beschichtungsmaterial (31 ) zumindest teilweise in eine Matrix (32) eines
diamagnetischen oder paramagnetischen insbesondere isolierenden Materials überführt wird, insbesondere derart, dass die Matrix (32) die Pulverpartikel (21 ) einbettet.
5. Verfahren (100) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass gemäß Schritt b) das Beschichten durch ein trockenes Abscheidungsverfahren, insbesondere durch ein chemisches und/oder physikalisches Gasabscheidungs- verfahren erfolgt.
6. Verfahren (100) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Beschichtungsmaterial (31 ) insbesondere aus einem Ausgangsmaterial gewonnen wird, und nach dem Beschichten das Beschichtungsmaterial (31 )
insbesondere in oxidischer und/oder feinpartikulärer Struktur vorliegt, wobei durch das Sintern das Beschichtungsmaterial (31 ) vitrifiziert wird.
7. Verfahren (100) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass nach Schritt c) ein thermisches Nachbehandeln erfolgt.
8. Weichmagnetischer Körper (10), aufweisend:
Pulverpartikel (21 ) aus einem weichmagnetischen Material (22), Beschichtung (30) aus einem wärmebehandelten isolierenden Beschichtungsmaterial (31 ), wobei die Beschichtung (30) die Pulverpartikel (21 ) umgibt,
dadurch gekennzeichnet,
dass die Sintertemperatur des Beschichtungsmaterials (31 ) geringer ist als die Sintertemperatur des weichmagnetischen Materials (22).
9. Weichmagnetischer Körper (10) nach Anspruch 8,
dadurch gekennzeichnet,
dass eine Schichtdicke (D) der Beschichtung (30) im Bereich von 1 nm bis 10 μηη, vorzugsweise im Bereich von 2 nm bis 50 nm liegt.
10. Weichmagnet (1 1 ) aufweisend einen weichmagnetischen Körper (10) nach Anspruch 8 oder 9 und/oder hergestellt durch ein Verfahren (100) nach einem der Ansprüche 1 bis 7.
EP16715832.8A 2015-04-09 2016-04-06 Verfahren zur herstellung eines weichmagnetischen körpers Active EP3280558B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015105431.0A DE102015105431A1 (de) 2015-04-09 2015-04-09 Verfahren zur Herstellung eines weichmagnetischen Körpers
PCT/EP2016/057539 WO2016162383A1 (de) 2015-04-09 2016-04-06 Verfahren zur herstellung eines weichmagnetischen körpers

Publications (2)

Publication Number Publication Date
EP3280558A1 true EP3280558A1 (de) 2018-02-14
EP3280558B1 EP3280558B1 (de) 2020-11-04

Family

ID=55745759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16715832.8A Active EP3280558B1 (de) 2015-04-09 2016-04-06 Verfahren zur herstellung eines weichmagnetischen körpers

Country Status (4)

Country Link
EP (1) EP3280558B1 (de)
CN (1) CN107396630B (de)
DE (1) DE102015105431A1 (de)
WO (1) WO2016162383A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210941A1 (de) * 2017-06-28 2019-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines weichmagnetischen Kompositwerkstoffs und weichmagnetischer Kompositwerkstoff
DE102021109597A1 (de) * 2021-04-16 2022-10-20 Magnetec Gmbh Magnetfeldempfindliches Bauelement, Herstellverfahren und Verwendung
US20230260687A1 (en) * 2022-02-14 2023-08-17 General Electric Company Dual phase soft magnetic particle combinations, components and manufacturing methods

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744099B2 (ja) * 1985-04-19 1995-05-15 鐘淵化学工業株式会社 軟質磁性材料組成物
JPH10212503A (ja) * 1996-11-26 1998-08-11 Kubota Corp 非晶質軟磁性合金粉末成形体及びその製造方法
DE19849781A1 (de) * 1998-10-28 2000-05-11 Vacuumschmelze Gmbh Spritzgegossener weichmagnetischer Pulververbundwerkstoff und Verfahren zu seiner Herstellung
JP2001073062A (ja) * 1999-09-09 2001-03-21 Kubota Corp 非晶質軟磁性合金粉末成形体の製造方法
JP3986043B2 (ja) * 2001-02-20 2007-10-03 日立粉末冶金株式会社 圧粉磁心及びその製造方法
DE10110341A1 (de) * 2001-03-03 2002-10-31 Bosch Gmbh Robert Metallpulver-Verbundwerkstoff und Ausgangsmaterial und Verfahren für die Herstellung eines solchen
DE10128004A1 (de) 2001-06-08 2002-12-19 Vacuumschmelze Gmbh Induktives Bauelement und Verfahren zu seiner Herstellung
JP3861288B2 (ja) * 2002-10-25 2006-12-20 株式会社デンソー 軟磁性材料の製造方法
JP4452240B2 (ja) * 2003-08-06 2010-04-21 日本科学冶金株式会社 軟磁性複合粉末及びその製造方法並び軟磁性成形体の製造方法
JP2008028162A (ja) * 2006-07-21 2008-02-07 Sumitomo Electric Ind Ltd 軟磁性材料の製造方法、軟磁性材料、および圧粉磁心
DE102008048839A1 (de) * 2008-09-25 2010-04-01 Tridelta Weichferrite Gmbh Weichmagnetischer Werkstoff
JP5482097B2 (ja) * 2009-10-26 2014-04-23 Tdk株式会社 軟磁性材料、並びに、圧粉磁芯及びその製造方法
JP6071211B2 (ja) * 2011-02-22 2017-02-01 三菱マテリアル株式会社 低磁歪高磁束密度複合軟磁性材とその製造方法

Also Published As

Publication number Publication date
CN107396630A (zh) 2017-11-24
DE102015105431A1 (de) 2016-10-13
EP3280558B1 (de) 2020-11-04
CN107396630B (zh) 2020-09-11
WO2016162383A1 (de) 2016-10-13

Similar Documents

Publication Publication Date Title
EP2920796B1 (de) Verfahren zur herstellung eines permanentmagneten sowie permanentmagnet
DE69821278T2 (de) Magnetkern und Herstellungsverfahren
KR101060091B1 (ko) 자심의 제조방법과, 자심 및 자심을 지닌 유도소자
US10847292B2 (en) Soft magnetic alloy and magnetic device
US10991495B2 (en) Soft magnetic alloy and magnetic component
JP5022999B2 (ja) 圧粉磁心及びその製造方法
JP6501005B1 (ja) 軟磁性合金および磁性部品
US10672545B2 (en) R-T-B based permanent magnet
KR102042641B1 (ko) 연자성 합금 및 자성 부품
EP3280558B1 (de) Verfahren zur herstellung eines weichmagnetischen körpers
DE69922891T2 (de) Magnetkern für HF-beschleunigenden Hohlraum und der Hohlraum
WO2010095496A1 (ja) 圧粉コア
JP2010238914A (ja) 高強度低損失複合軟磁性材の製造方法と高強度低損失複合軟磁性材
EP3511959A2 (de) Weichmagnetische legierung und magnetvorrichtung
DE3422281A1 (de) Verfahren zur herstellung von formlingen aus magnetischen metallegierungen und so hergestellte formlinge
JP2010236018A (ja) 高強度低損失複合軟磁性材とその製造方法及び電磁気回路部品
WO2015003824A1 (de) Verfahren zur herstellung eines permanentmagneten sowie permanentmagnet und elektrische maschine mit einem solchen
JP6237853B1 (ja) 軟磁性合金
DE102015213957B4 (de) Verfahren zur Herstellung eines Hybridmagneten sowie mit dem Verfahren herstellbarer Hybridmagnet und eine den Hybridmagnet umfassende elektrische Maschine
DE3120168A1 (de) Magnetische metallegierungsformlinge, verfahren zu deren herstellung und vorrichtung zur durchfuehrung des verfahrens
EP3414768B1 (de) Hybridmagnet und verfahren zu dessen herstellung
EP3441990B1 (de) Weichmagnetische legierung und magnetvorrichtung
KR20150133280A (ko) 소결 자석 제조 방법
JPS63158810A (ja) 圧粉磁心
DE4021990A1 (de) Verfahren zur herstellung eines permamentmagneten aus metall der seltenerden und einer eisenkomponente

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENZEL, MARCUS

Inventor name: TIMM, EIKE HERMANN

Inventor name: WOEHL-BRUHN, HENNING

Inventor name: HARSTICK, HENRIKE

Inventor name: ZLATKOV, BRANISLAV

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190409

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1330148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011609

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011609

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1330148

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160406

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104