EP3271077B1 - Dispositif et procédé d'élimination d'impuretés - Google Patents

Dispositif et procédé d'élimination d'impuretés Download PDF

Info

Publication number
EP3271077B1
EP3271077B1 EP16714005.2A EP16714005A EP3271077B1 EP 3271077 B1 EP3271077 B1 EP 3271077B1 EP 16714005 A EP16714005 A EP 16714005A EP 3271077 B1 EP3271077 B1 EP 3271077B1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrodes
regionally
region
plateau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16714005.2A
Other languages
German (de)
English (en)
Other versions
EP3271077A1 (fr
Inventor
Anton Wolf
Pia ENGELHARDT
David KRAEHENBUEHL
Uwe Ludwig
Artin PARSEGYAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woco Industrietechnik GmbH
Original Assignee
Woco Industrietechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015104168.5A external-priority patent/DE102015104168A1/de
Application filed by Woco Industrietechnik GmbH filed Critical Woco Industrietechnik GmbH
Publication of EP3271077A1 publication Critical patent/EP3271077A1/fr
Application granted granted Critical
Publication of EP3271077B1 publication Critical patent/EP3271077B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • B03C3/763Electricity supply or control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles

Definitions

  • the present invention relates to a device for separating liquid and / or particulate contaminants from a gas flow, in the between at least one first electrode acting as the counter electrode and at least one second electrode acting as an emission electrode and an electrode end directed towards the first electrode comprises, a flow path of the gas flow runs and a DC voltage exceeding the breakdown voltage can be applied between the first electrode and the second electrode to form a stable low-energy plasma, and a method for operating such a device.
  • Such generic plasma separators for separating impurities from a gas flow, in particular blow-by gases from a motor vehicle, are known from the prior art.
  • the DE 10 2011 053 578 A1 discloses a generic device.
  • Figure 1 the basic structure of such a device is shown. It shows Figure 1 a schematic cross-sectional view of FIG DE 10 2011 053 578 A1 known device.
  • FIG. 3 is a schematic cross-sectional view of portion A1 of FIG Figure 1 shown.
  • the separation device 1 has an inlet line 3 and an outlet line 5.
  • a gas flow 7, such as a blow-by gas flow is introduced into the separation device 1 through the inlet line 3.
  • the gas stream 7 contains in particular impurities such as solid and liquid particles, in particular oil particles.
  • a first electrode in the form of a counter electrode 9 and a plurality of second electrodes in the form of emission electrodes 11 are arranged.
  • the gas stream 7 is guided through the separating device 1 essentially perpendicular to a normal direction N of the counter electrode 9.
  • a direct voltage is applied to the emission electrodes 11 which is higher than a breakdown voltage, in particular corresponds to at least 1.2 times the breakdown voltage.
  • the direct voltage applied in this way has the effect that a low-energy plasma is ignited or formed between the emission electrodes 11 and the counter electrode 9.
  • a current strength applied to the connections 13 is adapted in particular as a function of the flow velocity of the gas flow 7 through the separating device 1, but also as a function of other parameters.
  • the plasma formed between the emission electrode 11 and the counter electrode 9 has the effect that some of the impurities in the gas flow 7 are accelerated in the direction of the counter electrode 9.
  • the impurities then accumulating in the area of the counter electrode 9 are fed to a collecting space 15 and from there fed to a discharge line (not shown).
  • partition elements 17 are provided in an intermediate space between the emission electrodes 11.
  • Both the bulkhead elements 17 and the emission electrodes 11 are attached at least indirectly to a carrier element 19, which in particular comprises an insulating and / or ceramic material.
  • the emission electrodes 11 are fastened indirectly via a thermoset body 21 on which high-resistance resistors are arranged, by means of which the emission electrodes 11 are connected to the connections 13.
  • the ones in the DE 10 2011 053 578 A1 The device described has basically proven itself. However, it has been shown that the long-term stability and quality of the low-energy plasma generated in the device can be improved. It has been shown, in particular, that an ion wind arises in an area adjacent to the plasma or plasma cone which is forming, which leads to impurities in part in the direction of the emission electrode or the carrier element are accelerated. These particles, in particular oil droplets, can then accumulate in the area of the carrier element or the thermoset body 21. There they can agglomerate and, due to the force of gravity, flow along the thermoset body or the emission electrodes to the ends of the emission electrode facing the counter electrode.
  • the second electrode extends essentially along a first axis in a first direction, and the first electrode has at least one plateau region which is arranged opposite the second electrode and extends in at least some regions a first plane extending essentially perpendicular to the first direction.
  • the plateau area is arranged coaxially to the second electrode and / or the flow path runs essentially between the second electrode and the plateau area.
  • the invention also proposes that the plateau area, at least in some areas, in particular in the edge area, have a surface that is curved in the direction of the second electrode and / or against the first direction.
  • the invention provides that the plateau region is arranged at a distance from a base level of the first electrode in the direction of the second electrode.
  • a plurality of second electrodes are present and the first electrode has a plurality of plateau areas, each second electrode being assigned a respective plateau area.
  • a device according to the invention is characterized in that the plateau area is connected to the base level by means of an in particular electrically conductive spacer element which extends counter to the first direction.
  • the spacer element runs coaxially to the first axis or the spacer element at a distance from the first axis, preferably at least partially parallel to the first axis and the plateau region by means of at least one, preferably essentially perpendicular to the first direction and / or is connected to the spacer element running along the first plane.
  • the invention also proposes that the first electrode has an essentially C-shaped cross section, at least in some areas, in particular the C-shape is formed by the base level, the spacer element, the connecting element and the plateau area.
  • the plateau area, the spacer element, the base level and / or the connecting element are at least partially formed in one piece.
  • the plateau areas are connected by means of at least one connecting device which extends essentially parallel to the base level and / or has a smaller extent in at least one direction of the first plane compared to the plateau areas.
  • the plateau areas are arranged in a direction perpendicular to the first axis along a straight line, in particular the connecting devices extend essentially along the straight line and / or a network and / or a matrix is formed by means of the connecting devices, at least one plateau area being arranged at at least one of the intersection points of the connecting devices, the network and / or the matrix extending along the first level extends.
  • the plurality of plateau areas is provided by at least one counter-electrode element, preferably at least regionally designed as a stamped sheet metal part.
  • the plateau areas in the counter electrode element are arranged along a second direction and / or at least two counter electrode elements can be arranged mirror-symmetrically, preferably at least partially interlocking, preferably offset from one another in such a way that the plateau areas of the respective counter electrode elements are offset from one another are arranged along the respective second direction.
  • plateau areas and connecting elements are formed by the stamped sheet metal part.
  • the device can be characterized by at least one drip element that is in operative connection with the second electrode, by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles detach from the drip element at a distance from the electrode end.
  • the drip element is at least partially surrounded by at least one inflow element arranged in the area of the second electrode.
  • the second electrode encompasses the draining element at least in some areas, wherein by means of the draining element, fluid particles flowing along the second electrode in the direction of the electrode end are spaced apart from the electrode end can be collected in such a way that the fluid particles detach from the second electrode at a distance from the electrode end.
  • the electrode end and a feed end of the second electrode opposite the electrode end are arranged offset from one another along a first axis that extends in a first direction such that the electrode end is arranged closer to the first electrode, and the drip element is formed at least in some areas by a transition area of the second electrode which is between a first electrode area in which at least one surface area of the second electrode and / or the electrode extends from the feed end in the direction of the electrode end in a direction with a directional component along the first Axis extends, and a second electrode area in which at least one surface area of the second electrode and / or the second electrode extends at least in areas in a direction with a directional component opposite to the first direction, i st.
  • the invention also proposes that at least one surface area of the second electrode and / or the second electrode extend from the feed end in the direction of the electrode end, in particular following the second electrode area, in a third electrode area in a direction with a directional component along the first Axis extends, preferably such that the drip element is arranged along the first axis above the electrode end.
  • An embodiment according to the invention can also be characterized in that the drip element consists of at least one turn of the second electrode, at least one bend in the second electrode and / or the inflow element, at least one helical region of the second electrode, at least one bulge on the surface of the second electrode and / or of the inflow element, at least one skirt and / or at least one plate element comprises and / or is formed.
  • the invention also proposes that the draining element surrounds the second electrode circumferentially, preferably radially symmetrically, the draining element downstream of the Gas flow is arranged and / or the inflow element is arranged upstream of the gas flow.
  • a device according to the invention can also be characterized in that the drip element is at least partially formed in one piece with the second electrode and / or the inflow element.
  • the second electrode in particular in the area of the electrode end, has at least one taper.
  • the taper is in the form of at least one tip, at least one ridge and / or at least one edge.
  • the invention proposes that the second electrode is in a plane perpendicular to a main direction of extent, in particular the first direction , has an essentially cylindrical, triangular, square, rectangular and / or polygonal cross-sectional shape, the second electrode, in particular in the region of the electrode end, has an end surface inclined to the main direction of extent, in particular the taper is encompassed by an edge of the end surface.
  • the second electrode in particular in the area of the electrode end, at least in some areas has a hollow area in which the second electrode is hollow, preferably hollow-cylindrical, tubular and / or cone-shaped, preferably the tapering of at least one end edge of the wall of the Hollow area is included, in particular the taper is formed circumferentially on the electrode end.
  • a device according to the invention according to the third alternative can also be characterized in that the second electrode comprises a carbon material at least in some areas, in particular in the area of the electrode end, and / or the second electrode at least in some areas, in particular in the area of the electrode end, at least one, preferably one, adhesion of particles and / or fluid-reducing coating, in particular a coating comprising titanium nitride, nanosol, at least one nanoparticle Comprehensive material, at least one material forming a surface with a nanostructure and / or chromium nitride.
  • At least one separating element that is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas.
  • the separating element comprises at least one separating film and / or a separating membrane and / or at least partially comprises polytetrafluoroethylene. Furthermore, it is proposed with the invention that the separating element touches the second electrode, in particular the electrode end, or the first electrode.
  • a device according to the invention according to the fourth alternative is particularly preferably characterized in that, when the separating element is arranged between the first electrode and the flow path, at least one discharge opening is provided in the separating element, with the discharge opening separated from the gas flow, in particular on the gas flow facing side, the separating element accumulating, contaminants can be discharged into at least one collecting space.
  • a device according to the invention can be characterized in that the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes being at least a first carrier element, and at least one discharge device for reducing an electrostatic charge of the carrier element and / or for discharging charge carriers accumulating on a surface of the carrier element is provided at least in the area between the second electrodes.
  • the second electrodes pass through the carrier element at least in regions and / or the carrier element comprises at least one ceramic material.
  • the diverting device comprises at least one diverting element applied at least in some areas to the carrier element and / or embedded at least in some regions in the carrier element, the diverting element preferably at least one, in particular electrically conductive, dissipative coating, at least one, in particular comprising polyamide and / or earthed, conductive fabric, and / or at least one metal band, such as a copper band, and / or the conductive device is designed as a conductive tunnel element.
  • the discharge device comprises at least one depression formed at least in certain areas in the carrier element.
  • the discharge device comprises at least one discharge device arranged in the area between the electrode ends of the second electrodes and the carrier element.
  • the discharge device comprises at least one conductive grid, at least one conductive foam, at least one shield element which at least partially surrounds the respective second electrode, preferably arched radially outward in the direction of the electrode end, in particular the discharge device on the same electrostatic potential, like the second electrodes.
  • the discharge device, the discharge element, the discharge coating and / or the discharge device extend at least partially along and / or in a first wall and / or second wall that extends at least partially in one direction between the second electrode and the first electrode in a direction along the first axis and / or in the first direction and / or into which at least one inlet opening or one outlet opening opens, and / or along and / or in a third Wall that extends at least partially parallel to the first carrier element, at least partially below the first electrode and / or at least partially on a side of the first electrode facing away from the second electrode.
  • a device according to the invention can be characterized in that the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the electrical field formed by the at least two second electrodes can be and / or be arranged at least in regions between the at least two second electrodes.
  • the influencing device can be arranged and / or arranged essentially at least in regions opposite at least one first electrode, preferably a plurality of first electrodes, and / or a preferably predetermined electrical potential can be and / or be applied.
  • the influencing device is conductively connectable and / or connected to the at least one first electrode
  • the potential of the first electrode can be and / or applied to the influencing device and / or the influencing device and the discharge device
  • the discharge device and / or the diverting element are formed jointly at least in some areas.
  • the invention provides a method for operating a device of the generic type or a device according to the invention, the device being supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along an between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.
  • a ground potential be applied to at least one first group of a plurality of second electrodes during the cleaning step or a voltage exceeding the DC voltage and generating a flashover between the first electrode and the second electrodes of the first group is applied, in particular while the DC voltage for forming the low-energy plasma is applied to at least one second group of the second electrodes.
  • the second electrodes are assigned alternately to the first group and the second group.
  • a mechanical excitation of the first electrode and / or the second electrode is generated in the cleaning step, preferably by means of an ultrasonic oscillation generated by at least one excitation device, with at least one piezoelectric element and / or at least one component of a Internal combustion engine and / or a vibration transmission device that is operatively connected to a component of the internal combustion engine for transmitting vibrations is used.
  • the cleaning step comprises the sequential movement of at least two first electrodes and / or two second electrodes by means of a cleaning element, such as at least one brush.
  • the second electrode extends essentially along a first axis in a first direction and the first electrode is arranged at least one opposite to the second electrode and is at least partially perpendicular to the first direction extending first plane having plateau region.
  • At least one drip element which is in operative connection with the second electrode and by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles are spaced apart from the electrode end from the Dissolve drip element, suggested.
  • the second electrode in particular in the region of the electrode end, have at least one taper.
  • the invention further proposes that between the flow path and the first electrode and / or the flow path and the second electrode at least one separating element, which is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas.
  • a separating element is understood here, in particular a basically closed and / or at least partially permeable separating element for electrodes, such as a separating film and / or separating membrane.
  • the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes extending from at least one first carrier element and at least one discharge device for reducing an electrostatic charge of the carrier element at least in the area between the second Electrodes is provided.
  • the discharge device can also extend into other (wall) areas, in particular into a first and / or second wall or side wall and / or a third or bottom wall. In this way the formation of a "Faraday cage" is possible.
  • the discharge device is preferably electrically conductive at least on its surface and / or completely.
  • the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the by the at least two Second electrodes formed electrical fields is provided at least in areas between the at least two second electrodes.
  • An influencing device is understood to mean, in particular, sheet metal strips or solid bodies made of metal.
  • the invention provides a method for operating a device according to the invention or a device of the generic type, wherein the device is supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along a between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma, and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.
  • the invention is thus based on the surprising finding that comparatively simple structural or structural adaptations of the generic device can significantly increase its long-term stability.
  • the device can also be used, for example, to remove oil residues from fresh air that is supplied to a passenger cabin of an aircraft and, for example, taken from a turbine.
  • the device can effectively avoid an aerotoxic syndrome.
  • the approach provides that a separate counter-area of the counter-electrode is assigned to each individual emission electrode.
  • This region of the counter electrode referred to as the plateau region, is spaced apart from a base level of the counter electrode, in particular by a spacer element. The plateau areas protrude from the base level, so to speak, in the form of mushroom elements.
  • the spacer element is arranged coaxially to the emission electrode or a longitudinal axis of the spacer element extends at least in some areas in a shift in the direction of extent, in particular the first direction and / or along the first axis.
  • This structure of the The effect of the counter electrode is that particles that collect on the counter electrode, in particular oil droplets, automatically flow away from the plateau area so that they can then flow away via the base level into the collecting space.
  • the plateau area has a curvature at least in some areas, the flow of the particles is supported.
  • the curvature can only be formed in an edge area of the otherwise planar plateau area.
  • the curvature has the effect that when particles flow away from the edge area, particles arranged in the flat plateau area are also “drawn along”, in particular due to the viscosity of a contaminating fluid.
  • the advantage is thus achieved that an accumulation of particles in the area of the counter electrode, in which the plasma is formed, is avoided. It was recognized that an accumulation in this area can lead to undesired charring of the particles and thus to an impairment of the plasma.
  • a plurality of plateau areas be formed by a single counter electrode element.
  • This counter electrode element is preferably designed as a stamped sheet metal part and has a C-shaped or "lying" U-shaped cross section.
  • the lower transverse element of the counter electrode element forms the base level, from which the spacer element extends essentially vertically upwards.
  • a spoon-shaped element then protrudes perpendicular to the spacer element, which represents a connecting element which, so to speak, forms the "handle” of the spoon, and the plateau area, which forms the "scoop area” of the spoon.
  • the connecting element creates an electrical connection between the spacer element and the plateau area and at the same time holds the plateau area mechanically.
  • This enables a multiplicity of plateau areas, which are arranged next to one another in a second direction, to be formed on the spacer element.
  • two of these counter-electrode elements are arranged mirror-symmetrically to one another and are arranged offset from one another in the second direction, a plurality of plateau areas arranged offset to one another can thus be provided in the area of the counter-electrodes.
  • the counter-electrode elements can be designed to be completely mirror-symmetrical.
  • the counter-electrode elements differ in the length of the spacer elements in such a way that the plateau areas of the counter-electrodes are arranged at the same height or at the same distance from the second electrodes.
  • the plateau areas are connected to one another by connecting devices.
  • the connecting devices in the first plane have a smaller extent than the plateau regions, at least in one direction.
  • these counter-electrode elements enables the respective plateau area to be assigned to each emission electrode, so that a plasma cone can be formed in the area of each emission electrode at a predefined location and in a predefined area, with the plasma cones also being formed due to the relative arrangement of the individual plateau areas a fixed relative position to each other. Due to the improved outflow of the particles from the plateau area, in particular due to the curvature, at least in the edge area, the plasma cones are also stabilized. In this way, the particles can flow away from each of the plateau areas in a barrier-free manner, so that agglomeration of particles, as can occur with counter-electrodes known from the prior art, is avoided.
  • a drip element be formed in the area of the emission electrode.
  • This drip element can in particular be designed in one piece with the emission electrode or be implemented as a separate component which is arranged independently of the emission electrode or is connected to it.
  • the use of such a drip element is based on the knowledge that in the area of the plasma cone, in particular adjacent or also in the plasma cone, an ion wind is generated, which leads to impurities in the gas flow, which have been charged by passage through preceding plasma areas, in a direction towards the emission electrode to be accelerated.
  • impurities in particular fluid droplets, can accumulate above the plasma cone in the area of the carrier element or thermoset body.
  • the impurities are basically harmless at these points.
  • the arrangement of the emission electrodes on the carrier element can also take place in that the emission electrodes go through a carrier element in the form of a perforated plate through the holes of the perforated plate and the electrode tips protrude from these.
  • the carrier element can also comprise other or additional materials than or in addition to thermoset, such as a ceramic material.
  • thermally insulating materials are preferably used as wall materials. These lead in particular to the fact that after the separator has been idle there is less tendency for condensate liquid to accumulate on the surface of the housing.
  • impurities can agglomerate and then move in the direction of the counter electrode due to the effect of gravity. This is mostly done in such a way that the fluid droplets run down the thermoset body or the perforated plate and then flow along the emission electrode in the direction of the electrode tip or the electrode end.
  • the drip element according to the invention now ensures that agglomerating fluid droplets flow at a distance from the electrode tip in the direction of the counter electrode and drip off outside the emission electrode in the direction of the counter electrode or are entrained again by the gas flow.
  • the emission electrode has a turn such that a first area of the emission electrode initially extends in the direction of the counter electrode, but is followed by a second area in which the emission electrode extends away from the counter electrode around itself then to extend again in a third area in the direction of the counter electrode in order to then open into the electrode tip or the electrode end.
  • Corresponding drip elements can also be designed as umbrella-shaped elements which surround the emission electrode in a bell-shaped manner in order to form corresponding drip elements on the outer edge of the umbrella. It can also be provided that the emission electrode has corresponding bulges on its surface, preferably formed in one piece with the electrode material.
  • the drip element is designed in that the emission electrode is designed to be hollow in areas, in particular in the area of the electrode end. This leads to an essentially circular drip element being formed at the end of the electrode if the electrode has an essentially cylindrical cross section.
  • This structure has the result that, if a drop of liquid reaches the end of the electrode, the plasma generation is interrupted in this area in such a way that another area of the cylindrical drip element acts as the starting point for the plasma. This prevents the liquid drop adhering to the drip element is heated by the plasma in such a way that the electrode tip becomes charred. If the liquid drop is then detached due to gravity, the starting point of the plasma cone migrates to a corresponding point along the circular drip element. This also effectively prevents overheating and carbonization of the electrode tip.
  • the flow area of the stream be hermetically separated from the areas in which the emission electrode or the counter electrode is arranged.
  • this separation be carried out between the flow area and the emission electrode.
  • the flow path, in particular in the area of the emission electrode be limited in the area of the emission electrode by a separating element, such as a film or membrane, which is impermeable to the gas flow or the particles contained therein, i.e. in particular the blow-by gas becomes.
  • the separating element is permeable to charge carriers such as electrons. Teflon or polytetrafluoroethylene films have proven to be particularly suitable elements. These offer the advantage that they are electrically permitted, i. H.
  • the direct voltage applied to the emission electrode can pass through the film into the flow area, so that the low-energy plasma continues to form in the flow area.
  • electrodes can pass through the separating element.
  • the film is in direct contact with the electrode tips of the emission electrodes. In this way, the best possible formation of the low-energy plasma is ensured with, at the same time, the best possible separation of the electrode area from the gas flow. In particular, this prevents particles located in the gas stream from being able to accumulate on the emission electrode or on adjacent structural elements of the separation device, which, as described above, could lead to contamination and carbonization of the electrodes.
  • the separating element have corresponding drainage openings, through which the contamination can flow at predefined points in a corresponding collecting space.
  • corresponding discharge devices are provided in an intermediate area between the emission electrodes or rows of emission electrodes.
  • a corresponding discharge device is formed by a recess, in particular formed in the carrier element. The resulting spacing of the lowered areas of the depression from the emission electrode results in a reduced electrostatic charge on the surface area of the carrier element.
  • actively acting discharge elements are arranged in the area of the surface areas arranged between the emission electrodes.
  • the diverting elements can in particular be an electrically conductive coating which leads to charge carriers that have accumulated in the area of the surface being removed as quickly as possible.
  • This discharge coating can be applied to the corresponding surface or elements embedded in the surface, such as conductive fabric, which in particular comprise polyamide or a metallic material such as copper, can be provided.
  • conductive fabric which in particular comprise polyamide or a metallic material such as copper
  • a space can be formed which acts as a Faraday cage. If the diverting element is connected to ground, surface charges on the walls can flow off directly and thus electrostatic forces of attraction on the impurities, which could cause accumulation on the walls, can be effectively avoided.
  • tunnel-like discharge elements leads in particular to an increase in the surface of the counter-electrode.
  • These tunnel elements are preferably arranged alternating with the electrodes.
  • the tunnel elements can additionally or alternatively comprise a very coarse-meshed conductive grid or conductive bars / threads, which serve to improve the drainage of impurities on the additional counter electrodes (tunnel surface). It can also be provided that a further discharge device is arranged at a distance from the surface. This can be implemented, for example, by a grid that is electrically conductive, the emission electrodes protruding through the discharge device. If the discharge device is connected to the same electrical potential as the emission electrodes or to ground, an attractive effect on particles present in the cooking stream is likewise prevented.
  • a corresponding discharge device can also be implemented by a shielding element surrounding the emission electrode, which can also serve as a drip element at the same time.
  • the ion winds are guided due to the modified field shape, in particular the plasma cone, in such a way that they no longer have a disadvantageous effect on the blow-by, namely that disadvantageous turbulence of the blow-by no longer occurs.
  • the modification also results in an early separation of the particles, so that they are no longer carried along in the blow-by for as long.
  • a particularly compact and simple structure is obtained if at least one influencing device is formed at least in some areas in one with at least one discharge device and / or at least one discharge element.
  • the influencing device is preferably a metallic insert that is connected to the counter-electrode and thus grounded, or in any case is at the same potential as the counter-electrode.
  • the influencing devices lead to a frame at a defined potential being formed around the blow-by flow. Also, when the influencing device is placed on the potential of the counter electrode, the counter electrode area is increased.
  • the shape of the influencing device in particular a cross-sectional shape in a plane perpendicular to the flow device of the blow-by, can in particular be selected with an essentially C-shaped cross-sectional profile, which is preferably made up of three subsegments, preferably arranged perpendicular to one another, and / or preferably from a substantially vertical arrangement of the Segments with an arc-like connection between the respective sub-segments.
  • the influencing element can also be constructed in the form of at least one continuous arc.
  • the influencing device extends, in particular at least regionally, between at least two second electrodes along the upper wall, and continued downward along the two side walls.
  • the end faces of the influencing device i.e. the sides facing the emission electrodes
  • the influencing devices either from a solid metal body or from sheet metal, for example.
  • a conductive surface is formed only on the end face.
  • a main body can therefore be non-conductive and only a coating or a conductive area can be present on the end face.
  • the positive effect of the influencing device on the behavior of the blow-by through continuous repetition of influencing devices along the flow direction of the blow-by, especially alternating with groups of second electrodes, also on subsequent emission electrodes along the flow direction of the blow -By can be transferred. As a result, as far as possible all electrode tips can be protected from contamination by deposited particles.
  • the invention proposes a method for operating a device according to the invention, by means of which the aforementioned disadvantages of the prior art are overcome.
  • a cleaning step be carried out during the operation of the separation device.
  • This cleaning can be done in a variety of ways.
  • a group of emission electrodes in particular a whole row of emission electrodes, can be cleaned during operation by electrically connecting this group of emission electrodes to ground. This has the effect that impurities deposited on the emission electrode are carried away by the gas flow or are drawn to the counter electrode due to a capacitor effect.
  • the first group of emission electrodes is supplied with a voltage, by which a flashover of this emission electrode and the counter electrode is generated. This leads to the emission electrode being burned free, ie the impurities arranged on the emission electrode being burned off.
  • the individual emission electrodes are alternately subjected to this cleaning step, in particular the emission electrodes are successively supplied to ground or with the free-burning voltage.
  • the emission electrodes are set to vibrate, in particular ultrasonic vibration. This can take place in that an ultrasonic vibration is generated by a piezo element or the electrodes are mechanically connected to a vibrating element, in particular a component of an internal combustion engine, and cleaning by dissolving the contamination on the emission electrode is achieved through the vibration excitation.
  • cleaning can be carried out using a cleaning element, such as a brush, which is guided sequentially over the electrode tips.
  • a cleaning element such as a brush
  • FIG. 13 is a plan view of the counter electrode element 31 from direction B in FIG Figure 3a shown.
  • the counter electrode element 31 has a multiplicity of plateau regions 33.
  • the plateau regions 33 are arranged coaxially to an emission electrode 11 which extends along an axis X.
  • the plateau areas 33 are connected to a base level 37 by means of spacer elements 35. As previously described and explained below, other configurations for achieving the spacing can also be used be realized.
  • An electrical connection between the plateau region 33 and the spacer element 35 is established via a connection element 39.
  • the curvature is formed in particular in an edge region of the plateau region, while the central region of the plateau region is planar. In this way it is ensured that a stable and as wide as possible plasma cone is formed, but at the same time it is ensured that, in particular liquid, impurities do not accumulate on the plateau area but flow away from it. Due to the viscosity of the impurities, it is achieved that liquid impurities present at the edge of the plateau area "carry away" impurities present in the small area as well.
  • the plateau region 33 thus ensures that a predefined shape of a plasma cone 41 is formed. In addition, it is ensured that impurities deflected in the direction of the counter-electrode element 31 via the plasma cone 41 can flow off directly from the plateau area 33, in particular cannot accumulate and agglomerate in the plateau area, and thus lead to contamination of the counter-electrodes.
  • the ones in the Figure 3a The recognizable C-shaped cross-sectional shape of the counter-electrode element 31 allows two counter-electrode elements, as in FIG Figure 4a shown, can be combined with each other.
  • the counter-electrode elements 31 can be arranged mirror-symmetrically and slightly offset from one another become. This allows the plateau regions 33 of the respective counter-electrode elements 31 to be arranged offset from one another, so that they can each be positioned coaxially with respect to the corresponding emission electrodes 11. Due to the offset arrangement of the counter electrode elements 31, the respective plasma cones 41 can be formed offset from one another, so that an almost closed "plasma wall" is created for the gas flow.
  • the two in Figure 4a The counter electrode elements shown are not completely identical, but rather the spacer elements 35 have different heights. It is thereby achieved that the base levels can be arranged overlapping and at the same time it is ensured that the plateau regions 33 are arranged at the same height. The plateau areas are thus evenly spaced from the emission electrodes and a uniform "plasma wall" / plasma cone can be formed.
  • plateau areas 33 ', 33 are spaced apart from the base level via a spacer element, but rather only plateau areas 33', 33" arranged in the edge area of the counter-electrode elements 31 ', 31 "are spaced apart from the base level via suitable spacer elements.
  • the remaining plateau areas 33 ', 33 are connected to one another or to the plateau areas 33' arranged at the edge via connecting devices 43 '.
  • the connecting devices 43 ', 43 are designed as conductive elements, which, however, have a smaller extent than the plateau regions 33', 33" in at least one spatial direction. It is thus achieved that the plasma cones are essentially formed between the plateau areas 33 ', 33 "and the respective emission electrodes. Because of this connection of the plateau areas 33', 33", they span an otherwise free area between the counter-electrode elements 31 ', 31 "and the Basic level.
  • the counter-electrode elements 31 ', 31 " can be designed as stamped sheet metal parts. This ensures that the plateau regions 33', 33" are arranged essentially in the same plane and at the same time a structurally simple production of the counter-electrode elements 31 ', 31 "is made possible .
  • This construction ensures that the essentially barrier-free space below the counter-electrode element 31 ', 31 "simplifies the removal of impurities deposited in the plasma separator.
  • the impurities can also be removed more easily from the counter-electrode is electrically conductively lined and grounded under the counter-electrode elements and thus serves as an additional separation possibility for the impurities that come past the plate area.
  • the emission electrode 51 has at least one bend 59.
  • the bend 59 represents a drip element.
  • the bend 59 divides the emission electrode 51 into different electrode areas.
  • a first electrode area 61 the emission electrode 51 extends from a feed end 63 along the axis Y.
  • the bend 59 is followed by a second electrode area 65 in which the emission electrode 51 has a directional component that runs counter to the Y axis.
  • a further bend 67 is followed by a third electrode area 69 in which the emission electrode 51 again extends in the direction of the Y axis.
  • the electrode end 71 starting from which the plasma cone is formed, is arranged below the drip element 59. If it happens that particles driven by an ion wind, in particular oil particles, collect on the emission electrode 51, in particular the electrode area 61, or flow from the carrier element into the electrode area 61, the liquid droplets collect in the area of the drip element 59 long before they move away from the Loosen emission electrode 51 and move in the direction of the counter electrode, in particular accelerated by the plasma. This in particular prevents the impurities from being able to collect in the area of the electrode end 71 and causing charring there.
  • FIG. 5b a further embodiment of an emission electrode 53 with a drip element 73 is shown.
  • the drip element is formed by the lower region of a turn 75.
  • the electrode end 77 is located upstream of the gas flow, so that after dripping off the dripping element 73, the liquid droplets are prevented from moving again in the direction of the electrode end 77 and being able to be deposited there again.
  • a drip element 79 is formed by an annular bead in the upper region of emission electrode 55.
  • the drip elements 79 are formed in particular by a bead formed on the surface of the emission electrode 55.
  • a bead can be formed by a “bead-like casing” which comprises, for example, plastic, ceramic, metal or rubber.
  • the bead can also have several ring-shaped beads around the tip.
  • a drip element 81 is formed by a plate element 81 of emission electrode 57.
  • the plate element 81 is designed in the form of a screen element.
  • a drip element is not limited to the shape of the emission electrode.
  • a flow element 85 be formed in the region of an emission electrode 83.
  • the inflow element 85 has the effect that liquid droplets that collect on the surface of the carrier element 87 do not reach the emission electrode 83, but are guided along the inflow element 85 to a drip element 89.
  • the result of the drip element is that contamination of the electrode end 90 is avoided, which could lead to the contamination being burned in and This leads to corking of the electrode tip, which could lead to a collapse of the plasma.
  • FIG. 7 A cross-sectional view of another embodiment of an emission electrode 91 is shown.
  • the emission electrode 91 has a taper 95 at the electrode end 93.
  • This taper 95 is formed in that the emission electrode 91 in the area of the electrode end 93 is hollow in areas, in particular in the shape of a hollow cylinder.
  • the emission electrode 91 has an annular tip at the electrode end 93.
  • an annular taper 95 is formed at the electrode end 93. This also effectively prevents contamination of the electrode end 93. If, for example, an impurity, for example a drop, runs down along the emission electrode 91, it reaches this area of the taper 95 and the plasma detaches in this area of the emission electrode 91. However, the plasma cone then moves along the taper 95 to another point in the circle until the drop of liquid is detached and is discharged in an accelerated manner via the plasma of the counter electrode. Depending on the migration of the contamination at the electrode end, the plasma cone thus migrates along the taper, which means that the contamination does not overheat and burn-in at the electrode end or detachment of the plasma from the electrode 91.
  • an impurity for example a drop
  • FIG 8 a further embodiment according to the invention of a separation device 101 is shown.
  • the elements of the separation devices 101 which correspond to those of the separation device 1 have the same reference numerals, but increased by 100.
  • the deposition device 101 uses the counter electrode 109 in the Figures 3a to 4b used counter electrode elements shown.
  • the gas flow 107 is separated from the area in which the counter emission electrodes 111 are located by means of a separating element in the form of a separating film 123 which is permeable to the plasma or electrons.
  • the separating film 123 is in particular a Teflon film. This has the property that it is gas-impermeable to the gas stream 107, but is permeable to the electrons supplied by means of the emission electrodes 111. In other words, the separating film 123 has the effect that the gas flow 107 cannot enter the region of the emission electrodes 111 and can lead to undesired contamination there. At the same time, it is ensured that an efficient separation of impurities from the gas flow in the direction of the counter electrodes 109 by means of the low-energy plasma that is arranged by the plasma cone 125 can be achieved.
  • the carrier element 131 consists of a ceramic material in which, however, a discharge element 133 in the form of a conductive grid is embedded.
  • the grid 133 has the effect that charge carriers that collect on the surface of the carrier element 131 are discharged, that is to say that electrostatic charging of the surface of the carrier element 131 is prevented in such a way that impurities cannot collect in the area of the emission electrodes 135.
  • a discharge element is formed in that a recess 137 is formed between each of the electrodes 135. This shape supports the dissipation of the power carriers due to the electrical conductivity of the material and increases the resistance for contaminants to reach the carrier element.
  • FIG 10 a further embodiment of a discharge element is shown.
  • the carrier element 131 ' has a discharge element 133' in the form of a coating applied to the carrier element 131 '.
  • the coating 133 ' is placed at the same electrical potential as the emission electrodes 135' and thus an electrostatic charge is avoided.
  • a corresponding diverting element 133 ′′ can, as in FIG Figure 11 shown, can also be implemented in the form of a grid spaced apart from the carrier element 131 ′′ through which the emission electrodes 135 ′′ pass.
  • the same electrical potential is also applied to the grid 133" as to the emission electrodes 135 ".
  • the distance between the emission electrodes 135" and the grid or the protrusion of the emission electrode is set 135 "is selected by the grid in such a way that the plasma is ignited not between the grid and emission electrode 135" but between emission electrode 135 "and the counter electrode.
  • the inner area of a separating device 101 is represented by a carrier element 119, a wall 139 in which an inlet opening 141 connected to the inlet line 103 is formed, a second wall 143 in which an outlet opening 145 which is connected to the outlet line 105 , and a third wall 147, which is formed below the counter electrodes 109, surround.
  • the diverting elements 133, 133 ', 133 "extend not only in the area of the carrier element 131, 131', 131" but also in the area of the first wall 139, the second wall 143 and / or the third Wall 147 are arranged.
  • a "Faraday cage” is formed which has the effect that additional electrical fields within the separation device, which could influence the ion wind and "attract" impurities to the walls, are avoided. So all walls are at the same potential, in particular mass potential, so that an attractive force between the walls and the corresponding impurities is avoided.
  • surface charges can be discharged immediately.
  • the inlet and outlet sections of the separation device can have a conductive material or at least a conductive coating.
  • the housing as a whole can also have a conductive material or a conductive coating.
  • a conductive coating is preferred here.
  • a material with poor thermal conductivity can be provided with a correspondingly electrically conductive coating. This prevents, or at least reduces, the possibility that condensate can form on the inner walls of the separation device when the separation device cools down.
  • influencing devices introduced between groups of emission electrodes in the upper region of the separation device influence the electric field formed by the emission or second electrodes and first electrodes or counter-electrodes in such a way that the clay winch is guided through the modified electric field that they no longer have an adverse effect.
  • the disadvantageous turbulence of the blow-by should no longer occur, at least it should be reduced.
  • no blow-by flows along the ceiling to the emission electrodes, as a result of which the tips of the emission electrodes in the upper area of the separation device remain clean for longer.
  • a first embodiment of such an influencing device 160 is shown in a separating device in the form of a solid metal body with a substantially C-shaped profile.
  • the influencing devices 160 are each integrated in alternation with a group 165 of emission electrodes 162 arranged in two rows in the separating device 101, with the region 168 of the influencing device 160 running along the upper wall of the separating device 101 integrally via an, in particular concave, connecting region 161 with the The area 169 of the influencing device 160 that extends along the side walls of the separating device is connected.
  • the influencing device 160 is conductively connected to the counter-electrodes 163 ′ lying opposite the region 168 of the influencing device 160.
  • FIG 14 A schematic plan view of the upper region of the deposition device 101, which groups 165 comprising two rows of two emission electrodes 162 and influencing devices 160, is shown. It can be seen here again how the emission electrodes 162, which in the embodiment shown of the separation device 101 in _ Figure 14 grouped into two rows each, alternating with an influencing device 160 according to the invention, extending transversely in the upper region of the separating device 101.
  • an influencing device 160 in the form of an essentially C-shaped insert is continuously and repeatedly placed between two rows of electrodes 162 each, in order to be able to protect all electrode tips as far as possible through the positive effect of this solution.
  • a distance d between a group 165 of emission electrodes 162 and the influencing device 160 is selected to be so large that no sparking can occur from the emission electrodes 162 to the influencing device 160.
  • the field lines of the electric field 164 ' are shown schematically, which are formed by the emission electrode 162 and the counter-electrode (not shown) located in the lower area of the picture if no influencing device according to the invention with earthed end faces is provided inside the separating device 101.
  • the field lines of the electric field 164 ′′ for the same emission electrode 162 are shown schematically.
  • the electric field 164 ′′ is formed between the emission electrode 162 and the counter electrode (not shown) in the lower area.
  • an influencing device with grounded end faces is now shown.
  • an influencing device 160 is provided in the separating device 101, alternating with a group comprising two rows of emission electrodes 162, whereby as much as possible all emission electrode tips are protected by the influencing device from deposits of blow-by particles. Because by repeating the influencing device, the positive effect is transferred to all emission electrodes or groups of emission electrodes.
  • the two rows of emission electrodes listed here as an example it is also possible to attach only a single row of emission electrodes, alternating with an influencing device, or alternating three rows of emission electrodes with one influencing device, or a large number of rows of emission electrodes, each alternating with one To attach influencing device.
  • the person skilled in the art can also provide other arrangements of the emission electrodes 162 within a group of emission electrodes 165 instead of rows of electrodes.
  • the influencing devices 160 only depend on the end flanks, so that a solid body like that in the Figures 13 and 14th is used for the influencing devices, represents an implementation form of the influencing devices 160 that is not absolutely necessary.
  • These devices 160 according to the invention can also be implemented, for example, by grounded sheet metal strips or the like.
  • the formation of round connection areas 161, as shown in FIG Figures 13 and 14th are formed in the influencing devices 160, not necessary.
  • the ones in the Figures 13 and 14th Rather, existing rounded connection areas 161 serve for easier installation and easier production.
  • other cross-sectional profiles of the influencing device according to the invention in particular cross-sectional profiles in a plane perpendicular to the flow direction of the blow-by, can also be implemented without this opposing the positive effect.
  • Figure 16a Another possible cross-sectional shape of the influencing device 160 according to the invention, which has an arcuate shape.
  • Figure 16b is that out Figure 13 and Figure 14 known, essentially C-shaped design with connecting areas 161 connecting the individual segments.
  • Figure 16c in a third possible cross-sectional shape of the influencing device according to the invention, the lateral extensions of which extend perpendicularly from the part running transversely in the upper area of the separating device 101 and thus have right-angled connecting areas 167 instead of roundings.
  • the separating device 151 has a carrier element 153, the emission electrodes 155 being attached to the carrier element 153 by means of actuators 157.
  • the acuators 157 have piezoelectric elements, which enable the emission electrodes 155 to be set in (ultrasonic) oscillations. This has the effect that the emission electrodes can be cleaned in that contaminants adhering to the emission electrodes 155 are removed by means of ultrasound.
  • the emission electrodes 155 can be formed from an SMA material, that is to say a shape memory material, or at least comprise this.
  • the shape memory material has the effect that the emission electrode is deformed when the temperature rises. As a result of this deformation, any impurities or adhesions located on the emission electrode are deformed in such a way that they "flake off" from the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (14)

  1. Dispositif (1, 101, 151) pour séparer des impuretés liquides et / ou sous forme de particules d'un courant gazeux (7, 107), un trajet d'écoulement du courant gazeux (7 , 107) s'établissant entre au moins une première électrode (9, 31, 109) faisant office de contre-électrode et au moins une deuxième électrode (11, 111, 51, 53, 57, 135, 135 ', 135 ", 155), qui agit comme une électrode d'émission et a une extrémité d'électrode (71, 77, 90) dirigée en direction de la première électrode, et une tension continue dépassant la tension de claquage peut être appliquée entre la première électrode (9, 31, 109) et la deuxième électrode (11, 111, 51, 53, 57, 135, 135', 135 ", 155) pour former un plasma à faible énergie (41, 125), dans lequel
    la deuxième électrode (11) s'étend sensiblement le long d'un premier axe (X) dans une première direction et la première électrode (31) présente au moins une région de plateau (33) disposée opposée à la deuxième électrode (11) et s'étendant au moins localement dans un premier plan s'étendant sensiblement perpendiculairement à la première direction (X), dans lequel
    la région de plateau (33) est reliée au niveau de base (37) au moyen d'un élément d'espacement (35) s'étendant à l'encontre de la première direction (X),
    caractérisé en ce que
    la région de plateau (33) est reliée à l'élément d'espacement (35) au moyen d'au moins un élément de connexion (39).
  2. Dispositif selon la revendication 1, caractérisé en ce que
    (i) l'élément d'espacement (35) est électriquement conducteur et/ou l'élément de connexion (39) est disposé sensiblement perpendiculairement à la première direction et s'étendant le long du premier plan.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que
    la région de plateau (33) est disposée coaxialement à la deuxième électrode (11), et / ou le trajet d'écoulement s'étend sensiblement entre la deuxième électrode (11) et la région de plateau (33), la région de plateau (33) présentant, au moins localement, en particulier, dans la zone de bord, une surface qui est incurvée en direction de la deuxième électrode (11) et / ou dans le sens contraire à la première direction (X),
    la région de plateau (33) est disposée à une distance du niveau de base (37) de la première électrode (31) en direction de la deuxième électrode (11), et / ou une pluralité de deuxièmes électrodes (11) sont présentes, et la première électrode a une pluralité de régions de plateau (33), dans lequel chacune des deuxièmes électrodes (11) est associée à une région de plateau respective (33).
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que
    l'élément d'espacement (35) s'étend coaxialement au premier axe (X), ou l'élément d'espacement (35) s'étend à une distance du premier axe (X), de préférence au moins localement parallèlement au premier axe (X), et / ou la première électrode (31) a, au moins localement, une section transversale sensiblement en forme de C, en particulier, la forme en C étant formée du niveau de base (37), de l'élément d'espacement (35), de l'élément de liaison (39) et la région du plateau (33).
  5. Dispositif selon l'une quelconque des revendications 2 à 4, caractérisé en ce que
    (a) la région de plateau (33), l'élément d'espacement (35), le niveau de base (37) et / ou l'élément de connexion (39) sont configurés au moins localement en une seule pièce; les régions de plateau (33', 33") sont reliées au moyen d'au moins un dispositif de connexion (43, 43 ") qui s'étend sensiblement parallèlement au niveau de base et / ou a une extension moindre dans au moins une direction du premier plan par rapport aux régions de plateau (33', 33 "), dans lequel, en particulier, les régions de plateau (33') sont disposées le long d'une ligne droite dans une direction perpendiculaire au premier axe (X), en particulier, les dispositifs de connexion (43') s'étendent sensiblement le long de la ligne droite et / ou un réseau et / ou une matrice est configuré au moyen des dispositifs de connexion (43 "), dans lequel au moins une région de plateau (33 ") est agencée sur au moins l'un des points d'intersection des dispositifs de connexion (43 "), dans lequel le réseau et / ou la matrice s'étend le long du premier plan, et/ou
    (b) la pluralité de régions de plateau (33) sont fournies par au moins un élément de contre-électrode (31) qui est de préférence configuré au moins localement comme une pièce en tôle perforée, en particulier, les régions de plateau (33) sont agencées dans l'élément de contre-électrode (31) le long d'une deuxième direction et / ou au moins deux éléments de contre-électrode (31) peuvent être disposés avec une symétrie de miroir l'un par rapport à l'autre, de préférence au moins localement en interverrouillage l'un avec l'autre, de préférence décalés l'un de l'autre, de telle manière que les régions de plateau (33) des éléments de contre-électrode respectifs (31) sont disposées décalées les unes par rapport aux autres le long de la deuxième direction respective, ou les régions de plateau (33', 33") et les éléments de connexion (43', 43 ") sont formés par la pièce de tôle perforée.
  6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que
    au moins un élément de goutte à goutte (59, 73, 79, 80, 89) qui est connecté de manière opérationnelle à la deuxième électrode (51, 53, 55, 57, 83), au moyen duquel des particules de fluide du courant gazeux qui se déplacent dans la direction de et / ou le long de la deuxième électrode (51, 53, 55, 57, 83) peuvent ainsi être collectées, de telle manière que les particules de fluide se détachent de l'élément de goutte à goutte (59, 73, 79, 80, 89) à distance de l'extrémité d'électrode (71, 77, 91), dans lequel de préférence
    (i) l'élément de goutte à goutte (89) est au moins localement englobé par au moins un élément d'écoulement d'approche (85) disposé dans la région de la deuxième électrode (83), et / ou
    (ii) la deuxième électrode (51, 53, 55, 57) englobe au moins localement l'élément de goutte à goutte (59, 73, 79, 80), dans lequel les particules de fluide s'écoulant le long de la deuxième électrode (51, 53, 55, 57) en direction de l'extrémité d'électrode (71, 77) peuvent ainsi être collectées à distance de l'extrémité d'électrode (71, 77) au moyen de l'élément de goutte à goutte (59, 73, 79, 80) de telle manière que les particules de fluide se détachent de la deuxième électrode (51, 53, 55, 57) à distance de l'extrémité d'électrode (71, 77), dans lequel, en particulier, l'extrémité d'électrode (71) et une extrémité d'alimentation (63) de la deuxième électrode (51) qui est opposée à l'extrémité d'électrode (71) sont disposées décalées l'une de l'autre le long d'un premier axe (Y) s'étendant dans une première direction, de telle manière que l'extrémité d'électrode (71) est disposée à proximité de la première électrode, et l'élément de goutte à goutte (59) est formé au moins localement par une région de transition de la deuxième électrode, qui est disposée entre une première région d'électrode (61) dans laquelle au moins une région de surface de la deuxième électrode (51) et / ou de l'électrode (51) s'étend depuis l'extrémité d'alimentation (63) en direction de l'extrémité d'électrode (71) dans une direction avec une composante de direction le long du premier axe (Y), et une deuxième région d'électrode (65) dans laquelle au moins une région de surface de la deuxième électrode (51) et / ou de la deuxième électrode (51) s'étend au moins localement dans une direction avec une composante de direction dans le sens contraire à la première direction, dans lequel, de préférence , au moins une région de surface de la deuxième électrode (51) et / ou la deuxième électrode (51) s'étendent depuis l'extrémité d'alimentation (63) en direction de l'extrémité d'électrode (71), en particulier, après la deuxième région d'électrode (65), dans une troisième région d'électrode (69) dans une direction avec une composante de direction le long du premier axe (Y), de préférence de telle manière que l'élément de goutte à goutte (59) est disposé le long du premier axe au-dessus de l'extrémité d'électrode (71).
  7. Dispositif selon la revendication 6, caractérisé en ce que
    l'élément de goutte à goutte englobe et / ou est formé par au moins un enroulement (75) de la deuxième électrode (53), au moins un pli (59, 89) de la deuxième électrode (51) et / ou l'élément d'écoulement d'approche (85), au moins une région hélicoïdale de la deuxième électrode, au moins une protubérance (79) de la surface de la deuxième électrode (55) et / ou l'élément d'écoulement d'approche, au moins une jupe et / ou au moins un élément en disque (81), l'élément de goutte à goutte (79, 80) qui entoure circonférenciellement la deuxième électrode, de préférence de manière radialement symétrique, l'élément de goutte à goutte (73) est disposé en aval du courant gazeux et / ou l'élément d'écoulement d'approche (85) est disposé en amont du courant gazeux, et / ou l'élément de goutte à goutte (59, 73, 79, 80, 89) est configuré au moins localement en une pièce avec la deuxième électrode (51, 53, 55, 57) et / ou l'élément d'écoulement d'approche (85).
  8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième électrode (91) présente au moins un amincissement (95), en particulier, dans la région de l'extrémité d'électrode (93), dans lequel de préférence
    (i) l'amincissement est configuré sous la forme d'au moins une pointe, d'au moins une arête et / ou d'au moins un bord (95), et/ou
    (ii) la deuxième électrode a une forme de section transversale sensiblement cylindrique, triangulaire, carrée, rectangulaire et / ou polygonale dans un plan perpendiculaire à une direction d'extension principale, en particulier la première direction, la deuxième électrode, en particulier dans la région d'extrémité d'électrode, a une surface d'extrémité inclinée par rapport à la direction d'extension principale, en particulier, l'amincissement englobe un bord de la surface d'extrémité, la deuxième électrode présente, en particulier dans la région de l'extrémité d'électrode (93), au moins localement une région creuse, dans laquelle la deuxième électrode est configurée de manière à être creuse, de préférence sous la forme d'un cylindre creux, d'un tube, et / ou d'une paroi conique, dans lequel, de préférence, l'amincissement (95) englobe au moins un bord d'extrémité de la paroi de la région creuse, en particulier, l'amincissement est circonférentiel sur l'extrémité d'électrode (93), et / ou la deuxième électrode comprend un matériau carboné, au moins localement, en particulier, dans la région de l'extrémité d'électrode, et / ou la deuxième électrode comprend au moins un revêtement, de préférence qui réduit l'adhérence des particules et / ou du fluide, en particulier, un revêtement comprenant du nitrure de titane, du nanosol, un matériau contenant au moins des nanoparticules, au moins un matériau constituant une surface présentant une nanostructure, et / ou du nitrure de chrome.
  9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que
    le dispositif comprend au moins deux deuxièmes électrodes (135, 135', 135"), de préférence une pluralité de deuxièmes électrodes (135, 135', 135"), dans lequel les deuxièmes électrodes (135, 135', 135 ") s'étendent d'au moins un premier élément de support (131, 131', 131 "), et
    au moins un dispositif de décharge (133, 133', 133 ") est prévu afin de réduire une charge électrostatique de l'élément de support (131, 131', 131 ") et / ou pour décharger des porteurs de charge de collecte d'une surface de l'élément de support (131, 131', 131"), au moins dans la région entre les deuxièmes électrodes (135, 135', 135 ").
  10. Dispositif suivant la revendication 9, caractérisé en ce que
    (i) les deuxièmes électrodes (135, 135', 135 ") traversent au moins localement l'élément de support (131, 131', 131 ") et / ou en ce que l'élément de support (131, 131', 131 ") comprend au moins un élément en céramique;
    le dispositif de décharge comprend au moins un élément de décharge (131, 131 ") qui est au moins localement placé sur l'élément de support et / ou au moins localement noyé dans l'élément de support, dans lequel l'élément de décharge comprend de préférence au moins un revêtement de décharge (131'), en particulier électriquement conducteur, au moins un tissu de décharge, en particulier comprenant un polyamide et / ou de mise à la terre, et / ou au moins une bande métallique, telle qu'une bande de cuivre, et / ou le dispositif de décharge est configuré comme un élément de tunnel conducteur, et / ou
    le dispositif de décharge comprend au moins un renfoncement (137) configuré au moins au localement dans l'élément de support, et / ou
    (ii) le dispositif de décharge comprend au moins un dispositif de décharge (133 ") disposé dans la région entre les extrémités d'électrode des deuxièmes électrodes et l'élément de support, dans lequel, en particulier, le dispositif de décharge comprend au moins un treillis conducteur (133 "), au moins une mousse conductrice, au moins un élément de blindage qui entoure la deuxième électrode respective au moins localement, de préférence incurvé radialement vers l'extérieur en direction de l'extrémité d'électrode, dans lequel, en particulier, le dispositif de décharge (133 ") est au même potentiel électrostatique que les deuxièmes électrodes, et / ou caractérisé en ce que
    le dispositif de décharge (133, 133', 133 "), l'élément de décharge (133, 133 "), le revêtement de décharge et / ou le dispositif de décharge s'étendent au moins localement le long et / ou dans une première paroi (139) et / ou une deuxième paroi (143) s'étendant au moins localement dans une direction entre la deuxième électrode (135, 135', 135 ") et la première électrode (109) dans une direction le long du premier axe (X) et / ou dans la première direction et / ou débouche dans au moins une ouverture d'entrée (141) ou une ouverture de sortie (145), et / ou le long et / ou dans une troisième paroi (147) qui s'étend au moins localement parallèlement au premier élément de support (131, 131', 131 "), au moins localement sous la première électrode (109), et / ou au moins localement du côté de la première électrode (109) en regard de la deuxième électrode (135, 135', 135 ").
  11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que
    le dispositif comprend au moins deux deuxièmes électrodes (162), de préférence une pluralité de deuxièmes électrodes (162), et au moins un dispositif d'influence (160) pour influencer le champ électrique formé par les au moins deux deuxièmes électrodes (162) peut être et / ou est disposé au moins localement entre les au moins deux deuxièmes électrodes (162).
  12. Dispositif selon la revendication 11, caractérisé en ce que
    (i) le dispositif d'influence (160) peut être et / ou est disposé sensiblement au moins localement en face d'au moins une première électrode (163, 163'), de préférence une pluralité de premières électrodes (163, 163'), et / ou un potentiel électrique, de préférence prédéterminé, peut être appliqué ou est appliqué, et/ou
    (ii) le dispositif d'influence (160) peut être et / ou est connecté de manière conductrice à la au moins une première électrode (163'), le potentiel de la première électrode (163) peut être et / ou est appliqué au dispositif d'influence (160), et / ou le dispositif d'influence et le dispositif de décharge, le dispositif de décharge et / ou l'élément de décharge sont au moins localement configurés ensemble.
  13. Un procédé de fonctionnement d'un dispositif selon l'une quelconque des revendications précédentes, dans lequel
    un courant gazeux contenant des impuretés liquides et / ou sous forme de particules est fourni au dispositif (151), pour séparer des impuretés du courant gazeux, le courant gazeux est guidé au moins partiellement le long d'un trajet d'écoulement configuré entre au moins une première électrode et au moins une deuxième électrode (155), et une tension de courant continue dépassant la tension de claquage est configurée entre la première électrode et la deuxième électrode (155) afin de former un plasma stable à basse énergie, caractérisé en ce que
    le procédé comprend en outre une étape de nettoyage pour nettoyer la première électrode et / ou la deuxième électrode (155).
  14. Procédé selon la revendication 13, caractérisé en ce que
    pendant l'étape de nettoyage, un potentiel de terre est appliqué à au moins un premier groupe d'une pluralité de deuxièmes électrodes (155), ou une tension qui dépasse la tension de courant continue et produit un claquage entre la première électrode et les deuxièmes électrodes (155) du premier groupe est appliquée, en particulier, pendant que la tension de courant continue pour former le plasma à basse énergie est appliquée à au moins un second groupe de deuxièmes électrodes, dans lequel de préférence les deuxièmes électrodes (155) sont alternativement associées au premier premier groupe et au deuxième groupe.
EP16714005.2A 2015-03-19 2016-03-16 Dispositif et procédé d'élimination d'impuretés Active EP3271077B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015104168.5A DE102015104168A1 (de) 2015-03-19 2015-03-19 Vorrichtung und Verfahren zum Abscheiden von Verunreinigungen
EP15179568 2015-08-03
PCT/IB2016/051481 WO2016147127A1 (fr) 2015-03-19 2016-03-16 Dispositif et procédé d'élimination d'impuretés

Publications (2)

Publication Number Publication Date
EP3271077A1 EP3271077A1 (fr) 2018-01-24
EP3271077B1 true EP3271077B1 (fr) 2021-02-17

Family

ID=55650615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16714005.2A Active EP3271077B1 (fr) 2015-03-19 2016-03-16 Dispositif et procédé d'élimination d'impuretés

Country Status (4)

Country Link
US (1) US10933430B2 (fr)
EP (1) EP3271077B1 (fr)
CN (1) CN107427839B (fr)
WO (1) WO2016147127A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980911B2 (en) 2016-01-21 2021-04-20 Global Plasma Solutions, Inc. Flexible ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
JP2019113050A (ja) * 2017-12-26 2019-07-11 トヨタ紡織株式会社 内燃機関の静電式オイルミストセパレータ
CA3091418A1 (fr) 2018-02-12 2019-08-15 Global Plasma Solutions, Inc Dispositif generateur d'ions autonettoyant
USD875046S1 (en) * 2019-06-07 2020-02-11 Global Plasma Solutions, Inc. Self-cleaning ion generator device
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
KR102283278B1 (ko) * 2020-06-16 2021-07-29 특허법인(유한)해담 검체 채취 장치
AT525317A1 (de) * 2021-08-02 2023-02-15 Villinger Markus Reinigungsvorrichtung zum Reinigen eines Gases

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1992113A (en) * 1931-10-26 1935-02-19 Int Precipitation Co Electrical precipitating apparatus
JPS58155643A (ja) * 1982-03-10 1983-09-16 Toshiba Corp グロー放電発生装置
JPH0710412U (ja) * 1993-07-12 1995-02-14 長利 鈴木 ガス浄化装置
DE19534950C2 (de) 1995-09-20 1998-07-02 Siemens Ag Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
US6119455A (en) * 1996-08-30 2000-09-19 Siemens Aktiengesellschaft Process and device for purifying exhaust gases containing nitrogen oxides
JP3839592B2 (ja) * 1998-08-06 2006-11-01 三菱電機株式会社 空気清浄機
FI118152B (fi) * 1999-03-05 2007-07-31 Veikko Ilmari Ilmasti Menetelmä ja laite hiukkas- ja/tai pisaramuodossa olevien materiaalien erottamiseksi kaasuvirtauksesta
FR2818451B1 (fr) 2000-12-18 2007-04-20 Jean Marie Billiotte Dispositif electrostatique d'emission ionique pour deposer une quantite quasi homogene d'ions sur la surface d'une multitude de particules aerosols au sein d'un fluide en mouvement.
DE10160198A1 (de) 2001-12-07 2003-06-18 Hengst Gmbh & Co Kg Abreinigungsvorrichtung für plattenförmige Elektroabscheider
US7514047B2 (en) 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
CN1700956B (zh) * 2003-06-05 2010-06-30 大金工业株式会社 放电装置及空气净化装置
WO2005021161A1 (fr) * 2003-08-29 2005-03-10 Mitsubishi Heavy Industries, Ltd. Collecteur de poussiere
US7753994B2 (en) * 2004-01-13 2010-07-13 Daikin Industries, Ltd. Discharge device and air purifier
JP4244022B2 (ja) * 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
CN2712445Y (zh) * 2004-07-29 2005-07-27 李凤臣 等离子烟尘异味净化装置
JP2006192013A (ja) * 2005-01-12 2006-07-27 National Institute Of Advanced Industrial & Technology 空気清浄装置
DE102005023521B3 (de) 2005-05-21 2006-06-29 Forschungszentrum Karlsruhe Gmbh Nasselektrostatische Ionisierungsstufe in einer elektrostatischen Abscheideeinrichtung
CN101063539A (zh) * 2006-04-26 2007-10-31 大韩Pnc股份有限公司 净化室用风机-过滤器机组
DE102007025416B3 (de) 2007-05-31 2008-10-23 Marcel Op De Laak Verfahren und Vorrichtung zum Abscheiden von Verunreinigungen aus einem Gasstrom
IT1391148B1 (it) * 2008-08-06 2011-11-18 Reco 2 S R L Metodo e apparato per purificare gas
AU2008365614A1 (en) * 2008-12-23 2010-07-01 Oxion Pte. Ltd. Air ionizer electrode assembly
DE102010044252B4 (de) * 2010-09-02 2014-03-27 Reinhausen Plasma Gmbh Vorrichtung und Verfahren zur Erzeugung einer Barriereentladung in einem Gasstrom
DE102011007470A1 (de) 2011-04-15 2012-10-18 Aktiebolaget Skf Reinigungsvorrichtung
DE102011053578A1 (de) 2011-09-13 2013-03-14 Woco Industrietechnik Gmbh Gegenelektrode und Vorrichtung zum Abscheiden von Verunreinigungen mit einer solchen Gegenelektrode
DK2776168T3 (da) * 2011-11-09 2020-02-17 Memic Europe B V Apparat med ledende bånd til at fjerne støv og fremgangsmåde derfor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107427839B (zh) 2020-11-17
US10933430B2 (en) 2021-03-02
WO2016147127A1 (fr) 2016-09-22
EP3271077A1 (fr) 2018-01-24
US20180078948A1 (en) 2018-03-22
CN107427839A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
EP3271077B1 (fr) Dispositif et procédé d'élimination d'impuretés
EP2244834B1 (fr) Séparateur électrostatique
DE102004022288B4 (de) Elektrostatischer Abscheider mit internem Netzgerät
DE102007025416B3 (de) Verfahren und Vorrichtung zum Abscheiden von Verunreinigungen aus einem Gasstrom
DE102005045010B3 (de) Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
EP1883477A1 (fr) Etage d'ionisation electrostatique en voie humide dans un dispositif de separation electrostatique
EP2640939A2 (fr) Dispositif permettant le traitement des gaz d'échappement contenant des particules de suie
EP2616646B1 (fr) Dispositif pour traiter des gaz d'échappement contenant des particules de suie
DE102015104168A1 (de) Vorrichtung und Verfahren zum Abscheiden von Verunreinigungen
DE102011050759A1 (de) Steuerung der Geometrie der geerdeten Oberfläche in elektrostatisch verbesserten Stofffiltern
DE102011052946A1 (de) Elektroabscheider
EP2091653B1 (fr) Étage d'ionisation et collecteur pour installation d'épuration de gaz d'échappement
DE102007056696B3 (de) Elektrostatischer Abscheider mit Partikelabweisemittel, Heizungssystem und Verfahren zum Betrieb
EP2284442A2 (fr) Séparateur électrostatique et système de chauffage
DE2254452C2 (de) Elektroabscheider
EP4061536A1 (fr) Précipitateur électrostatique
EP1545785B1 (fr) Filtre electrostatique et procede permettant de separer les particules d'un gaz
EP2820258A1 (fr) Dispositif pour traiter un flux gazeux s'écoulant radialement vers l'extérieur d'une zone centrale
DE102017114638B4 (de) Elektrostatischer Abscheider und Verfahren zur elektrostatischen Abscheidung von Stoffen aus einem Abgasstrom
EP2156895B1 (fr) Séparateur électrostatique et système de chauffage
DE102019008127A1 (de) Elektroabscheider
EP2612000B1 (fr) Dispositif pourvu d'une électrode annulaire pour réduire les particules de suie dans les gaz d'échappement d'un moteur à combustion interne
DE102019008157A1 (de) Elektroabscheider
DE10160198A1 (de) Abreinigungsvorrichtung für plattenförmige Elektroabscheider
DE2102333C2 (de) Elektroabscheider für einen Staubgasstrom

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180403

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200901

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012371

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1360782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012371

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1360782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012371

Country of ref document: DE

Representative=s name: SKM-IP SCHMID KRAUSS KUTTENKEULER MALESCHA SCH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240304

Year of fee payment: 9