EP3271077B1 - Device and method for separating off contaminants - Google Patents

Device and method for separating off contaminants Download PDF

Info

Publication number
EP3271077B1
EP3271077B1 EP16714005.2A EP16714005A EP3271077B1 EP 3271077 B1 EP3271077 B1 EP 3271077B1 EP 16714005 A EP16714005 A EP 16714005A EP 3271077 B1 EP3271077 B1 EP 3271077B1
Authority
EP
European Patent Office
Prior art keywords
electrode
electrodes
regionally
region
plateau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16714005.2A
Other languages
German (de)
French (fr)
Other versions
EP3271077A1 (en
Inventor
Anton Wolf
Pia ENGELHARDT
David KRAEHENBUEHL
Uwe Ludwig
Artin PARSEGYAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woco Industrietechnik GmbH
Original Assignee
Woco Industrietechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015104168.5A external-priority patent/DE102015104168A1/en
Application filed by Woco Industrietechnik GmbH filed Critical Woco Industrietechnik GmbH
Publication of EP3271077A1 publication Critical patent/EP3271077A1/en
Application granted granted Critical
Publication of EP3271077B1 publication Critical patent/EP3271077B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/743Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • B03C3/763Electricity supply or control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/88Cleaning-out collected particles

Definitions

  • the present invention relates to a device for separating liquid and / or particulate contaminants from a gas flow, in the between at least one first electrode acting as the counter electrode and at least one second electrode acting as an emission electrode and an electrode end directed towards the first electrode comprises, a flow path of the gas flow runs and a DC voltage exceeding the breakdown voltage can be applied between the first electrode and the second electrode to form a stable low-energy plasma, and a method for operating such a device.
  • Such generic plasma separators for separating impurities from a gas flow, in particular blow-by gases from a motor vehicle, are known from the prior art.
  • the DE 10 2011 053 578 A1 discloses a generic device.
  • Figure 1 the basic structure of such a device is shown. It shows Figure 1 a schematic cross-sectional view of FIG DE 10 2011 053 578 A1 known device.
  • FIG. 3 is a schematic cross-sectional view of portion A1 of FIG Figure 1 shown.
  • the separation device 1 has an inlet line 3 and an outlet line 5.
  • a gas flow 7, such as a blow-by gas flow is introduced into the separation device 1 through the inlet line 3.
  • the gas stream 7 contains in particular impurities such as solid and liquid particles, in particular oil particles.
  • a first electrode in the form of a counter electrode 9 and a plurality of second electrodes in the form of emission electrodes 11 are arranged.
  • the gas stream 7 is guided through the separating device 1 essentially perpendicular to a normal direction N of the counter electrode 9.
  • a direct voltage is applied to the emission electrodes 11 which is higher than a breakdown voltage, in particular corresponds to at least 1.2 times the breakdown voltage.
  • the direct voltage applied in this way has the effect that a low-energy plasma is ignited or formed between the emission electrodes 11 and the counter electrode 9.
  • a current strength applied to the connections 13 is adapted in particular as a function of the flow velocity of the gas flow 7 through the separating device 1, but also as a function of other parameters.
  • the plasma formed between the emission electrode 11 and the counter electrode 9 has the effect that some of the impurities in the gas flow 7 are accelerated in the direction of the counter electrode 9.
  • the impurities then accumulating in the area of the counter electrode 9 are fed to a collecting space 15 and from there fed to a discharge line (not shown).
  • partition elements 17 are provided in an intermediate space between the emission electrodes 11.
  • Both the bulkhead elements 17 and the emission electrodes 11 are attached at least indirectly to a carrier element 19, which in particular comprises an insulating and / or ceramic material.
  • the emission electrodes 11 are fastened indirectly via a thermoset body 21 on which high-resistance resistors are arranged, by means of which the emission electrodes 11 are connected to the connections 13.
  • the ones in the DE 10 2011 053 578 A1 The device described has basically proven itself. However, it has been shown that the long-term stability and quality of the low-energy plasma generated in the device can be improved. It has been shown, in particular, that an ion wind arises in an area adjacent to the plasma or plasma cone which is forming, which leads to impurities in part in the direction of the emission electrode or the carrier element are accelerated. These particles, in particular oil droplets, can then accumulate in the area of the carrier element or the thermoset body 21. There they can agglomerate and, due to the force of gravity, flow along the thermoset body or the emission electrodes to the ends of the emission electrode facing the counter electrode.
  • the second electrode extends essentially along a first axis in a first direction, and the first electrode has at least one plateau region which is arranged opposite the second electrode and extends in at least some regions a first plane extending essentially perpendicular to the first direction.
  • the plateau area is arranged coaxially to the second electrode and / or the flow path runs essentially between the second electrode and the plateau area.
  • the invention also proposes that the plateau area, at least in some areas, in particular in the edge area, have a surface that is curved in the direction of the second electrode and / or against the first direction.
  • the invention provides that the plateau region is arranged at a distance from a base level of the first electrode in the direction of the second electrode.
  • a plurality of second electrodes are present and the first electrode has a plurality of plateau areas, each second electrode being assigned a respective plateau area.
  • a device according to the invention is characterized in that the plateau area is connected to the base level by means of an in particular electrically conductive spacer element which extends counter to the first direction.
  • the spacer element runs coaxially to the first axis or the spacer element at a distance from the first axis, preferably at least partially parallel to the first axis and the plateau region by means of at least one, preferably essentially perpendicular to the first direction and / or is connected to the spacer element running along the first plane.
  • the invention also proposes that the first electrode has an essentially C-shaped cross section, at least in some areas, in particular the C-shape is formed by the base level, the spacer element, the connecting element and the plateau area.
  • the plateau area, the spacer element, the base level and / or the connecting element are at least partially formed in one piece.
  • the plateau areas are connected by means of at least one connecting device which extends essentially parallel to the base level and / or has a smaller extent in at least one direction of the first plane compared to the plateau areas.
  • the plateau areas are arranged in a direction perpendicular to the first axis along a straight line, in particular the connecting devices extend essentially along the straight line and / or a network and / or a matrix is formed by means of the connecting devices, at least one plateau area being arranged at at least one of the intersection points of the connecting devices, the network and / or the matrix extending along the first level extends.
  • the plurality of plateau areas is provided by at least one counter-electrode element, preferably at least regionally designed as a stamped sheet metal part.
  • the plateau areas in the counter electrode element are arranged along a second direction and / or at least two counter electrode elements can be arranged mirror-symmetrically, preferably at least partially interlocking, preferably offset from one another in such a way that the plateau areas of the respective counter electrode elements are offset from one another are arranged along the respective second direction.
  • plateau areas and connecting elements are formed by the stamped sheet metal part.
  • the device can be characterized by at least one drip element that is in operative connection with the second electrode, by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles detach from the drip element at a distance from the electrode end.
  • the drip element is at least partially surrounded by at least one inflow element arranged in the area of the second electrode.
  • the second electrode encompasses the draining element at least in some areas, wherein by means of the draining element, fluid particles flowing along the second electrode in the direction of the electrode end are spaced apart from the electrode end can be collected in such a way that the fluid particles detach from the second electrode at a distance from the electrode end.
  • the electrode end and a feed end of the second electrode opposite the electrode end are arranged offset from one another along a first axis that extends in a first direction such that the electrode end is arranged closer to the first electrode, and the drip element is formed at least in some areas by a transition area of the second electrode which is between a first electrode area in which at least one surface area of the second electrode and / or the electrode extends from the feed end in the direction of the electrode end in a direction with a directional component along the first Axis extends, and a second electrode area in which at least one surface area of the second electrode and / or the second electrode extends at least in areas in a direction with a directional component opposite to the first direction, i st.
  • the invention also proposes that at least one surface area of the second electrode and / or the second electrode extend from the feed end in the direction of the electrode end, in particular following the second electrode area, in a third electrode area in a direction with a directional component along the first Axis extends, preferably such that the drip element is arranged along the first axis above the electrode end.
  • An embodiment according to the invention can also be characterized in that the drip element consists of at least one turn of the second electrode, at least one bend in the second electrode and / or the inflow element, at least one helical region of the second electrode, at least one bulge on the surface of the second electrode and / or of the inflow element, at least one skirt and / or at least one plate element comprises and / or is formed.
  • the invention also proposes that the draining element surrounds the second electrode circumferentially, preferably radially symmetrically, the draining element downstream of the Gas flow is arranged and / or the inflow element is arranged upstream of the gas flow.
  • a device according to the invention can also be characterized in that the drip element is at least partially formed in one piece with the second electrode and / or the inflow element.
  • the second electrode in particular in the area of the electrode end, has at least one taper.
  • the taper is in the form of at least one tip, at least one ridge and / or at least one edge.
  • the invention proposes that the second electrode is in a plane perpendicular to a main direction of extent, in particular the first direction , has an essentially cylindrical, triangular, square, rectangular and / or polygonal cross-sectional shape, the second electrode, in particular in the region of the electrode end, has an end surface inclined to the main direction of extent, in particular the taper is encompassed by an edge of the end surface.
  • the second electrode in particular in the area of the electrode end, at least in some areas has a hollow area in which the second electrode is hollow, preferably hollow-cylindrical, tubular and / or cone-shaped, preferably the tapering of at least one end edge of the wall of the Hollow area is included, in particular the taper is formed circumferentially on the electrode end.
  • a device according to the invention according to the third alternative can also be characterized in that the second electrode comprises a carbon material at least in some areas, in particular in the area of the electrode end, and / or the second electrode at least in some areas, in particular in the area of the electrode end, at least one, preferably one, adhesion of particles and / or fluid-reducing coating, in particular a coating comprising titanium nitride, nanosol, at least one nanoparticle Comprehensive material, at least one material forming a surface with a nanostructure and / or chromium nitride.
  • At least one separating element that is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas.
  • the separating element comprises at least one separating film and / or a separating membrane and / or at least partially comprises polytetrafluoroethylene. Furthermore, it is proposed with the invention that the separating element touches the second electrode, in particular the electrode end, or the first electrode.
  • a device according to the invention according to the fourth alternative is particularly preferably characterized in that, when the separating element is arranged between the first electrode and the flow path, at least one discharge opening is provided in the separating element, with the discharge opening separated from the gas flow, in particular on the gas flow facing side, the separating element accumulating, contaminants can be discharged into at least one collecting space.
  • a device according to the invention can be characterized in that the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes being at least a first carrier element, and at least one discharge device for reducing an electrostatic charge of the carrier element and / or for discharging charge carriers accumulating on a surface of the carrier element is provided at least in the area between the second electrodes.
  • the second electrodes pass through the carrier element at least in regions and / or the carrier element comprises at least one ceramic material.
  • the diverting device comprises at least one diverting element applied at least in some areas to the carrier element and / or embedded at least in some regions in the carrier element, the diverting element preferably at least one, in particular electrically conductive, dissipative coating, at least one, in particular comprising polyamide and / or earthed, conductive fabric, and / or at least one metal band, such as a copper band, and / or the conductive device is designed as a conductive tunnel element.
  • the discharge device comprises at least one depression formed at least in certain areas in the carrier element.
  • the discharge device comprises at least one discharge device arranged in the area between the electrode ends of the second electrodes and the carrier element.
  • the discharge device comprises at least one conductive grid, at least one conductive foam, at least one shield element which at least partially surrounds the respective second electrode, preferably arched radially outward in the direction of the electrode end, in particular the discharge device on the same electrostatic potential, like the second electrodes.
  • the discharge device, the discharge element, the discharge coating and / or the discharge device extend at least partially along and / or in a first wall and / or second wall that extends at least partially in one direction between the second electrode and the first electrode in a direction along the first axis and / or in the first direction and / or into which at least one inlet opening or one outlet opening opens, and / or along and / or in a third Wall that extends at least partially parallel to the first carrier element, at least partially below the first electrode and / or at least partially on a side of the first electrode facing away from the second electrode.
  • a device according to the invention can be characterized in that the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the electrical field formed by the at least two second electrodes can be and / or be arranged at least in regions between the at least two second electrodes.
  • the influencing device can be arranged and / or arranged essentially at least in regions opposite at least one first electrode, preferably a plurality of first electrodes, and / or a preferably predetermined electrical potential can be and / or be applied.
  • the influencing device is conductively connectable and / or connected to the at least one first electrode
  • the potential of the first electrode can be and / or applied to the influencing device and / or the influencing device and the discharge device
  • the discharge device and / or the diverting element are formed jointly at least in some areas.
  • the invention provides a method for operating a device of the generic type or a device according to the invention, the device being supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along an between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.
  • a ground potential be applied to at least one first group of a plurality of second electrodes during the cleaning step or a voltage exceeding the DC voltage and generating a flashover between the first electrode and the second electrodes of the first group is applied, in particular while the DC voltage for forming the low-energy plasma is applied to at least one second group of the second electrodes.
  • the second electrodes are assigned alternately to the first group and the second group.
  • a mechanical excitation of the first electrode and / or the second electrode is generated in the cleaning step, preferably by means of an ultrasonic oscillation generated by at least one excitation device, with at least one piezoelectric element and / or at least one component of a Internal combustion engine and / or a vibration transmission device that is operatively connected to a component of the internal combustion engine for transmitting vibrations is used.
  • the cleaning step comprises the sequential movement of at least two first electrodes and / or two second electrodes by means of a cleaning element, such as at least one brush.
  • the second electrode extends essentially along a first axis in a first direction and the first electrode is arranged at least one opposite to the second electrode and is at least partially perpendicular to the first direction extending first plane having plateau region.
  • At least one drip element which is in operative connection with the second electrode and by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles are spaced apart from the electrode end from the Dissolve drip element, suggested.
  • the second electrode in particular in the region of the electrode end, have at least one taper.
  • the invention further proposes that between the flow path and the first electrode and / or the flow path and the second electrode at least one separating element, which is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas.
  • a separating element is understood here, in particular a basically closed and / or at least partially permeable separating element for electrodes, such as a separating film and / or separating membrane.
  • the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes extending from at least one first carrier element and at least one discharge device for reducing an electrostatic charge of the carrier element at least in the area between the second Electrodes is provided.
  • the discharge device can also extend into other (wall) areas, in particular into a first and / or second wall or side wall and / or a third or bottom wall. In this way the formation of a "Faraday cage" is possible.
  • the discharge device is preferably electrically conductive at least on its surface and / or completely.
  • the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the by the at least two Second electrodes formed electrical fields is provided at least in areas between the at least two second electrodes.
  • An influencing device is understood to mean, in particular, sheet metal strips or solid bodies made of metal.
  • the invention provides a method for operating a device according to the invention or a device of the generic type, wherein the device is supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along a between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma, and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.
  • the invention is thus based on the surprising finding that comparatively simple structural or structural adaptations of the generic device can significantly increase its long-term stability.
  • the device can also be used, for example, to remove oil residues from fresh air that is supplied to a passenger cabin of an aircraft and, for example, taken from a turbine.
  • the device can effectively avoid an aerotoxic syndrome.
  • the approach provides that a separate counter-area of the counter-electrode is assigned to each individual emission electrode.
  • This region of the counter electrode referred to as the plateau region, is spaced apart from a base level of the counter electrode, in particular by a spacer element. The plateau areas protrude from the base level, so to speak, in the form of mushroom elements.
  • the spacer element is arranged coaxially to the emission electrode or a longitudinal axis of the spacer element extends at least in some areas in a shift in the direction of extent, in particular the first direction and / or along the first axis.
  • This structure of the The effect of the counter electrode is that particles that collect on the counter electrode, in particular oil droplets, automatically flow away from the plateau area so that they can then flow away via the base level into the collecting space.
  • the plateau area has a curvature at least in some areas, the flow of the particles is supported.
  • the curvature can only be formed in an edge area of the otherwise planar plateau area.
  • the curvature has the effect that when particles flow away from the edge area, particles arranged in the flat plateau area are also ā€œdrawn alongā€, in particular due to the viscosity of a contaminating fluid.
  • the advantage is thus achieved that an accumulation of particles in the area of the counter electrode, in which the plasma is formed, is avoided. It was recognized that an accumulation in this area can lead to undesired charring of the particles and thus to an impairment of the plasma.
  • a plurality of plateau areas be formed by a single counter electrode element.
  • This counter electrode element is preferably designed as a stamped sheet metal part and has a C-shaped or "lying" U-shaped cross section.
  • the lower transverse element of the counter electrode element forms the base level, from which the spacer element extends essentially vertically upwards.
  • a spoon-shaped element then protrudes perpendicular to the spacer element, which represents a connecting element which, so to speak, forms the "handleā€ of the spoon, and the plateau area, which forms the "scoop areaā€ of the spoon.
  • the connecting element creates an electrical connection between the spacer element and the plateau area and at the same time holds the plateau area mechanically.
  • This enables a multiplicity of plateau areas, which are arranged next to one another in a second direction, to be formed on the spacer element.
  • two of these counter-electrode elements are arranged mirror-symmetrically to one another and are arranged offset from one another in the second direction, a plurality of plateau areas arranged offset to one another can thus be provided in the area of the counter-electrodes.
  • the counter-electrode elements can be designed to be completely mirror-symmetrical.
  • the counter-electrode elements differ in the length of the spacer elements in such a way that the plateau areas of the counter-electrodes are arranged at the same height or at the same distance from the second electrodes.
  • the plateau areas are connected to one another by connecting devices.
  • the connecting devices in the first plane have a smaller extent than the plateau regions, at least in one direction.
  • these counter-electrode elements enables the respective plateau area to be assigned to each emission electrode, so that a plasma cone can be formed in the area of each emission electrode at a predefined location and in a predefined area, with the plasma cones also being formed due to the relative arrangement of the individual plateau areas a fixed relative position to each other. Due to the improved outflow of the particles from the plateau area, in particular due to the curvature, at least in the edge area, the plasma cones are also stabilized. In this way, the particles can flow away from each of the plateau areas in a barrier-free manner, so that agglomeration of particles, as can occur with counter-electrodes known from the prior art, is avoided.
  • a drip element be formed in the area of the emission electrode.
  • This drip element can in particular be designed in one piece with the emission electrode or be implemented as a separate component which is arranged independently of the emission electrode or is connected to it.
  • the use of such a drip element is based on the knowledge that in the area of the plasma cone, in particular adjacent or also in the plasma cone, an ion wind is generated, which leads to impurities in the gas flow, which have been charged by passage through preceding plasma areas, in a direction towards the emission electrode to be accelerated.
  • impurities in particular fluid droplets, can accumulate above the plasma cone in the area of the carrier element or thermoset body.
  • the impurities are basically harmless at these points.
  • the arrangement of the emission electrodes on the carrier element can also take place in that the emission electrodes go through a carrier element in the form of a perforated plate through the holes of the perforated plate and the electrode tips protrude from these.
  • the carrier element can also comprise other or additional materials than or in addition to thermoset, such as a ceramic material.
  • thermally insulating materials are preferably used as wall materials. These lead in particular to the fact that after the separator has been idle there is less tendency for condensate liquid to accumulate on the surface of the housing.
  • impurities can agglomerate and then move in the direction of the counter electrode due to the effect of gravity. This is mostly done in such a way that the fluid droplets run down the thermoset body or the perforated plate and then flow along the emission electrode in the direction of the electrode tip or the electrode end.
  • the drip element according to the invention now ensures that agglomerating fluid droplets flow at a distance from the electrode tip in the direction of the counter electrode and drip off outside the emission electrode in the direction of the counter electrode or are entrained again by the gas flow.
  • the emission electrode has a turn such that a first area of the emission electrode initially extends in the direction of the counter electrode, but is followed by a second area in which the emission electrode extends away from the counter electrode around itself then to extend again in a third area in the direction of the counter electrode in order to then open into the electrode tip or the electrode end.
  • Corresponding drip elements can also be designed as umbrella-shaped elements which surround the emission electrode in a bell-shaped manner in order to form corresponding drip elements on the outer edge of the umbrella. It can also be provided that the emission electrode has corresponding bulges on its surface, preferably formed in one piece with the electrode material.
  • the drip element is designed in that the emission electrode is designed to be hollow in areas, in particular in the area of the electrode end. This leads to an essentially circular drip element being formed at the end of the electrode if the electrode has an essentially cylindrical cross section.
  • This structure has the result that, if a drop of liquid reaches the end of the electrode, the plasma generation is interrupted in this area in such a way that another area of the cylindrical drip element acts as the starting point for the plasma. This prevents the liquid drop adhering to the drip element is heated by the plasma in such a way that the electrode tip becomes charred. If the liquid drop is then detached due to gravity, the starting point of the plasma cone migrates to a corresponding point along the circular drip element. This also effectively prevents overheating and carbonization of the electrode tip.
  • the flow area of the stream be hermetically separated from the areas in which the emission electrode or the counter electrode is arranged.
  • this separation be carried out between the flow area and the emission electrode.
  • the flow path, in particular in the area of the emission electrode be limited in the area of the emission electrode by a separating element, such as a film or membrane, which is impermeable to the gas flow or the particles contained therein, i.e. in particular the blow-by gas becomes.
  • the separating element is permeable to charge carriers such as electrons. Teflon or polytetrafluoroethylene films have proven to be particularly suitable elements. These offer the advantage that they are electrically permitted, i. H.
  • the direct voltage applied to the emission electrode can pass through the film into the flow area, so that the low-energy plasma continues to form in the flow area.
  • electrodes can pass through the separating element.
  • the film is in direct contact with the electrode tips of the emission electrodes. In this way, the best possible formation of the low-energy plasma is ensured with, at the same time, the best possible separation of the electrode area from the gas flow. In particular, this prevents particles located in the gas stream from being able to accumulate on the emission electrode or on adjacent structural elements of the separation device, which, as described above, could lead to contamination and carbonization of the electrodes.
  • the separating element have corresponding drainage openings, through which the contamination can flow at predefined points in a corresponding collecting space.
  • corresponding discharge devices are provided in an intermediate area between the emission electrodes or rows of emission electrodes.
  • a corresponding discharge device is formed by a recess, in particular formed in the carrier element. The resulting spacing of the lowered areas of the depression from the emission electrode results in a reduced electrostatic charge on the surface area of the carrier element.
  • actively acting discharge elements are arranged in the area of the surface areas arranged between the emission electrodes.
  • the diverting elements can in particular be an electrically conductive coating which leads to charge carriers that have accumulated in the area of the surface being removed as quickly as possible.
  • This discharge coating can be applied to the corresponding surface or elements embedded in the surface, such as conductive fabric, which in particular comprise polyamide or a metallic material such as copper, can be provided.
  • conductive fabric which in particular comprise polyamide or a metallic material such as copper
  • a space can be formed which acts as a Faraday cage. If the diverting element is connected to ground, surface charges on the walls can flow off directly and thus electrostatic forces of attraction on the impurities, which could cause accumulation on the walls, can be effectively avoided.
  • tunnel-like discharge elements leads in particular to an increase in the surface of the counter-electrode.
  • These tunnel elements are preferably arranged alternating with the electrodes.
  • the tunnel elements can additionally or alternatively comprise a very coarse-meshed conductive grid or conductive bars / threads, which serve to improve the drainage of impurities on the additional counter electrodes (tunnel surface). It can also be provided that a further discharge device is arranged at a distance from the surface. This can be implemented, for example, by a grid that is electrically conductive, the emission electrodes protruding through the discharge device. If the discharge device is connected to the same electrical potential as the emission electrodes or to ground, an attractive effect on particles present in the cooking stream is likewise prevented.
  • a corresponding discharge device can also be implemented by a shielding element surrounding the emission electrode, which can also serve as a drip element at the same time.
  • the ion winds are guided due to the modified field shape, in particular the plasma cone, in such a way that they no longer have a disadvantageous effect on the blow-by, namely that disadvantageous turbulence of the blow-by no longer occurs.
  • the modification also results in an early separation of the particles, so that they are no longer carried along in the blow-by for as long.
  • a particularly compact and simple structure is obtained if at least one influencing device is formed at least in some areas in one with at least one discharge device and / or at least one discharge element.
  • the influencing device is preferably a metallic insert that is connected to the counter-electrode and thus grounded, or in any case is at the same potential as the counter-electrode.
  • the influencing devices lead to a frame at a defined potential being formed around the blow-by flow. Also, when the influencing device is placed on the potential of the counter electrode, the counter electrode area is increased.
  • the shape of the influencing device in particular a cross-sectional shape in a plane perpendicular to the flow device of the blow-by, can in particular be selected with an essentially C-shaped cross-sectional profile, which is preferably made up of three subsegments, preferably arranged perpendicular to one another, and / or preferably from a substantially vertical arrangement of the Segments with an arc-like connection between the respective sub-segments.
  • the influencing element can also be constructed in the form of at least one continuous arc.
  • the influencing device extends, in particular at least regionally, between at least two second electrodes along the upper wall, and continued downward along the two side walls.
  • the end faces of the influencing device i.e. the sides facing the emission electrodes
  • the influencing devices either from a solid metal body or from sheet metal, for example.
  • a conductive surface is formed only on the end face.
  • a main body can therefore be non-conductive and only a coating or a conductive area can be present on the end face.
  • the positive effect of the influencing device on the behavior of the blow-by through continuous repetition of influencing devices along the flow direction of the blow-by, especially alternating with groups of second electrodes, also on subsequent emission electrodes along the flow direction of the blow -By can be transferred. As a result, as far as possible all electrode tips can be protected from contamination by deposited particles.
  • the invention proposes a method for operating a device according to the invention, by means of which the aforementioned disadvantages of the prior art are overcome.
  • a cleaning step be carried out during the operation of the separation device.
  • This cleaning can be done in a variety of ways.
  • a group of emission electrodes in particular a whole row of emission electrodes, can be cleaned during operation by electrically connecting this group of emission electrodes to ground. This has the effect that impurities deposited on the emission electrode are carried away by the gas flow or are drawn to the counter electrode due to a capacitor effect.
  • the first group of emission electrodes is supplied with a voltage, by which a flashover of this emission electrode and the counter electrode is generated. This leads to the emission electrode being burned free, ie the impurities arranged on the emission electrode being burned off.
  • the individual emission electrodes are alternately subjected to this cleaning step, in particular the emission electrodes are successively supplied to ground or with the free-burning voltage.
  • the emission electrodes are set to vibrate, in particular ultrasonic vibration. This can take place in that an ultrasonic vibration is generated by a piezo element or the electrodes are mechanically connected to a vibrating element, in particular a component of an internal combustion engine, and cleaning by dissolving the contamination on the emission electrode is achieved through the vibration excitation.
  • cleaning can be carried out using a cleaning element, such as a brush, which is guided sequentially over the electrode tips.
  • a cleaning element such as a brush
  • FIG. 13 is a plan view of the counter electrode element 31 from direction B in FIG Figure 3a shown.
  • the counter electrode element 31 has a multiplicity of plateau regions 33.
  • the plateau regions 33 are arranged coaxially to an emission electrode 11 which extends along an axis X.
  • the plateau areas 33 are connected to a base level 37 by means of spacer elements 35. As previously described and explained below, other configurations for achieving the spacing can also be used be realized.
  • An electrical connection between the plateau region 33 and the spacer element 35 is established via a connection element 39.
  • the curvature is formed in particular in an edge region of the plateau region, while the central region of the plateau region is planar. In this way it is ensured that a stable and as wide as possible plasma cone is formed, but at the same time it is ensured that, in particular liquid, impurities do not accumulate on the plateau area but flow away from it. Due to the viscosity of the impurities, it is achieved that liquid impurities present at the edge of the plateau area "carry away" impurities present in the small area as well.
  • the plateau region 33 thus ensures that a predefined shape of a plasma cone 41 is formed. In addition, it is ensured that impurities deflected in the direction of the counter-electrode element 31 via the plasma cone 41 can flow off directly from the plateau area 33, in particular cannot accumulate and agglomerate in the plateau area, and thus lead to contamination of the counter-electrodes.
  • the ones in the Figure 3a The recognizable C-shaped cross-sectional shape of the counter-electrode element 31 allows two counter-electrode elements, as in FIG Figure 4a shown, can be combined with each other.
  • the counter-electrode elements 31 can be arranged mirror-symmetrically and slightly offset from one another become. This allows the plateau regions 33 of the respective counter-electrode elements 31 to be arranged offset from one another, so that they can each be positioned coaxially with respect to the corresponding emission electrodes 11. Due to the offset arrangement of the counter electrode elements 31, the respective plasma cones 41 can be formed offset from one another, so that an almost closed "plasma wall" is created for the gas flow.
  • the two in Figure 4a The counter electrode elements shown are not completely identical, but rather the spacer elements 35 have different heights. It is thereby achieved that the base levels can be arranged overlapping and at the same time it is ensured that the plateau regions 33 are arranged at the same height. The plateau areas are thus evenly spaced from the emission electrodes and a uniform "plasma wall" / plasma cone can be formed.
  • plateau areas 33 ', 33 are spaced apart from the base level via a spacer element, but rather only plateau areas 33', 33" arranged in the edge area of the counter-electrode elements 31 ', 31 "are spaced apart from the base level via suitable spacer elements.
  • the remaining plateau areas 33 ', 33 are connected to one another or to the plateau areas 33' arranged at the edge via connecting devices 43 '.
  • the connecting devices 43 ', 43 are designed as conductive elements, which, however, have a smaller extent than the plateau regions 33', 33" in at least one spatial direction. It is thus achieved that the plasma cones are essentially formed between the plateau areas 33 ', 33 "and the respective emission electrodes. Because of this connection of the plateau areas 33', 33", they span an otherwise free area between the counter-electrode elements 31 ', 31 "and the Basic level.
  • the counter-electrode elements 31 ', 31 " can be designed as stamped sheet metal parts. This ensures that the plateau regions 33', 33" are arranged essentially in the same plane and at the same time a structurally simple production of the counter-electrode elements 31 ', 31 "is made possible .
  • This construction ensures that the essentially barrier-free space below the counter-electrode element 31 ', 31 "simplifies the removal of impurities deposited in the plasma separator.
  • the impurities can also be removed more easily from the counter-electrode is electrically conductively lined and grounded under the counter-electrode elements and thus serves as an additional separation possibility for the impurities that come past the plate area.
  • the emission electrode 51 has at least one bend 59.
  • the bend 59 represents a drip element.
  • the bend 59 divides the emission electrode 51 into different electrode areas.
  • a first electrode area 61 the emission electrode 51 extends from a feed end 63 along the axis Y.
  • the bend 59 is followed by a second electrode area 65 in which the emission electrode 51 has a directional component that runs counter to the Y axis.
  • a further bend 67 is followed by a third electrode area 69 in which the emission electrode 51 again extends in the direction of the Y axis.
  • the electrode end 71 starting from which the plasma cone is formed, is arranged below the drip element 59. If it happens that particles driven by an ion wind, in particular oil particles, collect on the emission electrode 51, in particular the electrode area 61, or flow from the carrier element into the electrode area 61, the liquid droplets collect in the area of the drip element 59 long before they move away from the Loosen emission electrode 51 and move in the direction of the counter electrode, in particular accelerated by the plasma. This in particular prevents the impurities from being able to collect in the area of the electrode end 71 and causing charring there.
  • FIG. 5b a further embodiment of an emission electrode 53 with a drip element 73 is shown.
  • the drip element is formed by the lower region of a turn 75.
  • the electrode end 77 is located upstream of the gas flow, so that after dripping off the dripping element 73, the liquid droplets are prevented from moving again in the direction of the electrode end 77 and being able to be deposited there again.
  • a drip element 79 is formed by an annular bead in the upper region of emission electrode 55.
  • the drip elements 79 are formed in particular by a bead formed on the surface of the emission electrode 55.
  • a bead can be formed by a ā€œbead-like casingā€ which comprises, for example, plastic, ceramic, metal or rubber.
  • the bead can also have several ring-shaped beads around the tip.
  • a drip element 81 is formed by a plate element 81 of emission electrode 57.
  • the plate element 81 is designed in the form of a screen element.
  • a drip element is not limited to the shape of the emission electrode.
  • a flow element 85 be formed in the region of an emission electrode 83.
  • the inflow element 85 has the effect that liquid droplets that collect on the surface of the carrier element 87 do not reach the emission electrode 83, but are guided along the inflow element 85 to a drip element 89.
  • the result of the drip element is that contamination of the electrode end 90 is avoided, which could lead to the contamination being burned in and This leads to corking of the electrode tip, which could lead to a collapse of the plasma.
  • FIG. 7 A cross-sectional view of another embodiment of an emission electrode 91 is shown.
  • the emission electrode 91 has a taper 95 at the electrode end 93.
  • This taper 95 is formed in that the emission electrode 91 in the area of the electrode end 93 is hollow in areas, in particular in the shape of a hollow cylinder.
  • the emission electrode 91 has an annular tip at the electrode end 93.
  • an annular taper 95 is formed at the electrode end 93. This also effectively prevents contamination of the electrode end 93. If, for example, an impurity, for example a drop, runs down along the emission electrode 91, it reaches this area of the taper 95 and the plasma detaches in this area of the emission electrode 91. However, the plasma cone then moves along the taper 95 to another point in the circle until the drop of liquid is detached and is discharged in an accelerated manner via the plasma of the counter electrode. Depending on the migration of the contamination at the electrode end, the plasma cone thus migrates along the taper, which means that the contamination does not overheat and burn-in at the electrode end or detachment of the plasma from the electrode 91.
  • an impurity for example a drop
  • FIG 8 a further embodiment according to the invention of a separation device 101 is shown.
  • the elements of the separation devices 101 which correspond to those of the separation device 1 have the same reference numerals, but increased by 100.
  • the deposition device 101 uses the counter electrode 109 in the Figures 3a to 4b used counter electrode elements shown.
  • the gas flow 107 is separated from the area in which the counter emission electrodes 111 are located by means of a separating element in the form of a separating film 123 which is permeable to the plasma or electrons.
  • the separating film 123 is in particular a Teflon film. This has the property that it is gas-impermeable to the gas stream 107, but is permeable to the electrons supplied by means of the emission electrodes 111. In other words, the separating film 123 has the effect that the gas flow 107 cannot enter the region of the emission electrodes 111 and can lead to undesired contamination there. At the same time, it is ensured that an efficient separation of impurities from the gas flow in the direction of the counter electrodes 109 by means of the low-energy plasma that is arranged by the plasma cone 125 can be achieved.
  • the carrier element 131 consists of a ceramic material in which, however, a discharge element 133 in the form of a conductive grid is embedded.
  • the grid 133 has the effect that charge carriers that collect on the surface of the carrier element 131 are discharged, that is to say that electrostatic charging of the surface of the carrier element 131 is prevented in such a way that impurities cannot collect in the area of the emission electrodes 135.
  • a discharge element is formed in that a recess 137 is formed between each of the electrodes 135. This shape supports the dissipation of the power carriers due to the electrical conductivity of the material and increases the resistance for contaminants to reach the carrier element.
  • FIG 10 a further embodiment of a discharge element is shown.
  • the carrier element 131 ' has a discharge element 133' in the form of a coating applied to the carrier element 131 '.
  • the coating 133 ' is placed at the same electrical potential as the emission electrodes 135' and thus an electrostatic charge is avoided.
  • a corresponding diverting element 133 ā€²ā€² can, as in FIG Figure 11 shown, can also be implemented in the form of a grid spaced apart from the carrier element 131 ā€²ā€² through which the emission electrodes 135 ā€²ā€² pass.
  • the same electrical potential is also applied to the grid 133" as to the emission electrodes 135 ".
  • the distance between the emission electrodes 135" and the grid or the protrusion of the emission electrode is set 135 "is selected by the grid in such a way that the plasma is ignited not between the grid and emission electrode 135" but between emission electrode 135 "and the counter electrode.
  • the inner area of a separating device 101 is represented by a carrier element 119, a wall 139 in which an inlet opening 141 connected to the inlet line 103 is formed, a second wall 143 in which an outlet opening 145 which is connected to the outlet line 105 , and a third wall 147, which is formed below the counter electrodes 109, surround.
  • the diverting elements 133, 133 ', 133 "extend not only in the area of the carrier element 131, 131', 131" but also in the area of the first wall 139, the second wall 143 and / or the third Wall 147 are arranged.
  • a "Faraday cageā€ is formed which has the effect that additional electrical fields within the separation device, which could influence the ion wind and "attract" impurities to the walls, are avoided. So all walls are at the same potential, in particular mass potential, so that an attractive force between the walls and the corresponding impurities is avoided.
  • surface charges can be discharged immediately.
  • the inlet and outlet sections of the separation device can have a conductive material or at least a conductive coating.
  • the housing as a whole can also have a conductive material or a conductive coating.
  • a conductive coating is preferred here.
  • a material with poor thermal conductivity can be provided with a correspondingly electrically conductive coating. This prevents, or at least reduces, the possibility that condensate can form on the inner walls of the separation device when the separation device cools down.
  • influencing devices introduced between groups of emission electrodes in the upper region of the separation device influence the electric field formed by the emission or second electrodes and first electrodes or counter-electrodes in such a way that the clay winch is guided through the modified electric field that they no longer have an adverse effect.
  • the disadvantageous turbulence of the blow-by should no longer occur, at least it should be reduced.
  • no blow-by flows along the ceiling to the emission electrodes, as a result of which the tips of the emission electrodes in the upper area of the separation device remain clean for longer.
  • a first embodiment of such an influencing device 160 is shown in a separating device in the form of a solid metal body with a substantially C-shaped profile.
  • the influencing devices 160 are each integrated in alternation with a group 165 of emission electrodes 162 arranged in two rows in the separating device 101, with the region 168 of the influencing device 160 running along the upper wall of the separating device 101 integrally via an, in particular concave, connecting region 161 with the The area 169 of the influencing device 160 that extends along the side walls of the separating device is connected.
  • the influencing device 160 is conductively connected to the counter-electrodes 163 ā€² lying opposite the region 168 of the influencing device 160.
  • FIG 14 A schematic plan view of the upper region of the deposition device 101, which groups 165 comprising two rows of two emission electrodes 162 and influencing devices 160, is shown. It can be seen here again how the emission electrodes 162, which in the embodiment shown of the separation device 101 in _ Figure 14 grouped into two rows each, alternating with an influencing device 160 according to the invention, extending transversely in the upper region of the separating device 101.
  • an influencing device 160 in the form of an essentially C-shaped insert is continuously and repeatedly placed between two rows of electrodes 162 each, in order to be able to protect all electrode tips as far as possible through the positive effect of this solution.
  • a distance d between a group 165 of emission electrodes 162 and the influencing device 160 is selected to be so large that no sparking can occur from the emission electrodes 162 to the influencing device 160.
  • the field lines of the electric field 164 ' are shown schematically, which are formed by the emission electrode 162 and the counter-electrode (not shown) located in the lower area of the picture if no influencing device according to the invention with earthed end faces is provided inside the separating device 101.
  • the field lines of the electric field 164 ā€²ā€² for the same emission electrode 162 are shown schematically.
  • the electric field 164 ā€²ā€² is formed between the emission electrode 162 and the counter electrode (not shown) in the lower area.
  • an influencing device with grounded end faces is now shown.
  • an influencing device 160 is provided in the separating device 101, alternating with a group comprising two rows of emission electrodes 162, whereby as much as possible all emission electrode tips are protected by the influencing device from deposits of blow-by particles. Because by repeating the influencing device, the positive effect is transferred to all emission electrodes or groups of emission electrodes.
  • the two rows of emission electrodes listed here as an example it is also possible to attach only a single row of emission electrodes, alternating with an influencing device, or alternating three rows of emission electrodes with one influencing device, or a large number of rows of emission electrodes, each alternating with one To attach influencing device.
  • the person skilled in the art can also provide other arrangements of the emission electrodes 162 within a group of emission electrodes 165 instead of rows of electrodes.
  • the influencing devices 160 only depend on the end flanks, so that a solid body like that in the Figures 13 and 14th is used for the influencing devices, represents an implementation form of the influencing devices 160 that is not absolutely necessary.
  • These devices 160 according to the invention can also be implemented, for example, by grounded sheet metal strips or the like.
  • the formation of round connection areas 161, as shown in FIG Figures 13 and 14th are formed in the influencing devices 160, not necessary.
  • the ones in the Figures 13 and 14th Rather, existing rounded connection areas 161 serve for easier installation and easier production.
  • other cross-sectional profiles of the influencing device according to the invention in particular cross-sectional profiles in a plane perpendicular to the flow direction of the blow-by, can also be implemented without this opposing the positive effect.
  • Figure 16a Another possible cross-sectional shape of the influencing device 160 according to the invention, which has an arcuate shape.
  • Figure 16b is that out Figure 13 and Figure 14 known, essentially C-shaped design with connecting areas 161 connecting the individual segments.
  • Figure 16c in a third possible cross-sectional shape of the influencing device according to the invention, the lateral extensions of which extend perpendicularly from the part running transversely in the upper area of the separating device 101 and thus have right-angled connecting areas 167 instead of roundings.
  • the separating device 151 has a carrier element 153, the emission electrodes 155 being attached to the carrier element 153 by means of actuators 157.
  • the acuators 157 have piezoelectric elements, which enable the emission electrodes 155 to be set in (ultrasonic) oscillations. This has the effect that the emission electrodes can be cleaned in that contaminants adhering to the emission electrodes 155 are removed by means of ultrasound.
  • the emission electrodes 155 can be formed from an SMA material, that is to say a shape memory material, or at least comprise this.
  • the shape memory material has the effect that the emission electrode is deformed when the temperature rises. As a result of this deformation, any impurities or adhesions located on the emission electrode are deformed in such a way that they "flake off" from the surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zum Abscheiden von flĆ¼ssigen und/oder partikelfƶrmigen Verunreinigungen aus einem Gasstrom, in der zwischen zumindest einer ersten, als die Gegenelektrode wirkenden Elektrode und zumindest einer zweiten Elektrode, die als Emissionselektrode wirkt und ein in Richtung der ersten Elektrode gerichtetes Elektrodenende aufweist, ein Strƶmungsweg des Gasstroms verlƤuft und zwischen der ersten Elektrode und der zweiten Elektrode eine die Durchschlagspannung Ć¼berschreitende Gleichspannung zur Bildung eines stabilen Niedrigenergieplasmas anlegbar ist sowie ein Verfahren zum Betreiben einer solchen Vorrichtung.The present invention relates to a device for separating liquid and / or particulate contaminants from a gas flow, in the between at least one first electrode acting as the counter electrode and at least one second electrode acting as an emission electrode and an electrode end directed towards the first electrode comprises, a flow path of the gas flow runs and a DC voltage exceeding the breakdown voltage can be applied between the first electrode and the second electrode to form a stable low-energy plasma, and a method for operating such a device.

Aus dem Stand der Technik sind derartige gattungsgemƤƟe Plasmaabscheider zum Abscheiden von Verunreinigungen aus einem Gasstrom, insbesondere Blow-By-Gasen eines Kraftfahrzeugs, bekannt. Beispielsweise die DE 10 2011 053 578 A1 offenbart eine gattungsgemƤƟe Vorrichtung.Such generic plasma separators for separating impurities from a gas flow, in particular blow-by gases from a motor vehicle, are known from the prior art. For example the DE 10 2011 053 578 A1 discloses a generic device.

In Figur 1 ist der grundsƤtzliche Aufbau einer solchen Vorrichtung gezeigt. Dabei zeigt Figur 1 eine schematische Querschnittsansicht der aus der DE 10 2011 053 578 A1 bekannten Vorrichtung.In Figure 1 the basic structure of such a device is shown. It shows Figure 1 a schematic cross-sectional view of FIG DE 10 2011 053 578 A1 known device.

In Figur 2 ist eine schematische Querschnittsansicht des Ausschnitts A1 der Figur 1 dargestellt.In Figure 2 FIG. 3 is a schematic cross-sectional view of portion A1 of FIG Figure 1 shown.

Die Abscheidevorrichtung 1 weist eine Eintrittsleitung 3 sowie eine Austrittsleitung 5 auf. Durch die Eintrittsleitung 3 wird insbesondere ein Gasstrom 7, wie ein Blow-By-Gas-Strom, in die Abscheidevorrichtung 1 eingefĆ¼hrt. Der Gasstrom 7 beinhaltet insbesondere Verunreinigungen, wie feste und flĆ¼ssige Partikel, insbesondere Ɩlpartikel. Innerhalb der Abscheidevorrichtung 1 ist eine erste Elektrode in Form einer Gegenelektrode 9 und eine Vielzahl von zweiten Elektroden in Form von Emissionselektroden 11 angeordnet.The separation device 1 has an inlet line 3 and an outlet line 5. In particular, a gas flow 7, such as a blow-by gas flow, is introduced into the separation device 1 through the inlet line 3. The gas stream 7 contains in particular impurities such as solid and liquid particles, in particular oil particles. Inside the separator 1 is a first electrode in the form of a counter electrode 9 and a plurality of second electrodes in the form of emission electrodes 11 are arranged.

Der Gasstrom 7 wird im wesentlichen senkrecht zu einer Normalenrichtung N der Gegenelektrode 9 durch die Abscheidevorrichtung 1 gefĆ¼hrt. Mittels elektrischer AnschlĆ¼sse 13 wird an die Emissionselektroden 11 eine Gleichspannung angelegt, die hƶher als eine Durchschlagsspannung ist, insbesondere mindestens dem 1,2 fachen der Durchschlagsspannung entspricht. Die so angelegte Gleichspannung bewirkt, dass zwischen den Emissionselektroden 11 und der Gegenelektrode 9 ein Niedrigenergieplasma gezĆ¼ndet bzw. ausgebildet wird. Insbesondere in AbhƤngigkeit von der Strƶmungsgeschwindigkeit des Gasstroms 7 durch die Abscheidevorrichtung 1, aber auch abhƤngig von anderen Parametern wird eine an die AnschlĆ¼sse 13 angelegte StromstƤrke angepasst.The gas stream 7 is guided through the separating device 1 essentially perpendicular to a normal direction N of the counter electrode 9. By means of electrical connections 13, a direct voltage is applied to the emission electrodes 11 which is higher than a breakdown voltage, in particular corresponds to at least 1.2 times the breakdown voltage. The direct voltage applied in this way has the effect that a low-energy plasma is ignited or formed between the emission electrodes 11 and the counter electrode 9. A current strength applied to the connections 13 is adapted in particular as a function of the flow velocity of the gas flow 7 through the separating device 1, but also as a function of other parameters.

Das zwischen der Emissionselektrode 11 und der Gegenelektrode 9 ausgebildete Plasma bewirkt, dass in dem Gasstrom 7 ein Teil der Verunreinigungen in Richtung der Gegenelektrode 9 beschleunigt werden. Die sich dann im Bereich der Gegenelektrode 9 ansammelnden Verunreinigungen werden einem Sammelraum 15 zugefĆ¼hrt und von dort einer nicht dargestellten AbfĆ¼hrleitung zugefĆ¼hrt.The plasma formed between the emission electrode 11 and the counter electrode 9 has the effect that some of the impurities in the gas flow 7 are accelerated in the direction of the counter electrode 9. The impurities then accumulating in the area of the counter electrode 9 are fed to a collecting space 15 and from there fed to a discharge line (not shown).

Um zu verhindern, dass der Gasstrom 7 und damit die darin enthaltenen Verunreinigungen in einen Bereich zwischen den Emissionselektroden 11 eintreten, ist vorgehsehen, dass in einem Zwischenraum zwischen den Emissionselektroden 11 Schottelemente 17 vorgesehen sind. Sowohl die Schottelemente 17 als auch die Emissionselektroden 11 sind zumindest indirekt an einem TrƤgerelement 19, welches insbesondere ein isolierendes und/oder keramisches Material umfasst, befestigt. Die Befestigung der Emissionselektroden 11 erfolgt indirekt Ć¼ber einen Duroplastkƶrper 21, auf dem HochohmwiderstƤnde angeordnet sind, mittels denen die Emissionselektroden 11 mit den AnschlĆ¼ssen 13 verbunden sind.In order to prevent the gas flow 7 and thus the impurities contained therein from entering an area between the emission electrodes 11, provision is made for partition elements 17 to be provided in an intermediate space between the emission electrodes 11. Both the bulkhead elements 17 and the emission electrodes 11 are attached at least indirectly to a carrier element 19, which in particular comprises an insulating and / or ceramic material. The emission electrodes 11 are fastened indirectly via a thermoset body 21 on which high-resistance resistors are arranged, by means of which the emission electrodes 11 are connected to the connections 13.

Die in der DE 10 2011 053 578 A1 beschriebene Vorrichtung hat sich grundsƤtzlich bewƤhrt. Es hat sich jedoch gezeigt, dass die LangzeitstabilitƤt und QualitƤt des in der Vorrichtung erzeugten Niedrigenergieplasmas verbessert werden kann. So hat sich insbesondere gezeigt, dass sich in einem benachbarten Bereich zu dem sich ausbildenden Plasma bzw. Plasmakegel ein Ionenwind entsteht, der dazu fĆ¼hrt, dass Verunreinigungen teilweise in Richtung der Emissionselektrode bzw. dem TrƤgerelement beschleunigt werden. Diese Partikel, insbesondere Ɩltropfen, kƶnnen sich dann im Bereich des TrƤgerelements bzw. des Duroplastkƶrpers 21 anlagern. Dort kƶnnen sie sich agglomerieren und aufgrund der Gravitationskraft entlang des Duroplastkƶrpers bzw. der Emissionselektroden zu den der Gegenelektrode zugewandten Enden der Emissionselektrode flieƟen. Unter ungĆ¼nstigen Bedingungen kann dies dazu fĆ¼hren, dass die Partikel in dem Endbereich der Emissionselektrode, die der Gegenelektrode zugewandt ist, wobei in diesem Bereich das Plasma entsteht, flieƟen und dort aufgrund der dort herrschenden Temperaturen verkohlen und sich an dem Elektrodenende anlagern. Dies kann wiederum zu einer VerƤnderung des Widerstands fĆ¼hren, wenn die Ablagerung leitend ist, zu einer Erniedrigung des Widerstands, und, wenn die Anlagerung isolierend ist, zu einer Erhƶhung des Widerstands, so dass an der entsprechenden Elektrode sich dann kein stabiles Niedrigenergieplasma ausbildet.The ones in the DE 10 2011 053 578 A1 The device described has basically proven itself. However, it has been shown that the long-term stability and quality of the low-energy plasma generated in the device can be improved. It has been shown, in particular, that an ion wind arises in an area adjacent to the plasma or plasma cone which is forming, which leads to impurities in part in the direction of the emission electrode or the carrier element are accelerated. These particles, in particular oil droplets, can then accumulate in the area of the carrier element or the thermoset body 21. There they can agglomerate and, due to the force of gravity, flow along the thermoset body or the emission electrodes to the ends of the emission electrode facing the counter electrode. Under unfavorable conditions, this can lead to the particles flowing in the end area of the emission electrode that faces the counter electrode, the plasma being created in this area and carbonizing there due to the temperatures prevailing there and being deposited on the electrode end. This in turn can lead to a change in resistance if the deposit is conductive, to a decrease in resistance, and, if the deposit is insulating, to an increase in resistance, so that no stable low-energy plasma then forms at the corresponding electrode.

Es ist daher Aufgabe der vorliegenden Erfindung, die gattungsgemƤƟe Vorrichtung derartig weiterzuentwickeln, dass die Nachteile des Stands der Technik Ć¼berwunden werden, insbesondere eine verbesserte Langlebigkeit der Abscheidevorrichtung erreicht wird. DarĆ¼ber hinaus soll ein verbessertes Verfahren zum Betreiben einer gattungsgemƤƟen Vorrichtung bereitgestellt werden, dass ebenfalls die aus dem Stand der Technik bekannten Nachteile Ć¼berwindet.It is therefore the object of the present invention to further develop the generic device in such a way that the disadvantages of the prior art are overcome, in particular an improved longevity of the separation device is achieved. In addition, an improved method for operating a generic device is to be provided that likewise overcomes the disadvantages known from the prior art.

Diese Aufgabe wird mittels einer Vorrichtung gemƤƟ Anspruch 1 gelƶst. Dabei erstreckt sich die zweite Elektrode im wesentlichen entlang einer ersten Achse in eine erste Richtung, und die erste Elektrode weist zumindest einen gegenĆ¼berliegend zu der zweiten Elektrode angeordneten und sich in zumindest bereichsweise einer im wesentlichen senkrecht zu der ersten Richtung verlaufenden ersten Ebene erstreckenden Plateaubereich auf.This object is achieved by means of a device according to claim 1. The second electrode extends essentially along a first axis in a first direction, and the first electrode has at least one plateau region which is arranged opposite the second electrode and extends in at least some regions a first plane extending essentially perpendicular to the first direction.

Dabei ist besonders bevorzugt, dass der Plateaubereich koaxial zur zweiten Elektrode angeordnet ist und/oder der Strƶmungsweg im wesentlichen zwischen der zweiten Elektrode und dem Plateaubereich verlƤuft.It is particularly preferred that the plateau area is arranged coaxially to the second electrode and / or the flow path runs essentially between the second electrode and the plateau area.

Auch wird mit der Erfindung vorgeschlagen, dass der Plateaubereich zumindest bereichsweise, insbesondere im Randbereich, eine in Richtung der zweiten Elektrode und/oder entgegen der ersten Richtung gewƶlbte OberflƤche aufweist.The invention also proposes that the plateau area, at least in some areas, in particular in the edge area, have a surface that is curved in the direction of the second electrode and / or against the first direction.

Weiterhin sieht die Erfindung vor, dass der Plateaubereich von einem Basisniveau der ersten Elektrode in Richtung der zweiten Elektrode beabstandet angeordnet ist.Furthermore, the invention provides that the plateau region is arranged at a distance from a base level of the first electrode in the direction of the second electrode.

In besonderen AusfĆ¼hrungsformen ist bevorzugt, dass eine Vielzahl von zweiten Elektroden vorhanden ist und die erste Elektrode eine Vielzahl von Plateaubereichen aufweist, wobei jeder zweiten Elektrode ein jeweiliger Plateaubereich zugeordnet ist.In particular embodiments, it is preferred that a plurality of second electrodes are present and the first electrode has a plurality of plateau areas, each second electrode being assigned a respective plateau area.

Eine erfindungsgemƤƟe Vorrichtung ist dadurch gekennzeichnet, dass der Plateaubereich mittels eines sich entgegen der ersten Richtung erstreckenden, insbesondere elektrisch leitenden Abstandselement mit dem Basisniveau verbunden ist.A device according to the invention is characterized in that the plateau area is connected to the base level by means of an in particular electrically conductive spacer element which extends counter to the first direction.

In der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass das Abstandselement koaxial zu der ersten Achse verlƤuft oder das Abstandselement beabstandet zu der ersten Achse, vorzugsweise zumindest bereichsweise parallel zu der ersten Achse verlƤuft und der Plateaubereich mittels zumindest einem, vorzugsweise im wesentlichen senkrecht zu der ersten Richtung und/oder entlang der ersten Ebene verlaufenden, Verbindungselement mit dem Abstandselement verbunden ist.In the aforementioned embodiment, it is particularly preferred that the spacer element runs coaxially to the first axis or the spacer element at a distance from the first axis, preferably at least partially parallel to the first axis and the plateau region by means of at least one, preferably essentially perpendicular to the first direction and / or is connected to the spacer element running along the first plane.

Auch wird mit der Erfindung vorgeschlagen, dass die erste Elektrode zumindest bereichsweise eine im wesentlichen C-fƶrmigen Querschnitt aufweist, insbesondere die C-Form durch das Basisniveau, das Abstandselement, das Verbindungselement und den Plateaubereich gebildet wird.The invention also proposes that the first electrode has an essentially C-shaped cross section, at least in some areas, in particular the C-shape is formed by the base level, the spacer element, the connecting element and the plateau area.

Bei den vorgenannten AusfĆ¼hrungsformen ist besonders bevorzugt, dass der Plateaubereich, das Abstandselement, das Basisniveau und/oder das Verbindungselement zumindest bereichsweise einstĆ¼ckig ausgebildet sind.In the aforementioned embodiments, it is particularly preferred that the plateau area, the spacer element, the base level and / or the connecting element are at least partially formed in one piece.

Weiterhin ist bevorzugt, dass die Plateaubereiche mittels zumindest einer Verbindungseinrichtung, die sich im wesentlichen parallel zu dem Basisniveau erstreckt und/oder eine geringere Erstreckung in zumindest eine Richtung der ersten Ebene im Vergleich zu den Plateaubereichen aufweist, verbunden sind.It is further preferred that the plateau areas are connected by means of at least one connecting device which extends essentially parallel to the base level and / or has a smaller extent in at least one direction of the first plane compared to the plateau areas.

Bei der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass die Plateaubereiche in einer Richtung senkrecht zur ersten Achse entlang einer Geraden, angeordnet sind, insbesondere die Verbindungseinrichtungen sich im wesentlichen entlang der Gerade erstrecken und/oder mittels der Verbindungseinrichtungen ein Netzwerk und/oder eine Matrix ausgebildet wird, wobei an zumindest einem der Kreuzungspunkte der Verbindungseinrichtungen zumindest ein Plateaubereich angeordnet ist, wobei sich das Netzwerk und/oder die Matrix entlang der ersten Ebene erstreckt.In the aforementioned embodiment, it is particularly preferred that the plateau areas are arranged in a direction perpendicular to the first axis along a straight line, in particular the connecting devices extend essentially along the straight line and / or a network and / or a matrix is formed by means of the connecting devices, at least one plateau area being arranged at at least one of the intersection points of the connecting devices, the network and / or the matrix extending along the first level extends.

Weiterhin ist bevorzugt, dass die Vielzahl von Plateaubereichen von zumindest einem, vorzugsweise zumindest bereichsweise als Blechstanzteil ausgebildeten, Gegenelektrodenelement bereitgestellt ist.It is further preferred that the plurality of plateau areas is provided by at least one counter-electrode element, preferably at least regionally designed as a stamped sheet metal part.

In der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass die Plateaubereiche in dem Gegenelektrodenelement entlang einer zweiten Richtung angeordnet sind und/oder zumindest zwei Gegenelektrodenelemente spiegelsymmetrisch, vorzugsweise zumindest bereichsweise ineinandergreifend, zueinander anordbar sind, vorzugsweise derart versetzt zueinander, dass die Plateaubereiche der jeweiligen Gegenelektrodenelemente versetzt zueinander entlang der jeweiligen zweiten Richtung angeordnet sind.In the aforementioned embodiment, it is particularly preferred that the plateau areas in the counter electrode element are arranged along a second direction and / or at least two counter electrode elements can be arranged mirror-symmetrically, preferably at least partially interlocking, preferably offset from one another in such a way that the plateau areas of the respective counter electrode elements are offset from one another are arranged along the respective second direction.

Weiterhin wird fĆ¼r die vorgenannte AusfĆ¼hrungsform alternativ vorgeschlagen, dass durch das Blechstanzteil die Plateaubereiche und Verbindungselemente gebildet sind.Furthermore, it is alternatively proposed for the aforementioned embodiment that the plateau areas and connecting elements are formed by the stamped sheet metal part.

ErgƤnzend kann die Vorrichtung gekennzeichnet sein durch zumindest ein mit der zweiten Elektrode in Wirkverbindung stehendes Abtropfelement mittels dem sich in Richtung und/oder entlang der zweiten Elektrode bewegende Fluidteilchen des Gasstroms derartig sammelbar sind, dass sich die Fluidteilchen beabstandet von dem Elektrodenende von dem Abtropfelement lƶsen.In addition, the device can be characterized by at least one drip element that is in operative connection with the second electrode, by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles detach from the drip element at a distance from the electrode end.

In dieser AusfĆ¼hrungsform ist besonders bevorzugt, dass das Abtropfelement zumindest bereichsweise von zumindest einem im Bereich der zweiten Elektrode angeordneten Anstrƶmelement umfasst ist.In this embodiment it is particularly preferred that the drip element is at least partially surrounded by at least one inflow element arranged in the area of the second electrode.

Weiterhin wird vorgeschlagen, dass die zweite Elektrode zumindest bereichsweise das Abtropfelement umfasst, wobei mittels des Abtropfelements in Richtung des Elektrodenendes entlang der zweiten Elektrode flieƟende Fluidteilchen beabstandet von dem Elektrodenende derartig sammelbar sind, dass sich die Fluidteilchen beabstandet von dem Elektrodenende von der zweiten Elektrode lƶsen.It is further proposed that the second electrode encompasses the draining element at least in some areas, wherein by means of the draining element, fluid particles flowing along the second electrode in the direction of the electrode end are spaced apart from the electrode end can be collected in such a way that the fluid particles detach from the second electrode at a distance from the electrode end.

Bei der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass das Elektrodenende und ein dem Elektrodenende gegenĆ¼berliegendes Einspeisungsende der zweiten Elektrode entlang einer ersten Achse, die sich in eine erste Richtung erstreckt, derart versetzt zueinander angeordnet sind, dass das Elektrodenende nƤher an der ersten Elektrode angeordnet ist, und das Abtropfelement zumindest bereichsweise durch einen Ɯbergangsbereich der zweiten Elektrode gebildet ist, der zwischen einem ersten Elektrodenbereich, in dem sich zumindest ein OberflƤchenbereich der zweiten Elektrode und/oder die Elektrode von dem Einspeisungsende in Richtung des Elektrodenendes in eine Richtung mit einer Richtungskomponente entlang der ersten Achse erstreckt, und einem zweiten Elektrodenbereich, in dem sich zumindest ein OberflƤchenbereich der zweiten Elektrode und/oder die zweite Elektrode zumindest bereichsweise in eine Richtung mit einer Richtungskomponente entgegen der ersten Richtung erstreckt, angeordnet ist.In the aforementioned embodiment, it is particularly preferred that the electrode end and a feed end of the second electrode opposite the electrode end are arranged offset from one another along a first axis that extends in a first direction such that the electrode end is arranged closer to the first electrode, and the drip element is formed at least in some areas by a transition area of the second electrode which is between a first electrode area in which at least one surface area of the second electrode and / or the electrode extends from the feed end in the direction of the electrode end in a direction with a directional component along the first Axis extends, and a second electrode area in which at least one surface area of the second electrode and / or the second electrode extends at least in areas in a direction with a directional component opposite to the first direction, i st.

Auch wird mit der Erfindung vorgeschlagen, dass sich zumindest ein OberflƤchenbereich der zweiten Elektrode und/oder die zweite Elektrode von dem Einspeisungsende in Richtung des Elektrodenendes, insbesondere im Anschluss an den zweiten Elektrodenebereich, in einem dritten Elektrodenebereich in eine Richtung mit einer Richtungskomponente entlang der ersten Achse erstreckt, vorzugsweise derart, dass das Abtropfelement entlang der ersten Achse oberhalb des Elektrodenendes angeordnet ist.The invention also proposes that at least one surface area of the second electrode and / or the second electrode extend from the feed end in the direction of the electrode end, in particular following the second electrode area, in a third electrode area in a direction with a directional component along the first Axis extends, preferably such that the drip element is arranged along the first axis above the electrode end.

Eine erfindungsgemƤƟe AusfĆ¼hrungsform kann auch dadurch gekennzeichnet sein, dass das Abtropfelement von zumindest einer Windung der zweiten Elektrode, zumindest einem Knick der zweiten Elektrode und/oder des Anstrƶmelements, zumindest einem wendelfƶrmigen Bereich der zweiten Elektrode, zumindest einer Ausbauchung der OberflƤche der zweiten Elektrode und/oder des Anstrƶmelements, zumindest einer SchĆ¼rze und/oder zumindest einem Tellerelement umfasst und/oder ausgebildet ist.An embodiment according to the invention can also be characterized in that the drip element consists of at least one turn of the second electrode, at least one bend in the second electrode and / or the inflow element, at least one helical region of the second electrode, at least one bulge on the surface of the second electrode and / or of the inflow element, at least one skirt and / or at least one plate element comprises and / or is formed.

Mit der Erfindung wird auch vorgeschlagen, dass das Abtropfelement die zweite Elektrode umlaufend umgibt, vorzugsweise radialsymmetrisch, das Abtropfelement stromabwƤrts des Gasstroms angeordnet ist und/oder das Anstrƶmelement stromaufwƤrts des Gasstroms angeordnet ist.The invention also proposes that the draining element surrounds the second electrode circumferentially, preferably radially symmetrically, the draining element downstream of the Gas flow is arranged and / or the inflow element is arranged upstream of the gas flow.

Eine erfindungsgemƤƟe Vorrichtung kann auch dadurch gekennzeichnet sein, dass das Abtropfelement zumindest bereichsweise einstĆ¼ckig mit der zweiten Elektrode und/oder dem Anstrƶmelement ausgebildet ist.A device according to the invention can also be characterized in that the drip element is at least partially formed in one piece with the second electrode and / or the inflow element.

ErgƤnzend kann vorgesehen sein, dass die zweite Elektrode, insbesondere im Bereich des Elektrodenendes, zumindest eine VerjĆ¼ngung aufweist.In addition, it can be provided that the second electrode, in particular in the area of the electrode end, has at least one taper.

Bei der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass die VerjĆ¼ngung in Form zumindest einer Spitze, zumindest eines Grats und/oder zumindest einer Kante ausgebildet ist Weiterhin schlƤgt die Erfindung vor, dass die zweite Elektrode in einer Ebene senkrecht zu einer Haupterstreckungsrichtung, insbesondere der ersten Richtung, eine im wesentlichen zylinderfƶrmige, dreieckige, quadratische, rechteckige und/oder mehreckige Querschnittsform aufweist, die zweite Elektrode, insbesondere im Bereich des Elektrodenendes eine zu der Haupterstreckungsrichtung geneigte EndflƤche aufweist, insbesondere die VerjĆ¼ngung von einer Kante der EndflƤche umfasst ist.In the aforementioned embodiment, it is particularly preferred that the taper is in the form of at least one tip, at least one ridge and / or at least one edge. Furthermore, the invention proposes that the second electrode is in a plane perpendicular to a main direction of extent, in particular the first direction , has an essentially cylindrical, triangular, square, rectangular and / or polygonal cross-sectional shape, the second electrode, in particular in the region of the electrode end, has an end surface inclined to the main direction of extent, in particular the taper is encompassed by an edge of the end surface.

Auch ist bevorzugt, dass die zweite Elektrode, insbesondere im Bereich des Elektrodenendes, zumindest bereichsweise einen Hohlbereich aufweist, in dem die zweite Elektrode hohl ausgebildet ist, vorzugsweise hohlzylinderfƶrmig, rohrfƶrmig und/oder kegelmantelfƶrmig, wobei vorzugsweise die VerjĆ¼ngung von zumindest einer Endkante der Wandung des Hohlbereichs umfasst ist, insbesondere die VerjĆ¼ngung umlaufend an dem Elektrodenende ausgebildet ist.It is also preferred that the second electrode, in particular in the area of the electrode end, at least in some areas has a hollow area in which the second electrode is hollow, preferably hollow-cylindrical, tubular and / or cone-shaped, preferably the tapering of at least one end edge of the wall of the Hollow area is included, in particular the taper is formed circumferentially on the electrode end.

Eine erfindungsgemƤƟe Vorrichtung gemƤƟ der dritten Alternative kann auch dadurch gekennzeichnet sein, dass die zweite Elektrode zumindest bereichsweise, insbesondere im Bereich des Elektrodenendes, ein Carbonmaterial umfasst und/oder die zweite Elektrode zumindest bereichsweise, insbesondere im Bereich des Elektrodenendes, zumindest eine, vorzugsweise eine Anhaftung von Partikeln und/oder Fluid reduzierende, Beschichtung umfasst, insbesondere eine Beschichtung umfassend Titan-Nitrid, Nanosol, zumindest ein Nanopartikel umfassendes Material, zumindest ein eine OberflƤche mit Nanostruktur ausbildendes Material und/oder Chrom-Nitrid.A device according to the invention according to the third alternative can also be characterized in that the second electrode comprises a carbon material at least in some areas, in particular in the area of the electrode end, and / or the second electrode at least in some areas, in particular in the area of the electrode end, at least one, preferably one, adhesion of particles and / or fluid-reducing coating, in particular a coating comprising titanium nitride, nanosol, at least one nanoparticle Comprehensive material, at least one material forming a surface with a nanostructure and / or chromium nitride.

ErgƤnzend kann vorgesehen sein, dass zwischen dem Strƶmungspfad und der ersten Elektrode und/oder dem Strƶmungspfad und der zweiten Elektrode zumindest bereichsweise zumindest ein fĆ¼r den Gasstrom und/oder die Verunreinigungen im wesentlichen undurchlƤssiges und elektrisch und/oder elektrostatisch permitives Trennelement angeordnet ist.In addition, it can be provided that between the flow path and the first electrode and / or the flow path and the second electrode, at least one separating element that is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas.

Dabei ist besonders bevorzugt, dass das Trennelement zumindest eine Trennfolie und/oder eine Trennmembran umfasst und/oder zumindest bereichsweise Polytetrafluorethylen umfasst. Weiterhin wird mit der Erfindung vorgeschlagen, dass das Trennelement die zweite Elektrode, insbesondere das Elektrodenende, oder die erste Elektrode berĆ¼hrt.It is particularly preferred that the separating element comprises at least one separating film and / or a separating membrane and / or at least partially comprises polytetrafluoroethylene. Furthermore, it is proposed with the invention that the separating element touches the second electrode, in particular the electrode end, or the first electrode.

Besonders bevorzugt ist eine erfindungsgemƤƟe Vorrichtung gemƤƟ der vierten Alternative dadurch gekennzeichnet, dass bei Anordnung des Trennelements zwischen der ersten Elektrode und dem Strƶmungspfad zumindest eine AbfĆ¼hrƶffnung in dem Trennelement vorgesehen ist, wobei mittels der AbfĆ¼hrƶffnung aus dem Gasstrom abgeschiedene, sich, insbesondere auf der dem Gasstrom zugewandten Seite, des Trennelements ansammelnde, Verunreinigungen in zumindest einen Sammelraum abfĆ¼hrbar sind. GemƤƟ einer fĆ¼nften Alternative, die ergƤnzend oder alternativ zu den vorgenannten vier Alternativen ausgefĆ¼hrt sein kann, kann eine erfindungsgemƤƟe Vorrichtung dadurch gekennzeichnet sein, dass die Vorrichtung zumindest zwei zweite Elektroden, vorzugweise eine Vielzahl von zweiten Elektroden, umfasst, wobei sich die zweiten Elektroden von zumindest einem ersten TrƤgerelement aus erstrecken, und zumindest eine Ableiteinrichtung zur Reduzierung einer elektrostatischen Aufladung des TrƤgerelements und/oder zur AbfĆ¼hrung von sich auf einer OberflƤche des TrƤgerelements ansammelnden LadungstrƤgern zumindest im Bereich zwischen den zweiten Elektroden vorgesehen ist.A device according to the invention according to the fourth alternative is particularly preferably characterized in that, when the separating element is arranged between the first electrode and the flow path, at least one discharge opening is provided in the separating element, with the discharge opening separated from the gas flow, in particular on the gas flow facing side, the separating element accumulating, contaminants can be discharged into at least one collecting space. According to a fifth alternative, which can be designed in addition or as an alternative to the aforementioned four alternatives, a device according to the invention can be characterized in that the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes being at least a first carrier element, and at least one discharge device for reducing an electrostatic charge of the carrier element and / or for discharging charge carriers accumulating on a surface of the carrier element is provided at least in the area between the second electrodes.

Dabei ist besonders bevorzugt, dass die zweiten Elektroden zumindest bereichsweise durch das TrƤgerelement hindurchtreten und/oder das TrƤgerelement zumindest ein keramisches Material umfasst.It is particularly preferred that the second electrodes pass through the carrier element at least in regions and / or the carrier element comprises at least one ceramic material.

Bei den beiden vorgenannten AusfĆ¼hrungsformen wird vorgeschlagen, dass die Ableiteinrichtung zumindest eine auf das TrƤgerelement zumindest bereichsweise aufgebrachtes und/oder zumindest bereichsweise in das TrƤgerelement eingebettetes Ableitelement umfasst, wobei das Ableitelement vorzugsweise zumindest eine, insbesondere elektrisch leitende, Ableitbeschichtung, zumindest ein, insbesondere Polyamid umfassendes und/oder geerdetes , Ableitgewebe, und/oder zumindest ein Metallband, wie ein Kupferband, umfasst, und/oder die Ableiteinrichtung als leitfƤhiges Tunnelelement ausgebildet ist.In the two aforementioned embodiments, it is proposed that the diverting device comprises at least one diverting element applied at least in some areas to the carrier element and / or embedded at least in some regions in the carrier element, the diverting element preferably at least one, in particular electrically conductive, dissipative coating, at least one, in particular comprising polyamide and / or earthed, conductive fabric, and / or at least one metal band, such as a copper band, and / or the conductive device is designed as a conductive tunnel element.

Auch ist bevorzugt, dass die Ableiteinrichtung zumindest eine zumindest bereichsweise in dem TrƤgerelement ausgebildete Vertiefung umfasst.It is also preferred that the discharge device comprises at least one depression formed at least in certain areas in the carrier element.

Bei den vorgenannten AusfĆ¼hrungformen ist besonders bevorzugt, dass die Ableiteinrichtung zumindest eine im Bereich zwischen den Elektrodenenden der zweiten Elektroden und dem TrƤgerelement angeordnete Ableitvorrichtung umfasst.In the aforementioned embodiments, it is particularly preferred that the discharge device comprises at least one discharge device arranged in the area between the electrode ends of the second electrodes and the carrier element.

Bei der vorgenannten AusfĆ¼hrungsform kann vorgesehen sein, dass die Ableitvorrichtung zumindest ein leitfƤhiges Gitter, zumindest einen leitfƤhigen Schaum, zumindest ein die jeweilige zweite Elektrode zumindest bereichsweise umgebendes, vorzugsweise nach radial auƟen in Richtung des Elektrodenendes gewƶlbtes Schirmelement umfasst, wobei insbesondere die Ableitvorrichtung auf dem gleichen elektrostatischen Potential liegt, wie die zweiten Elektroden.In the aforementioned embodiment, it can be provided that the discharge device comprises at least one conductive grid, at least one conductive foam, at least one shield element which at least partially surrounds the respective second electrode, preferably arched radially outward in the direction of the electrode end, in particular the discharge device on the same electrostatic potential, like the second electrodes.

Weiterhin wird mit der Erfindung fĆ¼r die erfindungsgemƤƟe Vorrichtung schlieƟlich vorgeschlagen, dass die Ableiteinrichtung, das Ableitelement, die Ableitbeschichtung und/oder die Ableitvorrichtung sich zumindest bereichsweise entlang und/oder in einer ersten Wandung und/oder zweiten Wandung, die sich zumindest bereichsweise in eine Richtung zwischen der zweiten Elektrode und der ersten Elektrode in eine Richtung entlang der ersten Achse und/oder in die erste Richtung erstreckt bzw. erstrecken und/oder in die zumindest eine Eintrittsƶffnung oder eine Austrittsƶffnung mĆ¼ndet, und/oder entlang einer und/oder in einer dritten Wandung, die sich zumindest bereichsweise parallel zu dem ersten TrƤgerelement, zumindest bereichsweise unterhalb der ersten Elektrode und/oder zumindest bereichsweise auf einer der zweiten Elektrode abgewandten Seite der ersten Elektrode erstreckt, ausdehnt bzw. ausdehnen.Furthermore, it is finally proposed with the invention for the device according to the invention that the discharge device, the discharge element, the discharge coating and / or the discharge device extend at least partially along and / or in a first wall and / or second wall that extends at least partially in one direction between the second electrode and the first electrode in a direction along the first axis and / or in the first direction and / or into which at least one inlet opening or one outlet opening opens, and / or along and / or in a third Wall that extends at least partially parallel to the first carrier element, at least partially below the first electrode and / or at least partially on a side of the first electrode facing away from the second electrode.

ErgƤnzend kann eine erfindungsgemƤƟe Vorrichtung dadurch gekennzeichnet sein, dass
die Vorrichtung zumindest zwei zweite Elektroden, vorzugsweise eine Vielzahl von zweiten Elektroden, umfasst und zumindest eine Beeinflussungsvorrichtung zur Beeinflussung des durch die zumindest zwei zweiten Elektroden ausgebildeten elektrischen Feldes zumindest bereichsweise zwischen den zumindest zwei zweiten Elektroden anordbar und/oder angeordnet ist.
In addition, a device according to the invention can be characterized in that
the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the electrical field formed by the at least two second electrodes can be and / or be arranged at least in regions between the at least two second electrodes.

Dabei ist besonders bevorzugt, dass die Beeinflussungsvorrichtung im Wesentlichen zumindest bereichsweise gegenĆ¼ber zumindest einer ersten Elektrode, vorzugsweise einer Vielzahl von ersten Elektroden, anordbar und/oder angeordnet ist und/oder ein, vorzugsweise vorbestimmtes elektrisches Potential anlegbar und/oder angelegt ist.It is particularly preferred that the influencing device can be arranged and / or arranged essentially at least in regions opposite at least one first electrode, preferably a plurality of first electrodes, and / or a preferably predetermined electrical potential can be and / or be applied.

Bei der vorgenannten AusfĆ¼hrungsform kann vorgesehene sein, dass die Beeinflussungsvorrichtung leitend mit der zumindest einen ersten Elektrode verbindbar und/oder verbunden ist, an die Beeinflussungsvorrichtung das Potential der ersten Elektrode anlegbar und/oder angelegt ist und/oder die Beeinflussungsvorrichtung und die Ableiteinrichtung die Ableitvorrichtung und/oder das Ableitelement zumindest bereichsweise gemeinsam ausgebildet sind.In the aforementioned embodiment it can be provided that the influencing device is conductively connectable and / or connected to the at least one first electrode, the potential of the first electrode can be and / or applied to the influencing device and / or the influencing device and the discharge device, the discharge device and / or the diverting element are formed jointly at least in some areas.

Ferner liefert die Erfindung ein Verfahren zum Betreiben einer gattungsgemƤƟen Vorrichtung oder einer erfindungsgemƤƟen Vorrichtung, wobei der Vorrichtung ein flĆ¼ssige und/oder partikelfƶrmige Verunreinigungen aufweisender Gasstrom zugefĆ¼hrt wird, zur Abscheidung der Verunreinigungen aus dem Gasstrom der Gasstrom zumindest teilweise entlang eines zwischen zumindest einer ersten Elektrode und zumindest einer zweiten Elektrode ausgebildeten Strƶmungswegs gefĆ¼hrt wird und zwischen der ersten Elektrode und der zweiten Elektrode eine die Durchschlagspannung Ć¼berschreitende Gleichspannung zur Bildung eines stabilen Niedrigenergieplasmas ausgebildet wird und das Verfahren ferner einen Reinigungsschritt zur Reinigung der ersten Elektrode und/oder der zweiten Elektrode umfasst.Furthermore, the invention provides a method for operating a device of the generic type or a device according to the invention, the device being supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along an between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.

FĆ¼r das Verfahren wird insbesondere vorgeschlagen, dass wƤhrend des Reinigungsschritts an zumindest eine erste Gruppe einer Vielzahl von zweiten Elektroden ein Massepotential angelegt wird oder eine die Gleichspannung Ć¼berschreitende und einen Ɯberschlag zwischen der ersten Elektrode und den zweiten Elektroden der ersten Gruppe erzeugende Spannung angelegt wird, insbesondere wƤhrend an zumindest eine zweite Gruppe der zweiten Elektroden die Gleichspannung zur Bildung des Niedrigenenergieplasmas angelegt wird.For the method, it is proposed, in particular, that a ground potential be applied to at least one first group of a plurality of second electrodes during the cleaning step or a voltage exceeding the DC voltage and generating a flashover between the first electrode and the second electrodes of the first group is applied, in particular while the DC voltage for forming the low-energy plasma is applied to at least one second group of the second electrodes.

Bei der vorgenannten AusfĆ¼hrungsform ist besonders bevorzugt, dass die zweiten Elektroden alternierend der ersten Gruppe und der zweiten Gruppe zugeordnet werden.In the aforementioned embodiment, it is particularly preferred that the second electrodes are assigned alternately to the first group and the second group.

FĆ¼r das Verfahren ist denkbar, dass in dem Reinigungsschritt eine mechanische Anregung der ersten Elektrode und/oder der zweiten Elektrode erzeugt wird, vorzugsweise mittels eines durch zumindest eine Anregungseinrichtung erzeugte Ultraschallschwingung, wobei als Anregungseinrichtung vorzugsweise zumindest ein piezoelektrisches Element und/oder zumindest eine Komponente einer Brennkraftmaschine und/oder eine mit einer Komponente der Brennkraftmaschine zur Ɯbertragung von Schwingungen in Wirkverbindung stehende SchwingungsĆ¼bertragungsvorrichtung verwendet wird.For the method it is conceivable that a mechanical excitation of the first electrode and / or the second electrode is generated in the cleaning step, preferably by means of an ultrasonic oscillation generated by at least one excitation device, with at least one piezoelectric element and / or at least one component of a Internal combustion engine and / or a vibration transmission device that is operatively connected to a component of the internal combustion engine for transmitting vibrations is used.

S Es ist ferner denkbar, dass der Reinigungsschritt das sequentielle Abfahren zumindest zweier ersten Elektroden und/oder zweier zweiten Elektroden mittels eines Reinigungselements, wie zumindest einer BĆ¼rste, umfasst.It is also conceivable that the cleaning step comprises the sequential movement of at least two first electrodes and / or two second electrodes by means of a cleaning element, such as at least one brush.

Die zuvor angefĆ¼hrte Aufgabe bezĆ¼glich der Vorrichtung wird dadurch gelƶst, dass die zweite Elektrode sich im wesentlichen entlang einer ersten Achse in eine erste Richtung erstreckt und die erste Elektrode zumindest einen gegenĆ¼berliegend zu der zweiten Elektrode angeordneten und sich in zumindest bereichsweise einer im wesentlichen senkrecht zu der ersten Richtung verlaufenden ersten Ebene erstreckenden Plateaubereich aufweist.The above-mentioned object with regard to the device is achieved in that the second electrode extends essentially along a first axis in a first direction and the first electrode is arranged at least one opposite to the second electrode and is at least partially perpendicular to the first direction extending first plane having plateau region.

DarĆ¼ber hinaus wird zur Lƶsung der erfindungsgemƤƟen Aufgabe ergƤnzend zumindest ein mit der zweiten Elektrode in Wirkverbindung stehendes Abtropfelement, mittels dem sich in Richtung und/oder entlang der zweiten Elektrode bewegende Fluidteilchen des Gasstroms derartig sammelbar sind, dass sich die Fluidteilchen beabstandet von dem Elektrodenende von dem Abtropfelement lƶsen, vorgeschlagen.In addition, in order to achieve the object according to the invention, at least one drip element which is in operative connection with the second electrode and by means of which fluid particles of the gas flow moving in the direction and / or along the second electrode can be collected in such a way that the fluid particles are spaced apart from the electrode end from the Dissolve drip element, suggested.

FĆ¼r die erfindungsgemƤƟe Vorrichtung wird zur Lƶsung der erfindungsgemƤƟen Aufgabe vorgeschlagen, dass die zweite Elektrode, insbesondere im Bereich des Elektrodenendes, zumindest eine VerjĆ¼ngung aufweist.For the device according to the invention, in order to achieve the object according to the invention, it is proposed that the second electrode, in particular in the region of the electrode end, have at least one taper.

Mit der Erfindung wird weiter vorgeschlagen, dass zwischen dem Strƶmungspfad und der ersten Elektrode und/oder dem Strƶmungspfad und der zweiten Elektrode zumindest bereichsweise zumindest ein fĆ¼r den Gasstrom und/oder die Verunreinigungen im wesentlichen undurchlƤssiges und elektrisch und/oder elektrostatisch permitives Trennelement angeordnet ist. Dabei wird unter einem Trennelement, insbesondere ein grundsƤtzlich geschlossenes und/oder zumindest fĆ¼r Elektroden teildurchlƤssiges Trennelement, wie eine Trennfolie und/oder Trennmembran, verstanden. Weiter wird vorgeschlagen, dass die Vorrichtung zumindest zwei zweite Elektroden, vorzugweise eine Vielzahl von zweiten Elektroden, umfasst, wobei sich die zweiten Elektroden von zumindest einem ersten TrƤgerelement aus erstrecken und zumindest eine Ableiteinrichtung zur Reduzierung einer elektrostatischen Aufladung des TrƤgerelements zumindest im Bereich zwischen den zweiten Elektroden vorgesehen ist.The invention further proposes that between the flow path and the first electrode and / or the flow path and the second electrode at least one separating element, which is essentially impermeable to the gas flow and / or the impurities and is electrically and / or electrostatically permeable, is arranged at least in some areas. A separating element is understood here, in particular a basically closed and / or at least partially permeable separating element for electrodes, such as a separating film and / or separating membrane. It is further proposed that the device comprises at least two second electrodes, preferably a plurality of second electrodes, the second electrodes extending from at least one first carrier element and at least one discharge device for reducing an electrostatic charge of the carrier element at least in the area between the second Electrodes is provided.

Ferner wird vorgeschlagen, dass sich die Ableiteinrichtung auch in andere (Wand)- Bereiche erstrecken kann, insbesondere in eine erste und/oder zweite Wandung bzw. Seitenwandung und/oder eine dritte bzw. Bodenwandung. Auf diese Weise ist die Ausbildung eines "Faradayschen KƤfigs", mƶglich. Die Ableiteinrichtung ist vorzugsweise zumindest an ihrer OberflƤche und/oder komplett elektrisch leitend.It is further proposed that the discharge device can also extend into other (wall) areas, in particular into a first and / or second wall or side wall and / or a third or bottom wall. In this way the formation of a "Faraday cage" is possible. The discharge device is preferably electrically conductive at least on its surface and / or completely.

Ferner wird vorgeschlagen, dass die Vorrichtung zumindest zwei zweite Elektroden, vorzugsweise eine Vielzahl von zweiten Elektroden, umfasst, und zumindest eine Beeinflussungsvorrichtung zur Beeinflussung des durch die zumindest zwei zweiten Elektroden ausgebildeten elektrischen Felder zumindest bereichsweise zwischen den zumindest zwei zweiten Elektroden vorgesehen ist. Dabei wird unter einer Beeinflussungsvorrichtung insbesondere Blechstreifen oder Vollkƶrper aus Metall verstanden. SchlieƟlich liefert die Erfindung ein Verfahren zum Betreiben einer erfindungsgemƤƟen Vorrichtung oder einer gattungsgemƤƟen Vorrichtung, wobei der Vorrichtung ein flĆ¼ssige und/oder partikelfƶrmige Verunreinigungen aufweisender Gasstrom zugefĆ¼hrt wird, zur Abscheidung der Verunreinigungen aus dem Gasstrom der Gasstrom zumindest teilweise entlang eines zwischen zumindest einer ersten Elektrode und zumindest einer zweiten Elektrode ausgebildeten Strƶmungswegs gefĆ¼hrt wird und zwischen der ersten Elektrode und der zweiten Elektrode eine die Durchschlagspannung Ć¼berschreitende Gleichspannung zur Bildung eines stabilen Niedrigenergieplasmas ausgebildet wird, und das Verfahren ferner einen Reinigungsschritt zur Reinigung der ersten Elektrode und/oder der zweiten Elektrode umfasst.It is further proposed that the device comprises at least two second electrodes, preferably a plurality of second electrodes, and at least one influencing device for influencing the by the at least two Second electrodes formed electrical fields is provided at least in areas between the at least two second electrodes. An influencing device is understood to mean, in particular, sheet metal strips or solid bodies made of metal. Finally, the invention provides a method for operating a device according to the invention or a device of the generic type, wherein the device is supplied with a liquid and / or particulate impurities having a gas stream, for separating the impurities from the gas stream, the gas stream at least partially along a between at least one first electrode and at least one second electrode is guided and a DC voltage exceeding the breakdown voltage is formed between the first electrode and the second electrode to form a stable low-energy plasma, and the method further comprises a cleaning step for cleaning the first electrode and / or the second electrode.

Der Erfindung liegt somit die Ć¼berraschende Erkenntnis zugrunde, dass durch vergleichsweise einfache konstruktive bzw. bautechnische Anpassungen der gattungsgemƤƟen Vorrichtung deren LangzeitstabilitƤt deutlich erhƶht werden kann. Dies fĆ¼hrt dazu, dass die Vorrichtung auch beispielsweise dazu eingesetzt werden kann, Ɩlreste aus Frischluft, die einer Passagierkabine eines Flugzeugs zugefĆ¼hrt wird und beispielsweise einer Turbine entnommen ist, zu entfernen. Somit kann durch die Vorrichtung wirksam ein aerotoxisches Syndrom vermieden werden.The invention is thus based on the surprising finding that comparatively simple structural or structural adaptations of the generic device can significantly increase its long-term stability. This means that the device can also be used, for example, to remove oil residues from fresh air that is supplied to a passenger cabin of an aircraft and, for example, taken from a turbine. Thus, the device can effectively avoid an aerotoxic syndrome.

Im Lƶsungsansatz wird vorgeschlagen, dass eine besondere Ausbildung der Gegenelektrode gewƤhlt wird. Im Gegensatz zu aus dem Stand der Technik bekannten Gegenelektrode, bei denen eine im wesentlichen flƤchige Gegenelektrode vorgeschlagen wurde, sieht der Lƶsungsansatz vor, dass jeder einzelnen Emissionselektrode ein separater Gegenbereich der Gegenelektrode zugeordnet wird. Dieser als Plateaubereich bezeichnete Bereich der Gegenelektrode ist insbesondere durch einen Abstandselement von einem Basisniveau der Gegenelektrode beabstandet. Die Plateaubereiche stehen sozusagen in Form von Pilzelementen aus dem Basisniveau hervor. Dabei kann vorgesehen sein, dass das Abstandselement koaxial zu der Emissionselektrode angeordnet ist bzw. sich eine LƤngsachse des Abstandselements zumindest bereichsweise in Verlagerung der Erstreckungsrichtung, insbesondere der ersten Richtung und/oder entlang der ersten Achse, erstreckt. Dieser Aufbau der Gegenelektrode bewirkt, dass sich auf der Gegenelektrode ansammelnde Partikel, insbesondere Ɩltropfen, selbstƤndig von dem Plateaubereich abflieƟen, um dann Ć¼ber das Basisniveau in den Sammelraum abflieƟen zu kƶnnen.In the approach it is proposed that a special design of the counter electrode be selected. In contrast to the counter-electrode known from the prior art, in which an essentially flat counter-electrode has been proposed, the approach provides that a separate counter-area of the counter-electrode is assigned to each individual emission electrode. This region of the counter electrode, referred to as the plateau region, is spaced apart from a base level of the counter electrode, in particular by a spacer element. The plateau areas protrude from the base level, so to speak, in the form of mushroom elements. It can be provided that the spacer element is arranged coaxially to the emission electrode or a longitudinal axis of the spacer element extends at least in some areas in a shift in the direction of extent, in particular the first direction and / or along the first axis. This structure of the The effect of the counter electrode is that particles that collect on the counter electrode, in particular oil droplets, automatically flow away from the plateau area so that they can then flow away via the base level into the collecting space.

Insbesondere wenn der Plateaubereich zumindest bereichsweise eine Wƶlbung aufweist, wird das AbflieƟen der Partikel unterstĆ¼tzt. Dabei kann die Wƶlbung lediglich in einen Randbereich das ansonsten planen Plateaubereichs ausgebildet sein. Somit wird ein Kompromiss aus einer bestmƶglichen Ausbildung eines (breiten) Plasmakegels durch den planen Bereich und eine bestmƶgliche AbfĆ¼hrung von Partikeln erreicht. Die Wƶlbung bewirkt, dass bei AbflieƟen von Partikeln aus dem Randbereich auch in dem planen Plateaubereich angeordnete Partikel, insbesondere aufgrund der ViskositƤt eines Verunreinigungsfluids, "mitgezogen" werden. Somit wird der Vorteil erzielt, dass eine Ansammlung von Partikeln im Bereich der Gegenelektrode, in dem das Plasma sich ausbildet, vermieden wird. So wurde erkannt, dass eine Ansammlung in diesem Bereich zu einer unerwĆ¼nschten Verkohlung der Partikel und damit zu einer BeeintrƤchtigung des Plasmas fĆ¼hren kann.In particular, if the plateau area has a curvature at least in some areas, the flow of the particles is supported. The curvature can only be formed in an edge area of the otherwise planar plateau area. Thus, a compromise is reached between the best possible formation of a (wide) plasma cone through the flat area and the best possible removal of particles. The curvature has the effect that when particles flow away from the edge area, particles arranged in the flat plateau area are also ā€œdrawn alongā€, in particular due to the viscosity of a contaminating fluid. The advantage is thus achieved that an accumulation of particles in the area of the counter electrode, in which the plasma is formed, is avoided. It was recognized that an accumulation in this area can lead to undesired charring of the particles and thus to an impairment of the plasma.

Um eine Bereitstellung der Plateaubereiche der Gegenelektrode zu vereinfachen, wird in einer besonders bevorzugten AusfĆ¼hrungsform vorgeschlagen, dass eine Vielzahl von Plateaubereichen durch ein einziges Gegenelektrodenelement ausgebildet ist. Dieses Gegenelektrodenelement wird vorzugsweise als Blechstanzteil ausgebildet und weist einen C-fƶrmigen bzw. "liegenden" U-fƶrmigen Querschnitt auf. Das untere Querelement des Gegenelektrodenelements bildet das Basisniveau, von dem sich im wesentlichen senkrecht nach oben das Abstandselement erstreckt. Senkrecht zu dem Abstandselement steht dann ein lƶffelfƶrmiges Element ab, welches ein Verbindungselement, welches sozusagen den "Stiel" des Lƶffels bildet, und den Plateaubereich, welcher den "Schƶpfbereich" des Lƶffels bildet, darstellt.In order to simplify the provision of the plateau areas of the counter electrode, it is proposed in a particularly preferred embodiment that a plurality of plateau areas be formed by a single counter electrode element. This counter electrode element is preferably designed as a stamped sheet metal part and has a C-shaped or "lying" U-shaped cross section. The lower transverse element of the counter electrode element forms the base level, from which the spacer element extends essentially vertically upwards. A spoon-shaped element then protrudes perpendicular to the spacer element, which represents a connecting element which, so to speak, forms the "handle" of the spoon, and the plateau area, which forms the "scoop area" of the spoon.

Durch das Verbindungselement wird eine elektrische Verbindung zwischen dem Abstandselement und dem Plateaubereich hergestellt und gleichzeitig der Plateaubereich mechanisch gehalten. Dies ermƶglicht es, dass an dem Abstandselement eine Vielzahl von Plateaubereichen, die in einer zweiten Richtung nebeneinander angeordnet sind, ausgebildet werden kƶnnen. Insbesondere wenn zwei dieser Gegenelektrodenelemente spiegelsymmetrisch zueinander angeordnet sind und in der zweiten Richtung versetzt zueinander angeordnet sind, kann so eine Vielzahl von versetzt zueinander angeordneten Plateaubereichen im Bereich der Gegenelektroden bereitgestellt werden. Dabei kƶnnen die Gegenelektrodenelemente komplett spiegelsymmetrisch ausgebildet sein. Alternativ kann, insbesondere wenn die Basisniveaus zumindest bereichsweise Ć¼berlappend angeordnet sind, die Gegenelektrodenelemente sich in der LƤnge der Abstandselemente derartig unterscheiden, dass die Plateaubereiche der Gegenelektroden auf der gleichen Hƶhe bzw. im gleichen Abstand zu den zweiten Elektroden angeordnet sind.The connecting element creates an electrical connection between the spacer element and the plateau area and at the same time holds the plateau area mechanically. This enables a multiplicity of plateau areas, which are arranged next to one another in a second direction, to be formed on the spacer element. In particular if two of these counter-electrode elements are arranged mirror-symmetrically to one another and are arranged offset from one another in the second direction, a plurality of plateau areas arranged offset to one another can thus be provided in the area of the counter-electrodes. The counter-electrode elements can be designed to be completely mirror-symmetrical. Alternatively, especially if the base levels are arranged overlapping at least in some areas, the counter-electrode elements differ in the length of the spacer elements in such a way that the plateau areas of the counter-electrodes are arranged at the same height or at the same distance from the second electrodes.

In einer weiteren AusfĆ¼hrungsform kann vorgesehen sein, dass die Plateaubereiche durch Verbindungseinrichtungen miteinander verbunden sind. Dabei weisen die Verbindungseinrichtungen in der ersten Ebene zumindest in eine Richtung eine geringere Ausdehnung als die Plateaubereiche auf. Auf diese Weise ist es mƶglich, eine Kette oder eine Matrix bzw. ein Netzwerk von Plateaubereichen bereitzustellen, die oberhalb eines Basisniveaus angeordnet sind. So kann auf Abstandselemente fĆ¼r jeden einzelnen Plateaubereich verzichtet werden, insbesondere die Plateaubereiche und die Verbindungseinrichtungen an den jeweiligen Endpunkten Ć¼ber dem Basisniveau "aufgespannt" werden. Aufgrund des Wegfalls der Abstandselemente ist ein besseres AbflieƟen der Verunreinigungen unterhalb der Plateaubereiche mƶglich, da ein im wesentlichen offener Raum unterhalb der Plateaubereiche bereitgestellt werden kann.In a further embodiment it can be provided that the plateau areas are connected to one another by connecting devices. In this case, the connecting devices in the first plane have a smaller extent than the plateau regions, at least in one direction. In this way it is possible to provide a chain or a matrix or a network of plateau areas which are arranged above a base level. It is thus possible to dispense with spacing elements for each individual plateau area, in particular the plateau areas and the connecting devices are "spanned" at the respective end points above the base level. Due to the omission of the spacer elements, better drainage of the impurities below the plateau areas is possible, since an essentially open space can be provided below the plateau areas.

Die Verwendung dieser Gegenelektrodenelemente ermƶglicht es, dass jeder Emissionselektrode der jeweilige Plateaubereich zugeordnet werden kann, so dass im Bereich jeder Emissionselektrode an einer vordefinierten Stelle und in einem vordefinierten Bereich ein Plasmakegel ausgebildet werden kann, wobei ferner aufgrund der relativen Anordnung der einzelnen Plateaubereiche die Plasmakegel in einer festgelegten relativen Position zueinander ausgebildet werden. Aufgrund des verbesserten Abflusses der Partikel von dem Plateaubereich, insbesondere aufgrund der Wƶlbung, zumindest im Randbereich werden die Plasmakegel darĆ¼ber hinaus stabilisiert. So kƶnnen die Partikel barrierefrei von jedem der Plateaubereiche abflieƟen, so dass eine Agglomeration von Partikeln, wie sie bei aus dem Stand der Technik bekannten Gegenelektroden auftreten kƶnnen, vermieden werden.The use of these counter-electrode elements enables the respective plateau area to be assigned to each emission electrode, so that a plasma cone can be formed in the area of each emission electrode at a predefined location and in a predefined area, with the plasma cones also being formed due to the relative arrangement of the individual plateau areas a fixed relative position to each other. Due to the improved outflow of the particles from the plateau area, in particular due to the curvature, at least in the edge area, the plasma cones are also stabilized. In this way, the particles can flow away from each of the plateau areas in a barrier-free manner, so that agglomeration of particles, as can occur with counter-electrodes known from the prior art, is avoided.

ErgƤnzend wird vorgeschlagen, dass im Bereich der Emissionselektrode ein Abtropfelement ausgebildet wird. Dieses Abtropfelement kann insbesondere einstĆ¼ckig mit der Emissionselektrode ausgebildet sein oder als separates Bauteil realisiert sein, welches unabhƤngig von der Emissionselektrode angeordnet ist oder mit dieser verbunden ist.In addition, it is proposed that a drip element be formed in the area of the emission electrode. This drip element can in particular be designed in one piece with the emission electrode or be implemented as a separate component which is arranged independently of the emission electrode or is connected to it.

Die Verwendung eines derartigen Abtropfelements basiert auf der Erkenntnis, dass im Bereich des Plasmakegels, insbesondere benachbart oder auch im Plasmakegel ein Ionenwind entsteht, der dazu fĆ¼hrt, dass Verunreinigungen des Gasstroms, die durch einen Durchtritt durch vorangehende Plasmabereiche aufgeladen wurden, in eine Richtung zur Emissionselektrode hin beschleunigt werden. Dies fĆ¼hrt dazu, dass sich oberhalb des Plasmakegels Verunreinigungen, insbesondere Fluidtrƶpfchen im Bereich des TrƤgerelements bzw. Duroplastkƶrpers, anlagern kƶnnen. Die Verunreinigungen sind an diesen Stellen grundsƤtzlich unbedenklich. Die Anordnung der Emissionselektroden an dem TrƤgerelement kann auch dadurch erfolgen, dass die Emissionselektroden durch ein TrƤgerelement in Form einer Lochplatte jeweils durch die Lƶcher der Lochplatte hindurch gehen und die Elektrodenspitzen aus diesen herausragen. Auch kann das TrƤgerelement andere bzw. zusƤtzliche Materialien als bzw. zusƤtzlich zu Duroplast, wie ein keramisches Material, umfassen.The use of such a drip element is based on the knowledge that in the area of the plasma cone, in particular adjacent or also in the plasma cone, an ion wind is generated, which leads to impurities in the gas flow, which have been charged by passage through preceding plasma areas, in a direction towards the emission electrode to be accelerated. As a result, impurities, in particular fluid droplets, can accumulate above the plasma cone in the area of the carrier element or thermoset body. The impurities are basically harmless at these points. The arrangement of the emission electrodes on the carrier element can also take place in that the emission electrodes go through a carrier element in the form of a perforated plate through the holes of the perforated plate and the electrode tips protrude from these. The carrier element can also comprise other or additional materials than or in addition to thermoset, such as a ceramic material.

Um jedoch zu verhindern, dass sich in diesem Bereich Ablagerungen, die leitend sind, wie Kondensat, Wasser oder RuƟpartikel anlagern kƶnnen, werden vorzugsweise als Wandmaterialien thermisch isolierende Materialien verwendet. Diese fĆ¼hren insbesondere dazu, dass nach Standzeiten des Abscheiders eine geringere Tendenz zur Anlagerung von KondensatflĆ¼ssigkeit an OberflƤche des GehƤuses vorliegt.However, in order to prevent deposits that are conductive, such as condensate, water or soot particles, from accumulating in this area, thermally insulating materials are preferably used as wall materials. These lead in particular to the fact that after the separator has been idle there is less tendency for condensate liquid to accumulate on the surface of the housing.

Jedoch kann es Ć¼ber einen lƤngeren Betriebszeitraum der Abscheidevorrichtung dazu kommen, dass sich Verunreinigungen agglomerieren und dann aufgrund der Gravitationswirkung sich in Richtung der Gegenelektrode bewegen. Dies geschieht zumeist derartig, dass die Fluidtropfen an dem Duroplastkƶrper bzw. der Lochplatte herablaufen und dann an der Emissionselektrode entlang in Richtung der Elektrodenspitze bzw. dem Elektrodenende flieƟen.However, over a longer period of operation of the separating device, impurities can agglomerate and then move in the direction of the counter electrode due to the effect of gravity. This is mostly done in such a way that the fluid droplets run down the thermoset body or the perforated plate and then flow along the emission electrode in the direction of the electrode tip or the electrode end.

Durch das erfindungsgemƤƟe Tropfelement wird nun erreicht, dass sich agglomerierende Fluidtropfen beabstandet von der Elektrodenspitze in Richtung der Gegenelektrode flieƟen und auƟerhalb der Emissionselektrode in Richtung der Gegenelektrode abtropfen bzw. von dem Gasstrom wieder mitgerissen werden.The drip element according to the invention now ensures that agglomerating fluid droplets flow at a distance from the electrode tip in the direction of the counter electrode and drip off outside the emission electrode in the direction of the counter electrode or are entrained again by the gas flow.

Wie bereits zuvor beschrieben kann vorgesehen sein, dass die Emissionselektrode eine derartige Windung aufweist, dass ein erster Bereich der Emissionselektrode zunƤchst in Richtung der Gegenelektrode erstreckt, sich an diesen jedoch ein zweiter Bereich anschlieƟt, in der sich die Emissionselektrode von der Gegenelektrode weg erstreckt um sich dann in einem dritten Bereich wieder in Richtung der Gegenelektrode zu erstrecken um dann in die Elektrodenspitze bzw. dem Elektrodenende zu mĆ¼nden.As already described above, it can be provided that the emission electrode has a turn such that a first area of the emission electrode initially extends in the direction of the counter electrode, but is followed by a second area in which the emission electrode extends away from the counter electrode around itself then to extend again in a third area in the direction of the counter electrode in order to then open into the electrode tip or the electrode end.

Dies bewirkt, dass an der Emissionselektrode herabflieƟende FlĆ¼ssigpartikel sich zunƤchst im tiefsten Punkt der Windung sammeln, jedoch nicht zu der Elektrodenspitze flieƟen kƶnnen. Erreicht die sich im tiefsten Punkt der Windung ansammelnde FlĆ¼ssigkeitsmenge ein vorbestimmtes MaƟ, lƶst sich die FlĆ¼ssigkeit von dem Abtropfelement ohne die Elektrodenspitze zu erreichen, insbesondere ohne dort zu einer Verkohlung der Elektrodenspitze fĆ¼hren zu kƶnnen. Entsprechende Abtropfelemente kƶnnen auch als schirmfƶrmige Elemente ausgebildet sein, die die Emissionselektrode glockenfƶrmig umgeben, um an dem AuƟenrand des Schirms entsprechende Abtropfelemente auszubilden. Auch kann vorgesehen sein, dass die Emissionselektrode auf ihrer OberflƤche entsprechende, vorzugsweise einstĆ¼ckig mit dem Elektrodenmaterial ausgebildete Ausbeulungen aufweist.This has the effect that liquid particles flowing down the emission electrode initially collect at the lowest point of the turn, but cannot flow to the electrode tip. If the amount of liquid accumulating at the lowest point of the turn reaches a predetermined level, the liquid detaches from the draining element without reaching the electrode tip, in particular without being able to lead to charring of the electrode tip there. Corresponding drip elements can also be designed as umbrella-shaped elements which surround the emission electrode in a bell-shaped manner in order to form corresponding drip elements on the outer edge of the umbrella. It can also be provided that the emission electrode has corresponding bulges on its surface, preferably formed in one piece with the electrode material.

In einer alternativen AusfĆ¼hrungsform kann vorgesehen sein, dass das Abtropfelement dadurch ausgebildet wird, dass die Emissionselektrode, insbesondere im Bereich des Elektrodenendes bereichsweise hohl ausgebildet ist. Dies fĆ¼hrt dazu, dass am Elektrodenende ein im wesentlichen kreisfƶrmiges Abtropfelement ausgebildet wird, falls die Elektrode einen im wesentlichen zylinderfƶrmigen Querschnitt aufweist.In an alternative embodiment it can be provided that the drip element is designed in that the emission electrode is designed to be hollow in areas, in particular in the area of the electrode end. This leads to an essentially circular drip element being formed at the end of the electrode if the electrode has an essentially cylindrical cross section.

Dieser Aufbau fĆ¼hrt dazu, dass, falls ein FlĆ¼ssigkeitstropfen das Elektrodenende erreicht, in diesem Bereich die Plasmaerzeugung derart aussetzt als dass ein anderer Bereich des zylinderfƶrmigen Abtropfelements als Ausgangspunkt fĆ¼r das Plasma wirkt. Dies verhindert, dass der sich an dem Abtropfelement anhaftende FlĆ¼ssigkeitstropfen durch das Plasma derartig aufgeheizt wird, dass es zu einer Verkohlung der Elektrodenspitze kommt. Lƶst sich dann der FlĆ¼ssigkeitstropfen aufgrund der Gravitation ab, wandert der Ausgangspunkt des Plasmakegels zu einer entsprechenden Stelle entlang des kreisfƶrmigen Abtropfelements. So wird eine Ɯberhitzung und Verkohlung der Elektrodenspitze ebenfalls wirksam verhindert.This structure has the result that, if a drop of liquid reaches the end of the electrode, the plasma generation is interrupted in this area in such a way that another area of the cylindrical drip element acts as the starting point for the plasma. This prevents the liquid drop adhering to the drip element is heated by the plasma in such a way that the electrode tip becomes charred. If the liquid drop is then detached due to gravity, the starting point of the plasma cone migrates to a corresponding point along the circular drip element. This also effectively prevents overheating and carbonization of the electrode tip.

ErgƤnzend wird vorgeschlagen, dass der Strƶmungsbereich des Stromes hermetisch von den Bereichen, in denen die Emissionselektrode bzw. die Gegenelektrode angeordnet ist, abgetrennt wird. Insbesondere wird vorgeschlagen, dass diese Trennung zwischen dem Strƶmungsbereich und der Emissionselektrode durchgefĆ¼hrt wird. Dazu wird vorgeschlagen, dass der Strƶmungsweg, insbesondere im Bereich der Emissionselektrode, durch ein Trennelement, wie eine Folie oder Membran, das undurchlƤssig fĆ¼r den Gasstrom bzw. darin enthaltende Partikel, also insbesondere das Blow-By-Gas ist, im Bereich der Emissionselektrode begrenzt wird. Das Trennelement ist hingegen durchlƤssig fĆ¼r LadungstrƤger, wie Elektronen. Als geeignete Elemente haben sich insbesondere Teflon- bzw. Polytetrafluorethylen-Folien herausgestellt. Diese bieten den Vorteil, dass sie elektrisch permitiv sind, d. h. dass die an die Emissionselektrode angelegt Gleichspannung durch die Folie in den Strƶmungsbereich hindurchtreten kann, so dass sich weiterhin im Strƶmungsbereich das Niedrigenergieplasma ausbildet. Mit anderen Worten kƶnnen Elektroden durch das Trennelement hindurchtreten. Besonders bevorzugt ist, dass die Folie in direktem Kontakt mit den Elektrodenspitzen der Emissionselektroden steht. Auf diese Weise wird eine bestmƶgliche Ausbildung des Niedrigenergieplasmas sichergestellt bei gleichzeitiger bestmƶglicher Trennung des Elektrodenbereichs von dem Gasstrom. Insbesondere wird so verhindert, dass sich in dem Gasstrom befindliche Partikel an der Emissionselektrode bzw. zu benachbarten Strukturelementen der Abscheidevorrichtung anlagern kƶnnen, welche, wie zuvor beschrieben, zu einer Verunreinigung und Verkohlung der Elektroden fĆ¼hren kƶnnte.In addition, it is proposed that the flow area of the stream be hermetically separated from the areas in which the emission electrode or the counter electrode is arranged. In particular, it is proposed that this separation be carried out between the flow area and the emission electrode. For this purpose, it is proposed that the flow path, in particular in the area of the emission electrode, be limited in the area of the emission electrode by a separating element, such as a film or membrane, which is impermeable to the gas flow or the particles contained therein, i.e. in particular the blow-by gas becomes. In contrast, the separating element is permeable to charge carriers such as electrons. Teflon or polytetrafluoroethylene films have proven to be particularly suitable elements. These offer the advantage that they are electrically permitted, i. H. that the direct voltage applied to the emission electrode can pass through the film into the flow area, so that the low-energy plasma continues to form in the flow area. In other words, electrodes can pass through the separating element. It is particularly preferred that the film is in direct contact with the electrode tips of the emission electrodes. In this way, the best possible formation of the low-energy plasma is ensured with, at the same time, the best possible separation of the electrode area from the gas flow. In particular, this prevents particles located in the gas stream from being able to accumulate on the emission electrode or on adjacent structural elements of the separation device, which, as described above, could lead to contamination and carbonization of the electrodes.

Wird ein entsprechendes Trennelement im Bereich der Gegenelektrode vorgesehen, so wird insbesondere vorgeschlagen, dass das Trennelement entsprechende Ablassƶffnungen aufweist, durch die die Verunreinigung an vordefinierten Stellen in einem entsprechenden Sammelraum flieƟen kƶnnen.If a corresponding separating element is provided in the area of the counter electrode, it is particularly proposed that the separating element have corresponding drainage openings, through which the contamination can flow at predefined points in a corresponding collecting space.

ErgƤnzend wird vorgeschlagen, dass zusƤtzliche MaƟnahmen getroffen werden, um eine Beschleunigung von Partikeln aus dem Gasstrom in Richtung der Emissionselektroden bzw. dazu benachbarten Bereichen zu reduzieren.In addition, it is proposed that additional measures be taken to reduce the acceleration of particles from the gas flow in the direction of the emission electrodes or areas adjacent to them.

So wurde insbesondere erkannt, dass die aus dem Stand der Technik bekannten SchottwƤnde dazu fĆ¼hren, dass es in einem Zwischenbereich zwischen den Emissionselektroden zu einer elektrostatischen Aufladung der OberflƤche kommen kann, die dann dazu fĆ¼hrt, dass durch vorangehende Plasmakegel ionisierte Verunreinigungen in Richtung dieser elektrostatisch aufgeladenen OberflƤchen beschleunigt werden, um dort agglomeriert zu werden und dann an der Emissionselektrode entlang in Richtung der Gegenelektrode zu wandern.In particular, it was recognized that the bulkheads known from the prior art lead to electrostatic charging of the surface in an intermediate area between the emission electrodes, which then leads to contaminants ionized by preceding plasma cones in the direction of these electrostatically charged Surfaces are accelerated in order to be agglomerated there and then to migrate along the emission electrode in the direction of the counter electrode.

Bereits das Weglassen der entsprechenden SchottwƤnde fĆ¼hrt zu einer Verbesserung der Situation. Mit der Erfindung wird jedoch darĆ¼ber hinaus vorgeschlagen, dass entsprechende Ableiteinrichtungen in einem Zwischenbereich zwischen den Emissionselektroden oder Emissionselektrodenreihen vorgesehen sind. In der einfachsten AusfĆ¼hrungsform wird eine entsprechende Ableiteinrichtung durch eine, insbesondere in dem TrƤgerelement ausgebildete, Vertiefung ausgebildet. Aufgrund der dadurch entstehenden Beabstandung der abgesenkten Bereiche der Vertiefung von der Emissionselektrode kommt es zu einer verringerten elektrostatischen Aufladung der OberflƤchenbereich des TrƤgerelements. DarĆ¼ber hinaus wird auch erfindungsgemƤƟ vorgeschlagen, dass im Bereich der zwischen den Emissionselektroden angeordneten OberflƤchenbereiche aktiv wirkende Ableitelemente angeordnet werden.Even leaving out the corresponding bulkheads leads to an improvement in the situation. With the invention, however, it is also proposed that corresponding discharge devices are provided in an intermediate area between the emission electrodes or rows of emission electrodes. In the simplest embodiment, a corresponding discharge device is formed by a recess, in particular formed in the carrier element. The resulting spacing of the lowered areas of the depression from the emission electrode results in a reduced electrostatic charge on the surface area of the carrier element. In addition, it is also proposed according to the invention that actively acting discharge elements are arranged in the area of the surface areas arranged between the emission electrodes.

Bei den Ableitelementen kann es sich insbesondere um eine elektrisch leitende Beschichtung handeln, die dazu fĆ¼hrt, dass im Bereich der OberflƤche sich ansammelnde LadungstrƤger schnellstmƶglich abgefĆ¼hrt werden. Diese Ableitbeschichtung kann auf die entsprechende OberflƤche aufgebracht sein oder es kƶnnen auch in die OberflƤche eingelagerte Elemente, wie Leitgewebe, die insbesondere Polyamid oder ein metallisches Material, wie Kupfer, umfassen, vorgesehen sein. Insbesondere in dem Fall, in dem die Ableitbeschichtung bzw. das Ableitgewebe auf dasselbe elektrische Potential wie die Emissionselektrode gelegt wird, wird verhindert, dass es zu einer Anziehung von in dem Gasstrom ionisierten Verunreinigungen kommt.The diverting elements can in particular be an electrically conductive coating which leads to charge carriers that have accumulated in the area of the surface being removed as quickly as possible. This discharge coating can be applied to the corresponding surface or elements embedded in the surface, such as conductive fabric, which in particular comprise polyamide or a metallic material such as copper, can be provided. In particular in the case in which the conductive coating or the conductive fabric is placed on the same electrical potential as the emission electrode prevents the attraction of contaminants ionized in the gas stream.

Insbesondere wenn sich das Ableitelement Ć¼ber die Wandungen, die den Bereich zwischen der Emissionselektrode und der Gegenelektrode umgeben, erstreckt, kann ein Raum gebildet werden, der als faradayscher KƤfig wirkt. Wenn das Ableitelement auf Masse gelegt wird, kƶnnen OberflƤchenladungen der Wandungen direkt abflieƟen und so kƶnnen wirksam elektrostatische AnziehungskrƤfte auf die Verunreinigungen, die eine Anlagerung an den Wandungen hervorrufen kƶnnten, vermieden werden.In particular, when the discharge element extends over the walls which surround the area between the emission electrode and the counter electrode, a space can be formed which acts as a Faraday cage. If the diverting element is connected to ground, surface charges on the walls can flow off directly and thus electrostatic forces of attraction on the impurities, which could cause accumulation on the walls, can be effectively avoided.

Die Ausbildung von tunnelartigen Ableitelementen fĆ¼hrt insbesondere zu einer VergrĆ¶ĆŸerung der GegelektrodenoberflƤche. Diese Tunnelelemente sind vorzugsweise jeweils im Wechsel zu den Elektroden angeordnet.The formation of tunnel-like discharge elements leads in particular to an increase in the surface of the counter-electrode. These tunnel elements are preferably arranged alternating with the electrodes.

Die Tunnelelemente kƶnnen ferner ergƤnzend oder alternativ ein sehr grobmaschiges leitfƤhiges Gitter oder leitfƤhige GitterstƤbe / FƤden umfassen, die dazu dienen, den Ablauf von Verunreinigungen an den zusƤtzlichen Gegenelektroden (TunneloberflƤche) zu verbessern. Auch kann vorgesehen sein, dass beabstandet zu der OberflƤche eine weitere Ableitvorrichtung angeordnet ist. Diese kann bspw. durch ein Gitter, welches elektrisch leitfƤhig ist, realisiert sein, wobei die Emissionselektroden durch die Ableitvorrichtung hindurchragen. Wird die Ableitvorrichtung auf dasselbe elektrische Potential wie die Emissionselektroden oder auf Masse gelegt, so wird ebenfalls eine anziehende Wirkung auf in den Garstrom vorhandene Partikel verhindert. Durch die Ableitung der elektrostatischen Ladung auf der entsprechenden OberflƤche wird insgesamt verhindert, dass sich Verunreinigungen in dem OberflƤchenbereich anlagern und agglomerieren kƶnnen, welche ansonsten dazu fĆ¼hren kƶnnte, dass die Verunreinigungen sich an der Emissionselektrode anlagern und dort zu einer Verkrustung bzw. Anbrennen von Verunreinigungen fĆ¼hren kƶnnten.The tunnel elements can additionally or alternatively comprise a very coarse-meshed conductive grid or conductive bars / threads, which serve to improve the drainage of impurities on the additional counter electrodes (tunnel surface). It can also be provided that a further discharge device is arranged at a distance from the surface. This can be implemented, for example, by a grid that is electrically conductive, the emission electrodes protruding through the discharge device. If the discharge device is connected to the same electrical potential as the emission electrodes or to ground, an attractive effect on particles present in the cooking stream is likewise prevented. By dissipating the electrostatic charge on the corresponding surface, it is prevented that impurities can accumulate and agglomerate in the surface area, which could otherwise lead to the impurities being deposited on the emission electrode and leading to encrustation or burning of impurities there could.

Eine entsprechende Ableitvorrichtung kann auch durch ein die Emissionselektrode umgebendes Schirmelement, welches gleichzeitig auch als Abtropfelement dienen kann, realisiert werden.A corresponding discharge device can also be implemented by a shielding element surrounding the emission electrode, which can also serve as a drip element at the same time.

SchlieƟlich wird vorgeschlagen, dass durch statische Beeinflussung des elektrischen Felds mittels zumindest einer Beeinflussungsvorrichtung die Ionenwinde aufgrund der modifizierten Feldgestalt insbesondere der Plasmakegel so geleitet werden, dass sie nicht mehr nachteilhaft auf das Blow-By wirken, nƤmlich dass nachteilige Verwirbelungen des Blow-By nicht mehr auftreten. Auch erfolgt durch die Modifizierung eine frĆ¼hzeitige Abscheidung der Partikel, so dass diese nicht mehr so lange im Blow-By mitgefĆ¼hrt werden.Finally, it is suggested that By statically influencing the electrical field by means of at least one influencing device, the ion winds are guided due to the modified field shape, in particular the plasma cone, in such a way that they no longer have a disadvantageous effect on the blow-by, namely that disadvantageous turbulence of the blow-by no longer occurs. The modification also results in an early separation of the particles, so that they are no longer carried along in the blow-by for as long.

So wurde in aus dem Stand der Technik bekannten Vorrichtung und durch Versuche erkannt, dass das Strƶmungsverhalten des Blow-By infolge von Verwirbelung im Bereich der Emissionselektroden dazu fĆ¼hrt, dass Partikel an die Emissionselektrodenspitzen gelangen, also zu Verunreinigungen fĆ¼hren kƶnnen. Ferner wurde erkannt, dass bei geeigneter Ausgestaltung der zuvor beschriebenen, insbesondere tunnelartig ausgebildeten, Beeinflussungsvorrichtung, die eine leitende Vorrichtung in Form eines Rahmenelementes darstellen kƶnnen, diese das durch die Emissions- und Gegenelektrode ausgebildete elektrische Feld dergestalt beeinflusst, dass die Tonenwinde infolge des neuen Feldes das Blow-By bevorzugt nach unten in Richtung der Gegenelektrode leiten. Damit wirken die Ionenwinde nicht mehr insofern nachteilhaft, als Partikel des Blow-By nicht mehr in Richtung der Emissionselektroden transportiert werden. Einhergehend damit wurde beobachtet, dass nachteilige Verwirbelung des Blow-Bys nicht mehr vorhanden sind, zumindest reduzierbar sind. Ein besonders kompakter und einfacher Aufbau ergibt sich, wenn zumindest eine Beeinflussungsvorrichtung zumindest bereichsweise in einem mit zumindest einer Ableiteinrichtung und/oder zumindest einem Ableitelement ausgebildet ist.In the device known from the prior art and through tests, it was recognized that the flow behavior of the blow-by due to turbulence in the area of the emission electrodes leads to particles reaching the emission electrode tips, that is to say can lead to contamination. It was also recognized that with a suitable design of the influencing device described above, in particular designed like a tunnel, which can represent a conductive device in the form of a frame element, this influences the electrical field formed by the emission and counter electrode in such a way that the clay winds as a result of the new field Preferably direct the blow-by downwards in the direction of the counter electrode. The ion winds no longer have a disadvantageous effect insofar as particles of the blow-by are no longer transported in the direction of the emission electrodes. As a result, it was observed that disadvantageous turbulence in the blow-by is no longer present, at least can be reduced. A particularly compact and simple structure is obtained if at least one influencing device is formed at least in some areas in one with at least one discharge device and / or at least one discharge element.

Dabei ist die Beeinflussungsvorrichtung vorzugsweise ein metallischer Einsatz, der mit der Gegenelektrode verbunden und somit geerdet, bzw. jedenfalls auf demselben Potential wie die Gegenelektrode ist. Die Beeinflussungsvorrichtungen fĆ¼hren dazu, dass ein auf einem definierten Potential befindlicher Rahmen um die Blow-By Strƶmung ausgebildet wird. Auch wird, wenn die Beeinflussungsvorrichtung auf das Potential der Gegenelektrode gelegt wird, die GegenelektrodenflƤche vergrĆ¶ĆŸert. Die Form der Beeinflussungsvorrichtung, insbesondere eine Querschnittsform in einer Ebene senkrecht zur Strƶmungsvorrichtung des Blow-By, kann dabei insbesondere mit einem im wesentlichen c-fƶrmigen Querschnittsprofil gewƤhlt werden, das vorzugsweise aus drei, vorzugsweise senkrecht zueinander angeordneten, Teilsegmenten aufgebaut ist, und/oder vorzugsweise aus einer im Wesentlichen senkrechten Anordnung der Segmente mit einer bogenartigen Verbindung zwischen den jeweiligen Teilsegmenten. Auch kann das Beeinflussungselement in Form zumindest eines durchgehenden Bogens aufgebaut sein. Die Beeinflussungsvorrichtung erstreckt sich dabei, insbesondere zumindest bereichsweise, zwischen zumindest zwei zweiten Elektroden entlang der oberen Wandung, sowie nach unten fortgesetzt entlang der beiden seitlichen Wandungen.In this case, the influencing device is preferably a metallic insert that is connected to the counter-electrode and thus grounded, or in any case is at the same potential as the counter-electrode. The influencing devices lead to a frame at a defined potential being formed around the blow-by flow. Also, when the influencing device is placed on the potential of the counter electrode, the counter electrode area is increased. The shape of the influencing device, in particular a cross-sectional shape in a plane perpendicular to the flow device of the blow-by, can in particular be selected with an essentially C-shaped cross-sectional profile, which is preferably made up of three subsegments, preferably arranged perpendicular to one another, and / or preferably from a substantially vertical arrangement of the Segments with an arc-like connection between the respective sub-segments. The influencing element can also be constructed in the form of at least one continuous arc. The influencing device extends, in particular at least regionally, between at least two second electrodes along the upper wall, and continued downward along the two side walls.

Dabei hat sich gezeigt, dass die Stirnseiten der Beeinflussungsvorrichtung, also die den Emissionselektroden zugewandten Seiten zu der Verschiebung des elektrischen Felds fĆ¼hren und es deshalb insbesondere mƶglich ist, die Beeinflussungsvorrichtungen wahlweise insbesondere aus einem metallischen Vollkƶrper, oder etwa aus einem Blech auszubilden. Es ist auch ausreichend, wenn nur auf der Stirnseite eine leitfƤhige OberflƤche ausgebildet ist. Beispielsweise kann also ein Hauptkƶrper nicht leitfƤhig sein und nur eine Beschichtung oder ein leitfƤhiger Bereich auf der Stirnseite vorhanden sein. Es hat sich darĆ¼ber hinaus gezeigt, dass der positive Effekt der Beeinflussungsvorrichtung auf das Verhalten des Blow-By durch fortlaufende Wiederholung von Beeinflussungsvorrichtungen lƤngs der Flussrichtung des Blow-By, insbesondere im Wechsel mit Gruppen von zweiten Elektroden auch auf folgende Emissionselektroden lƤngs der Flussrichtung des Blow-By Ć¼bertragen werden kann. Dadurch kƶnnen mƶglichst alle Elektrodenspitzen vor einer Verunreinigung durch sich ablagernde Partikel geschĆ¼tzt werden.It has been shown that the end faces of the influencing device, i.e. the sides facing the emission electrodes, lead to the shift of the electric field and it is therefore possible in particular to design the influencing devices either from a solid metal body or from sheet metal, for example. It is also sufficient if a conductive surface is formed only on the end face. For example, a main body can therefore be non-conductive and only a coating or a conductive area can be present on the end face. It has also been shown that the positive effect of the influencing device on the behavior of the blow-by through continuous repetition of influencing devices along the flow direction of the blow-by, especially alternating with groups of second electrodes, also on subsequent emission electrodes along the flow direction of the blow -By can be transferred. As a result, as far as possible all electrode tips can be protected from contamination by deposited particles.

SchlieƟlich wird mit der Erfindung ein Verfahren zum Betreiben einer erfindungsgemƤƟen Vorrichtung vorgeschlagen, durch die die zuvor genannten Nachteile des Stands der Technik Ć¼berwunden werden.Finally, the invention proposes a method for operating a device according to the invention, by means of which the aforementioned disadvantages of the prior art are overcome.

Insbesondere wird vorgeschlagen, dass wƤhrend des Betriebes der Abscheidevorrichtung ein Reinigungsschritt durchgefĆ¼hrt wird. Diese Reinigung kann auf verschiedenste Weisen durchgefĆ¼hrt werden. So kann einerseits wƤhrend des Betriebes eine Gruppe von Emissionselektroden, insbesondere eine ganze Emissionselektrodenreihe, gereinigt werden, indem diese Gruppe von Emissionelektroden elektrisch auf Masse gelegt wird. Dies bewirkt, dass sich an der Emissionselektrode abgelagerte Verunreinigungen von dem Gasstrom mitgerissen werden bzw. auf Grund eines Kondensatoreffekts zur Gegenelektrode hingezogen werden. Auch ist vorstellbar, dass die erste Gruppe von Emissionselektroden mit einer Spannung versorgt wird, durch die ein Ɯberschlag dieser Emissionselektrode und der Gegenelektrode erzeugt wird. Dies fĆ¼hrt zu einem Freibrennen der Emissionselektrode also einem Abbrennen der an der Emissionselektrode angeordneten Verunreinigungen. Insbesondere ist ferner bevorzugt, dass die einzelnen Emissionselektroden alternierend diesem Reinigungsschritt unterzogen werden, insbesondere die Emissionselektroden nachaneinander jeweils auf Masse bzw. mit der freibrennenden Spannung versorgt werden.In particular, it is proposed that a cleaning step be carried out during the operation of the separation device. This cleaning can be done in a variety of ways. On the one hand, a group of emission electrodes, in particular a whole row of emission electrodes, can be cleaned during operation by electrically connecting this group of emission electrodes to ground. This has the effect that impurities deposited on the emission electrode are carried away by the gas flow or are drawn to the counter electrode due to a capacitor effect. It is also conceivable that the first group of emission electrodes is supplied with a voltage, by which a flashover of this emission electrode and the counter electrode is generated. This leads to the emission electrode being burned free, ie the impurities arranged on the emission electrode being burned off. In particular, it is further preferred that the individual emission electrodes are alternately subjected to this cleaning step, in particular the emission electrodes are successively supplied to ground or with the free-burning voltage.

Es ist denkbar, dass eine mechanische Reinigung der Emissionselektroden durchgefĆ¼hrt wird. Dazu wird vorgeschlagen, dass die Emissionselektroden in Schwingungen versetzt werden, insbesondere Ultraschallschwingung. Dies kann dadurch erfolgen, dass eine Ultraschallschwingung durch ein Piezoelement erzeugt wird oder die Elektroden mit einem schwingendem Element, insbesondere einer Komponente einer Brennkraftmaschine mechanisch verbunden werden und so durch die Schwingungsanregung eine Reinigung durch Lƶsen der Verunreinigung an der Emissionselektrode erreicht wird.It is conceivable that mechanical cleaning of the emission electrodes is carried out. For this purpose, it is proposed that the emission electrodes are set to vibrate, in particular ultrasonic vibration. This can take place in that an ultrasonic vibration is generated by a piezo element or the electrodes are mechanically connected to a vibrating element, in particular a component of an internal combustion engine, and cleaning by dissolving the contamination on the emission electrode is achieved through the vibration excitation.

So kann eine Reinigung durch ein Reinigungselement, wie eine BĆ¼rste, das sequentiell Ć¼ber die Elektrodenspitzen gefĆ¼hrt wird, erfolgen.For example, cleaning can be carried out using a cleaning element, such as a brush, which is guided sequentially over the electrode tips.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der bevorzugte AusfĆ¼hrungsformen der Erfindung anhand von schematischen Zeichnungen erlƤutert sind.Further features and advantages of the invention emerge from the following description, in which preferred embodiments of the invention are explained with reference to schematic drawings.

Dabei zeigt:

Figur 1
eine schematische Querschnittansicht einer Abscheidevorrichtung gemƤƟ dem Stand der Technik;
Figur 2
eine Detailansicht der Abscheidevorrichtung der Figur 1 gemƤƟ dem Ausschnitt A1;
Figur 3a
eine schematische Querschnittsansicht eines Gegenelektrodenelements gemƤƟ der Erfindung;
Figur 3b
eine Aufsicht auf das Gegenelektrodenelement der Figur 3a aus Richtung B;
Figur 4a
eine schematische Querschnittsansicht zweier Gegenelektrodenelemente gemƤƟ der Erfindung;
Figur 4b
eine Aufsicht auf die Gegenelektrodenelemente der Figur 4a aus Richtung C;
Figur 4c
eine schematische Aufsicht auf eine Gegenelektrode gemƤƟ einer weiteren AusfĆ¼hrungsform;
Figur 4d
eine Aufsicht auf eine Gegenelektrode gemƤƟ einer weiteren AusfĆ¼hrungsform;
Figuren 5a bis 5d
schematische Darstellungen verschiedener AusfĆ¼hrungsformen einer Emissionselektrode mit jeweiligem Abtropfelement;
Figur 6a
eine schematische Darstellung einer Emissionselektrode mit einem erfindungsgemƤƟen Anstrƶmelement mit einem Abtropfelement;
Figur 7
eine schematische Querschnittsansicht eine Emissionselektrode gemƤƟ einer weiteren AusfĆ¼hrungsform;
Figur 8
eine schematische Querschnittsansicht einer erfindungsgemƤƟen Abscheidevorrichtung, in der eine Trennfolie gemƤƟ der Erfindung eingesetzt wird;
Figur 9
eine schematische Querschnittsansicht eines TrƤgerelements mit einer Ableiteinrichtung;
Figur 10
eine schematische Querschnittsansicht eines alternativen TrƤgerelements mit einer Ableiteinrichtung;
Figur 11
eine schematische Querschnittsansicht einer erfindungsgemƤƟen Abscheidevorrichtung unter Verwendung eines Ableitelements in Form eines leitfƤhigen Gitters;
Figur 12
eine schematische Querschnittsansicht einer weiteren AusfĆ¼hrungsform einer erfindungsgemƤƟen Vorrichtung zur DurchfĆ¼hrung eines erfindungsgemƤƟen Verfahrens;
Figur 13
eine schematische Querschnittsansicht einer erfindungsgemƤƟen Beeinflussungsvorrichtung in Form eines metallischen Vollkƶrpers.
Figur 14
eine schematische Aufsicht auf die im Wechsel angeordneten paarweise Reihen der Emissionselektrode und der Beeinflussungsvorrichtungen;
Figur 15a
eine simulierte Gestalt des elektrischen Feldes in der Umgebung der Emissionselektrode ohne geerdete Stirnseite der Beeinflussungsvorrichtungen;
Figur 15b
eine simulierte Gestalt des elektrischen Feldes in der Umgebung der Emissionselektrode mit geerdete Stirnseite der Beeinflussungsvorrichtungen; und
Figuren 16a bis 16c
eine schematische Darstellungen des Querschnittsprofils in verschiedenen AusfĆ¼hrungformen der Beeinflussungsvorrichtungen.
It shows:
Figure 1
a schematic cross-sectional view of a separation device according to the prior art;
Figure 2
a detailed view of the separation device of Figure 1 according to the section A1;
Figure 3a
a schematic cross-sectional view of a counter electrode element according to the invention;
Figure 3b
a plan view of the counter electrode element of FIG Figure 3a from direction B;
Figure 4a
a schematic cross-sectional view of two counter electrode elements according to the invention;
Figure 4b
a plan view of the counter electrode elements of Figure 4a from direction C;
Figure 4c
a schematic plan view of a counter electrode according to a further embodiment;
Figure 4d
a plan view of a counter electrode according to a further embodiment;
Figures 5a to 5d
schematic representations of different embodiments of an emission electrode with respective drip element;
Figure 6a
a schematic representation of an emission electrode with an inflow element according to the invention with a drip element;
Figure 7
a schematic cross-sectional view of an emission electrode according to a further embodiment;
Figure 8
a schematic cross-sectional view of a separation device according to the invention, in which a release film according to the invention is used;
Figure 9
a schematic cross-sectional view of a carrier element with a discharge device;
Figure 10
a schematic cross-sectional view of an alternative carrier element with a discharge device;
Figure 11
a schematic cross-sectional view of a separation device according to the invention using a discharge element in the form of a conductive grid;
Figure 12
a schematic cross-sectional view of a further embodiment of a device according to the invention for performing a method according to the invention;
Figure 13
a schematic cross-sectional view of an influencing device according to the invention in the form of a metallic solid body.
Figure 14
a schematic plan view of the alternating pairs of rows of the emission electrode and the influencing devices;
Figure 15a
a simulated shape of the electric field in the vicinity of the emission electrode without a grounded end face of the influencing devices;
Figure 15b
a simulated shape of the electric field in the vicinity of the emission electrode with the end face of the influencing devices grounded; and
Figures 16a to 16c
a schematic representation of the cross-sectional profile in different embodiments of the influencing devices.

In Figur 3a ist eine schematische Querschnittsansicht eines Gegenelektrodenelements 31 in einer schematischen Querschnittsansicht dargestellt. In Figur 3b ist eine Aufsicht auf das Gegenelektrodenelement 31 aus Richtung B in Figur 3a dargestellt.In Figure 3a a schematic cross-sectional view of a counter electrode element 31 is shown in a schematic cross-sectional view. In Figure 3b FIG. 13 is a plan view of the counter electrode element 31 from direction B in FIG Figure 3a shown.

Wie den Figuren 3a und 3b zu entnehmen ist, weist das Gegenelektrodenelement 31 eine Vielzahl von Plateaubereichen 33 auf. Die Plateaubereiche 33 sind koaxial zu einer Emissionselektrode 11, die sich entlang einer Achse X erstreckt, angeordnet. Die Plateaubereiche 33 sind mittels Abstandselementen 35 mit einem Basisniveau 37 verbunden. Wie zuvor beschrieben und nachfolgend erlƤutert, kƶnnen auch andere Konfigurationen zur Erreichung der Beabstandung realisiert sein. Eine elektrische Verbindung zwischen dem Plateaubereich 33 und dem Abstandselement 35 wird Ć¼ber ein Verbindungselement 39 hergestellt.Like that Figures 3a and 3b As can be seen, the counter electrode element 31 has a multiplicity of plateau regions 33. The plateau regions 33 are arranged coaxially to an emission electrode 11 which extends along an axis X. The plateau areas 33 are connected to a base level 37 by means of spacer elements 35. As previously described and explained below, other configurations for achieving the spacing can also be used be realized. An electrical connection between the plateau region 33 and the spacer element 35 is established via a connection element 39.

Wie insbesondere Figur 3a zu entnehmen ist, lƤuft das Abstandselement 35 nicht koaxial zu der Achse X sondern parallel zu dieser. In nicht dargestellten AusfĆ¼hrungsformen ist vorgesehen, dass das Abstandselement koaxial zu der Achse X verlƤuft, so dass die Gegenelektrodenelemente "pilzfƶrmig" ausgebildet sind. Wie darĆ¼ber hinaus Figur 3a zu entnehmen ist, weist der Plateaubereich 33 eine Wƶlbung auf.How in particular Figure 3a It can be seen that the spacer element 35 does not run coaxially to the axis X but parallel to it. In embodiments that are not shown, it is provided that the spacer element runs coaxially to the axis X, so that the counter-electrode elements are "mushroom-shaped". How beyond Figure 3a It can be seen that the plateau region 33 has a curvature.

Dabei ist in einer bevorzugten, nicht dargestellten AusfĆ¼hrungsform die Wƶlbung insbesondere in einem Randbereich des Plateaubereichs ausgebildet, wƤhrend der zentrale Bereich des Plateaubereichs plan ausgebildet ist. Auf diese Weise wird sichergestellt, dass sich ein stabiler und mƶglichst breiter Plasmakegel ausbildet, gleichzeitig jedoch sichergestellt ist, dass, insbesondere flĆ¼ssige, Verunreinigungen sich nicht auf dem Plateaubereich ansammeln sondern von diesem abflieƟen. Aufgrund der ViskositƤt der Verunreinigungen wird erreicht, dass am Rand des Plateaubereichs vorhandene flĆ¼ssige Verunreinigungen auch im kleinen Bereich vorhandene Verunreinigungen "mitreiƟen".In a preferred embodiment, not shown, the curvature is formed in particular in an edge region of the plateau region, while the central region of the plateau region is planar. In this way it is ensured that a stable and as wide as possible plasma cone is formed, but at the same time it is ensured that, in particular liquid, impurities do not accumulate on the plateau area but flow away from it. Due to the viscosity of the impurities, it is achieved that liquid impurities present at the edge of the plateau area "carry away" impurities present in the small area as well.

Dieses AbflieƟen von Verunreinigungen wird noch dadurch unterstĆ¼tzt, dass sich im Bereich des Plasmakegels, sowohl benachbart dazu als auch im Inneren, einen "Ionenwind" ausbildet, der dazu fĆ¼hrt, dass diese Verunreinigungen von dem Plateaubereich, insbesondere dem planen Bereich, "weggeblasen" werden.This drainage of impurities is further supported by the fact that an "ion wind" forms in the area of the plasma cone, both adjacent to it and inside, which leads to these impurities being "blown away" from the plateau area, in particular the flat area .

Durch den Plateaubereich 33 wird also sichergestellt, dass sich eine vordefinierte Form eines Plasmakegels 41 ausbildet. DarĆ¼ber hinaus wird sichergestellt, dass Ć¼ber den Plasmakegel 41 in Richtung des Gegenelektrodenelements 31 abgelenkte Verunreinigungen direkt von dem Plateaubereich 33 abflieƟen kƶnnen, sich insbesondere nicht in den Plateaubereich ansammeln und agglomerieren kƶnnen, und so zu einer Verunreinigung der Gegenelektroden fĆ¼hren kƶnnen.The plateau region 33 thus ensures that a predefined shape of a plasma cone 41 is formed. In addition, it is ensured that impurities deflected in the direction of the counter-electrode element 31 via the plasma cone 41 can flow off directly from the plateau area 33, in particular cannot accumulate and agglomerate in the plateau area, and thus lead to contamination of the counter-electrodes.

Die in der Figur 3a erkennbare C-fƶrmige Querschnittsform des Gegenelektrodenelements 31 erlaubt es, dass zwei Gegenelektrodenelemente, wie in Figur 4a dargestellt, miteinander kombiniert werden kƶnnen. Wie insbesondere der Figur 4b zu entnehmen ist, kƶnnen die Gegenelektrodenelemente 31 spiegelsymmetrisch und leicht versetzt zueinander angeordnet werden. Dies erlaubt es, dass die Plateaubereiche 33 der jeweiligen Gegenelektrodenelemente 31 versetzt zueinander angeordnet werden kƶnnen, so dass sie jeweils koaxial zu entsprechenden Emissionselektroden 11 positioniert werden kƶnnen. Aufgrund der versetzten Anordnung der Gegenelektrodenelemente 31 kƶnnen die jeweiligen Plasmakegel 41 versetzt zueinander ausgebildet werden, so dass fĆ¼r den Gasstrom eine nahezu geschlossene "Plasmawand" entsteht.The ones in the Figure 3a The recognizable C-shaped cross-sectional shape of the counter-electrode element 31 allows two counter-electrode elements, as in FIG Figure 4a shown, can be combined with each other. Like the one in particular Figure 4b As can be seen, the counter-electrode elements 31 can be arranged mirror-symmetrically and slightly offset from one another become. This allows the plateau regions 33 of the respective counter-electrode elements 31 to be arranged offset from one another, so that they can each be positioned coaxially with respect to the corresponding emission electrodes 11. Due to the offset arrangement of the counter electrode elements 31, the respective plasma cones 41 can be formed offset from one another, so that an almost closed "plasma wall" is created for the gas flow.

In einer alternativen, nicht dargestellten AusfĆ¼hrungsform kann vorgesehen sein, dass die beiden in Figur 4a dargestellten Gegenelektrodenelemente nicht komplett identisch ausgebildet sind sondern die Abstandselemente 35 unterschiedliche Hƶhen aufweisen. Dadurch wird erreicht, dass die Basisniveaus sich Ć¼berlappend angeordnet werden kƶnnen und gleichzeitig sichergestellt ist, dass die Plateaubereiche 33 auf der gleichen Hƶhe angeordnet sind. Damit sind die Plateaubereiche gleichmƤƟig von den Emissionselektroden beabstandet und es kann sich eine gleichmƤƟige "Plasmawand" /Plasmakegel ausbilden.In an alternative embodiment, not shown, it can be provided that the two in Figure 4a The counter electrode elements shown are not completely identical, but rather the spacer elements 35 have different heights. It is thereby achieved that the base levels can be arranged overlapping and at the same time it is ensured that the plateau regions 33 are arranged at the same height. The plateau areas are thus evenly spaced from the emission electrodes and a uniform "plasma wall" / plasma cone can be formed.

In den Figuren 4c und 4d sind alternative AusfĆ¼hrungsformen von Gegenelektrodenelementen 31', 31" dargestellt. In den Figuren sind jeweils schematische Aufsichten auf die Gegenelektrodenelemente 31', 31" dargestellt. Auch die Gegenelektrodenelemente 31', 31" weisen Plateaubereiche 33', 33" auf. Die Plateaubereiche 33' des Gegenelektrodenelements 31' sind jedoch "kettenfƶrmig" angeordnet, wƤhrend die Plateaubereiche 33" des Gegenelektrodenelements 31" "matrixfƶrmig" angeordnet sind. Dies bedeutet, dass nicht jeder einzelne Plateaubereich 33', 33" Ć¼ber ein Abstandselement von dem Basisniveau beabstandet ist, sondern lediglich jeweils im Randbereich der Gegenelektrodenelemente 31', 31" angeordnete Plateaubereiche 33', 33" Ć¼ber geeignete Abstandselemente von dem Basisniveau beabstandet sind. Die restlichen Plateaubereiche 33', 33" sind untereinander bzw. mit dem am Rand angeordneten Plateaubereichen 33' Ć¼ber Verbindungseinrichtungen 43' miteinander verbunden.In the Figures 4c and 4d alternative embodiments of counter-electrode elements 31 ', 31 "are shown. In each of the figures, schematic top views of the counter-electrode elements 31', 31" are shown. The counter-electrode elements 31 ', 31 "also have plateau regions 33', 33". The plateau regions 33 'of the counter-electrode element 31' are, however, arranged in a "chain-like manner", while the plateau regions 33 "of the counter-electrode element 31" are arranged in a "matrix-like manner". This means that not each individual plateau area 33 ', 33 "is spaced apart from the base level via a spacer element, but rather only plateau areas 33', 33" arranged in the edge area of the counter-electrode elements 31 ', 31 "are spaced apart from the base level via suitable spacer elements. The remaining plateau areas 33 ', 33 "are connected to one another or to the plateau areas 33' arranged at the edge via connecting devices 43 '.

Dabei sind die Verbindungseinrichtungen 43', 43" als leitende Elemente ausgebildet, die jedoch in zumindest eine Raumrichtung eine geringere Ausdehnung als die Plateaubereiche 33', 33" aufweisen. Somit wird erreicht, dass sich die Plasmakegel im wesentlichen zwischen den Plateaubereichen 33', 33" und den jeweiligen Emissionselektroden ausbilden. Aufgrund dieser Verbindung der Plateaubereiche 33', 33" spannen diese einen ansonsten freien Bereich zwischen den Gegenelektrodenelemente 31', 31" und dem Basisniveau auf.The connecting devices 43 ', 43 "are designed as conductive elements, which, however, have a smaller extent than the plateau regions 33', 33" in at least one spatial direction. It is thus achieved that the plasma cones are essentially formed between the plateau areas 33 ', 33 "and the respective emission electrodes. Because of this connection of the plateau areas 33', 33", they span an otherwise free area between the counter-electrode elements 31 ', 31 "and the Basic level.

Die Gegenelektrodenelemente 31', 31" kƶnnen als Blechstanzteile ausgebildet sein. Auf diese Weise wird sichergestellt, dass die Plateaubereiche 33', 33" im wesentlichen in der selben Ebene angeordnet sind und gleichzeitig eine konstruktiv einfache Herstellung der Gegenelektrodenelemente 31', 31" ermƶglicht wird.The counter-electrode elements 31 ', 31 "can be designed as stamped sheet metal parts. This ensures that the plateau regions 33', 33" are arranged essentially in the same plane and at the same time a structurally simple production of the counter-electrode elements 31 ', 31 "is made possible .

Durch diese Konstruktion wird sichergestellt, dass durch den im wesentlichen barrierefreien Raum unterhalb des Gegenelektrodenelements 31', 31" die Abfuhr von in dem Plasmaabscheider abgeschiedenen Verunreinigungen vereinfacht wird. Auch kƶnnen die Verunreinigungen leichter von der Gegenelektrode abtransportiert werden. Bevorzugt ist hierbei, dass der Bereich unter den Gegenelektrodenelementen elektrisch leitend ausgekleidet und geerdet ist und somit als zusƤtzliche Abscheidemƶglichkeit fĆ¼r die Verunreinigungen, die an dem Platteaubereich vorbei kommen, dient.This construction ensures that the essentially barrier-free space below the counter-electrode element 31 ', 31 "simplifies the removal of impurities deposited in the plasma separator. The impurities can also be removed more easily from the counter-electrode is electrically conductively lined and grounded under the counter-electrode elements and thus serves as an additional separation possibility for the impurities that come past the plate area.

In den Figuren 5a bis 5d sind verschiedene AusfĆ¼hrungsformen von Emissionselektroden 51, 53, 55 sowie 57 dargestellt. Diesen Emissionselektroden ist gemeinsam, dass sie jeweils ein Abtropfelement aufweisen.In the Figures 5a to 5d different embodiments of emission electrodes 51, 53, 55 and 57 are shown. What these emission electrodes have in common is that they each have a drip element.

Beispielsweise in Figur 5a ist dargestellt, dass die Emissionselektrode 51 zumindest einen Knick 59 aufweist. Der Knick 59 stellt ein Abtropfelement dar. Durch den Knick 59 wird die Emissionselektrode 51 in verschiedene Elektrodenbereiche unterteilt. In einem ersten Elektrodenbereich 61 erstreckt sich die Emissionselektrode 51 ausgehend von einem Einspeisungsende 63 entlang der Achse Y. Im Anschluss an den Knick 59 folgt ein zweiter Elektrodenbereich 65, in dem die Emissionselektrode 51 eine Richtungskomponente aufweist, die entgegen der Y-Achse verlƤuft. Im Anschluss an eine weitere Umbiegung 67 folgt ein dritter Elektrodenbereich 69, in dem sich die Emissionselektrode 51 wieder in Richtung der Achse Y erstreckt.For example in Figure 5a it is shown that the emission electrode 51 has at least one bend 59. The bend 59 represents a drip element. The bend 59 divides the emission electrode 51 into different electrode areas. In a first electrode area 61, the emission electrode 51 extends from a feed end 63 along the axis Y. The bend 59 is followed by a second electrode area 65 in which the emission electrode 51 has a directional component that runs counter to the Y axis. A further bend 67 is followed by a third electrode area 69 in which the emission electrode 51 again extends in the direction of the Y axis.

Dies fĆ¼hrt dazu, dass das Elektrodenende 71, ausgehend von welchem sich der Plasmakegel ausbildet, unterhalb des Abtropfelements 59 angeordnet ist. Kommt es nun dazu, dass sich aufgrund eines Ionenwinds angetriebene Partikel, insbesondere Ɩl-Partikel, an der Emissionselektrode 51, insbesondere dem Elektrodenbereich 61 ansammeln bzw. von dem TrƤgerelement in den Elektrodenbereich 61 flieƟen, so sammeln sich die FlĆ¼ssigkeitstropfen im Bereich des Abtropfelements 59 so lange, bis sie sich aufgrund der Gravitationskraft von der Emissionselektrode 51 lƶsen und Richtung Gegenelektrode, insbesondere beschleunigt durch das Plasma, bewegen. Hierdurch wird insbesondere verhindert, dass die Verunreinigungen sich im Bereich des Elektrodenendes 71 ansammeln kƶnnen und dort zu einer Verkohlung fĆ¼hren kƶnnten.As a result, the electrode end 71, starting from which the plasma cone is formed, is arranged below the drip element 59. If it happens that particles driven by an ion wind, in particular oil particles, collect on the emission electrode 51, in particular the electrode area 61, or flow from the carrier element into the electrode area 61, the liquid droplets collect in the area of the drip element 59 long before they move away from the Loosen emission electrode 51 and move in the direction of the counter electrode, in particular accelerated by the plasma. This in particular prevents the impurities from being able to collect in the area of the electrode end 71 and causing charring there.

In Figur 5b ist eine weitere AusfĆ¼hrungsform einer Emissionselektrode 53 mit einem Abtropfelement 73 dargestellt. In der Emissionselektrode 53 wird das Abtropfelement durch den unteren Bereich einer Windung 75 gebildet. In dieser AusfĆ¼hrungsform befindet sich das Elektrodenende 77 stromaufwƤrts des Gasstroms, so dass nach einem Abtropfen von dem Abtropfelement 73 verhindert wird, dass sich die FlĆ¼ssigkeitstropfen wieder in Richtung des Elektrodenendes 77 bewegen und sich dort wieder anlagern kƶnnen.In Figure 5b a further embodiment of an emission electrode 53 with a drip element 73 is shown. In the emission electrode 53, the drip element is formed by the lower region of a turn 75. In this embodiment, the electrode end 77 is located upstream of the gas flow, so that after dripping off the dripping element 73, the liquid droplets are prevented from moving again in the direction of the electrode end 77 and being able to be deposited there again.

Bei der in Figur 5c dargestellten Emissionselektrode 55 wird ein Abtropfelement 79 durch eine ringfƶrmige Wulst im oberen Bereich der Emissionselektrode 55 gebildet. Die Abtropfelemente 79 sind insbesondere durch eine auf der OberflƤche der Emissionselektrode 55 ausgebildeten Wulst ausgeformt. Insbesondere kann eine Wulst durch eine "wulstartige Ummantelung" gebildet sein, die beispielsweise Kunststoff, Keramik, Metall oder Gummi umfasst. Auch kann die Wulst ergƤnzend oder alternativ mehrere ringfƶrmige WĆ¼lste um die Spitze herum aufweisen.At the in Figure 5c Emission electrode 55 shown, a drip element 79 is formed by an annular bead in the upper region of emission electrode 55. The drip elements 79 are formed in particular by a bead formed on the surface of the emission electrode 55. In particular, a bead can be formed by a ā€œbead-like casingā€ which comprises, for example, plastic, ceramic, metal or rubber. In addition or as an alternative, the bead can also have several ring-shaped beads around the tip.

Bei der in Figur 5d dargestellten Emissionselektrode 57 wird ein Abtropfelement 81 durch ein Tellerelement 81 der Emissionselektrode 57 gebildet. Dabei ist das Tellerelement 81 in Form eines Schirmelements ausgebildet.At the in Figure 5d Emission electrode 57 shown, a drip element 81 is formed by a plate element 81 of emission electrode 57. The plate element 81 is designed in the form of a screen element.

Die Ausbildung eines Abtropfelements ist jedoch nicht auf die Formgebung der Emissionselektrode beschrƤnkt. Wie Figur 6a zu entnehmen ist, wird erfindungsgemƤƟ auch vorgeschlagen, dass im Bereich einer Emissionselektrode 83 ein Anstrƶmelement 85 ausgebildet wird. Das Anstrƶmelement 85 bewirkt, dass sich auf der OberflƤche des TrƤgerelements 87 ansammelnde FlĆ¼ssigkeitstropfen nicht zu der Emissionselektrode 83 gelangen, sondern an dem Anstrƶmelement 85 entlang zu einem Abtropfelement 89 gefĆ¼hrt werden.However, the design of a drip element is not limited to the shape of the emission electrode. How Figure 6a As can be seen, it is also proposed according to the invention that a flow element 85 be formed in the region of an emission electrode 83. The inflow element 85 has the effect that liquid droplets that collect on the surface of the carrier element 87 do not reach the emission electrode 83, but are guided along the inflow element 85 to a drip element 89.

Somit wird durch das Abtropfelement erreicht, dass eine Verunreinigung des Elektrodenendes 90 vermieden wird, die dazu fĆ¼hren kƶnnte, dass es zu einem Einbrennen der Verunreinigung und somit zu einer Verkorkung der Elektrodenspitze kommt, die zu einem Zusammenfall des Plasmas fĆ¼hren kƶnnte.The result of the drip element is that contamination of the electrode end 90 is avoided, which could lead to the contamination being burned in and This leads to corking of the electrode tip, which could lead to a collapse of the plasma.

In Figur 7 ist eine Querschnittsansicht einer weiteren AusfĆ¼hrungsform einer Emissionselektrode 91 dargestellt. Die Emissionselektrode 91 weist am Elektrodenende 93 eine VerjĆ¼ngung 95 auf. Diese VerjĆ¼ngung 95 wird dadurch gebildet, dass die Emissionselektrode 91 im Bereich des Elektrodenendes 93 bereichsweise hohl, insbesondere hohlzylinderfƶrmig ausgebildet ist. Mit anderen Worten weiƟt die Emissionselektrode 91 an dem Elektrodenende 93 eine ringfƶrmige Spitze auf.In Figure 7 A cross-sectional view of another embodiment of an emission electrode 91 is shown. The emission electrode 91 has a taper 95 at the electrode end 93. This taper 95 is formed in that the emission electrode 91 in the area of the electrode end 93 is hollow in areas, in particular in the shape of a hollow cylinder. In other words, the emission electrode 91 has an annular tip at the electrode end 93.

Dadurch wird am Elektrodenende 93 eine ringfƶrmige VerjĆ¼ngung 95 ausgebildet. Durch diese wird ebenfalls wirksam eine Verunreinigung des Elektrodenendes 93 vermieden. Kommt es beispielsweise dazu, dass eine Verunreinigung beispielsweise ein Tropfen entlang der Emissionselektrode 91 herunterlƤuft, so gelangt diese in diesen Bereich der VerjĆ¼ngung 95 und in diesem Bereich der Emissionselektrode 91 kommt es zu einem Ablƶsen des Plasmas. Der Plasmakegel wandert dann jedoch entlang der VerjĆ¼ngung 95 an eine andere Stelle des Kreises, so lange bis der FlĆ¼ssigkeitstropfen sich ablƶst und Ć¼ber das Plasma der Gegenelektrode beschleunigt abgefĆ¼hrt wird. Je nach Wanderung der Verunreinigung an dem Elektrodenende wandert also der Plasmakegel entlang der VerjĆ¼ngung, was dazu fĆ¼hrt, dass es nicht zu einer Ɯberhitzung der Verunreinigung und zu einem Einbrennen an dem Elektrodenende oder einem Ablƶsen des Plasmas von der Elektrode 91 kommt.As a result, an annular taper 95 is formed at the electrode end 93. This also effectively prevents contamination of the electrode end 93. If, for example, an impurity, for example a drop, runs down along the emission electrode 91, it reaches this area of the taper 95 and the plasma detaches in this area of the emission electrode 91. However, the plasma cone then moves along the taper 95 to another point in the circle until the drop of liquid is detached and is discharged in an accelerated manner via the plasma of the counter electrode. Depending on the migration of the contamination at the electrode end, the plasma cone thus migrates along the taper, which means that the contamination does not overheat and burn-in at the electrode end or detachment of the plasma from the electrode 91.

In Figur 8 ist eine weitere erfindungsgemƤƟe AusfĆ¼hrungsform einer Abscheidevorrichtung 101 dargestellt. Die Elemente der Abscheidevorrichtungen 101, die denjenigen der Abscheidevorrichtung 1 entsprechen, tragen die gleichen Bezugszeichen, allerdings um 100 erhƶht. Im Gegensatz zu der Abscheidevorrichtung 1 wird in der Abscheidevorrichtung 101 als Gegenelektrode 109 die in den Figuren 3a bis 4b dargestellten Gegenelektrodenelemente eingesetzt.In Figure 8 a further embodiment according to the invention of a separation device 101 is shown. The elements of the separation devices 101 which correspond to those of the separation device 1 have the same reference numerals, but increased by 100. In contrast to the deposition device 1, the deposition device 101 uses the counter electrode 109 in the Figures 3a to 4b used counter electrode elements shown.

DarĆ¼ber hinaus ist der Gasstrom 107 von dem Bereich, in dem sich die Gegenemissionselektroden 111 befinden, mittels eines fĆ¼r das Plasma- bzw. Elektronen durchlƤssigen Trennelements in Form einer Trennfolie 123 getrennt. Bei der Trennfolie 123 handelt es sich insbesondere um eine Teflonfolie. Diese hat die Eigenschaft, dass sie gasundurchlƤssig fĆ¼r den Gasstrom 107 ist, jedoch fĆ¼r die mittels der Emissionelektroden 111 zugefĆ¼hrte Elektronen durchlƤssig ist. Mit anderen Worten wird durch die Trennfolie 123 bewirkt, dass der Gasstrom 107 nicht in den Bereich der Emissionselektroden 111 eintreten kann und dort zu unerwĆ¼nschten Verunreinigungen fĆ¼hren kann. Gleichzeitig wird sichergestellt, dass weiterhin eine effiziente Abscheidung von Verunreinigungen aus dem Gasstrom in Richtung der Gegenelektroden 109 mittels des Niedrigenergieplasmas, dass durch Plasmakegel 125 angeordnet ist, erreicht werden kann.In addition, the gas flow 107 is separated from the area in which the counter emission electrodes 111 are located by means of a separating element in the form of a separating film 123 which is permeable to the plasma or electrons. The separating film 123 is in particular a Teflon film. This has the property that it is gas-impermeable to the gas stream 107, but is permeable to the electrons supplied by means of the emission electrodes 111. In other words, the separating film 123 has the effect that the gas flow 107 cannot enter the region of the emission electrodes 111 and can lead to undesired contamination there. At the same time, it is ensured that an efficient separation of impurities from the gas flow in the direction of the counter electrodes 109 by means of the low-energy plasma that is arranged by the plasma cone 125 can be achieved.

Versuche an aus dem Stand der Technik bekannten Abscheidevorrichtungen haben gezeigt, dass die Ansammlung von Verunreinigungen im Bereich der Emissionselektroden dadurch begĆ¼nstigt wird, dass es zu einer elektrostatischen Aufladung im Bereich eines TrƤgerelementes, aus dem die Emissionselektroden austreten, kommt. Meist wird das TrƤgerelement aus einem keramischen Material gefertigt. ErfindungsgemƤƟ wird nun vorgeschlagen, dass durch Ableitelemente eine elektrostatische Aufladung der OberflƤche des TrƤgerelements reduziert wird.Tests on separation devices known from the prior art have shown that the accumulation of impurities in the area of the emission electrodes is promoted by the fact that an electrostatic charge occurs in the area of a carrier element from which the emission electrodes emerge. The carrier element is usually made of a ceramic material. According to the invention it is now proposed that an electrostatic charge on the surface of the carrier element is reduced by means of discharge elements.

In Figur 9 ist eine erste AusfĆ¼hrungsform eines derartigen Ableitelements dargestellt. Das TrƤgerelement 131 besteht aus einem keramischen Material, in das jedoch ein Ableitelement 133 in Form eines leitenden Gitters eingebettet ist. Das Gitter 133 bewirkt, dass sich auf der OberflƤche des TrƤgerelement 131 ansammelnde LadungstrƤger abgefĆ¼hrt werden, also eine elektrostatische Aufladung der OberflƤche des TrƤgerelements 131 derartig verhindert wird, dass sich Verunreinigungen nicht im Bereich der Emissionselektroden 135 ansammeln kƶnnen. Ferner wird ein Ableitelement dadurch gebildet, dass zwischen den Elektroden 135 jeweils eine Vertiefung 137 ausgebildet ist. Diese Formgebung unterstĆ¼tzt die Ableitung der LeistungstrƤger aufgrund der elektrischen LeitfƤhigkeit des Materials und erhƶht den Widerstand fĆ¼r Verunreinigungen zu dem TrƤgerelement zu gelangen.In Figure 9 a first embodiment of such a diverting element is shown. The carrier element 131 consists of a ceramic material in which, however, a discharge element 133 in the form of a conductive grid is embedded. The grid 133 has the effect that charge carriers that collect on the surface of the carrier element 131 are discharged, that is to say that electrostatic charging of the surface of the carrier element 131 is prevented in such a way that impurities cannot collect in the area of the emission electrodes 135. Furthermore, a discharge element is formed in that a recess 137 is formed between each of the electrodes 135. This shape supports the dissipation of the power carriers due to the electrical conductivity of the material and increases the resistance for contaminants to reach the carrier element.

In Figur 10 ist eine weitere AusfĆ¼hrungsform eines Ableitelements dargestellt. Das TrƤgerelement 131' weist ein Ableitelement 133' in Form einer auf das TrƤgerelement 131' aufgebrachten Beschichtung auf. Die Beschichtung 133' wird auf dasselbe elektrische Potential wie die Emissionselektroden 135' gelegt und so eine elektrostatische Aufladung vermieden.In Figure 10 a further embodiment of a discharge element is shown. The carrier element 131 'has a discharge element 133' in the form of a coating applied to the carrier element 131 '. The coating 133 'is placed at the same electrical potential as the emission electrodes 135' and thus an electrostatic charge is avoided.

Ein entsprechendes Ableitelement 133" kann, wie in Figur 11 dargestellt, auch in Form eines von dem TrƤgerelement 131" beabstandeten Gitters, durch welches die Emissionselektroden 135" hindurchtreten, realisiert sein. Um eine elektrostatische Aufladung der OberflƤche des TrƤgerelements 131" zu vermeiden, wird an das Gitter 133" ebenfalls das gleiche elektrische Potential wie an die Emissionelektroden 135" angelegt. Ferner wird der Abstand zwischen den Emissionselektroden 135" und dem Gitter bzw. der Ɯberstand der Emissionselektrode 135" durch das Gitter so gewƤhlt, dass das Plasma nicht zwischen Gitter und Emissionselektrode 135" sondern zwischen Emissionselektrode 135" und Gegenelektrode gezĆ¼ndet wird.A corresponding diverting element 133 ā€³ can, as in FIG Figure 11 shown, can also be implemented in the form of a grid spaced apart from the carrier element 131 ā€³ through which the emission electrodes 135 ā€³ pass. In order to avoid electrostatic charging of the surface of the carrier element 131 ", the same electrical potential is also applied to the grid 133" as to the emission electrodes 135 ". Furthermore, the distance between the emission electrodes 135" and the grid or the protrusion of the emission electrode is set 135 "is selected by the grid in such a way that the plasma is ignited not between the grid and emission electrode 135" but between emission electrode 135 "and the counter electrode.

Wie in Figur 8 dargestellt, wird der Innenbereich einer Abscheidevorrichtung 101 durch ein TrƤgerelement 119, eine Wandung 139, in der eine mit der Eintrittsleitung 103 in Verbindung stehende Eintrittsƶffnung 141 ausgebildet ist, eine zweite Wandung 143, in der eine Austrittsƶffnung 145, die mit der Austrittsleitung 105 verbunden ist, angeordnet ist und eine dritte Wandung 147, die unterhalb der Gegenelektroden 109 ausgebildet ist, umgeben.As in Figure 8 The inner area of a separating device 101 is represented by a carrier element 119, a wall 139 in which an inlet opening 141 connected to the inlet line 103 is formed, a second wall 143 in which an outlet opening 145 which is connected to the outlet line 105 , and a third wall 147, which is formed below the counter electrodes 109, surround.

In weiteren AusfĆ¼hrungsformen kann vorgesehen sein, dass sich die Ableitelemente 133, 133', 133" nicht nur im Bereich des TrƤgerelements 131, 131', 131" erstrecken sondern auch im Bereich der ersten Wandung 139, der zweiten Wandung 143 und/oder der dritten Wandung 147 angeordnet sind. Auf diese Weise wird ein "faradayscher KƤfig" ausgebildet, der bewirkt, dass zusƤtzliche elektrische Felder innerhalb der Abscheideeinrichtung, die zu einer Beeinflussung des Ionenwinds und zu einem "Anziehen" von Verunreinigungen an die Wandungen fĆ¼hren kƶnnten, vermieden werden. So befinden sich alle Wandungen auf dem gleichen Potential, insbesondere Massenpotential, so dass eine attraktive Kraft zwischen den Wandungen und den entsprechenden Verunreinigungen vermieden wird. Insbesondere wenn die Ableitelemente auf Masse gelegt werden, kƶnnen OberflƤchenladungen sofort abgefĆ¼hrt werden. Zur Erreichung dieser Ableitelemente kƶnnen beispielsweise die Einlass- und Auslassstrecke der Abscheidevorrichtung ein leitfƤhiges Material oder zumindest eine leitfƤhige Beschichtung aufweisen. Auch kann das GehƤuse gesamt ein leitfƤhiges Material bzw. eine leitfƤhige Beschichtung aufweisen. Hierbei ist jedoch eine leitfƤhige Beschichtung bevorzugt. So kann beispielsweise ein thermisch schlecht leitendes Material mit einer entsprechend elektrisch leitfƤhigen Beschichtung versehen werden. So wird verhindert, zumindest reduziert, dass sich bei der AbkĆ¼hlung der Abscheidevorrichtung Kondensat auf den Innenwandungen der Abscheidevorrichtung bilden kann.In further embodiments, it can be provided that the diverting elements 133, 133 ', 133 "extend not only in the area of the carrier element 131, 131', 131" but also in the area of the first wall 139, the second wall 143 and / or the third Wall 147 are arranged. In this way, a "Faraday cage" is formed which has the effect that additional electrical fields within the separation device, which could influence the ion wind and "attract" impurities to the walls, are avoided. So all walls are at the same potential, in particular mass potential, so that an attractive force between the walls and the corresponding impurities is avoided. In particular, when the discharge elements are connected to ground, surface charges can be discharged immediately. To achieve these discharge elements, for example, the inlet and outlet sections of the separation device can have a conductive material or at least a conductive coating. The housing as a whole can also have a conductive material or a conductive coating. However, a conductive coating is preferred here. For example, a material with poor thermal conductivity can be provided with a correspondingly electrically conductive coating. This prevents, or at least reduces, the possibility that condensate can form on the inner walls of the separation device when the separation device cools down.

Weitergehende Versuche an aus dem Stand der Technik bekannten Abscheidevorrichtungen haben gezeigt, dass nachteilige Verwirbelungen der Blow-By-Strƶmung im Innenbereich einer Abscheidevorrichtung 101 auftreten, wobei insbesondere die Verwirbelungen dazu fĆ¼hren, dass das Blow-By in den Bereich der Emissionselektroden gelangt. Dadurch, dass also die Blow-By-Strƶmung den Bereich der Emissionselektroden verwirbelt wird, kƶnnen die mit dem Blow-By mitgefĆ¼hrten Partikel entlang der oberen Wandung der Abscheidevorrichtung zur Emissionselektrode gelangen, und sich dadurch an den Spitzen der Emissionselektroden im oberen Bereich der Abscheidevorrichtung ansammeln. Durch die Verunreinigung der Emissionselektroden kann die FunktionsfƤhigkeit der Abscheidevorrichtung beeintrƤchtigt werden.Further tests on separation devices known from the prior art have shown that disadvantageous turbulence of the blow-by flow occurs in the interior of a separation device 101, the turbulence in particular causing the blow-by to reach the area of the emission electrodes. Because the blow-by flow swirls the area of the emission electrodes, the particles carried along with the blow-by can reach the emission electrode along the upper wall of the separation device, and thereby collect at the tips of the emission electrodes in the upper area of the separation device . The functionality of the separation device can be impaired by the contamination of the emission electrodes.

ErfindungsgemƤƟ wird nun vorgeschlagen, dass zwischen Gruppen von Emissionselektroden in dem oberen Bereich der Abscheidevorrichtung eingebrachte Beeinflussungsvorrichtungen das durch die Emissions- bzw. zweite Elektroden und ersten Elektroden bzw. Gegenelektroden ausgebildete elektrische Feld dergestalt beeinflusst wird, dass die Tonenwinde durch das modifizierte elektrische Feld so geleitet werden, dass sie nicht mehr nachteilhaft wirken. Die nachteilige Verwirbelung des Blow-By soll nicht mehr auftreten, zumindest reduziert werden. Dadurch strƶmt kein Blow-By an der Decke entlang zu den Emissionselektroden, wodurch die Spitzen der Emissionselektroden im oberen Bereich der Abscheidevorrichtung lƤnger sauber bleiben.According to the invention it is now proposed that influencing devices introduced between groups of emission electrodes in the upper region of the separation device influence the electric field formed by the emission or second electrodes and first electrodes or counter-electrodes in such a way that the clay winch is guided through the modified electric field that they no longer have an adverse effect. The disadvantageous turbulence of the blow-by should no longer occur, at least it should be reduced. As a result, no blow-by flows along the ceiling to the emission electrodes, as a result of which the tips of the emission electrodes in the upper area of the separation device remain clean for longer.

In Figur 13 ist eine erste AusfĆ¼hrungsform einer derartigen Beeinflussungsvorrichtung 160 in einer Abscheidevorrichtung in Form eines metallischen Vollkƶrpers mit im wesentlichen C-fƶrmigem Profil, dargestellt. Dabei sind die Beeinflussungsvorrichtungen 160 jeweils im Wechsel mit einer Gruppe 165 von zweireihig angeordneten Emissionselektroden 162 in der Abscheidevorrichtung 101 integriert, wobei der entlang der oberen Wandung der Abscheidevorrichtung 101 verlaufende Bereich 168 der Beeinflussungsvorrichtung 160 einstĆ¼ckig Ć¼ber einen, insbesondere konkav ausgebildeten, Verbindungsbereich 161 mit dem entlang der seitlichen Wandungen der Abscheidevorrichtung verlaufenden Bereich 169 der Beeinflussungsvorrichtung 160 verbunden ist. Im unteren Bereich ist die Beeinflussungsvorrichtung 160 mit den dem Bereich 168 der Beeinflussungsvorrichtung 160 gegenĆ¼berliegenden Gegenelektroden 163' leitend verbunden.In Figure 13 a first embodiment of such an influencing device 160 is shown in a separating device in the form of a solid metal body with a substantially C-shaped profile. In this case, the influencing devices 160 are each integrated in alternation with a group 165 of emission electrodes 162 arranged in two rows in the separating device 101, with the region 168 of the influencing device 160 running along the upper wall of the separating device 101 integrally via an, in particular concave, connecting region 161 with the The area 169 of the influencing device 160 that extends along the side walls of the separating device is connected. In the lower region, the influencing device 160 is conductively connected to the counter-electrodes 163 ā€² lying opposite the region 168 of the influencing device 160.

In Figur 14 ist eine schematische Aufsicht auf den oberen Bereich der Abscheidevorrichtung 101, welcher Gruppen 165 umfassend zwei Reihen von zwei Emissionselektroden 162 und Beeinflussungsvorrichtungen 160 umfasst, gezeigt. Es ist hier nochmals zu sehen, wie die Emissionselektroden 162, welche in der gezeigten Realisierungsform der Abscheidevorrichtung 101 in _Figur 14 gruppiert zu jeweils zwei Reihen ausgestaltet sind, jeweils im Wechsel mit einer erfindungsgemƤƟen Beeinflussungsvorrichtung 160 sich quer im oberen Bereich der Abscheidevorrichtung 101 erstrecken. Dabei wird eine Beeinflussungsvorrichtung 160 in Form eines im Wesentlichen C-fƶrmigen Einsatz fortlaufend wiederholt zwischen je zwei Elektrodenreihen 162 platziert, um mƶglichst alle Elektrodenspitzen durch den positiven Effekt dieser Lƶsung schĆ¼tzen zu kƶnnen. Ein Abstand d zwischen einer Gruppe 165 von Emissionselektroden 162 und der Beeinflussungsvorrichtung 160 ist hierbei so groƟ gewƤhlt, dass kein Funkenschlag von den Emissionselektroden 162 zur Beeinflussungsvorrichtung 160 erfolgen kann.In Figure 14 A schematic plan view of the upper region of the deposition device 101, which groups 165 comprising two rows of two emission electrodes 162 and influencing devices 160, is shown. It can be seen here again how the emission electrodes 162, which in the embodiment shown of the separation device 101 in _ Figure 14 grouped into two rows each, alternating with an influencing device 160 according to the invention, extending transversely in the upper region of the separating device 101. In this case, an influencing device 160 in the form of an essentially C-shaped insert is continuously and repeatedly placed between two rows of electrodes 162 each, in order to be able to protect all electrode tips as far as possible through the positive effect of this solution. A distance d between a group 165 of emission electrodes 162 and the influencing device 160 is selected to be so large that no sparking can occur from the emission electrodes 162 to the influencing device 160.

In Figur 15a sind schematisch die FeldlinienverlƤufe des elektrischen Feldes 164' dargestellt, das von der Emissionselektrode 162 und der nicht dargestellten, im unteren Bereich des Bildes angesiedelten Gegenelektrode ausgebildet wird, wenn keine erfindungsgemƤƟe Beeinflussungsvorrichtung mit geerdeten Stirnseiten im Inneren der Abscheidevorrichtung 101 vorgesehen sind. In Figur 15b sind die FeldlinienverlƤufe des elektrischen Feldes 164" fĆ¼r dieselbe Emissionselektrode 162 schematisch dargestellt. Das elektrische Feld 164" bildet sich zwischen der Emissionselektrode 162 und der wiederrum nicht dargestellten Gegenelektrode im unteren Bereich aus. Allerdings ist nun eine Beeinflussungsvorrichtung mit geerdeten Stirnseiten dargestellt. Im Rahmen verschiedener Versuche hat sich empirisch gezeigt, dass die Feldverteilung des elektrischen Felds 164" aus Figur 15b die auftretenden Verwirbelung des Blow-By eliminiert oder zumindest reduziert, da die Ionenwinde durch die modifizierte Feldgestalt des elektrischen Feldes 164" so geleitet werden, dass sie nicht mehr nachteilig auf das Blow-By wirken. Insbesondere bewirken die Stirnseiten der Beeinflussungsvorrichtungen 160 eine Feldverschiebung. So werden die Partikel frĆ¼hzeitiger aufgeladen und abgeschieden, so dass der Abscheidegrad insgesamt steigt. Dies fĆ¼hrt vorteilhafter Weise dazu, dass kein Blow-By mehr entlang der Decke zu den Emissionselektroden 162 strƶmt und somit die Spitzen der Emissionselektroden 162 im oberen Bereich der Abscheidevorrichtung 101 lƤnger sauber bleiben, da sich weniger Partikel an den Emissionselektroden 162 ablagern, als es etwa bei den Feldlinienverlaufen des Felds 164' ohne Beeinflussungsvorrichtungen der Fall ist.In Figure 15a the field lines of the electric field 164 'are shown schematically, which are formed by the emission electrode 162 and the counter-electrode (not shown) located in the lower area of the picture if no influencing device according to the invention with earthed end faces is provided inside the separating device 101. In Figure 15b the field lines of the electric field 164 ā€³ for the same emission electrode 162 are shown schematically. The electric field 164 ā€³ is formed between the emission electrode 162 and the counter electrode (not shown) in the lower area. However, an influencing device with grounded end faces is now shown. In the course of various experiments it has been empirically shown that the field distribution of the electric field 164 ā€³ from Figure 15b the turbulence that occurs in the blow-by is eliminated or at least reduced, since the ion winds are guided by the modified field shape of the electric field 164 ā€³ in such a way that they no longer have a detrimental effect on the blow-by. In particular, the end faces of the influencing devices 160 cause a field shift. The particles are charged and separated earlier, so that the overall degree of separation increases. This advantageously means that blow-by no longer flows along the ceiling to the emission electrodes 162 and thus the tips of the emission electrodes 162 in the upper region of the separation device 101 are longer stay clean, since fewer particles are deposited on the emission electrodes 162 than is the case, for example, with the field lines of the field 164 'without influencing devices.

Wie oben beschrieben, wird eine Beeinflussungsvorrichtung 160 jeweils im Wechsel mit einer Gruppe umfassend zwei Reihen von Emissionselektroden 162 in der Abscheidevorrichtung 101 vorgesehen, wodurch mƶglichst alle Emissionselektrodenspitzen durch die Beeinflussungsvorrichtung vor Ablagerungen von Partikeln des Blow-By geschĆ¼tzt werden. Denn durch das Wiederholen der Beeinflussungsvorrichtung Ć¼bertrƤgt sich der positive Effekt auf alle Emissionselektroden bzw. Gruppen von Emissionselektroden. SelbstverstƤndlich ist es aber auch mƶglich, anstelle von den exemplarisch hier angefĆ¼hrten zwei Emissionselektrodenreihen stets nur eine einzige Emissionselektrodenreihe im Wechsel mit einer Beeinflussungsvorrichtung anzubringen, oder aber jeweils drei Emissionselektrodenreihen im Wechsel mit einer Beeinflussungsvorrichtung anzubringen, oder aber eine Vielzahl von Emissionselektrodenreihen jeweils im Wechsel mit einer Beeinflussungsvorrichtung anzubringen. SelbstverstƤndlich kann der Fachmann hier anstelle von Elektrodenreihen auch andere Anordnungen der Emissionselektroden 162 innerhalb einer Gruppe von Emissionselektroden 165 vorsehen.As described above, an influencing device 160 is provided in the separating device 101, alternating with a group comprising two rows of emission electrodes 162, whereby as much as possible all emission electrode tips are protected by the influencing device from deposits of blow-by particles. Because by repeating the influencing device, the positive effect is transferred to all emission electrodes or groups of emission electrodes. Of course, instead of the two rows of emission electrodes listed here as an example, it is also possible to attach only a single row of emission electrodes, alternating with an influencing device, or alternating three rows of emission electrodes with one influencing device, or a large number of rows of emission electrodes, each alternating with one To attach influencing device. Of course, the person skilled in the art can also provide other arrangements of the emission electrodes 162 within a group of emission electrodes 165 instead of rows of electrodes.

Bei der erfindungsgemƤƟen Vorrichtung kommt es bei den Beeinflussungsvorrichtungen 160 lediglich auf die Stirnflanken an, so dass ein Vollkƶrper wie er in den Figuren 13 und 14 fĆ¼r die Beeinflussungsvorrichtungen verwendet ist, eine nicht zwingend notwendige Realisierungsform der Beeinflussungsvorrichtungen 160 darstellt. Diese erfindungsgemƤƟen Vorrichtungen 160 kƶnnen bspw. auch durch geerdete Blechstreifen oder Ƥhnliches realisiert werden. Auch ist fĆ¼r die HerbeifĆ¼hrung des positiven Effekts der modifizierten Feldverteilung die Ausbildung von runden Verbindungsbereichen 161, wie sie in den Figuren 13 und 14 bei den Beeinflussungsvorrichtungen 160 ausgebildet sind, nicht notwendig. Die in den Figuren 13 und 14 vorhandenen abgerundeten Verbindungsbereiche 161 dienen vielmehr einem erleichterten Einbau und einer erleichterten Fertigung. DarĆ¼ber hinaus kƶnnen auch andere Querschnittsprofile der erfindungsgemƤƟen Beeinflussungsvorrichtung, insbesondere Querschnittsprofile in einer Ebene senkrecht zur Strƶmungsrichtung des Blow-By, realisiert werden, ohne dass dies dem positiven Effekt entgegensteht.In the device according to the invention, the influencing devices 160 only depend on the end flanks, so that a solid body like that in the Figures 13 and 14th is used for the influencing devices, represents an implementation form of the influencing devices 160 that is not absolutely necessary. These devices 160 according to the invention can also be implemented, for example, by grounded sheet metal strips or the like. In order to bring about the positive effect of the modified field distribution, the formation of round connection areas 161, as shown in FIG Figures 13 and 14th are formed in the influencing devices 160, not necessary. The ones in the Figures 13 and 14th Rather, existing rounded connection areas 161 serve for easier installation and easier production. In addition, other cross-sectional profiles of the influencing device according to the invention, in particular cross-sectional profiles in a plane perpendicular to the flow direction of the blow-by, can also be implemented without this opposing the positive effect.

Hierzu zeigt Figur 16a eine andere mƶgliche Querschnittsform der erfindungsgemƤƟen Beeinflussungsvorrichtung 160, welche eine bogenfƶrmige Gestalt aufweist. In Figur 16b ist die aus Figur 13 und Figur 14 bekannte im Wesentlichen C-fƶrmige Gestalt mit die einzelnen Segmente verbindenden Verbindungsbereiche 161 gezeigt. In Figur 16c in eine dritte mƶgliche Querschnittsform der erfindungsgemƤƟen Beeinflussungsvorrichtung dargestellt, wobei deren seitlichen FortsƤtze senkrecht von dem in der Abscheidevorrichtung 101 im oberen Bereich quer verlaufenden Teils abgehen und damit anstelle von Rundungen rechtwinklige Verbindungsbereiche 167 aufweisen.This shows Figure 16a Another possible cross-sectional shape of the influencing device 160 according to the invention, which has an arcuate shape. In Figure 16b is that out Figure 13 and Figure 14 known, essentially C-shaped design with connecting areas 161 connecting the individual segments. In Figure 16c in a third possible cross-sectional shape of the influencing device according to the invention, the lateral extensions of which extend perpendicularly from the part running transversely in the upper area of the separating device 101 and thus have right-angled connecting areas 167 instead of roundings.

In Figur 12 ist schlieƟlich eine Abwandlung einer erfindungsgemƤƟen Vorrichtung dargestellt, die die DurchfĆ¼hrung eines erfindungsgemƤƟen Verfahrens ermƶglicht. Bei der Abscheidevorrichtung 151 ist ein TrƤgerelement 153 vorhanden, wobei die Emissionselektroden 155 mittels Aktuatoren 157 an dem TrƤgerelement 153 befestigt sind. Die Akuatoren 157 weisen piezoelektrische Elemente auf, die es ermƶglichen, dass die Emissionselektroden 155 in (Ultraschall)Schwingungen versetzt werden. Dies bewirkt, dass die Emissionselektroden dadurch gereinigt werden kƶnnen, dass an den Emissionselektroden 155 anhaftende Verunreinigungen mittels Ultraschall entfernt werden.In Figure 12 Finally, a modification of a device according to the invention is shown, which enables a method according to the invention to be carried out. The separating device 151 has a carrier element 153, the emission electrodes 155 being attached to the carrier element 153 by means of actuators 157. The acuators 157 have piezoelectric elements, which enable the emission electrodes 155 to be set in (ultrasonic) oscillations. This has the effect that the emission electrodes can be cleaned in that contaminants adhering to the emission electrodes 155 are removed by means of ultrasound.

In einer nicht dargestellten AusfĆ¼hrungsform kann vorgesehen sein, dass die Emisionselektroden 155 aus einem FGL-Material, also einen FormgedƤchtnismaterial, gebildet sein kƶnnen bzw. dieses zumindest umfassen. Das FormgedƤchtnismaterial bewirkt, dass es bei einer Erhƶhung der Temperatur zu einer Verformung der Emissionselektrode kommt. Durch diese Verformung werden etwaige sich an der Emissionselektrode befindende Verunreinigungen bzw. Anhaftungen derartig verformt, dass sie von der OberflƤche "abplatzen".In an embodiment not shown, it can be provided that the emission electrodes 155 can be formed from an SMA material, that is to say a shape memory material, or at least comprise this. The shape memory material has the effect that the emission electrode is deformed when the temperature rises. As a result of this deformation, any impurities or adhesions located on the emission electrode are deformed in such a way that they "flake off" from the surface.

Die in der vorstehenden Beschreibung, in den AnsprĆ¼che sowie in den Figuren dargestellten Merkmale kƶnnen sowohl einzeln als auch in beliebiger Kombination wesentlich fĆ¼r die Erfindung in ihren verschiedenen AusfĆ¼hrungsformen sein, wobei die Erfindung durch die nachfolgenden AnsprĆ¼che festgelegt wird.The features shown in the above description, in the claims and in the figures can be essential for the invention in its various embodiments both individually and in any combination, the invention being defined by the following claims.

BezugszeichenlisteList of reference symbols

A1A1
AusschnittCutout
NN
NormalenrichtungNormal direction
B, CB, C
Richtungdirection
X, YX, Y
Achseaxis
dd
Abstanddistance
11
AbscheidevorrichtungSeparation device
33
EintrittsleitungEntry line
55
AustrittsleitungOutlet line
77th
GasstromGas flow
99
GegenelektrodeCounter electrode
1111
EmissionelektrodeEmission electrode
1313
Anschlussconnection
1515th
SammelraumCollection room
1717th
SchottelementeBulkhead elements
1919th
TrƤgerelementSupport element
2121st
DuroplastkƶrperThermoset body
31, 31', 31"31, 31 ', 31 "
GegenelektrodenelementCounter electrode element
33, 33', 33"33, 33 ', 33 "
PlateaubereichPlateau area
3535
AbstandselementSpacer
3737
BasisniveauBasic level
3939
VerbindungselementConnecting element
4141
PlasmakegelPlasma cone
43', 43"43 ', 43 "
VerbindungseinrichtungConnecting device
5151
EmissionelektrodeEmission electrode
5353
EmissionelektrodeEmission electrode
5555
EmissionelektrodeEmission electrode
5757
EmissionelektrodeEmission electrode
5959
KnickKink
6161
ElektrodenbereichElectrode area
6363
EinspeisungsendeEnd of feed
6565
ElektrodenbereichElectrode area
6767
UmbiegungBend
6969
ElektrodenbereichElectrode area
7171
ElektrodenendeElectrode end
7373
AbtropfelementDraining element
7575
WindungTwist
7777
ElektrodenendeElectrode end
7979
AbtropfelementDraining element
8080
AbtropfelementDraining element
8181
TellerelementPlate element
8383
EmissionselektrodeEmission electrode
8585
AnstrƶmelementInflow element
8787
TrƤgerelementSupport element
8989
AbtropfelementDraining element
9090
ElektrodenendeElectrode end
9191
EmissionselektrodeEmission electrode
9393
ElektrodenendeElectrode end
9595
VerjĆ¼ngungrejuvenation
101101
AbscheidevorrichtungSeparation device
103103
EintrittsleitungEntry line
105105
AustrittsleitungOutlet line
107107
GasstromGas flow
109109
GegenelektrodeCounter electrode
111111
EmissionselektrodeEmission electrode
113113
AnschluƟConnection
115115
SammelraumCollection room
119119
TrƤgerelementSupport element
121121
DuroplastkƶrperThermoset body
123123
TrennfolieRelease film
125125
PlasmakegelPlasma cone
131, 131', 131"131, 131 ', 131 "
TrƤgerelementSupport element
133, 133', 133"133, 133 ', 133 "
AbleitelementDischarge element
135, 135', 135"135, 135 ', 135 "
EmissionselektrodeEmission electrode
137137
Vertiefungdeepening
139139
WandungWall
141141
EintrittsƶffnungInlet opening
143143
WandungWall
145145
AustrittsƶffnungOutlet opening
147147
WandungWall
151151
AbscheidevorrichtungSeparation device
153153
TrƤgerelementSupport element
155155
EmissionselektrodeEmission electrode
157157
AktuatorActuator
160160
BeeinflussungsvorrichtungInfluencing device
161161
VerbindungsbereichConnection area
162162
EmissionselektrodeEmission electrode
163, 163'163, 163 '
GegenelektrodeCounter electrode
164', 164"164 ', 164 "
elektrisches Feldelectric field
165165
Gruppegroup
167167
VerbindungsbereichConnection area
168168
BereichArea
169169
BereichArea

Claims (14)

  1. A device (1, 101, 151) for separating off liquid and/or particulate contaminants from a gas flow (7, 107), in which a flow path of the gas flow (7, 107) runs between at least one first electrode (9, 31, 109) acting as a counter electrode and at least one second electrode (11, 111, 51, 53, 57, 135, 135', 135", 155) acting as an emitter electrode and having an electrode end (71, 77, 90) oriented in the direction of the first electrode, and a direct-current voltage exceeding the breakdown voltage can be applied between the first electrode (9, 31, 109) and the second electrode (11, 111, 51, 53, 57, 135, 135', 135", 155) in order to form a stable low-energy plasma (41, 125), wherein
    the second electrode (11) extends substantially along a first axis (X) in a first direction and the first electrode (31) has at least one plateau region (33) which is arranged opposite the second electrode (11) and which extends at least regionally in a first plane running substantially perpendicular to the first direction (X), wherein
    the plateau region (33) is connected to a base level (37) by means of a spacer element (35) extending against the first direction (X),
    characterized in that
    the plateau region (33) is connected to the spacer element (35) by means of at least one connecting element (39).
  2. The device according to claim 1, characterized in that
    (i) the spacer element (35) is electrically conductive and/or the connecting element (39) runs substantially perpendicular to the first direction and along the first plane
  3. The device according to claim 1 or 2, characterized in that
    the plateau region (33) is arranged coaxially to the second electrode (11), and/or the flow path runs substantially between the second electrode (11) and the plateau region (33), the plateau region (33) has, at least regionally, in particular, in the edge region, a surface that is curved in the direction of the second electrode (11) and/or against the first direction (X),
    the plateau region (33) is arranged a distance from the base level (37) of the first electrode (31) in the direction of the second electrode (11), and/or a plurality of second electrodes (11) are present, and the first electrode has a plurality of plateau regions (33), wherein each of the second electrodes (11) is associated with a respective plateau region (33).
  4. The device according to one of the preceding claims, characterized in that
    the spacer element (35) runs coaxially to the first axis (X), or the spacer element (35) runs at a distance from the first axis (X), preferably at least regionally parallel to the first axis (X), and/or the first electrode (31) has, at least regionally, a substantially C-shaped cross-section, in particular, the C-shape being formed of the base level (37), the spacer element (35), the connecting element (39), and the plateau region (33).
  5. The device according to one of the claims 2 to 4, characterized in that
    (a) the plateau region (33), the spacer element (35), the base level (37), and/or the connecting element (39) are configured at least regionally as a single piece; the plateau regions (33', 33") are connected by means of at least one connecting device (43, 43") that extends substantially parallel to the base level and/or has a lesser extension in at least one direction of the first plane than the plateau regions (33', 33"), wherein the plateau regions (33') are arranged along a straight line in a direction perpendicular to the first axis, in particular, the connecting devices (43') extend substantially along the straight line and/or a network and/or matrix is configured by means of the connecting devices (43"), wherein at least one plateau region (33") is arranged on at least one of the points of intersection of the connecting devices (43"), wherein the network and/or matrix extends along the first plane, and/or
    (b) the plurality of plateau regions (33) are provided by at least one counter electrode element (31) that is preferably configured at least regionally as a punched sheet metal part, in particular, the plateau regions (33) are arranged in the counter electrode element (31) along a second direction and/or at least two counter electrode elements (31) can be arranged with mirror symmetry relative to one another, preferably at least regionally interlocking with one another, preferably offset from one another in such a manner that the plateau regions (33) of the respective counter electrode elements (31) are arranged offset relative to one another along the respective second direction, or the punched sheet metal part forms the plateau regions (33', 33") and connecting elements (43', 43").
  6. The device according to one of the preceding claims, characterized by
    at least one drip element (59, 73, 79, 80, 89) which is operatively connected to the second electrode (51, 53, 55, 57, 83) and by means of which fluid particles of the gas flow that are moving in the direction of and/or along the second electrode (51, 53, 55, 57, 83) can be collected in such a manner that the fluid particles come loose from the drip element (59, 73, 79, 80, 89) at a distance from the electrode end (71, 77, 91), wherein particularly
    (i) the drip element (89) is at least regionally encompassed by at least one approach flow element (85) arranged in the region of the second electrode (83), and/or
    (ii) the second electrode (51, 53, 55, 57) encompasses the drip element (59, 73, 79, 80) at least regionally, wherein fluid particles flowing along the second electrode (51, 53, 55, 57) in the direction of the electrode end (71, 77) can be collected at a distance from the electrode end (71, 77) by means of the drip element (59, 73, 79, 80) in such a manner that the fluid particles come loose from the second electrode (51, 53, 55, 57) at a distance from the electrode end 71, 77), wherein, in particular, the electrode end (71) and an infeed end (63) of the second electrode (51) that is opposite the electrode end (71) are arranged offset from one another along a first axis (Y) extending in a first direction in such a manner that the electrode end (71) is arranged close to the first electrode, and the drip element (59) is formed at least regionally by a transition region of the second electrode that is arranged between a first electrode region (61) in which at least one surface region of the second electrode (51) and/or the electrode (51) extends from the infeed end (63) in the direction of the electrode end (71) in a direction with a direction component along the first axis (Y)-and a second electrode region (65) in which at least one surface region of the second electrode (51) and/or the second electrode (51) extends at least regionally in a direction with a direction component against the first direction, wherein, preferably, at least one surface region of the second electrode (51) and/or the second electrode (51) extend from the infeed end (63) in the direction of the electrode end (71), in particular, subsequently to the second electrode region (65), in a third electrode region (69) in a direction with a direction component along the first axis (Y), preferably in such a manner that the drip element (59) is arranged along the first axis above the electrode end (71).
  7. The device according to claim 6, characterized in that
    the drip element is encompassed by and/or constituted of at least one winding (75) of the second electrode (53), at least one kink (59, 89) of the second electrode (51) and/or the approach flow element (85), at least one helical region of the second electrode, at least one protuberance (79) of the surface of the second electrode (55) and/or the approach flow element, at least one skirt, and/or at least one disc element (81); the drip element (79, 80) circumferentially surrounds the second electrode; preferably with radial symmetry, the drip element (73) is arranged downstream of the gas flow; and/or the approach flow element (85) is arranged upstream of the gas flow; and/or the drip element (59, 73, 79, 80, 89) is configured at least regionally integrally with the second electrode (51, 53, 55, 57) and/or the approach flow element (85).
  8. The device according to one of the preceding claims, characterized in that
    the second electrode (91) has at least one taper (95), in particular, in the region of the electrode end (93), wherein particularly
    (i) the taper is configured in the form of at least one tip, at least one ridge, and/or at least one edge (95), and/or
    (ii) the second electrode has a substantially cylindrical, triangular, quadratic, rectangular, and/or polygonal cross-sectional shape in a plane perpendicular to a main extension direction, in particular, the first direction; the second electrode has an end surface inclined with respect to the main extension direction, in particular, in the region of the electrode end; in particular, the taper is encompassed by an edge of the end surface; the second electrode has-in particular, in the region of the electrode end (93)-at least regionally a hollow region in which the second electrode is configured so as to be hollow, preferably in the shape of a hollow cylinder, tube, and/or a cone shell; wherein preferably the taper (95) is encompassed by at least one end edge of the wall of the hollow region; in particular, the taper is circumferential on the electrode end (93); and/or the second electrode comprises a carbon material, at least regionally, in particular, in the region of the electrode end; and/or the second electrode comprises at least one coating-preferably one that reduces the attachment of particles and/or fluid, in particular, a coating comprising titanium nitride, nanosol, at least one nanoparticle-containing material, at least one material constituting a surface having a nanostructure, and/or chromium nitride-at least regionally, in particular, in the region of the electrode end.
  9. The device according to one of the preceding claims, characterized in that
    the device comprises at least two second electrodes (135, 135', 135"), preferably a multitude of second electrodes (135, 135', 135"), wherein the second electrodes (135, 135', 135") extend out from at least one first support element (131, 131', 131"), and
    at least one drain device (133, 133', 133") is provided in order to reduce an electrostatic charge of the support element (131, 131', 131") and/or to discharge charge carriers collecting on a surface of the support element (131, 131', 131"), at least in the region between the second electrodes (135, 135, 135").
  10. The device according to claim 9, characterized in that
    (i) the second electrodes (135, 135', 135") pass at least regionally through the support element (131', 131, 131") and/or that the support element (131, 131', 131") comprise at least one ceramic element;
    the drain device comprises at least one drainage element (131, 131") that is at least regionally installed on the support element and/or at least regionally embedded in the support element, wherein the drainage element preferably comprises at least one drain coating (131') (in particular, an electrically conductive one), at least one drain fabric (in particular, a polyamide-containing and/or grounded one), and/or at least one metal band such as a copper band, and/or the drain device is configured as a conductive tunnel element, and/or
    the drain device comprises at least one depression (137) at least regionally configured in the support element, and/or
    (ii) the drain device comprises at least one drainage device (133") arranged in the region between the electrode ends of the second electrodes and the support element, wherein, in particular, the drainage device comprises at least one conductive mesh (133"), at least one conductive foam, at least one shield element that surrounds the respective second electrode at least regionally and preferably is curved radially outward in the direction of the electrode end, wherein, in particular, the drainage device (133") is at the same electrostatic potential as the second electrodes, and/or characterized in that
    the drain device (133, 133', 133"), the drainage element (133, 133"), the drain coating, and/or the drainage device stretch at least regionally along and/or in a first wall (139) and/or second wall (143) that extend(s) at least regionally in a direction between the second electrode (135, 135', 135") and the first electrode (109) in a direction along the first axis (X) and/or in the first direction and/or opens into the at least one inlet opening (141) or an outlet opening (145), and/or along and/or in a third wall (147) that extends at least regionally in parallel to the first support element (131, 109', 131"), at least regionally below the first electrode (131), and/or at least regionally on the side of the first electrode (109) that faces away from the second electrode (135', 135, 135").
  11. The device according to one of the preceding claims, characterized in that the device comprises at least two second electrodes (162), preferably a multitude of second electrodes (162), and at least one influencing device (160) for influencing the electrical field formed by the at least two second electrodes (162) can be and/or is arranged at least regionally between the at least two second electrodes (162).
  12. The device according to claim 11, characterized in that
    (i) the influencing device (160) can be and/or is arranged substantially at least regionally opposite at least one first electrode (163, 163'), preferably a plurality of first electrodes (163, 163'), and/or a (preferably predetermined) electric potential can be or is applied, and/or
    (ii) the influencing device (160) can be and/or is conductively connected to the at least one first electrode (163'), the potential of the first electrode (163) can be and/or is applied to the influencing device (160), and/or the influencing device and the drain device, the drainage device, and/or the drainage element are at least regionally configured together.
  13. A method for operating a device according to one of the preceding claims, wherein
    a liquid and/or particulate contaminant-containing gas flow is supplied to the device (151), the gas flow is guided at least partially along a flow path configured between at least one first electrode and at least one second electrode (155) in order to separate the contaminants off from the gas flow, and a direct-current voltage exceeding the breakdown voltage is configured between the first electrode and the second electrode (155) in order to form a stable low-energy plasma, characterized in that
    the method furthermore comprises a cleaning step for cleaning the first electrode and/or the second electrode (155).
  14. The method according to claim 13, characterized in that
    during the cleaning step, a ground potential is applied to at least a first group of a plurality of second electrodes (155), or a voltage that exceeds the direct-current voltage and produces a breakdown between the first electrode and the second electrodes (155) of the first group is applied, in particular, while the direct-voltage for forming the low-energy plasma is applied to at least one second group of the second electrodes, wherein preferably the second electrodes (155) are alternately associated with the first group and the second group.
EP16714005.2A 2015-03-19 2016-03-16 Device and method for separating off contaminants Active EP3271077B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015104168.5A DE102015104168A1 (en) 2015-03-19 2015-03-19 Apparatus and method for separating contaminants
EP15179568 2015-08-03
PCT/IB2016/051481 WO2016147127A1 (en) 2015-03-19 2016-03-16 Device and method for separating off contaminants

Publications (2)

Publication Number Publication Date
EP3271077A1 EP3271077A1 (en) 2018-01-24
EP3271077B1 true EP3271077B1 (en) 2021-02-17

Family

ID=55650615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16714005.2A Active EP3271077B1 (en) 2015-03-19 2016-03-16 Device and method for separating off contaminants

Country Status (4)

Country Link
US (1) US10933430B2 (en)
EP (1) EP3271077B1 (en)
CN (1) CN107427839B (en)
WO (1) WO2016147127A1 (en)

Families Citing this family (10)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10980911B2 (en) 2016-01-21 2021-04-20 Global Plasma Solutions, Inc. Flexible ion generator device
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device
JP2019113050A (en) * 2017-12-26 2019-07-11 惈ćƒØć‚æē“”ē¹”ę Ŗ式会ē¤¾ Electrostatic oil mist separator for internal combustion engine
KR20230085946A (en) 2018-02-12 2023-06-14 źø€ė”œė²Œ ķ”„ė¼ģ¦ˆė§ˆ ģ†”ė£Øģ…˜ģŠ¤, ģøģ½”ķ¬ė ˆģ“ķ‹°ė“œ Self cleaning generator device
EP3722003A1 (en) * 2019-04-09 2020-10-14 Technische UniversitƤt Dortmund Electrostatic precipitator
USD875046S1 (en) * 2019-06-07 2020-02-11 Global Plasma Solutions, Inc. Self-cleaning ion generator device
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
KR102283278B1 (en) * 2020-06-16 2021-07-29 ķŠ¹ķ—ˆė²•ģø(ģœ ķ•œ)ķ•“ė‹“ Sample Collection Apparatus for Virus Inspection
AT18030U1 (en) * 2021-08-02 2023-11-15 Villinger Markus Cleaning device for cleaning a gas

Family Cites Families (25)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US1992113A (en) 1931-10-26 1935-02-19 Int Precipitation Co Electrical precipitating apparatus
JPS58155643A (en) * 1982-03-10 1983-09-16 Toshiba Corp Glow-like discharge generator
JPH0710412U (en) * 1993-07-12 1995-02-14 長利 鈓ęœØ Gas purification equipment
DE19534950C2 (en) 1995-09-20 1998-07-02 Siemens Ag Device for the plasma chemical decomposition and / or destruction of pollutants
US6119455A (en) * 1996-08-30 2000-09-19 Siemens Aktiengesellschaft Process and device for purifying exhaust gases containing nitrogen oxides
JP3839592B2 (en) * 1998-08-06 2006-11-01 äø‰č±é›»ę©Ÿę Ŗ式会ē¤¾ Air cleaner
FI118152B (en) * 1999-03-05 2007-07-31 Veikko Ilmari Ilmasti Method and apparatus for separating material in the form of particles and / or droplets from a gas stream
FR2818451B1 (en) * 2000-12-18 2007-04-20 Jean Marie Billiotte ELECTROSTATIC ION EMISSION DEVICE FOR DEPOSITING A QUASI HOMOGENEOUS AMOUNT OF IONS ON THE SURFACE OF A MULTITUDE OF AEROSOL PARTICLES WITHIN A MOVING FLUID.
DE10160198A1 (en) * 2001-12-07 2003-06-18 Hengst Gmbh & Co Kg Method for cleaning electrostatic engine crankcase filters has moving cleaning support travelling over multiple triangular section high voltage electrodes
US7514047B2 (en) 2003-01-15 2009-04-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
AU2004244900B2 (en) * 2003-06-05 2007-04-05 Daikin Industries, Ltd. Discharge apparatus and air purifying apparatus
CN1791468B (en) * 2003-08-29 2012-02-08 äø‰č±é‡å·„äøšę Ŗ式会ē¤¾ Dust collector
US7753994B2 (en) * 2004-01-13 2010-07-13 Daikin Industries, Ltd. Discharge device and air purifier
JP4244022B2 (en) * 2004-04-28 2009-03-25 ę—„ę–°é›»ę©Ÿę Ŗ式会ē¤¾ Gas processing equipment
CN2712445Y (en) * 2004-07-29 2005-07-27 ęŽå‡¤č‡£ Plasma purifier for smoke, dust and peculiar smell
JP2006192013A (en) * 2005-01-12 2006-07-27 National Institute Of Advanced Industrial & Technology Air cleaning device
DE102005023521B3 (en) 2005-05-21 2006-06-29 Forschungszentrum Karlsruhe Gmbh Wet electrostatic ionizing step in electrostatic separator of particles from aerosols and gases has thin sheath around through holes in earth plate with nearby electrodes
CN101063539A (en) * 2006-04-26 2007-10-31 大韩Pncč‚”ä»½ęœ‰é™å…¬åø Fan-filter-units used for decontamination chamber
DE102007025416B3 (en) 2007-05-31 2008-10-23 Marcel Op De Laak Method and apparatus for separating contaminants from a gas stream
IT1391148B1 (en) * 2008-08-06 2011-11-18 Reco 2 S R L METHOD AND APPARATUS FOR PURIFYING GAS
AU2008365614A1 (en) * 2008-12-23 2010-07-01 Oxion Pte. Ltd. Air ionizer electrode assembly
DE102010044252B4 (en) * 2010-09-02 2014-03-27 Reinhausen Plasma Gmbh Apparatus and method for generating a barrier discharge in a gas stream
DE102011007470A1 (en) * 2011-04-15 2012-10-18 Aktiebolaget Skf cleaning device
DE102011053578A1 (en) * 2011-09-13 2013-03-14 Woco Industrietechnik Gmbh Counter electrode for use in device for separating contaminations e.g. oil droplets, from intake air supplied to combustion engine, has outer surface with material transmissive for part of contaminations separated from gas flow
US9604228B2 (en) * 2011-11-09 2017-03-28 Memic Europe B.V. Apparatus with conductive strip for dust removal

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016147127A1 (en) 2016-09-22
CN107427839A (en) 2017-12-01
US20180078948A1 (en) 2018-03-22
EP3271077A1 (en) 2018-01-24
US10933430B2 (en) 2021-03-02
CN107427839B (en) 2020-11-17

Similar Documents

Publication Publication Date Title
EP3271077B1 (en) Device and method for separating off contaminants
EP2244834B1 (en) Electrostatic precipitator
DE102004022288B4 (en) Electrostatic separator with internal power supply
DE102007025416B3 (en) Method and apparatus for separating contaminants from a gas stream
EP1926558A1 (en) Electrostatic ionisation stage in an elimination device
EP1883477A1 (en) Wet electrostatic ionising step in an electrostatic deposition device
DE102007020504A1 (en) Electrostatic precipitator for diesel engine electrostatic crankcase ventilation system, has corona discharge electrode comprising axially extending hollow drum that surrounds tube, and charged particles shielded by tube
EP2640939A2 (en) Device for treating exhaust gas containing soot particles
DE102015104168A1 (en) Apparatus and method for separating contaminants
DE3804779C2 (en)
EP2616646B1 (en) Device for treating soot particle-containing exhaust gases
DE102011050759A1 (en) Controlling the geometry of the grounded surface in electrostatically improved fabric filters
DE102011052946A1 (en) Electrical separation device for filtering particles from gas flow by electrostatic separation, has inlet and suction openings that are arranged so that gas flows to collector through flow channel along wave crest extending direction
WO2002066167A1 (en) Electrostatic dust separator with integrated filter tubing
DE102007056696B3 (en) Electrostatic separator with particle repellent, heating system and method of operation
EP2284442A2 (en) Electrostatic separator and heating system
WO2021099603A1 (en) Electrostatic separator
EP2820258B1 (en) Device for treating a gas flow flowing radially outwards from a central area
DE102017114638B4 (en) Electrostatic precipitator and method for the electrostatic precipitation of substances from an exhaust gas stream
EP1545785B1 (en) Electrostatically operating filter and method for separating particles from a gas
EP2153902A2 (en) Electrostatic separator and heating system
EP2156895B1 (en) Electrostatic separator and heating system
DE102019008127A1 (en) Electrostatic precipitator
DE102019008157A1 (en) Electrostatic precipitator
DE10160198A1 (en) Method for cleaning electrostatic engine crankcase filters has moving cleaning support travelling over multiple triangular section high voltage electrodes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180403

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200901

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012371

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1360782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210518

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012371

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1360782

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012371

Country of ref document: DE

Representative=s name: SKM-IP SCHMID KRAUSS KUTTENKEULER MALESCHA SCH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012371

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230322

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240304

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016012371

Country of ref document: DE

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217