EP3414768B1 - Hybridmagnet und verfahren zu dessen herstellung - Google Patents

Hybridmagnet und verfahren zu dessen herstellung Download PDF

Info

Publication number
EP3414768B1
EP3414768B1 EP17700819.0A EP17700819A EP3414768B1 EP 3414768 B1 EP3414768 B1 EP 3414768B1 EP 17700819 A EP17700819 A EP 17700819A EP 3414768 B1 EP3414768 B1 EP 3414768B1
Authority
EP
European Patent Office
Prior art keywords
soft magnetic
layer
hybrid magnet
hard magnetic
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17700819.0A
Other languages
English (en)
French (fr)
Other versions
EP3414768A1 (de
Inventor
Branislav Zlatkov
Zoran Djinovic
Matthias Katter
Ana Maria Racu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Volkswagen AG
Original Assignee
Vacuumschmelze GmbH and Co KG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG, Volkswagen AG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP3414768A1 publication Critical patent/EP3414768A1/de
Application granted granted Critical
Publication of EP3414768B1 publication Critical patent/EP3414768B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Definitions

  • the invention relates to a hybrid magnet which comprises at least one soft magnetic and at least one hard magnetic material. Furthermore, the invention relates to a manufacturing method of such a hybrid magnet.
  • Magnetic materials can be produced using a melt metallurgical process (as cast magnetic materials) or a powder metallurgical process (as sintered magnetic materials or powder magnetic composite materials). Powder-metallurgical processes that include sintering can be used to produce magnetic components whose shape cannot be achieved by melt metallurgy. This applies e.g. B. especially for magnetic materials with crystal anisotropy (NdFeB, SmCo, etc.). Powder metallurgical manufacturing processes can include the following process steps: powdering a magnetic starting material, pressing the resulting powder into a green part to form a desired shape, sintering the green part, optional thermal treatment to reduce stress and optimize the structure, and optionally magnetization in an external magnetic field. Furthermore, magnets produced in this way can be mechanically post-treated if necessary, for example by grinding or polishing.
  • HcJ coercive field strength
  • hybrid magnets are also known.
  • a hybrid magnet is understood to mean a component which comprises at least two different magnetic materials, in particular at least one hard magnetic material and at least one soft magnetic material.
  • hybrid magnets are known in which the hard magnetic and the soft magnetic material are integrated in a matrix body made of plastic.
  • Hybrid magnets of this type can have the disadvantage that their magnetic properties are less pronounced than desired, that the temperature stability and mechanical strength can be limited due to the plastic material, and / or that such hybrid magnets cannot be exposed to media that could attack the plastic material.
  • WO 2012/159096 A2 envelops hard magnetic with soft magnetic materials and influences the exchange interaction through non-magnetic materials along the grain boundaries.
  • process step C) is carried out once after each process step A) and once after each process step B). This creates a (single) separating layer between two adjacent layers of hard magnetic material and / or soft magnetic material.
  • Hybrid magnets with a layer structure can be produced, in which the hard magnetic layers and the soft magnetic layers are combined in any layer sequence.
  • Hard magnetic layers and soft magnetic layers are preferably formed alternately or in another regular manner.
  • a hybrid magnet can have a pronounced effect as a permanent magnet (large remanent magnetization), which can only be destroyed with great difficulty by external influences (large coercive field strength).
  • the layer structure of the hybrid magnet in particular when the magnetization is oriented perpendicular to the layer structure, means that the soft magnetic layers are always in a supporting field of the hard magnetic layers and thus contribute to the overall magnetization of the hybrid magnet. If soft magnetic areas are arranged next to hard magnetic areas, e.g. in the extreme case that the hard magnetic layers are magnetized along their layer plane, the soft magnetic layers act as a magnetic short circuit and the hybrid magnet cannot produce a magnetic flux that can be used outdoors.
  • a hard magnetic layer is to be understood as an area of the hybrid magnet that consists predominantly or exclusively of a hard magnetic material.
  • a hard magnetic layer does not necessarily have to be a coherent area of hard magnetic material.
  • a hard magnetic layer can be formed from partial regions of hard magnetic material which are (partially) separated from one another in the layer plane by the matrix material.
  • all hard magnetic layers consist of the same hard magnetic material.
  • different hard magnetic materials can be used in a hybrid magnet. Different hard magnetic materials can be processed in one layer. However, differently constructed layers can also be present, each consisting of different hard magnetic materials.
  • Preferred hard magnetic materials are: martensitic steels; Alloys based on CuNiFe [copper, nickel, iron], CuNiCo [copper, nickel, cobalt], FeCoVCr [iron, cobalt, vanadium, chromium], MnAlC [manganese, aluminum, carbon], or AINiCo [aluminum, nickel, cobalt ]; Hard magnets based from PtCo [platinum, cobalt]; Rare earth magnets such as B.
  • NdFeB neodymium, iron, boron
  • SmCo samarium, cobalt
  • SmFeN samarium, iron, nitrogen
  • oxidic permanent magnets hard ferrites
  • new types of hard magnets such as B. MnBi [manganese, bismuth] or Fe 16 N 2 [iron, nitrogen].
  • a soft magnetic layer is to be understood as an area of the hybrid magnet that consists predominantly or exclusively of a soft magnetic material.
  • a soft magnetic layer does not necessarily have to be a coherent area of soft magnetic material.
  • a soft magnetic layer can be formed from subregions of soft magnetic material which are (partially) separated from one another in the layer plane by the matrix material.
  • all soft magnetic layers consist of the same soft magnetic material.
  • different soft magnetic materials can be used in a hybrid magnet. Different soft magnetic materials can be processed in one layer. However, differently constructed layers can also be present, each consisting of different soft magnetic materials.
  • Preferred soft magnetic materials are: soft iron, carbon steels, alloys based on FeAl [iron, aluminum], FeAlSi [iron, aluminum, silicon], FeNi [iron, nickel], FeCo [iron, cobalt]; amorphous soft magnetic materials such as B. FeNiBSi [iron, nickel, boron, silicon], FeBSi [iron, boron, silicon]; soft magnetic ferrite materials such as B. MnZn ferrites [manganese, zinc], MgZn ferrites [magnesium, zinc]; Spinel materials such as B. MnMgZn [manganese, magnesium, zinc], NiZn [nickel, zinc]; or garnet materials such as B. BiCa [bismuth, calcium], YGd [yttrium, gadollinium].
  • a magnetically semi-hard material can be used. If a magnetically semi-hard material is used, the explanations for the hard magnetic materials or the soft magnetic materials apply in an analogous manner.
  • Preferred magnetic semi-hard materials are: alloys based on FeNi [iron, nickel], FeMn [iron, manganese], FeNiMn [iron, nickel, manganese], CoFe [cobalt, iron], or FeCu [iron, copper]; Co 49 Fe 48 V 3 [cobalt, iron, vanadium; also known as Remendur]; Co 55 NiFe [cobalt, nickel, iron; also known as Vacozet], and Kovar.
  • the magnetically passive material can in particular be a diamagnetic material or a paramagnetic material.
  • a paramagnetic or diamagnetic metal can be used, such as Dy [dysprosium], Tb [terbium], Al [aluminum], Pt [platinum], Ti [titanium], Cu [copper], Pb [lead], Zn [zinc ], Sn [tin], Ga [gallium], Ge [germanium], Au [gold], Ag [silver], Mg [magnesium], Mo [molybdenum], Mn [manganese], Zr [zirconium], Li [lithium ]. Alloys or oxides of the specified materials can also be used. Further preferred materials are listed below. Preferably, but not necessarily, the same magnetically passive material is used for all separation layers.
  • An electrically non-conductive or poorly conductive magnetically passive material is preferably used.
  • a changing magnetic field can generate electrical currents (eddy currents) due to electromagnetic induction. These can lead to heating of the extended electrical conductor and / or adversely affect its magnetic properties. If separation layers made of an electrically non-conductive or poorly conductive material interrupt the electrical conductivity of the hybrid magnet, eddy currents can be reduced and / or locally restricted.
  • Eddy currents can be effectively suppressed, in particular in hybrid magnets, with a matrix body, since in them the individual magnetic layers are formed from partial areas of magnetic material which are (partially) separated from one another by the matrix material in the layer plane.
  • a coating technology is used in at least one of process steps A), B) and C).
  • the coating technology is preferably a wet technique, such as. B. a sol-gel process, a dry deposition process, and / or a chemical or physical vapor deposition process.
  • a physical vapor deposition process is understood to mean a vacuum-based coating process in which a starting material is converted into the gas phase and deposited on a substrate to be coated.
  • Chemical vapor deposition (CVD) methods are similar to physical vapor deposition methods, with the difference that a chemical reaction takes place here when the starting material is deposited on the substrate.
  • the coating technologies have in common that the material is supplied in small particles to the substrate and can be connected to the substrate there in such a way that a surface layer is firmly connected to the substrate.
  • a coating technology ie in particular a coating method of the above type
  • the same coating technology is used for all process steps.
  • Method step A) comprises at least the following sub-step: A1) Providing a hard magnetic powder comprising hard magnetic particles from the hard magnetic material.
  • Method step B) comprises at least the following sub-step: B1) Providing a soft magnetic powder comprising soft magnetic particles from the soft magnetic material.
  • Method step C) comprises at least the following sub-step: C1) coating at least one of the hard magnetic particles or the soft magnetic particles with at least one coating made of the magnetically passive material.
  • the shaping of the hybrid magnet in method step D) can optionally take place in an external magnetic field.
  • Sub-step A1) can include formulation preparation, mixing and / or portioning of the hard magnetic material used. Furthermore, a powder of the hard magnetic material can be produced in sub-step A1) be, e.g. B. by crushing a solid made of this hard magnetic material.
  • sub-step A1 can also be used for the provision of the soft magnetic material in sub-step B1).
  • sub-step C1 the coating of the particles is preferably carried out using one of the following coating processes: B. “vacuum deposition”, “plasma deposition”, “sputtering”, “molecular beam epitaxy (MBE)", “vapor phase epitaxy”, or “liquid phase epitaxy”; CVD such as B. “sol-gel deposition”, or “metallo-organic chemical vapor deposition (MOCVD)". These methods are well known to those skilled in the art.
  • a single coating layer is preferably applied to the particles.
  • two coating layers made of different materials are preferably applied in sub-step C1).
  • the coating of the particles can prevent neighboring particles from agglomerating. This can make the manufacturing process easier. Furthermore, the coating of the particles can reduce a magnetic exchange interaction of neighboring particles, in particular neighboring particles of different materials. The coating of the particles can likewise lead to passivation of the surfaces of the particles. This can reduce the risk of self-ignition of the particles when in contact with air. This can make it easier to carry out the method because an inert gas atmosphere can be dispensed with. In particular, eddy currents can be reduced and / or locally restricted by the electrically insulating coating of the particles.
  • the body is shaped in that the soft magnetic powder and the hard magnetic powder are applied one above the other in the desired order of the layer structure.
  • the distribution of the powder forming this layer can be improved.
  • the separating layers are formed by coating the particles, so that only layers of the hard magnetic powder and layers of the soft magnetic powder have to be layered one above the other, with exactly one (uniform and / or coherent) separating layer being formed between adjacent layers. In particular, this means that each time step A) is carried out and step B) is carried out, step C) is also carried out.
  • a hybrid magnet is formed from the body formed in process step D) by sintering.
  • Sintering means that the body is exposed to an elevated temperature, the coating of the particles being formed into a matrix body surrounding the particles.
  • the temperature selected for sintering is preferably selected such that the hard magnetic and soft magnetic materials do not sinter. This means in particular that the temperature selected for sintering preferably corresponds at most to the melting temperature of the magnetically passive material or, if such a melting temperature is not well-defined for the material in question, to the transformation temperature.
  • the latter relates to such amorphous materials, such as. B. glass in which a melt does not occur at a certain melting temperature. Instead, the mechanical properties of these materials change continuously over a temperature range.
  • the temperature used for sintering is preferably selected depending on all materials used. For example, the transformation temperature of many glasses is in the range up to 900 ° C. If such a glass is used as a magnetically passive material, a preferred temperature range for the sintering (material-specific) is 400 ° C. to 800 ° C. at normal pressure (1013 hPa), in particular 550 ° C. to 650 ° C. Before step E) the body commonly referred to as pellet. After the sintering has been carried out in step E), the body is usually referred to as sintering.
  • the entire process, including all process steps, is preferably carried out under conditions in which no (significant or widespread) sintering of the hard magnetic or soft magnetic material used occurs. It should be taken into account that the sintering temperature of a material can be pressure-dependent. The temperature is preferably significantly lower during the entire process, in particular at least 50 ° C. lower and preferably at least 100 ° C. lower than the sintering temperature of each hard magnetic or soft magnetic material used.
  • the coating has a coating thickness which is in the range from 1 nm to 300 nm, in particular in the range from 2 nm to 50 nm.
  • the coating thickness is usually to be understood as the spatial extent of the coating, which is the smallest Dimension.
  • the body is pressed between method steps D) and E) to form an intermediate product, a so-called compact.
  • an increased pressure applied from the outside can lead to a compression of the particles. This can improve the sintering activity and thus increase the stability of the finished sintered hybrid magnet.
  • a compact is to be understood here as a body which is produced by pressing powder, it being possible in particular to use a die press.
  • the pressing takes place in an external magnetic field.
  • the external magnetic field can be generated, for example, by an electrical coil.
  • the external magnetic field preferably has an extent which surrounds the entire compact.
  • the external magnetic field is likewise preferably a homogeneous magnetic field which points in the direction of the magnetization desired for the hybrid magnet.
  • the method is particularly preferred if the external magnetic field is oriented perpendicular to the layer plane.
  • the external magnetic field can cause the magnetization of the magnetic particles to align along the external magnetic field.
  • the external magnetic field applied during pressing can advantageously influence the properties of the hybrid magnet. In particular in the case of magnetic materials with a pronounced crystal anisotropy, an external magnetic field applied during the pressing can align the particles in such a way that a preferred direction of magnetization is the same for all particles.
  • the alignment of the particles can be fixed. Even if the magnetization is lost again in a later process step (in particular due to the effect of temperature), the alignment of the particles can remain. In the case of a subsequent magnetization, this can be used to benefit from the preferred direction of magnetization common to all particles.
  • the hard magnetic particles and the soft magnetic particles are acted on at least temporarily with ultrasound.
  • Exposure to ultrasound can increase the packing density of the powder. This can improve the stability of the hybrid magnet.
  • the ultrasound is preferably generated by an ultrasound probe in the vicinity of the hybrid magnet. The action with ultrasound preferably takes place before and / or during the pressing.
  • the separating layer has a separating layer thickness which is in the range from 1 nm to 300 nm, in particular in the range from 2 nm to 50 nm.
  • the separating layer thickness is to be understood as the spatial dimension which has the smallest dimension, this also regularly relates to the expansion of the separating layer perpendicular to the layer structure. If the hybrid magnet is made from powder, the separating layer thickness depends in particular on the coating thickness described above. In any case, i. H. For hybrid magnets that are produced in a different way, the advantages described above in connection with the choice of the coating thickness apply in a corresponding manner to the choice of the separating layer thickness.
  • the hybrid magnet is magnetized in an external magnetic field.
  • the magnetization is preferably carried out when the hybrid magnet has already been sintered.
  • the method is particularly preferred if the external magnetic field is oriented perpendicular to the layer plane.
  • the magnetization can in a z. B. generated by an electrical coil, external magnetic field, which is preferably homogeneous and encloses the entire hybrid magnet.
  • This external magnetic field can differ from the external magnetic field described above both in orientation and in strength.
  • the external magnetic field could also be referred to here as a second external magnetic field in order to distinguish it from the magnetic field described above.
  • the external magnetic field used here is preferably sufficiently strong to be parallel To achieve alignment of the magnetization of the particles, which remains even without an external magnetic field (remanent magnetization).
  • the method can include an (additional) thermal treatment in a further external magnetic field (material-specific, e.g. for Alnico alloys.
  • a further aspect of the invention relates to a hybrid magnet, comprising a layer structure composed of layers, at least one of the layers being a hard magnetic layer and at least one of the layers being a soft magnetic layer, and adjacent layers being separated by a magnetically passive material.
  • Such a hybrid magnet is preferably, but not necessarily, produced using the method proposed here.
  • the explanations described in connection with the method can be used individually or in combination for explanations of the structure, the properties and the advantages of the proposed hybrid magnet.
  • each hard magnetic layer is formed from hard magnetic particles and each soft magnetic layer from soft magnetic particles, the hard magnetic particles and the soft magnetic particles being surrounded by a matrix body.
  • a hybrid magnet is preferably produced by the method according to the invention in an embodiment which comprises the use of powder.
  • the particles in the hybrid magnet correspond to the particles of the powder.
  • the hard magnetic particles and the soft magnetic particles have an (average) diameter (or a grain size) in the range from 0.2 ⁇ m to 250 ⁇ m.
  • the magnetically passive material forming the matrix body is one of the following materials in particular: glass, glass-ceramic, metallic glass or ceramic.
  • the execution of the matrix body with one of these materials can be achieved, for example, by sintering a body formed from powder with a corresponding coating.
  • Glasses are understood to mean, in particular, amorphous substances which are structurally present as an irregular structure (network). In contrast, there are in particular crystalline substances that are present in an ordered lattice structure.
  • Metallic glasses are primarily understood to mean metal alloys which, unlike ordinary metals or metal alloys, are amorphous, i. H. have no ordered lattice structure. Glasses, glass ceramics or ceramics are characterized by a particularly high level of corrosion protection and protection against ignition.
  • each layer has a layer thickness and a (spatial) width, the width corresponding to at least ten times the layer thickness for each layer.
  • the layer thickness is regularly to be understood as the extent of a layer perpendicular to the layer structure.
  • the width is then the extent of the layer perpendicular to the direction in which the layer thickness is measured. This means in particular that with a layer of any shape in any direction perpendicular to the layer structure, the width must be greater than ten times the layer thickness.
  • the layers are aligned perpendicular to the magnetization of the hybrid magnet.
  • the alignment of the magnetization perpendicular to the layer structure means that the soft magnetic layers are always in a supporting field of the hard magnetic layers and thus contribute to the overall magnetization of the hybrid magnet.
  • the described advantages of a hybrid magnet with a layer structure can be used to the maximum.
  • starting materials for the manufacturing process are selected and made available in a recipe manufacturing according to component and material requirements (in particular with regard to magnetic properties such as e.g. retentive magnetization and a coercive field strength as well as with regard to temperature properties such as a transformation temperature) .
  • component and material requirements in particular with regard to magnetic properties such as e.g. retentive magnetization and a coercive field strength as well as with regard to temperature properties such as a transformation temperature.
  • a second embodiment of a manufacturing process the previously described formulation manufacturing is carried out first. This is followed by building up a layer structure and producing layers using coating technologies, which can optionally be carried out in a magnetic field. Finally, as before, sintering, optional tempering, optional post-treatment and optional magnetization follow. Two examples of this second embodiment of the manufacturing method are described below.
  • a first example of a hybrid magnet relates to a hybrid magnet made of powder, consisting of NdFeB [neodymium, iron, boron] as a hard magnetic material. 90% of the particles of this material have a diameter of less than 3 ⁇ m, 50% of less than 1 ⁇ m and 30% of 0.2 to 0.5 ⁇ m. Furthermore, the hybrid magnet consists of pure iron [Fe] as a soft magnetic material. 90% of the particles of this material have a diameter of less than 2 ⁇ m and 30% of 0.2 to 0.8 ⁇ m.
  • the coating is formed from an oxide composition comprising the following proportions: 30 to 60 mol% Bi 2 O 3 [bismuth oxide], 30 to 40 mol% B 2 O 3 [boron oxide], 10 to 20 mol% ZnO [zinc oxide] and 5 to 10 mol% SiO 2 [silicon dioxide].
  • the layer structure alternately has a hard magnetic and a soft magnetic layer, with adjacent layers being separated from each other by a separating layer (indirectly by coating the Powder).
  • the body is 100 mm by 300 mm wide and has a height of 8 mm.
  • the individual layers (together with a separating layer) each have a layer thickness of 2.5 ⁇ m.
  • the layer structure comprises 3200 layers, i.e. 1600 layers per material.
  • the NdFeB particles are aligned by means of an external magnetic field with a strength of 1200 kA / m generated with an electromagnet. No pressing takes place.
  • the sintering (“pressless sintering" or “bulk sintering") is carried out over a period of one hour at 400 to 500 ° C. in an argon atmosphere.
  • the body is then divided into parts by cutting with a width of 20 mm by 10 mm and a height of 5 mm. Another magnetization optionally follows.
  • a second example of a hybrid magnet is a hybrid magnet made of powder, consisting of NdFeB [neodymium, iron, boron] as the hard magnetic material. 90% of the particles of this material have a diameter of less than 3 ⁇ m, 50% of less than 2 ⁇ m and 30% of 0.2 to 1 ⁇ m. Furthermore, the hybrid magnet consists of a composition of 90% Fe [iron], 5% Ni [nickel], 2% Co [cobalt] and 3% Si [silicon] as a soft magnetic material. 90% of the particles of this composition have a diameter of less than 2 ⁇ m and 30% of 0.2 to 0.1 ⁇ m.
  • the coating is formed from an oxide composition, comprising the following proportions: 40 to 60 mol% PbO [lead oxide], 30 to 40 mol% B 2 O 3 [boron oxide], 5 to 10 mol% ZnO [zinc oxide].
  • the layer structure alternately has one hard magnetic and two soft magnetic layers.
  • the body is 100 mm by 300 mm wide and has a height of 9.9 mm.
  • the individual layers have a layer thickness (together with a separating layer) of 3 ⁇ m each.
  • the layer structure comprises 3300 layers, i.e. 1100 layers of the hard magnetic material and 2200 layers of the soft magnetic material. Pressing takes place in the form of a die press. The sintering is carried out for one hour at 400 to 500 ° C in an argon atmosphere. Then the body is divided into parts cut by cutting with a width of 20 mm by 10 mm and a height of 9 mm. Another magnetization optionally follows.
  • a third example of a hybrid magnet is a hybrid magnet made of powder, consisting of NdFeB [neodymium, iron, boron] as a hard magnetic material with a layer thickness of 300 nm and 90% Fe [iron], 5% Ni [nickel], 2 % Co [cobalt], 3% Si [silicon] as a soft magnetic material with a layer thickness of 350 nm.
  • the separating layers are formed from an oxide composition, comprising the following proportions: 40 to 60 mol% PbO [lead oxide], 30 to 40 mol% B 2 O 3 [boron oxide], 5 to 10 mol% SiO 2 [silicon dioxide] with a separating layer thickness of 10 nm.
  • the layer structure alternately has a hard magnetic and a soft magnetic layer.
  • the body is 10 mm by 25 mm wide and 6 mm high. Alignment takes place in the magnetic field before sintering. The sintering is carried out for one hour at 400 to 900 ° C in an argon atmosphere. Another magnetization optionally follows.
  • a layer structure with coating technologies is produced by first growing a thin hard magnetic layer in a first step, e.g. B. from Nd 2 Fe 14 B [neodymium, iron, boron] with a thickness of 250 to 300 nm. This layer thickness corresponds to a single-domain particle diameter of Nd 2 Fe 14 B.
  • a first step e.g. B. from Nd 2 Fe 14 B [neodymium, iron, boron] with a thickness of 250 to 300 nm.
  • This layer thickness corresponds to a single-domain particle diameter of Nd 2 Fe 14 B.
  • One of the following coating technologies introduced above can be used: "atomic layer deposition "(ALD),” metal-organic chemical vapor deposition "(MOCVD) or” chemical vapor deposition "(CVD).
  • organometallic compounds can be used for these coating technologies: tris- [N, N-bis (trimethylsilyl) amido] neodymium (III) for neodymium [Nd], iron (III) tris (2,2,6,6- tetramethyl-3,5-heptanedionate) for iron [Fe] and triisopropylborate for boron [B].
  • a second step e.g. B. applied by CVD a 5 to 10 nm thin separation layer.
  • oxides can be used: SiO 2 [silicon oxide], B 2 O 3
  • TEOS Tetraethyl orthosilicate
  • TEB triethyl borate
  • potassium ethanolate for KO [ Cobalt oxide].
  • Oxide mixtures with PbO [lead oxide], Bi 2 O 3 [bismuth oxide], P 2 O 5 [phosphorus oxide], ZnO [zinc oxide] or SnO [tin oxide] can also be used here in order to be able to produce low-melting glasses.
  • the following precursors are possible: lead (II) acetate trihydrate for PbO [lead oxide], bismuth (III) acetates for Bi 2 O 3 [bismuth oxide], phosphorus trichloride for P 2 O 5 [phosphorus oxide], zinc acetate for ZnO [zinc oxide] , Tin (II) acetate for SnO [tin oxide].
  • Rare earth oxides can also be built into the separating layer, which in turn arise from precursors such as neodymium (III) isopropoxide and dysprosium (III) acetate hydrate.
  • precursors such as neodymium (III) isopropoxide and dysprosium (III) acetate hydrate.
  • a thin layer of a soft magnetic phase e.g. B.
  • a separating layer of binary, ternary or quaternary oxide mixtures is then applied again, from which a glass, a glass ceramic or a ceramic phase forms in the further course of the process. The sequence of the layer structure is repeated until the desired total thickness is reached. This creates a layer structure in which hard magnetic layers and soft magnetic layers always alternate, which are separated from one another by separating layers.
  • a fifth example is a hybrid magnet similar to that previously described in the fourth example. The only difference is the sequence and the number of different layers. Instead of always arranging hard magnetic layers and soft magnetic layers alternately, several soft magnetic layers can also be arranged Layers or several hard magnetic layers follow one another, which can also be separated from one another by a separating layer. Adjacent layers of the same material are therefore grouped together.
  • Fig. 1 shows an intermediate product of a hybrid magnet 1, having hard magnetic layers 13 and soft magnetic layers 14.
  • the hard magnetic layers 13 are (essentially) formed by hard magnetic particles 2.
  • the hard magnetic particles 2 are (only) made of a hard magnetic material 5.
  • the soft magnetic layers 14 are (essentially) made of soft magnetic particles 3, which themselves (only) are made of a soft magnetic material 6.
  • the soft magnetic material 6 is represented by hatching.
  • the hard magnetic particles 2 and the soft magnetic particles 3 each have a coating 4 made of a magnetically passive material 7.
  • the coating 4 has a coating thickness 8.
  • the hard magnetic particles 2 and the soft magnetic particles 3 each have approximately a diameter 12, which in this embodiment is the same size for all hard magnetic particles 2 and all soft magnetic particles 3. Also shown is a layer thickness 19 as the distance between adjacent layers.
  • Hard magnetic layers 13 have a hard magnetic layer thickness 33 and soft magnetic layers 14 have a soft magnetic layer thickness 16, which does not have to be identical to the hard magnetic layer thickness 33.
  • a width 20 is shown here as the extent of the hybrid magnet 1 perpendicular to the direction in which the layer thickness 19 is measured.
  • the hybrid magnet 1 is in this Fig. 1 shown as a cross section through the layer structure, a situation before the sintering of the hybrid magnet semi-finished product is shown, so that the hard magnetic particles 2, the soft magnetic particles 3 and the coating 4 can still be recognized as such.
  • an applied external magnetic field 11 which leads to the alignment of the hard magnetic particles 2 and to the magnetization of the soft magnetic particles 3.
  • the arrows 34 in the particles 2 and 3 indicate the direction of the magnetization.
  • the external magnetic field 11 is homogeneous and encloses the volume of the entire body 17.
  • Fig. 2 shows the hybrid magnet 1 Fig. 1 after pressing and sintering.
  • a matrix body 9 made of the magnetically passive material 7.
  • the matrix body 9 as well as the hard magnetic particles 2 and the soft magnetic particles 3 together now form a sintered part 10.
  • the sintered part 10 is formed from the hard magnetic particles 2 and the soft magnetic particles 3 and the coating 4 by pressing and sintering.
  • the sintered body 10 forms the body 17 of the hybrid magnet 1.
  • the hard magnetic particles 2 made of the hard magnetic material 5 form the hard magnetic layers 13.
  • the hard magnetic particles 2 represent partial regions of the hard magnetic layers 13 which are magnetically passive in the layer plane through the magnetically passive body forming the matrix body 9
  • Material 7 are separated from each other.
  • the soft magnetic particles 3 made of the soft magnetic material 6 form the soft magnetic layers 14. In between there are separating layers 15, which in this embodiment are formed as part of the matrix body 9. This applies in particular to the first three examples of a hybrid magnet.
  • Fig. 3 shows a hybrid magnet 1, which has arisen from a manufacturing process using a coating technology.
  • the hybrid magnet 1 comprises a body 17 which comprises hard magnetic layers 13 made of a hard magnetic material 5, soft magnetic layers 14 made of a soft magnetic material 6 and separating layers 15 made of a magnetically passive material 7.
  • the soft magnetic material 6 is represented by hatching.
  • the separating layers 15 have a separating layer thickness 18.
  • the hard magnetic layers 13 and the soft magnetic layers 14 have a layer thickness 19, which in this embodiment is the same for all layers.
  • the width 20 of the hybrid magnet 1 is also shown.
  • an external magnetic field 11 which can be applied during the production of the hybrid magnet 1.
  • Fig. 3 relates in particular to the fourth example of a hybrid magnet explained above.
  • Fig. 4 shows a hybrid magnet 1 in a further embodiment. Compared to Fig. 3 another layer sequence is only shown as an example. Accordingly, adjacent layers of the same material can also be present in groups. Fig. 4 relates in particular to the fifth example of a hybrid magnet explained above. The in Fig. 4 The adapted layer structure shown with grouped layers of the same material can also be applied to hybrid magnets according to the first three examples. Grouped layers can also be provided with such hybrid magnets.
  • Fig. 5 shows the first embodiment of a manufacturing method described above.
  • a recipe manufacture 22 starting materials for the manufacturing process are selected and made available in accordance with component and material requirements (in particular with regard to magnetic properties such as, for example, retentive magnetization and a coercive field strength, and with regard to temperature properties such as a transformation temperature).
  • the starting materials are then pulverized in a powder supply 23. This happens e.g. B. with conventional techniques.
  • powder particles are coated, for. B. with a single or multiple coating.
  • a green compact is built up layer by layer in a layer structure made of powder 25.
  • a pressing 26 optionally follows to form a compact. This is followed by a sintering 27 of the green body, an optional annealing 28, an optional aftertreatment 29 and an optional magnetization 30.
  • the first embodiment of a manufacturing method applies in particular to the first three examples of a hybrid magnet.
  • Fig. 6 shows the second embodiment of a manufacturing method described above.
  • the second embodiment of a manufacturing method applies in particular to the fourth and fifth example of a hybrid magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung betrifft einen Hybridmagneten, der mindestens ein weichmagnetisches und mindestens ein hartmagnetisches Material umfasst. Weiterhin bezieht sich die Erfindung auf ein Herstellungsverfahren eines solchen Hybridmagneten.
  • Magnetische Werkstoffe können mittels eines schmelzmetallurgischen Verfahrens (als Gußmagnetwerkstoffe) oder eines pulvermetallurgischen Verfahrens (als Sintermagnetwerkstoffe oder Pulvermagnetverbundwerkstoffe) hergestellt werden. Mit pulvermetallurgischen Verfahren, die eine Sinterung umfassen, können magnetische Bauteile hergestellt werden, deren Form schmelzmetallurgisch nicht realisierbar ist. Dies gilt z. B. insbesondere für Magnetwerkstoffe mit Kristallanisotropie (NdFeB, SmCo, etc.). Pulvermetallurgische Herstellungsverfahren können die folgenden Prozessstufen umfassen: Pulverisierung eines magnetischen Ausgangsmaterials, Pressen des dabei entstehenden Pulvers zu einem Grünteil unter Ausformung einer gewünschten Gestalt, Sintern des Grünteils, optionale thermische Behandlung zum Spannungsabbau und zur Gefügeoptimierung, sowie optional Magnetisierung in einem externen Magnetfeld. Weiterhin können auf diese Art hergestellte Magnete erforderlichenfalls mechanisch nachbehandelt werden, zum Beispiel durch Schleifen oder Polieren.
  • Es wird insbesondere zwischen metallisch kristallinen, metallisch amorphen und oxidischen Werkstoffen unterschieden. Weiterhin werden magnetische Werkstoffe nach der Größe ihrer Koerzitivfeldstärke (oft als HcJ abgekürzt) unterteilt in magnetisch harte (eine große Koerzitivfeldstärke aufweisende), halbharte (eine mittlere Koerzitivfeldstärke aufweisende) und weiche (eine kleine Koerzitivfeldstärke aufweisende) Werkstofftypen.
  • Weiterhin sind so genannte Hybridmagnete bekannt. Unter einem Hybridmagneten wird ein Bauteil verstanden, das mindestens zwei verschiedene magnetische Materialien umfasst, insbesondere mindestens ein hartmagnetisches Material und mindestens ein weichmagnetisches Material. Insbesondere sind Hybridmagnete bekannt, bei denen das hartmagnetische und das weichmagnetische Material in einen Matrixkörper aus Kunststoff eingebunden sind. Bei Hybridmagneten dieser Art kann nachteilig sein, dass deren magnetische Eigenschaften geringer ausgeprägt sind als erwünscht, dass aufgrund des Kunststoffmaterials die Temperaturstabilität sowie die mechanische Festigkeit begrenzt sein kann, und/oder dass solche Hybridmagnete keinen Medien ausgesetzt werden können, die das Kunststoffmaterial angreifen könnten.
  • In der US 6,972,046 B2 ist ein Verfahren zur Herstellung von Hybridmagneten offenbart. Dabei wird eine Beschichtung von Pulverpartikeln eingesetzt, die zur Vermeidung von Agglomeratbildung dient.
  • In der US 2014/0072470 A1 ist ein Verfahren zur Herstellung von Hybridmagneten beschrieben, bei dem eine Pulvermischung mit einer Pressmatrize mit einem gewinkelten Kanal abgeformt wird.
  • WO 2012/159096 A2 umhüllt hartmagnetische mit weichmagnetischen Materialien und beinflusst die Austauschwechselwirkung durch nichtmagnetische Materialien entlang der Korngrenzen.
  • Hiervon ausgehend ist es Aufgabe der hier vorliegenden Erfindung, die im Zusammenhang mit dem Stand der Technik geschilderten technischen Probleme zu lösen bzw. zumindest zu lindern. Es soll insbesondere ein Hybridmagnet mit verbesserten magnetischen, mechanischen und/oder thermischen Eigenschaften vorgestellt werden. Weiterhin soll ein geeignetes Verfahren zu dessen Herstellung angegeben werden.
  • Diese Aufgaben werden gelöst mit einem Hybridmagneten und einem Verfahren zur Herstellung eines Hybridmagneten gemäß den Merkmalen der unabhängigen Patentansprüche. Weitere vorteilhafte Ausgestaltungen des Hybridmagneten und des Verfahrens sind in den abhängigen Patentansprüchen angegeben. Die in den Patentansprüchen einzeln aufgeführten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar und können durch erläuternde
  • Sachverhalte aus der Beschreibung ergänzt werden, wobei weitere Ausführungsvarianten der Erfindung aufgezeigt werden.
  • Hierzu trägt ein Verfahren zur Herstellung eines Hybridmagneten bei, umfassend zumindest die folgenden Verfahrensschritte:
    1. A) Erzeugen einer hartmagnetischen Schicht aus einem hartmagnetischen Material,
    2. B) Erzeugen einer weichmagnetischen Schicht aus einem weichmagnetischen Material, und
    3. C) Erzeugen einer Trennschicht aus einem magnetisch passiven Material, wobei durch jeweils mehrfaches Anwenden der Verfahrensschritte A), B) und C) ein Hybridmagnet geformt wird, der einen Schichtaufbau aufweist.
  • Erfindungsgemäß wird Verfahrensschritt C) jeweils einmal durchgeführt nach jeder Durchführung von Verfahrensschritt A) und jeweils einmal nach jeder Durchführung von Verfahrensschritt B). Dadurch entsteht zwischen zwei benachbarten Schichten aus hartmagnetischem Material und/oder weichmagnetischem Material jeweils eine (einzelne) Trennschicht. Es können Hybridmagnete mit einem Schichtaufbau hergestellt werden, bei denen die hartmagnetischen Schichten und die weichmagnetischen Schichten in beliebiger Schichtfolge kombiniert werden. Bevorzugt werden hartmagnetische Schichten und weichmagnetische Schichten abwechselnd oder auf eine andere regelmäßige Art ausgebildet.
  • Viele weichmagnetische Materialien haben im Vergleich zu hartmagnetischen Materialien eine höhere Sättigungsmagnetisierung. Demgegenüber ist für hartmagnetische Materialien definitionsgemäß eine größere Koerzitivfeldstärke zu dessen Ummagnetisierung (Umkehrung der Richtung der Magnetisierung) erforderlich. Bei einem Hybridmagneten können diese Vorteile kombiniert werden, d.h. ein Hybridmagnet kann eine ausgeprägte Wirkung als Dauermagnet haben (große remanente Magnetisierung), die nur schwer durch äußere Einflüsse zerstört werden kann (große Koerzitivfeldstärke).
  • Durch den Schichtaufbau des Hybridmagneten kann insbesondere bei einer Ausrichtung der Magnetisierung senkrecht zu dem Schichtaufbau erreicht werden, dass sich die weichmagnetischen Schichten immer in einem Stützfeld der hartmagnetischen Schichten befinden und somit zur Gesamtmagnetisierung des Hybridmagneten beitragen. Werden weichmagnetische Bereiche neben hartmagnetischen Bereichen angeordnet, z.B. im Extremfall, dass die hartmagnetischen Schichten entlang ihrer Schichtebene magnetisiert werden, wirken die weichmagnetischen Schichten als magnetischer Kurzschluss und der Hybridmagnet kann keinen im Außenraum nutzbaren Magnetfluss produzieren.
  • Unter einer hartmagnetischen Schicht ist ein Bereich des Hybridmagneten zu verstehen, der überwiegend bzw. ausschließlich aus einem hartmagnetischen Material besteht. Eine hartmagnetische Schicht muss nicht notwendigerweise ein zusammenhängender Bereich hartmagnetischen Materials sein. Insbesondere bei Hybridmagneten mit einem Matrixkörper kann eine hartmagnetische Schicht von Teilbereichen hartmagnetischen Materials gebildet werden, die in der Schichtebene durch das Matrixmaterial voneinander (teilweise) getrennt sind. Vorzugsweise, aber nicht notwendigerweise, bestehen alle hartmagnetischen Schichten aus dem gleichen hartmagnetischen Material. Alternativ können in einem Hybridmagneten verschiedene hartmagnetische Materialien verwendet werden. Es können verschiedene hartmagnetische Materialien in einer Schicht verarbeitet sein. Es können aber auch verschieden aufgebaute Schichten vorhanden sein, die jeweils aus unterschiedlichen hartmagnetischen Materialien bestehen.
  • Als hartmagnetisches Material sind bevorzugt: martensitische Stähle; Legierungen auf Basis von CuNiFe [Kupfer, Nickel, Eisen], CuNiCo [Kupfer, Nickel, Kobalt], FeCoVCr [Eisen, Kobalt, Vanadium, Chrom], MnAlC [Mangan, Aluminium, Kohlenstoff], oder AINiCo [Aluminium, Nickel, Kobalt]; Hartmagnete auf Basis von PtCo [Platin, Kobalt]; Seltenerdmagneten wie z. B. NdFeB [Neodym, Eisen, Bor], SmCo [Samarium, Kobalt], oder SmFeN [Samarium, Eisen, Stickstoff]; oxydische Dauermagnete (Hartferrite); oder neuartige Hartmagnete wie z. B. MnBi [Mangan, Bismut] oder Fe16N2 [Eisen, Stickstoff].
  • Unter einer weichmagnetischen Schicht ist ein Bereich des Hybridmagneten zu verstehen, der überwiegend bzw. ausschließlich aus einem weichmagnetischen Material besteht. Eine weichmagnetische Schicht muss nicht notwendigerweise ein zusammenhängender Bereich weichmagnetischen Materials sein. Insbesondere bei Hybridmagneten mit einem Matrixkörper kann eine weichmagnetische Schicht von Teilbereichen weichmagnetischen Materials gebildet werden, die in der Schichtebene durch das Matrixmaterial voneinander (teilweise) getrennt sind. Vorzugsweise, aber nicht notwendigerweise, bestehen alle weichmagnetischen Schichten aus dem gleichen weichmagnetischen Material. Alternativ können in einem Hybridmagneten verschiedene weichmagnetische Materialien verwendet werden. Es können verschiedene weichmagnetische Materialien in einer Schicht verarbeitet sein. Es können aber auch verschieden aufgebaute Schichten vorhanden sein, die jeweils aus unterschiedlichen weichmagnetischen Materialien bestehen.
  • Als weichmagnetisches Material sind bevorzugt: Weicheisen, Kohlenstoffstähle, Legierungen auf Basis von FeAl [Eisen, Aluminium], FeAlSi [Eisen, Aluminium, Silizium], FeNi [Eisen, Nickel], FeCo [Eisen, Kobalt]; amorphe weichmagnetische Werkstoffe wie z. B. FeNiBSi [Eisen, Nickel, Bor, Silizium], FeBSi [Eisen, Bor, Silizium]; weichmagnetische Ferritwerkstoffe wie z. B. MnZn-Ferrite [Mangan, Zink], MgZn-Ferrite [Magnesium, Zink]; Spinellwerkstoffe wie z. B. MnMgZn [Mangan, Magnesium, Zink], NiZn [Nickel, Zink]; oder Granatwerkstoffe wie z. B. BiCa [Bismut, Calcium], YGd [Yttrium, Gadollinium].
  • Zusätzlich oder alternativ zu dem hartmagnetischen Material und/oder dem weichmagnetischen Material kann ein magnetisch halbhartes Material eingesetzt werden. Wird ein magnetisch halbhartes Material eingesetzt, gelten die Erklärungen für die hartmagnetischen Materialien bzw. die weichmagnetischen Materialien jeweils in analoger Weise. Als magnetisch halbhartes Material bevorzugt sind: Legierungen auf Basis von FeNi [Eisen, Nickel], FeMn [Eisen, Mangan], FeNiMn [Eisen, Nickel, Mangan], CoFe [Kobalt, Eisen], oder FeCu [Eisen, Kupfer]; Co49Fe48V3 [Kobalt, Eisen, Vanadium; auch bekannt als Remendur]; Co55NiFe [Kobalt, Nickel, Eisen; auch bekannt als Vacozet], und Kovar.
  • Das magnetisch passive Material kann insbesondere ein diamagnetisches Material oder ein paramagnetisches Material sein. Beispielsweise kann ein paramagnetisches oder diamagnetisches Metall verwendet werden, wie beispielsweise Dy [Dysprosium], Tb [Terbium], Al [Aluminium], Pt [Platin], Ti [Titan], Cu [Kupfer], Pb [Blei], Zn [Zink], Sn [Zinn], Ga [Gallium], Ge [Germanium], Au [Gold], Ag [Silber], Mg [Magnesium], Mo [Molybdän], Mn [Mangan], Zr [Zirkonium], Li [Lithium]. Auch können Legierungen oder Oxide der angegebenen Materialien verwendet werden. Weitere bevorzugte Materialien werden nachfolgend noch angeführt. Vorzugsweise, aber nicht notwendigerweise, wird für alle Trennschichten das gleiche magnetisch passive Material verwendet.
  • Bevorzugt wird ein elektrisch nicht oder nur schlecht leitendes magnetisch passives Material verwendet.
  • In einem ausgedehnten elektrischen Leiter kann ein sich änderndes magnetisches Feld aufgrund von elektromagnetischer Induktion elektrische Ströme (Wirbelströme) erzeugen. Diese können zu einer Erwärmung des ausgedehnten elektrischen Leiters führen und/oder dessen magnetische Eigenschaften nachteilig beeinflussen. Unterbrechen Trennschichten aus einem elektrisch nicht oder nur schlecht leitenden Material die elektrische Leitfähigkeit des Hybridmagneten, können Wirbelströme reduziert und/oder lokal eingeschränkt werden.
  • Wirbelströme können insbesondere in Hybridmagneten mit einem Matrixkörper effektiv unterdrückt werden, da in solchen die einzelnen magnetischen Schichten aus Teilbereichen magnetischen Materials gebildet werden, die auch in der Schichtebene durch das Matrixmaterial voneinander (teilweise) getrennt sind.
  • In einer Ausführungsform des Verfahrens wird in mindestens einem der Verfahrensschritte A), B) und C) eine Beschichtungstechnologie angewendet.
  • Die Beschichtungstechnologie ist bevorzugt eine Nasstechnik, wie z. B. ein Sol-Gel-Verfahren, ein trockener Abscheidungsprozess, und/oder ein chemisches oder ein physikalisches Gasphasenabscheidungsverfahren. Dabei wird unter einem physikalischen Gasphasenabscheidungsverfahren ("physical vapor deposition", PVD) ein vakuumbasiertes Beschichtungsverfahren verstanden, bei dem ein Ausgangsmaterial in die Gasphase überführt und auf einem zu beschichtenden Substrat abgeschieden wird. Verfahren der chemischen Gasphasenabscheidung ("chemical vapor deposition", CVD) sind den Verfahren der physikalischen Gasphasenabscheidung ähnlich, mit dem Unterschied, dass hier bei der Abscheidung des Ausgangsmaterials auf dem Substrat eine chemische Reaktion abläuft. Den Beschichtungstechnologien ist insbesondere gemein, dass das Material in kleinen Teilchen zu dem Substrat zugeführt wird und dort mit diesem so verbunden werden kann, dass eine fest mit dem Substrat verbundene Oberflächenschicht gebildet wird.
  • Bevorzugt wird in jedem der Verfahrensschritte A), B) und C) eine Beschichtungstechnologie (also insbesondere ein Beschichtungsverfahren der vorstehenden Art) angewendet. Insbesondere wird die gleiche Beschichtungstechnologie für alle Verfahrensschritte angewendet.
  • Erfindungsgemäße Ausgestaltung des Herstellungsverfahrens: Verfahrensschritt A) umfasst zumindest den folgenden Teilschritt:
    A1) Bereitstellen eines hartmagnetischen Pulvers aufweisend hartmagnetische Partikel aus dem hartmagnetischen Material.
  • Verfahrensschritt B) umfasst zumindest den folgenden Teilschritt:
    B1) Bereitstellen eines weichmagnetischen Pulvers aufweisend weichmagnetische Partikel aus dem weichmagnetischen Material.
  • Verfahrensschritt C) umfasst zumindest den folgenden Teilschritt:
    C1) Beschichten zumindest eines der hartmagnetischen Partikel oder der weichmagnetischen Partikel mit mindestens einer Beschichtung aus dem magnetisch passiven Material.
  • Das Verfahren umfasst weiterhin bevorzugt die folgenden Verfahrensschritte:
    • D) Formen eines den Hybridmagneten bildenden Körpers gemäß den Verfahrensschritten A), B) und C); und
    • E) Sintern des Körpers, wobei eine Temperatur verwendet wird, die hinreichend groß ist, um die Beschichtung in einen die hartmagnetischen Partikel und die weichmagnetischen Partikel umgebenden Matrixkörper umzuformen,
    wobei während des gesamten Verfahrens eine Sintertemperatur für das hartmagnetische Material und eine Sintertemperatur für das weichmagnetische Material nicht überschritten werden, und wobei in Verfahrensschritt E) eine Sintertemperatur des magnetisch passiven Materials überschritten wird.
  • Das Formen des Hybridmagneten in Verfahrensschritt D) kann optional in einem externen Magnetfeld erfolgen.
  • Die Verfahrensschritte D) und E) werden vorzugsweise in der angegebenen Reihenfolge durchlaufen. Teilschritt A1) kann eine Rezepturherstellung, Mischung und/oder Portionierung des verwendeten hartmagnetischen Materials umfassen. Weiterhin kann in Teilschritt A1) ein Pulver des hartmagnetischen Materials erzeugt werden, z. B. durch Zerkleinerung eines Festkörpers aus diesem hartmagnetischen Material.
  • Die vorstehenden Erläuterungen zu Teilschritt A1) können ebenso für die Bereitstellung des weichmagnetischen Materials in Teilschritt B1) herangezogen werden.
  • In Teilschritt C1) wird das Beschichten der Partikel bevorzugt mit einem der folgenden Beschichtungsverfahren durchgeführt: PVD wie z. B. "vacuum deposition", "plasma deposition", "sputtering", "molecular beam epitaxy (MBE)", "vapor phase epitaxy", oder "liquid phase epitaxy"; CVD wie z. B. "sol-gel deposition", oder "metallo-organic chemical vapor deposition (MOCVD)". Diese Verfahren sind einem Fachmann auf diesem Gebiet gut bekannt. Vorzugsweise wird in Teilschritt C1) eine einzige Beschichtungsschicht auf die Partikel aufgebracht. In einer alternativen Ausführungsform des Verfahrens werden in Teilschritt C1) bevorzugt zwei Beschichtungsschichten aus verschiedenen Materialien aufgebracht.
  • Durch die Beschichtung der Partikel kann vermieden werden, dass benachbarte Partikel agglomerieren. Dies kann den Herstellungsprozess erleichtern. Weiterhin kann die Beschichtung der Partikel eine magnetische Austauschwechselwirkung benachbarter Partikel, insbesondere benachbarter Partikel unterschiedlicher Materialien, reduzieren. Ebenso kann die Beschichtung der Partikel zu einer Passivierung der Oberflächen der Partikel führen. Dies kann die Gefahr einer Selbstentzündung der Partikel bei Kontakt mit Luft reduzieren. Dies kann die Durchführung des Verfahrens erleichtern, weil auf eine Inertgasatmosphäre verzichtet werden kann. Durch die elektrisch isolierende Beschichtung der Partikel können insbesondere Wirbelströme reduziert und/oder lokal eingeschränkt werden.
  • In Verfahrensschritt D) wird der Körper dadurch geformt, dass das weichmagnetische Pulver und das hartmagnetische Pulver in der gewünschten Reihenfolge des Schichtaufbaus übereinander aufgetragen werden. Optional kann nach dem Auftragen einer Schicht durch ein Abstreifen die Verteilung des diese Schicht bildenden Pulvers verbessert werden. Die Trennschichten werden durch die Beschichtung der Partikel gebildet, so dass lediglich Schichten aus dem hartmagnetischen Pulver und Schichten aus dem weichmagnetischen Pulver übereinander geschichtet werden müssen, wobei zwischen benachbarten Schichten jeweils genau eine (einheitliche und/oder zusammenhängende) Trennschicht entsteht. Das bedeutet insbesondere, dass bei jeder Durchführung von Verfahrensschritt A) und bei jeder Durchführung von Verfahrensschritt B) Verfahrensschritt C) zusätzlich mit ausgeführt wird.
  • In Verfahrensschritt E) entsteht aus dem in Verfahrensschritt D) geformten Körper durch Sintern ein Hybridmagnet. Dabei bedeutet Sintern, dass der Körper einer erhöhten Temperatur ausgesetzt wird, wobei die Beschichtung der Partikel in einen die Partikel umgebenden Matrixkörper umgeformt wird. Die zum Sintern gewählte Temperatur ist vorzugsweise derart gewählt, dass kein Sintern der hartmagnetischen und der weichmagnetischen Materialien stattfindet. Dies bedeutet insbesondere, dass die zum Sintern gewählte Temperatur vorzugsweise höchstens der Schmelztemperatur des magnetisch passiven Materials entspricht, bzw., sofern eine solche Schmelztemperatur für das betreffende Material nicht wohldefiniert ist, der Transformationstemperatur. Letzteres betrifft solche amorphen Materialien, wie z. B. Glas, bei denen eine Schmelze nicht bei einer bestimmten Schmelztemperatur eintritt. Stattdessen verändern sich bei diesen Materialien die mechanischen Eigenschaften kontinuierlich über einen Temperaturbereich. Dieser wird durch die Angabe einer Transformationstemperatur charakterisiert. Die zum Sintern verwendete Temperatur wird vorzugsweise in Abhängigkeit von allen verwendeten Materialien gewählt. Beispielsweise liegt die Transformationstemperatur vieler Gläser im Bereich bis 900 °C. Wird ein solches Glas als magnetisch passives Material verwendet, beträgt ein bevorzugter Temperaturbereich für die Sinterung (werkstoffspezifisch) 400 °C bis 800 °C bei Normaldruck (1013 hPa), insbesondere 550 °C bis 650 °C. Vor Schritt E) wird der Körper im Allgemeinen als Pressling bezeichnet. Nachdem in Schritt E) die Sinterung durchgeführt wurde, wird der Körper im üblicherweise als Sinterling bezeichnet.
  • Vorzugsweise wird das gesamte Verfahren, umfassend sämtliche Verfahrensschritte, unter Bedingungen durchgeführt, bei denen keine (signifikante oder verbreitete) Sinterung des verwendeten hartmagnetischen oder weichmagnetischen Materials eintritt. Dabei ist zu berücksichtigen, dass die Sintertemperatur eines Materials druckabhängig sein kann. Vorzugsweise ist die Temperatur während des gesamten Verfahrens deutlich kleiner, insbesondere mindestens 50 °C kleiner und vorzugsweise mindestens 100 °C kleiner, als die Sintertemperatur jedes verwendeten hartmagnetischen oder weichmagnetischen Materials.
  • In einer weiteren Ausführungsform des Verfahrens weist die Beschichtung eine Beschichtungsdicke auf, die im Bereich von 1 nm bis 300 nm liegt, insbesondere im Bereich von 2 nm bis 50 nm. Unter der Beschichtungsdicke ist regelmäßig die räumliche Ausdehnung der Beschichtung zu verstehen, die die geringste Abmessung hat. Durch die Wahl der Schichtdicke in dem vorgeschlagenen Bereich können einerseits die beschriebenen Vorteile der Beschichtung in ausreichendem Maße erzielt werden. Andererseits ist die Schichtdicke klein genug, um magnetische Eigenschaften des Hybridmagneten nicht wesentlich zu reduzieren.
  • In einer weiteren Ausführungsform des Verfahrens wird der Körper zwischen Verfahrensschritt D) und E) zu einem Zwischenprodukt, einem sogenannten Pressling verpresst. Nachdem der Schichtaufbau durch Aufbringen der bzw. aller gewünschter Schichten aus Pulver aufgebaut wurde, kann ein erhöhter, von außen aufgegebener, Druck zu einer Verdichtung der Partikel führen. Dies kann zur Verbesserung der Sinteraktivität und damit zur Erhöhung der Stabilität des fertig gesinterten Hybridmagneten führen. Unter einem Pressling ist hier ein Körper zu verstehen, der durch Pressen von Pulver erzeugt wird, wobei insbesondere eine Matrizenpresse eingesetzt werden kann.
  • In einer weiteren Ausführungsform des Verfahrens findet das Pressen in einem externen Magnetfeld statt.
  • Das externe Magnetfeld kann beispielsweise durch eine elektrische Spule erzeugt werden. Vorzugsweise hat das externe Magnetfeld eine Ausdehnung, die den gesamten Pressling umschließt. Ebenso vorzugsweise ist das externe Magnetfeld ein homogenes Magnetfeld, das in die Richtung der für den Hybridmagneten gewünschten Magnetisierung zeigt. Besonders bevorzugt ist das Verfahren, wenn das externe Magnetfeld senkrecht zur Schichteben ausgerichtet ist. Das externe Magnetfeld kann bewirken, dass die Magnetisierung der magnetischen Partikel sich entlang des externen Magnetfelds ausrichtet. Abhängig von den verwendeten Materialien kann das während des Pressens anliegende externe Magnetfeld die Eigenschaften des Hybridmagneten vorteilhaft beeinflussen. Insbesondere bei magnetischen Werkstoffen mit ausgeprägter Kristallanisotropie kann ein während des Pressens anliegendes externes Magnetfeld die Partikel derart ausrichten, dass eine bevorzugte Magnetisierungsrichtung für alle Partikel gleich ausgerichtet ist. Nach dem Pressen kann die Ausrichtung der Partikel fixiert sein. Auch wenn in einem späteren Verfahrensschritt die Magnetisierung (insbesondere durch Temperatureinwirkung) wieder verloren geht, kann die Ausrichtung der Partikel bestehen bleiben. Damit kann bei einem späteren Magnetisieren von der allen Partikeln gemeinen bevorzugten Richtung der Magnetisierung profitiert werden.
  • In einer weiteren Ausführungsform des Verfahrens wird zumindest zeitweise mit Ultraschall auf die hartmagnetischen Partikel und die weichmagnetischen Partikel eingewirkt. Die Einwirkung mit Ultraschall kann die Packungsdichte des Pulvers erhöhen. Dies kann die Stabilität des Hybridmagneten verbessern. Vorzugsweise wird der Ultraschall durch eine Ultraschallsonde in der Nähe des Hybridmagneten erzeugt. Das Einwirken mit Ultraschall findet bevorzugt vor und/oder während des Pressens statt.
  • In einer weiteren Ausführungsform des Verfahrens weist die Trennschicht eine Trennschichtdicke auf, die im Bereich von 1 nm bis 300 nm liegt, insbesondere im Bereich von 2 nm bis 50 nm. Unter der Trennschichtdicke ist die räumliche Ausdehnung zu verstehen, die die geringste Abmessung hat, wobei dies regelmäßig auch die Ausdehnung der Trennschicht senkrecht zu dem Schichtaufbau betrifft. Wird der Hybridmagnet aus Pulver hergestellt, hängt die Trennschichtdicke insbesondere von der oben beschriebenen Beschichtungsdicke ab. In jedem Fall, d. h. auch für Hybridmagnete, die auf eine andere Weise hergestellt werden, gelten die oben im Zusammenhang mit der Wahl der Beschichtungsdicke beschriebenen Vorteile in entsprechender Weise für die Wahl der Trennschichtdicke.
  • In einer weiteren Ausführungsform des Verfahrens wird der Hybridmagnet in einem externen Magnetfeld magnetisiert.
  • Die Magnetisierung erfolgt vorzugsweise, wenn der Hybridmagnet bereits fertig gesintert ist.
  • Besonders bevorzugt ist das Verfahren, wenn das externe Magnetfeld senkrecht zur Schichtebene ausgerichtet ist.
  • Nach dem Sintern bzw. nach der Nachbearbeitung kann optional das Magnetisieren durchgeführt werden. Das Magnetisieren kann in einem z. B. von einer elektrischen Spule erzeugten, externen Magnetfeld durchgeführt werden, das vorzugsweise homogen ist und den gesamten Hybridmagneten umschließt. Dieses externe Magnetfeld kann von dem zuvor beschriebenen externen Magnetfeld sowohl in der Orientierung als auch in der Stärke abweichen. Das externe Magnetfeld könnte hier auch als ein zweites externes Magnetfeld bezeichnet werden, um es von dem zuvor beschriebenen Magnetfeld zu unterscheiden. Das hier verwendete externe Magnetfeld ist vorzugsweise hinreichend stark, um eine parallele Ausrichtung der Magnetisierung der Partikel zu erreichen, die auch ohne externes Magnetfeld bestehen bleibt (remanente Magnetisierung).
  • Weiterhin kann das Verfahren eine (zusätzliche) thermische Behandlung in einem weiteren externen Magnetfeld umfassen (werkstoffspezifisch, z.B. bei Alnico Legierungen.
  • Ein weiterer Aspekt der Erfindung betrifft einen Hybridmagneten, aufweisend einen Schichtaufbau aus Schichten, wobei mindestens eine der Schichten eine hartmagnetische Schicht und mindestens eine der Schichten eine weichmagnetische Schicht ist, und wobei benachbarte Schichten durch ein magnetisch passives Material getrennt sind.
  • Vorzugsweise, aber nicht notwendigerweise, wird ein solcher Hybridmagnet mit dem hier vorgeschlagenen Verfahren hergestellt. Jedenfalls können die im Zusammenhang mit dem Verfahren beschriebenen Erläuterungen einzeln oder in Kombination auch für Erläuterungen zum Aufbau, zu den Eigenschaften und hinsichtlich Vorteilen des vorgeschlagenen Hybridmagneten herangezogen werden.
  • In einer weiteren Ausführungsform des Hybridmagneten ist jede hartmagnetische Schicht aus hartmagnetischen Partikeln und jede weichmagnetische Schicht aus weichmagnetischen Partikeln gebildet, wobei die hartmagnetischen Partikel und die weichmagnetischen Partikel von einem Matrixkörper umgeben sind. Ein solcher Hybridmagnet wird vorzugsweise durch das erfindungsgemäße Verfahren in einer Ausführungsform hergestellt, die die Verwendung von Pulver umfasst. In dem Fall entsprechen die Partikel in dem Hybridmagneten den Partikeln des Pulvers.
  • In einer weiteren Ausführungsform des Hybridmagneten weisen die hartmagnetischen Partikel und die weichmagnetischen Partikel einen (mittleren) Durchmesser (bzw. eine Korngröße) im Bereich von 0,2 µm bis 250 µm auf.
  • In einer weiteren Ausführungsform des Hybridmagneten ist das den Matrixkörper bildende magnetisch passive Material eines der folgenden Materialien insbesondere: Glas, Glas-Keramik, metallisches Glas oder Keramik.
  • Die Ausführung des Matrixkörpers mit einer dieser Materialien kann beispielsweise dadurch erreicht werden, dass ein aus Pulver mit entsprechender Beschichtung gebildeter Körper gesintert wird. Unter Gläsern werden insbesondere amorphe Substanzen verstanden, die strukturell als ein unregelmäßiges Gefüge (Netzwerk) vorliegen. Im Gegensatz dazu stehen insbesondere kristallinen Substanzen, die in einer geordneten Gitterstruktur vorliegen. Unter metallischen Gläsern werden vorrangig Metalllegierungen verstanden, die anders als gewöhnliche Metalle oder Metalllegierungen amorph sind, d. h. keine geordnete Gitterstruktur aufweisen. Gläser, Glaskeramiken oder Keramiken zeichnen sich durch einen besonders hohen Korrosionsschutz sowie Schutz vor Entzündung aus.
  • In einer weiteren Ausführungsform des Hybridmagneten weist jede Schicht eine Schichtdicke und eine (räumliche) Weite auf, wobei für jede Schicht die Weite mindestens der zehnfachen Schichtdicke entspricht.
  • Unter der Schichtdicke ist regelmäßig die Ausdehnung einer Schicht senkrecht zu dem Schichtaufbau zu verstehen. Die Weite ist dann die Ausdehnung der Schicht senkrecht zu der Richtung, in die die Schichtdicke gemessen wird. Dies bedeutet insbesondere, dass bei einer beliebig geformten Schicht in jeder Richtung senkrecht zu dem Schichtaufbau die Weite größer sein muss als die zehnfache Schichtdicke.
  • An den seitlichen Rändern einer hartmagnetischen Schicht gibt es immer eine Tendenz, dass sich die Magnetfeldlinien auf kürzestem Weg kurzschließen wollen. Dieser Effekt wird noch verstärkt, wenn in diesem Bereich auch weichmagnetisches Material vorhanden ist. Dieser Anteil an kurzgeschlossenen Magnetfeldlinien steht für die eigentliche Aufgabe eines Dauermagneten, nämlich in seinem Außenraum ein Magnetfeld zu erzeugen, nicht mehr zur Verfügung. Die Forderung, dass die räumliche Weite der magnetischen Schichten mindestens 10 mal so groß sein muss wie die Dicke der einzelnen Schichten kann den Einfluss der magnetischen Kurzschlüsse an den Rändern der Schichten minimieren.
  • In einer weiteren Ausführungsform des Hybridmagneten sind die Schichten senkrecht zur Magnetisierung des Hybridmagneten ausgerichtet.
  • Wie oben beschrieben, kann durch die Ausrichtung der Magnetisierung senkrecht zu dem Schichtaufbau erreicht werden, dass sich die weichmagnetischen Schichten immer in einem Stützfeld der hartmagnetischen Schichten befinden und somit zur Gesamtmagnetisierung des Hybridmagneten beitragen. Damit können mit einem Hybridmagneten mit senkrecht zum Schichtaufbau ausgerichteter Magnetisierung die beschriebenen Vorteile eines Hybridmagneten mit Schichtaufbau maximal genutzt werden.
  • Die für den beschriebenen Hybridmagneten dargestellten besonderen Vorteile und Ausgestaltungsmerkmale sind in beliebiger, technologisch sinnvoller Weise auf das beschriebene Verfahren anwendbar und übertragbar.
  • Im Folgenden sollen beispielhaft konkrete Ausführungsformen des Hybridmagneten bzw. des Herstellungsverfahrens zur Herstellung des Hybridmagneten beschrieben werden.
  • In einer ersten Ausführungsform eines Herstellungsverfahrens werden in einem Rezepturherstellen entsprechend Bauteil- und Werkstoffanforderungen (insbesondere bezüglich magnetischer Eigenschaften wie z. B. einer remanenten Magnetisierung und einer Koerzitivfeldstärke, sowie bezüglich Temperatureigenschaften wie z. B. einer Transformationstemperatur) Ausgangsstoffe für das Herstellungsverfahren ausgewählt und bereitgestellt. Anschließend werden in einem Pulverbereitstellen die Ausgangsstoffe pulverisiert. Dies geschieht z. B. mit konventionellen Techniken. In einem anschließenden Beschichten werden Pulverpartikel beschichtet, z. B. mit einer einfachen oder mehrfachen Beschichtung. Weiterhin wird ein Grünling schichtweise in einem Aufbauen eines Schichtaufbaus aus Pulver aufgebaut. Optional folgt ein Pressen (mit oder ohne Magnetfeld) zu einem Pressling. Abschließend folgen ein Sintern des Grünkörpers, ein optionales Tempern, ein optionales Nachbehandeln und optional ein Magnetisieren. Nachfolgend werden drei Beispiele für diese erste Ausführungsform des Herstellungsverfahrens beschrieben.
  • In einer zweiten Ausführungsform eines Herstellungsverfahrens wird zuerst das zuvor beschriebene Rezepturherstellen durchgeführt. Darauf folgt ein Aufbauen eines Schichtaufbaus und ein Schichtenerzeugen mit Beschichtungstechnologien, das optional in einem Magnetfeld durchgeführt werden kann. Abschließend folgen wie zuvor das Sintern, das optionale Tempern, das optionale Nachbehandeln und das optionale Magnetisieren. Nachfolgend werden zwei Beispiele für diese zweite Ausführungsform des Herstellungsverfahrens beschrieben.
  • Ein erstes Beispiel für einen Hybridmagneten betrifft einen aus Pulver hergestellten Hybridmagneten, bestehend aus NdFeB [Neodym, Eisen, Bor] als hartmagnetisches Material. Die Partikel dieses Materials haben zu 90 % einen Durchmesser von weniger als 3 µm, zu 50 % von weniger als 1 µm und zu 30 % von 0,2 bis 0,5 µm. Weiterhin besteht der Hybridmagnet aus reinem Eisen [Fe] als weichmagnetisches Material. Die Partikel dieses Materials haben zu 90 % einen Durchmesser von weniger als 2 µm und zu 30 % von 0,2 bis 0,8 µm. Die Beschichtung ist aus einer Oxidzusammensetzung gebildet, umfassend folgende Stoffmengenanteile: 30 bis 60 mol % Bi2O3 [Bismutoxid], 30 bis 40 mol % B2O3 [Boroxid], 10 bis 20 mol % ZnO [Zinkoxid] und 5 bis 10 mol % SiO2 [Siliziumdioxid]. Der Schichtaufbau weist abwechselnd je eine hartmagnetische und eine weichmagnetische Schicht auf, wobei benachbarte Schichten jeweils von einer Trennschicht getrennt sind (indirekt durch die Beschichtung des Pulvers gegeben). Der Körper ist 100 mm mal 300 mm weit und hat eine Höhe von 8 mm. Die einzelnen Schichten haben (zusammen mit je einer Trennschicht) eine Schichtdicke von je 2,5 µm. Der Schichtaufbau umfasst 3200 Schichten, also 1600 Schichten pro Material. Nach Erzeugung der Schichten erfolgt ein Ausrichten der NdFeB Partikel durch ein mit einem Elektromagneten erzeugtes externes Magnetfeld mit einer Stärke von 1200 kA/m.. Ein Pressen findet nicht statt. Das Sintern ("pressloses Sintern" oder "Schüttsintern") wird über eine Zeit von einer Stunde bei 400 bis 500°C in einer Argon-Atmosphäre durchgeführt. Anschließend wird der Körper in Teile durch Schneiden zerteilt mit einer Weite von 20 mm mal 10 mm und mit einer Höhe von 5 mm. Optional folgt ein weiteres Magnetisieren.
  • Ein zweites Beispiel für einen Hybridmagneten stellt ein aus Pulver hergestellter Hybridmagnet dar, bestehend aus NdFeB [Neodym, Eisen, Bor] als hartmagnetisches Material. Die Partikel dieses Materials haben zu 90 % einen Durchmesser von weniger als 3 µm, zu 50 % von weniger als 2 µm und zu 30 % von 0,2 bis 1 µm. Weiterhin besteht der Hybridmagnet aus einer Zusammensetzung von 90% Fe [Eisen], 5% Ni [Nickel], 2% Co [Kobalt] und 3% Si [Silizium] als weichmagnetisches Material. Die Partikel dieser Zusammensetzung haben zu 90 % einen Durchmesser von weniger als 2 µm und zu 30 % von 0,2 bis 0,1 µm. Die Beschichtung ist aus einer Oxidzusammensetzung gebildet, umfassend folgende Stoffmengenanteile: 40 bis 60 mol % PbO [Bleioxid], 30 bis 40 mol % B2O3 [Boroxid], 5 bis 10 mol % ZnO [Zinkoxid]. Der Schichtaufbau weist abwechselnd je eine hartmagnetische und zwei weichmagnetische Schichten auf. Der Körper ist 100 mm mal 300 mm weit und hat eine Höhe von 9,9 mm. Die einzelnen Schichten haben eine Schichtdicke (zusammen mit je einer Trennschicht) von je 3 µm. Der Schichtaufbau umfasst 3300 Schichten, also 1100 Schichten des hartmagnetischen Materials und 2200 Schichten des weichmagnetischen Materials. Ein Pressen findet statt in Form eines Matrizenpressens. Das Sintern wird über eine Zeit von einer Stunde bei 400 bis 500°C in einer Argon-Atmosphäre durchgeführt. Anschließend wird der Körper in Teile durch Schneiden zerteilt mit einer Weite von 20 mm mal 10 mm und mit einer Höhe von 9 mm. Optional folgt ein weiteres Magnetisieren.
  • Ein drittes Beispiel für einen Hybridmagneten stellt ein aus Pulver hergestellter Hybridmagnet dar, bestehend aus NdFeB [Neodym, Eisen, Bor] als hartmagnetisches Material mit einer Schichtdicke von 300 nm und aus 90% Fe [Eisen], 5% Ni [Nickel], 2% Co [Kobalt], 3% Si [Silizium] als weichmagnetisches Material mit einer Schichtdicke von 350 nm. Die Trennschichten sind aus einer Oxidzusammensetzung gebildet, umfassend folgende Stoffmengenanteile: 40 bis 60 mol % PbO [Bleioxid], 30 bis 40 mol % B2O3 [Boroxid], 5 bis 10 mol % SiO2 [Siliziumdioxid] mit einer Trennschichtdicke von 10 nm. Der Schichtaufbau weist abwechselnd je eine hartmagnetische und eine weichmagnetische Schicht auf. Der Körper ist 10 mm mal 25 mm weit und hat eine Höhe von 6 mm. Vor dem Sintern findet ein Ausrichten im Magnetfeld statt. Das Sintern wird über eine Zeit von einer Stunde bei 400 bis 900°C in einer Argon-Atmosphäre durchgeführt. Optional folgt ein weiteres Magnetisieren.
  • In einem vierten Beispiel für einen Hybridmagneten wird ein Schichtaufbau mit Beschichtungstechnologien dadurch hergestellt, dass in einem ersten Schritt zuerst eine dünne hartmagnetische Schicht gewachsen wird, z. B. aus Nd2Fe14B [Neodym, Eisen, Bor] mit einer Dicke von 250 bis 300 nm. Diese Schichtdicke entspricht einem Eindomänenteilchendurchmesser von Nd2Fe14B. Dabei kann eine der folgenden, oben eingeführten Beschichtungstechnologien verwendet werden: "atomic layer deposition" (ALD), "metal-organic chemical vapor deposition" (MOCVD) oder "chemical vapor deposition" (CVD). Für diese Beschichtungstechnologien können folgende metallorganische Verbindungen verwendet werden: Tris-[N,N-bis-(trimethylsilyl)-amido]-neodym(III) für Neodym [Nd], Eisen(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) für Eisen [Fe] und Triisopropylborate für Bor [B]. In einem zweiten Schritt wird z. B. mittels CVD eine 5 bis 10 nm dünne Trennschicht aufgebracht. Dabei können z. B. die folgenden Oxide verwendet werden: SiO2 [Siliziumoxid], B2O3
  • [Boroxid], Na2O [Natriumoxid], KO [Kaliumoxid], Al2O3 [Aluminiumoxid]. Dafür können verschiedene Präkursoren verwendet werden, wie z. B. Tetraethyl orthosilicate (TEOS) für SiO2 [Siliziumoxid], Triethyl-borat (TEB) für B2O3 [Boroxid], Natriumethoxid für Na2O [Natriumoxid], Aluminiumisopropoxidfür Al2O3 [Aluminiumoxid], Kaliumethanolat für KO [Kobaltoxid]. Es können hier auch Oxidmischungen mit PbO [Bleioxid], Bi2O3 [Bismutoxid], P2O5 [Phosphoroxid], ZnO [Zinkoxid] oder SnO [Zinnoxid] verwendet werden, um niedrig schmelzende Gläser herstellen zu können. Dafür sind z. B. folgende Präkursoren möglich: Blei(II)-acetat-Trihydrat für PbO [Bleioxid], Bismuth (III) Acetate für Bi2O3 [Bismutoxid], Phosphortrichlorid für P2O5 [Phosphoroxid], Zinkacetat für ZnO [Zinkoxid], Zinn(II)-acetat für SnO [Zinnoxid]. In die Trennschicht können auch Seltene-Erden-Oxide eingebaut werden, die wiederum aus Präkursoren wie Neodym(III)-isopropoxid und Dysprosium(III) acetate hydrate hervorgehen. In einem dritten Schritt wird mittels CVD eine dünne Schicht einer weichmagnetischen Phase, z. B. FeCo [Eisen, Kobalt], FeSi [Eisen, Silizium] oder FeNi [Eisen, Nickel] aufgebracht, die sich aus Präkursoren wie z.B. Eisen(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) für Eisen [Fe], Siliciumtetrachlorid für Silizium [Si], (Co)bis(cyclopentadienyl)cobalt(II) für Kobalt [Co] und (Ni)bis(cyclopentadienyl)nickel(II) für Nickel [Ni]. Im Anschluss wird wieder eine Trennschicht aus binären, ternären oder quaternären Oxidmischungen aufgetragen, aus der sich im weiteren Prozessverlauf ein Glas, eine Glaskeramik oder eine keramische Phase bildet. Die Abfolge des Schichtaufbaus wird solange wiederholt, bis die gewünschte Gesamtdicke erreicht ist. Dabei entsteht ein Schichtaufbau, bei welchem immer abwechselnd hartmagnetische Schichten und weichmagnetische Schichten aufeinander folgen, die jeweils durch Trennschichten voneinander getrennt sind.
  • Ein fünftes Beispiel stellt ein Hybridmagnet ähnlich dem zuvor im vierten Beispiel beschriebenen dar. Der einzige Unterschied ist die Abfolge und die Zahl der verschiedenen Schichten. Anstatt hartmagnetische Schichten und weichmagnetische Schichten immer abwechselnd anzuordnen können auch mehrere weichmagnetische Schichten oder mehrere hartmagnetische Schichten aufeinander folgen, die untereinander jeweils ebenfalls von einer Trennschicht getrennt sein können. Benachbarte Schichten aus demselben Material liegen also gruppiert vor.
  • Die Erfindung sowie das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht begrenzt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Insbesondere sind die Partikel und die Schichten nur in einer solchen geringen Anzahl gezeigt, die zur deutlichen Visualisierung der erfindungsgemäßen Konzepte ausreichen. Es zeigen:
  • Fig. 1:
    eine schematische Darstellung eines Querschnitts eines Zwischenproduktes eines aus bereits beschichtetem Pulver hergestellten Hybridmagneten vor dem Sintern,
    Fig. 2:
    eine schematische Darstellung eines Querschnitts des Hybridmagneten aus Fig. 1 nach dem Sintern,
    Fig. 3:
    eine schematische Darstellung eines mit Beschichtungstechnologien hergestellten Hybridmagneten,
    Fig. 4:
    eine schematische Darstellung eines Querschnitts eines mit Beschichtungstechnologien hergestellten weiteren Hybridmagneten,
    Fig. 5:
    ein Flussdiagramm einer ersten Ausführungsform eines Herstellungsverfahrens, und
    Fig. 6:
    ein Flussdiagramm einer zweiten Ausführungsform eines Herstellungsverfahrens.
  • Fig. 1 zeigt ein Zwischenprodukt eines Hybridmagneten 1, aufweisend hartmagnetische Schichten 13 und weichmagnetische Schichten 14. Die hartmagnetischen Schichten 13 sind (im Wesentlichen) durch hartmagnetische Partikel 2 gebildet. Die hartmagnetischen Partikel 2 sind (nur) aus einem hartmagnetischen Material 5 gebildet. Die weichmagnetischen Schichten 14 sind (im Wesentlichen) aus weichmagnetischen Partikeln 3 gebildet, die selbst (nur) aus einem weichmagnetischen Material 6 gebildet sind. Das weichmagnetische Material 6 ist durch eine Schraffur dargestellt. Die hartmagnetischen Partikel 2 und die weichmagnetischen Partikeln 3 weisen jeweils eine Beschichtung 4 aus einem magnetisch passiven Material 7 auf. Die Beschichtung 4 hat eine Beschichtungsdicke 8. Die hartmagnetischen Partikel 2 und die weichmagnetischen Partikel 3 haben jeweils annäherungsweise einen Durchmesser 12, der in dieser Ausführungsform für alle hartmagnetischen Partikel 2 und alle weichmagnetischen Partikel 3 gleich groß ist. Weiterhin eingezeichnet ist eine Schichtdicke 19 als Abstand benachbarter Schichten. Dabei haben hartmagnetische Schichten 13 eine hartmagnetische Schichtdicke 33 und weichmagnetische Schichten 14 eine weichmagnetische Schichtdicke 16, die nicht mit der hartmagnetischen Schichtdicke 33 identisch sein muss. Eine Weite 20 ist hier als Ausdehnung des Hybridmagneten 1 senkrecht zu der Richtung, in die die Schichtdicke 19 gemessen wird, ausgewiesen. Der Hybridmagnet 1 ist in dieser Fig. 1 als ein Querschnitt durch den Schichtaufbau gezeigt, wobei eine Situation vor dem Sintern des Hybridmagnet-Halbzeugs dargestellt ist, so dass die hartmagnetischen Partikel 2, die weichmagnetischen Partikeln 3 und die Beschichtung 4 noch als solche zu erkennen sind. Ebenfalls eingezeichnet ist ein angelegtes externes Magnetfeld 11 das zur Ausrichtung der hartmagnetischen Partikel 2 und zur Aufmagnetisierung der weichmagnetischen Partikel 3 führt. Die Pfeile 34 in den Partikeln 2 und 3 deuten dabei die Richtung der Magnetisierung an. Das externe Magnetfeld 11 ist homogen und umschließt das Volumen des gesamten Körpers 17.
  • Fig. 2 zeigt den Hybridmagneten 1 aus Fig. 1 nach dem Pressen und Sintern. Aus der Beschichtung 4 der hartmagnetischen Partikel 2 und der weichmagnetischen Partikeln 3 ist ein Matrixkörper 9 aus dem magnetisch passiven Material 7 entstanden. Der Matrixkörper 9 sowie die hartmagnetischen Partikel 2 und die weichmagnetischen Partikeln 3 formen gemeinsam nunmehr einen Sinterling 10. Der Sinterling 10 ist aus den hartmagnetischen Partikeln 2 und den weichmagnetischen Partikeln 3 sowie der Beschichtung 4 durch Pressen und Sintern entstanden. Der Sinterling 10 bildet den Körper 17 des Hybridmagneten 1. Die hartmagnetischen Partikel 2 aus dem hartmagnetischen Material 5 bilden die hartmagnetischen Schichten 13. Die hartmagnetischen Partikel 2 stellen Teilbereiche der hartmagnetischen Schichten 13 dar, die in der Schichtebene durch das den Matrixkörper 9 bildende magnetisch passive Material 7 voneinander getrennt sind. Die weichmagnetischen Partikel 3 aus dem weichmagnetischen Material 6 bilden die weichmagnetischen Schichten 14. Dazwischen liegen Trennschichten 15, die in dieser Ausführungsform als Teil des Matrixkörpers 9 gebildet werden. Das betrifft insbesondere die ersten drei Beispiele eines Hybridmagneten.
  • Fig. 3 zeigt einen Hybridmagneten 1, der aus einem Herstellungsverfahren unter Einsatz einer Beschichtungstechnologie hervorgegangen ist. Der Hybridmagnet 1 umfasst einen Körper 17, der hartmagnetische Schichten 13 aus einem hartmagnetischen Material 5, weichmagnetische Schichten 14 aus einem weichmagnetischen Material 6 und Trennschichten 15 aus einem magnetisch passiven Material 7 umfasst. Das weichmagnetische Material 6 ist durch eine Schraffur dargestellt. Die Trennschichten 15 weisen eine Trennschichtdicke 18 auf. Die hartmagnetischen Schichten 13 und die weichmagnetischen Schichten 14 weisen eine Schichtdicke 19 auf, die in dieser Ausführungsform für alle Schichten gleich groß ist. Ebenso gezeigt ist die Weite 20 des Hybridmagneten 1. Weiterhin eingezeichnet ist ein externes Magnetfeld 11 das während der Herstellung des Hybridmagneten 1 angelegt werden kann.. Fig. 3 betrifft insbesondere das weiter oben erläuterte vierte Beispiel eines Hybridmagneten.
  • Fig. 4 zeigt einen Hybridmagneten 1 in einer weiteren Ausführungsform. Im Vergleich zu Fig. 3 ist lediglich beispielhaft eine andere Schichtfolge aufgezeigt. Hierbei können demnach auch benachbarte Schichten desselben Materials gruppiert vorliegen. Fig. 4 betrifft insbesondere das weiter oben erläuterte fünfte Beispiel eines Hybridmagneten. Der in Fig. 4 dargestellte angepasste Schichtaufbau mit gruppierten Schichten desselben Materials ist auch auf Hybridmagnete gemäß der ersten drei Beispiele anwendbar. Auch bei solchen Hybridmagneten können gruppierte Schichten vorgesehen sein.
  • Fig. 5 zeigt die oben beschriebene erste Ausführungsform eines Herstellungsverfahrens. In einem Rezepturherstellen 22 werden entsprechend Bauteil- und Werkstoffanforderungen (insbesondere bezüglich magnetischer Eigenschaften wie z. B. einer remanenten Magnetisierung und einer Koerzitivfeldstärke, sowie bezüglich Temperatureigenschaften wie z. B. einer Transformationstemperatur) Ausgangsstoffe für das Herstellungsverfahren ausgewählt und bereitgestellt. Anschließend werden in einem Pulverbereitstellen 23 die Ausgangsstoffe pulverisiert. Dies geschieht z. B. mit konventionellen Techniken. In einem anschließenden Beschichten 24 werden Pulverpartikel beschichtet, z. B. mit einer einfachen oder mehrfachen Beschichtung. Weiterhin wird ein Grünling schichtweise in einem Aufbauen eines Schichtaufbaus aus Pulver 25 aufgebaut. Optional folgt ein Pressen 26 (mit oder ohne Magnetfeld) zu einem Pressling. Abschließend folgen ein Sintern 27 des Grünkörpers, ein optionales Tempern 28, ein optionales Nachbehandeln 29 und ein optionales Magnetisieren 30. Die erste Ausführungsform eines Herstellungsverfahrens gilt insbesondere für die ersten drei Beispiele eines Hybridmagneten.
  • Fig. 6 zeigt die oben beschriebene zweite Ausführungsform eines Herstellungsverfahrens. Zuerst wird das zuvor für Fig. 5 beschriebene Rezepturherstellen 22 durchgeführt. Darauf folgt ein Aufbauen eines Schichtaufbaus 31 und ein Schichtenerzeugen mit Beschichtungstechnologien 32, das optional in einem Magnetfeld durchgeführt werden kann. Abschließend folgen wie zuvor das Sintern 27, das optionale Tempern 28, das optionale Nachbehandeln 29 und das optionale Magnetisieren 30. Die zweite Ausführungsform eines Herstellungsverfahrens gilt insbesondere für das vierte und das fünfte Beispiel eines Hybridmagneten.
  • Die vorstehenden Erläuterungen haben aufgezeigt, dass das vorgeschlagene Herstellungsverfahren und/oder der Hybridmagnet die im Zusammenhang mit dem Stand der Technik geschilderten technischen Probleme wenigstens teilweise überwindet. Insbesondere wurde auch ein Hybridmagnet mit verbesserten magnetischen, mechanischen und/oder thermischen Eigenschaften vorgestellt.
  • Bezugszeichenliste
  • 1
    Hybridmagnet
    2
    hartmagnetisches Partikel
    3
    weichmagnetisches Partikel
    4
    Beschichtung
    5
    hartmagnetisches Material
    6
    weichmagnetisches Material
    7
    magnetisch passives Material
    8
    Beschichtungsdicke
    9
    Matrixkörper
    10
    Sinterling
    11
    Externes Magnetfeld
    12
    Durchmesser
    13
    hartmagnetische Schicht
    14
    weichmagnetische Schicht
    15
    Trennschicht
    16
    weichmagnetische Schichtdicke
    17
    Körper
    18
    Trennschichtdicke
    19
    Schichtdicke
    20
    Weite
    21
    Schicht
    22
    Rezepturherstellen
    23
    Pulverbereitstellen
    24
    Beschichten
    25
    Aufbauen eines Schichtaufbaus aus Pulver
    26
    Pressen
    27
    Sintern
    28
    Tempern
    29
    Nachbehandeln
    30
    Magnetisieren
    31
    Aufbauen eines Schichtaufbaus
    32
    Schichtenerzeugen mit Beschichtungstechnologien
    33
    hartmagnetische Schichtdicke
    34
    Richtung der Magnetisierung

Claims (13)

  1. Verfahren zur Herstellung eines Hybridmagneten (1), umfassend zumindest die folgenden Verfahrensschritte:
    A) Erzeugen einer hartmagnetischen Schicht (13) aus einem hartmagnetischen Material (5),
    B) Erzeugen einer weichmagnetischen Schicht (14) aus einem weichmagnetischen Material (6), und
    C) Erzeugen einer Trennschicht (15) aus einem magnetisch passiven Material (7),
    wobei durch jeweils mehrfaches Anwenden der Verfahrensschritte A), B) und C) ein Hybridmagnet (1) geformt wird, der einen Schichtaufbau aufweist;
    wobei Verfahrensschritt A) zumindest den folgenden Teilschritt umfasst:
    A1) Bereitstellen eines hartmagnetischen Pulvers aufweisend hartmagnetische Partikel (2) aus dem hartmagnetischen Material (5),
    wobei Verfahrensschritt B) zumindest den folgenden Teilschritt umfasst:
    B1) Bereitstellen eines weichmagnetischen Pulvers aufweisend weichmagnetische Partikel (3) aus dem weichmagnetischen Material (6),
    wobei Verfahrensschritt C) zumindest den folgenden Teilschritt umfasst:
    C1) Beschichten zumindest eines der hartmagnetischen Partikel (2) oder der weichmagnetischen Partikel (3) mit mindestens einer Beschichtung (4) aus dem magnetisch passiven Material (7);
    wobei Schritt C) jeweils einmal nach jeder Durchführung von Verfahrensschritt A) und jeweils einmal nach jeder Durchführung von Verfahrensschritt B) durchgeführt wird.
  2. Verfahren nach Anspruch 1, wobei
    das Verfahren weiterhin die folgenden Verfahrensschritte umfasst:
    D) Formen eines den Hybridmagneten (1) bildenden Körpers (17) gemäß den Verfahrensschritten A), B) und C); und
    E) Sintern des Körpers (17), wobei eine Temperatur verwendet wird, die hinreichend groß ist, um die Beschichtung (4) in einen die hartmagnetischen Partikel (2) und die weichmagnetischen Partikel (3) umgebenden Matrixkörper (9) umzuformen,
    wobei während des gesamten Verfahrens eine Sintertemperatur für das hartmagnetische Material (5) und eine Sintertemperatur für das weichmagnetische Material (6) nicht überschritten werden, und wobei in Verfahrensschritt E) eine Sintertemperatur des magnetisch passiven Materials (7) überschritten wird.
  3. Verfahren nach Anspruch 1 bis 2, wobei die Beschichtung (4) eine Beschichtungsdicke (8) aufweist, die im Bereich von 1 nm bis 300 nm liegt.
  4. Verfahren nach einem der Ansprüche 2 oder 3, wobei der Körper (17) zwischen Verfahrensschritt D) und E) zu einem Pressling (10) verpresst wird.
  5. Verfahren nach Anspruch 4, wobei das Pressen in einem externen Magnetfeld (11) stattfindet.
  6. Verfahren nach einem der Ansprüche 4 oder 5, wobei zumindest zeitweise mit Ultraschall auf die hartmagnetischen Partikel (2) und die weichmagnetischen Partikel (3) eingewirkt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Trennschicht (15) eine Trennschichtdicke (18) aufweist, die im Bereich von 1 nm bis 300 nm liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Hybridmagnet (1) in einem externen Magnetfeld (11) magnetisiert wird.
  9. Hybridmagnet (1), aufweisend einen Schichtaufbau aus Schichten (21), wobei mindestens eine der Schichten (21) eine hartmagnetische Schicht (13) und mindestens eine der Schichten (21) eine weichmagnetische Schicht (14) ist, und wobei benachbarte Schichten (21) durch ein magnetisch passives Material (7) getrennt sind; wobei jede hartmagnetische Schicht (13) aus hartmagnetischen Partikeln (2) gebildet ist, die mindestens eine Beschichtung aus dem magnetisch passiven Material (7) aufweisen; wobei jede weichmagnetische Schicht (14) aus weichmagnetischen Partikeln (3) gebildet ist, die mindestens eine Beschichtung aus dem magnetisch passiven Material (7) aufweisen; und wobei die hartmagnetischen Partikel (2) und die weichmagnetischen Partikel (3) von einem Matrixkörper (9) umgeben sind, wobei der Matrixkörper (9) durch das magnetisch passive Material (7) gebildet ist.
  10. Hybridmagnet (1) nach Anspruch 9, wobei die hartmagnetischen Partikel (2) und die weichmagnetischen Partikel (3) einen Durchmesser (12) aufweisen, der im Bereich von 0,2 µm bis 250 µm liegt.
  11. Hybridmagnet (1) nach einem der Ansprüche 9 oder 10, wobei das den Matrixkörper (9) bildende magnetisch passive Material (7) eines der folgenden Materialien ist: Glas, Glas-Keramik, metallisches Glas oder Keramik.
  12. Hybridmagnet (1) nach einem der Ansprüche 9 bis 11, wobei jede Schicht (21) eine Schichtdicke (19) und eine Weite (20) aufweist, und wobei für jede Schicht (21) die Weite (20) mindestens der zehnfachen Schichtdicke (19) entspricht.
  13. Hybridmagnet (1) nach einem der Ansprüche 9 bis 12, wobei die Schichten (21) senkrecht zu der Richtung der Magnetisierung (34) des Hybridmagneten (1) ausgerichtet sind.
EP17700819.0A 2016-02-11 2017-01-18 Hybridmagnet und verfahren zu dessen herstellung Active EP3414768B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016102386.8A DE102016102386A1 (de) 2016-02-11 2016-02-11 Hybridmagnet und Verfahren zu dessen Herstellung
PCT/EP2017/050939 WO2017137220A1 (de) 2016-02-11 2017-01-18 Hybridmagnet und verfahren zu dessen herstellung

Publications (2)

Publication Number Publication Date
EP3414768A1 EP3414768A1 (de) 2018-12-19
EP3414768B1 true EP3414768B1 (de) 2020-04-15

Family

ID=57851066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700819.0A Active EP3414768B1 (de) 2016-02-11 2017-01-18 Hybridmagnet und verfahren zu dessen herstellung

Country Status (4)

Country Link
EP (1) EP3414768B1 (de)
CN (1) CN108780687B (de)
DE (1) DE102016102386A1 (de)
WO (1) WO2017137220A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7003543B2 (ja) * 2017-09-29 2022-02-04 セイコーエプソン株式会社 絶縁物被覆軟磁性粉末、圧粉磁心、磁性素子、電子機器および移動体
DE102022115198A1 (de) 2022-06-17 2023-12-28 Ford Global Technologies, Llc Verfahren zum Herstellen eines Rotorelements für einen Rotor einer elektrischen Maschine, Rotorelement, Rotor, elektrische Maschine und Kraftfahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128262A1 (de) * 2001-06-11 2002-12-19 Siemens Ag Magnetoresistives Sensorsystem
DE10236983A1 (de) * 2002-08-13 2004-03-04 Robert Bosch Gmbh Magnetsensoranordnung
US6972046B2 (en) * 2003-01-13 2005-12-06 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly
DE10308640B4 (de) * 2003-02-27 2006-06-08 Siemens Ag Magneto-resistives Schichtelement, insbesondere TMR-Zelle
CN101000821B (zh) * 2006-01-11 2010-05-12 中国科学院物理研究所 一种闭合形状的磁性多层膜及其制备方法和用途
US20100054981A1 (en) * 2007-12-21 2010-03-04 Board Of Regents, The University Of Texas System Magnetic nanoparticles, bulk nanocomposite magnets, and production thereof
DE102009048658A1 (de) * 2009-09-29 2011-03-31 Siemens Aktiengesellschaft Transformatorkern oder Transformatorblech mit einer amorphen und/oder nanokristallinen Gefügestruktur und Verfahren zu dessen Herstellung
US20140132376A1 (en) * 2011-05-18 2014-05-15 The Regents Of The University Of California Nanostructured high-strength permanent magnets
US20140072470A1 (en) 2012-09-10 2014-03-13 Advanced Materials Corporation Consolidation of exchange-coupled magnets using equal channel angle extrusion
DE102013004985A1 (de) * 2012-11-14 2014-05-15 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet
DE102013213494A1 (de) * 2013-07-10 2015-01-29 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Permanentmagneten sowie Permanentmagnet und elektrische Maschine mit einem solchen
DE102013213645A1 (de) * 2013-07-12 2015-01-15 Siemens Aktiengesellschaft Hochgefüllte matrixgebundene anisotrope Hochleistungspermanentmagnete und Verfahren zu deren Herstellung
US9520175B2 (en) * 2013-11-05 2016-12-13 Tdk Corporation Magnetization controlling element using magnetoelectric effect
CN104945754B (zh) * 2015-07-20 2017-04-05 广州新莱福磁电有限公司 一种提高吸力的橡胶挤出磁条的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108780687A (zh) 2018-11-09
CN108780687B (zh) 2020-12-29
EP3414768A1 (de) 2018-12-19
DE102016102386A1 (de) 2017-08-17
WO2017137220A1 (de) 2017-08-17

Similar Documents

Publication Publication Date Title
EP2920796B1 (de) Verfahren zur herstellung eines permanentmagneten sowie permanentmagnet
DE112012003472B4 (de) Verfahren zur Herstellung von Seltenerdmagneten
DE102013200651B4 (de) Permanentmagnet und Motor und Stromerzeuger unter dessen Verwendung
DE112018000214T5 (de) Magnetpulver, das SM-Fe-N-basierte Kristallpartikel enthält, aus diesem hergestellter Sintermagnet, Verfahren zur Herstellung dieses Magnetpulvers; und Verfahren zur Herstellung des Sintermagneten
DE102005062840A1 (de) Geschichtete magnetische Struktur und Herstellungsverfahren für eine solche
DE102017130191A1 (de) Seltenerd-Magnet und Herstellungsverfahren desselben
DE102013201492A1 (de) Permanentmagnet und Motor und Generator, die diesen verwenden
DE112012004742T5 (de) Seltenerdmagnet unf Verfahren zu dessen Herstellung
DE69823252T2 (de) Dauermagnetlegierung, Dauermagnetlegierungs-Pressling und Herstellungsverfahren dazu
DE102018220580A1 (de) Permanentmagnet auf R-T-B Basis
DE10310572B4 (de) Permanentmagnet, Verfahren zu seiner Herstellung, Rotor und Motor
DE102014105798A1 (de) R-T-B-basierter Permanentmagnet
EP3414768B1 (de) Hybridmagnet und verfahren zu dessen herstellung
DE102013201370A1 (de) Permanentmagnet und Motor und Stromgenerator, der diesen verwendet
DE102013205437A1 (de) Verfahren zum beschichten eines metallpulvers mit chemischer gasphasenabscheidung zum herstellen von permanentmagneten
DE102014105778B4 (de) R-t-b-basierter permanentmagnet
DE102021110795A1 (de) Sintermagnet von typ r-t-b und verfahren zur herstellung desselben
EP3280558B1 (de) Verfahren zur herstellung eines weichmagnetischen körpers
DE4021990A1 (de) Verfahren zur herstellung eines permamentmagneten aus metall der seltenerden und einer eisenkomponente
EP4027358B1 (de) Weichmagnetische legierung und verfahren zum herstellen einer weichmagnetischen legierung
DE102015213957B4 (de) Verfahren zur Herstellung eines Hybridmagneten sowie mit dem Verfahren herstellbarer Hybridmagnet und eine den Hybridmagnet umfassende elektrische Maschine
EP3281212A1 (de) Weichmagnetischer verbundwerkstoff und entsprechende verfahren zum herstellen eines weichmagnetischen verbundwerkstoffs
DE112016001436T5 (de) Gesinterter R-TM-B Magnet
DE102015204617A1 (de) Anisotroper Hochleistungspermanentmagnet mit optimiertem nanostrukturellem Aufbau und Verfahren zu dessen Herstellung
WO2014060079A1 (de) Verfahren zur herstellung einer magnetischen legierung und mit diesem verfahren hergestellte magnetische legierung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004740

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1258250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VACUUMSCHMELZE GMBH & CO. KG

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004740

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210118

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1258250

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240131

Year of fee payment: 8

Ref country code: GB

Payment date: 20240123

Year of fee payment: 8