JP2006192013A - Air cleaning device - Google Patents

Air cleaning device Download PDF

Info

Publication number
JP2006192013A
JP2006192013A JP2005005246A JP2005005246A JP2006192013A JP 2006192013 A JP2006192013 A JP 2006192013A JP 2005005246 A JP2005005246 A JP 2005005246A JP 2005005246 A JP2005005246 A JP 2005005246A JP 2006192013 A JP2006192013 A JP 2006192013A
Authority
JP
Japan
Prior art keywords
air
thin film
air cleaning
plasma discharge
cleaning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005005246A
Other languages
Japanese (ja)
Inventor
Akifumi Seto
章文 瀬戸
Seiichi Hirasawa
誠一 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005005246A priority Critical patent/JP2006192013A/en
Publication of JP2006192013A publication Critical patent/JP2006192013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air cleaning device for efficiently decomposing a volatile organic substance included in air into carbon dioxide and efficiently removing the organic intermediate which can not be decomposed into carbon dioxide. <P>SOLUTION: The air cleaning device comprises a suction part for sucking air, an air cleaning part for cleaning the sucked air and an exhausting part for exhausting the clean air. The air cleaning part is characterized by a plasma discharge electrode having a micro-electrode element with a plurality of pointed projections on a dielectric thin film substrate and a capturing part for capturing a plasma-discharge-processed sol or gel substance included in air. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気清浄装置とくに大気中に含まれる揮発性有機物質の分解および除去ができる空気清浄装置に関する。   The present invention relates to an air cleaning device, and more particularly to an air cleaning device capable of decomposing and removing volatile organic substances contained in the atmosphere.

近年、産業資材や自宅建材から発生する揮発性有機物質が半導体産業での汚染物質としてあるいはシックハウス症候群の起因物質として大きな課題となっている。そこで、これら大気環境に存在する揮発性有機物質を効果的に取り除く手法の研究開発が活発に行われている。
従来、揮発性有機物質を除去する手法として、プラズマ放電(特許文献1、特許文献4、特許文献5、非特許文献6)やコロナ放電(特許文献2、非特許文献2、非特許文献3)などの放電処理装置、電子ビーム発生(特許文献3)による物理的装置、オゾン発生による化学的分解装置(非特許文献1)、光触媒や酸化触媒を用いる化学的分解装置(非特許文献4、非特許文献5)、あるいは吸着させた揮発性有機物質を燃焼させる処理装置、及びそれらの組み合わせから成る種々の処理装置等が知られている。
プラズマやコロナ放電による揮発性有機物質を除去する方法は、放電により生成される高エネルギー電子と有機化合物との衝突反応により開始され、同時に大気から生成される酸素活性種との反応により一酸化炭素や二酸化炭素まで分解されるものと推定されている。しかし、分解過程には種々の中間体が含まれ、放電の結果生成する二次生成物もあり、完全に二酸化炭素などへ無機物化するのは困難である。
In recent years, volatile organic substances generated from industrial materials and home building materials have become a major issue as contaminants in the semiconductor industry or as causative substances of sick house syndrome. Therefore, research and development of methods for effectively removing volatile organic substances present in the atmospheric environment are being actively conducted.
Conventionally, plasma discharge (Patent Document 1, Patent Document 4, Patent Document 5, Non-Patent Document 6) and corona discharge (Patent Document 2, Non-Patent Document 2, Non-Patent Document 3) are methods for removing volatile organic substances. Such as a discharge device, a physical device using electron beam generation (Patent Document 3), a chemical decomposition device using ozone generation (Non-Patent Document 1), a chemical decomposition device using a photocatalyst or an oxidation catalyst (Non-Patent Document 4, Non-Patent Document 4, Patent Document 5), a processing apparatus for burning an adsorbed volatile organic substance, and various processing apparatuses composed of a combination thereof are known.
The method of removing volatile organic substances by plasma or corona discharge is started by collision reaction between high energy electrons generated by discharge and organic compounds, and at the same time, carbon monoxide by reaction with oxygen active species generated from the atmosphere. It is estimated to be decomposed to carbon dioxide. However, the decomposition process includes various intermediates and some secondary products are generated as a result of discharge, and it is difficult to completely convert them into carbon dioxide or the like.

オゾンによる方法は、オゾン発生器から生成するオゾンを熱分解させて化学的に活性な酸素原子やヒドロキシラジカルと揮発性有機化合物との反応により酸化分解させる手法である。この場合も二酸化炭素まで分解させるのは難しく、かつ、有害な酸化物も生成する。
光触媒や酸化触媒による方法は光照射や熱で触媒を活性化させ、揮発性有機化合物の分解反応を促進させて除去する手法である。この手法でも二酸化炭素まで分解しきれない副生成物が生成される。
前述のように、揮発性有機化合物が完全に二酸化炭素まで分解されれば問題はないが、一般には炭化水素やその誘導体の分解過程には中間体として活性化学種や反応中間体が含まれ、それらを経由して二酸化炭素以外の化学物質が二次的に生成される。それらの中には人体に有害なアルデヒド類も含まれる。例えば、トルエンを熱的オゾン処理した場合には、中間体と活性酸素原子やヒドロキシラジカルなどとの反応によるベンズアルデヒド、フェノール類などが生成する(図6)。
そこで、前述の手法の組み合わせによる装置、例えば、放電装置の後に触媒装置を配置させて二段構えで二酸化炭素までの分解を促進させようとするものも知られている。しかし、放電後に含まれる活性種や中間反応物が触媒表面に大量に滞留した場合に触媒の劣化を招くことになる。また、一般に複数の手法を複合した場合には装置が大型化する問題点を有している。また、電力以外に触媒や熱エネルギーなどを使用する場合は、維持管理上の負担が大きな欠点となっている。
特開2000−279492号公報 特開2001−62287号公報 特開2003−144841号公報 特開2004−283742号公報 特開2004−290789号公報 特開2004−105517号公報 特開2004−215811号公報 特願2003−341192 G.Xiong,J.A.Koiel, J.Pawlisyn: J. Chromatography A, 1025, 57(2004) W.Tanthapanichakoon,N.Sano, T.Charinpanitkul, N.Dhattavorn, S.Chaiyo, H.Tamon: J.Chem.Eng.Jpn, 36,946(2003) D.Li,D.Yakushiji, S.Kanazawa, T.Ohkubo, Y.Nomoto: J.Electrostatics, 55, 311(2002) Z.Pengyi,L.Fuyan, Y.Gang, C.Qing, Z.Wanpeng: J.Photochem. Photobio. A, Chem. 156,189(2003) K.Sekiguchi,A.Sanada, K.Sakamoto: Catalysis Commun. 4, 247(2003) R.Rudolph, K.-P.Francke, H.Miessner:Plasma Chem Plasma Phys. 22, 401(2002)
The method using ozone is a technique in which ozone generated from an ozone generator is thermally decomposed and oxidatively decomposed by reaction of chemically active oxygen atoms or hydroxy radicals with a volatile organic compound. In this case as well, it is difficult to decompose to carbon dioxide, and harmful oxides are also generated.
A method using a photocatalyst or an oxidation catalyst is a method in which the catalyst is activated by light irradiation or heat to accelerate the decomposition reaction of the volatile organic compound and remove it. Even by this method, a by-product that cannot be decomposed to carbon dioxide is generated.
As described above, there is no problem if the volatile organic compound is completely decomposed to carbon dioxide, but generally, the decomposition process of hydrocarbons and derivatives thereof includes active chemical species and reaction intermediates as intermediates. Chemical substances other than carbon dioxide are secondarily generated via these. Among them are aldehydes that are harmful to the human body. For example, when toluene is subjected to thermal ozone treatment, benzaldehyde, phenols, and the like are generated by the reaction of the intermediate with active oxygen atoms, hydroxy radicals, and the like (FIG. 6).
Therefore, an apparatus based on a combination of the above-described methods, for example, one in which a catalytic device is arranged after the discharge device to promote decomposition to carbon dioxide in a two-stage manner is also known. However, when a large amount of active species or intermediate reactants contained after discharge stays on the catalyst surface, the catalyst is deteriorated. In general, when a plurality of methods are combined, there is a problem that the apparatus becomes large. Moreover, when using a catalyst, thermal energy, etc. in addition to electric power, the maintenance burden is a major drawback.
JP 2000-279492 A JP 2001-62287 A JP 2003-144841 A JP 2004-283742 A JP 2004-290789 A JP 2004-105517 A JP 2004-215811 A Japanese Patent Application No. 2003-341192 G.Xiong, JAKoiel, J.Pawlisyn: J. Chromatography A, 1025, 57 (2004) W. Tanthapanichakoon, N. Sano, T. Charinpanitkul, N. Dhattavorn, S. Chaiyo, H. Tamon: J. Chem. Eng. Jpn, 36,946 (2003) D. Li, D. Yakushiji, S. Kanazawa, T. Ohkubo, Y. Nomoto: J. Electrostatics, 55, 311 (2002) Z. Pengyi, L. Fuyan, Y. Gang, C. Qing, Z. Wanpeng: J. Photochem. Photobio. A, Chem. 156, 189 (2003) K. Sekiguchi, A. Sanada, K. Sakamoto: Catalysis Commun. 4, 247 (2003) R. Rudolph, K.-P. Francke, H. Miessner: Plasma Chem Plasma Phys. 22, 401 (2002)

本発明は、プラズマ放電で生成する高エネルギー電子により大気中の揮発性有機物質を二酸化炭素までに分解させる処理装置において、分解過程で生成する副生成物であってゾル状ないしゲル状物質である化学活性種や反応中間体を、オゾンや触媒や熱エネルギーを使用せずに、常温で簡易に除去できる小型装置を提供することである。   The present invention relates to a sol-like or gel-like substance that is a by-product generated in the decomposition process in a processing apparatus that decomposes volatile organic substances in the atmosphere to carbon dioxide by high-energy electrons generated by plasma discharge. It is to provide a small apparatus that can easily remove chemically active species and reaction intermediates at normal temperature without using ozone, catalyst, or thermal energy.

上記目的を達成するために本発明者らは、微細電極素子を用いて揮発性有機物質をプラズマ放電により処理、とくに揮発性有機物質として代表的な物質であるトルエンの分解を鋭意検討した。その結果、トルエンは主たるプロセスとしては二酸化炭素にまで効率良く分解されるが、一部に反応中間体が生成し、微細電極素子から同時に生成している荷電粒子雰囲気下で、急速に凝縮しつつエアロゾル化している粒子群が存在することを確認した。
これらの粒子群がそのまま処理容器内に存在すると酸化性媒体、例えばオゾンの熱分解や光分解で生成する発生期の酸素やヒドロキシラジカルなどとの反応により酸化物が生成することが確認されている。
一方、揮発性有機物質のプラズマ放電による処理中に生成する粒子群である中間体自身は、活性であり多孔質絶縁物質、例えば紙やプラスチックス、代表的には濾紙などの表面に容易に吸着され、ポリマー化することを見出した。本発明は揮発性有機物質のプラズマ放電におけるこれらの知見に基づいてなされたものである。
In order to achieve the above object, the inventors of the present invention have intensively studied the treatment of a volatile organic substance by plasma discharge using a fine electrode element, particularly the decomposition of toluene, which is a typical volatile organic substance. As a result, toluene is efficiently decomposed to carbon dioxide as the main process, but some reaction intermediates are generated and rapidly condensed in the charged particle atmosphere generated simultaneously from the fine electrode elements. The presence of aerosolized particles was confirmed.
It has been confirmed that when these particle groups are present in the processing vessel as they are, an oxide is generated by a reaction with an oxidizing medium, for example, nascent oxygen or hydroxy radical generated by thermal decomposition or photolysis of ozone. .
On the other hand, the intermediates themselves, which are particles that are produced during processing by plasma discharge of volatile organic substances, are active and easily adsorbed on the surface of porous insulating materials such as paper and plastics, typically filter paper. And found to polymerize. The present invention has been made based on these findings in plasma discharge of volatile organic substances.

すなわち、本発明は、空気を吸引する吸引部、吸引した空気を浄化する空気浄化部、浄化した空気を排気する排気部からなる空気清浄装置であって、空気浄化部が誘電体薄膜基板上に複数の尖状突起を有する微細電極素子を持つプラズマ放電電極と、プラズマ放電処理した空気中のゾル状ないしゲル状物質を捕捉する捕捉部から構成されることを特徴とする空気清浄装置である。
また、本発明においてはプラズマ放電電極を、50〜100KHz、3.0〜5.0KVで作動させることができる。
さらに、本発明は、誘電体薄膜基板が雲母であり、微細電極素子が加工された板状の金属板とすることができる。このようにすることにより、プラズマ放電電極を高出力とすることができる。
また、本発明は、プラズマ放電処理した空気中のゾル状ないしゲル状物質を荷電させるイオン発生装置を兼ね備えることができる。このようにすることにより、捕捉部をプラス若しくはマイナスに荷電して、捕捉部の効率をさらに高めることが出来る。
さらに、本発明において、捕捉部を多孔質薄膜とすることができる。
多孔質薄膜としては、紙類又はプラスチックス類を用いることが出来る。一般に絶縁体である多孔質薄膜の表面は正、又は負に電荷を帯びており、これらが不均一な電場を形成するために、上記荷電ゾル状ないしゲル状物質を静電捕集することができ、捕集効率の向上が可能となる。
ここで、多孔質薄膜が、段違い配置をとることができる。この場合、捕集部における有効捕集面積を増大することが可能となるために、捕集効率の向上ができる。
また、本発明においては、捕捉部全体を取替可能な構造とすることができる。取り替え部品として安価な紙やプラスチック薄膜をもちいることで、上記ゾル状ないしゲル状物質の廃棄を簡便にしかも安価に行うことができる。
That is, the present invention is an air purifying device comprising a suction part for sucking air, an air purification part for purifying the sucked air, and an exhaust part for exhausting the purified air, wherein the air purification part is disposed on the dielectric thin film substrate. An air cleaning device comprising: a plasma discharge electrode having a fine electrode element having a plurality of pointed protrusions; and a trap for capturing a sol-like or gel-like substance in air subjected to plasma discharge treatment.
In the present invention, the plasma discharge electrode can be operated at 50 to 100 KHz and 3.0 to 5.0 KV.
Furthermore, in the present invention, the dielectric thin film substrate can be a mica, and a plate-like metal plate on which fine electrode elements are processed can be obtained. By doing in this way, a plasma discharge electrode can be made high output.
In addition, the present invention can also include an ion generator that charges a sol or gel substance in air that has been subjected to plasma discharge treatment. By doing in this way, a capture part can be charged to plus or minus, and the efficiency of a capture part can be raised further.
Furthermore, in the present invention, the capturing part can be a porous thin film.
Paper or plastics can be used as the porous thin film. In general, the surface of a porous thin film that is an insulator is positively or negatively charged, and in order to form a non-uniform electric field, the charged sol or gel substance can be electrostatically collected. And the collection efficiency can be improved.
Here, the porous thin film can take a different arrangement. In this case, since it becomes possible to increase the effective collection area in a collection part, collection efficiency can be improved.
Moreover, in this invention, it can be set as the structure which can replace the whole capture | acquisition part. By using inexpensive paper or plastic thin film as a replacement part, it is possible to easily and inexpensively dispose of the sol or gel substance.

本発明によれば、揮発性有機物質を効率良く二酸化炭素に変換させると共に、変換されずに副生する活性化学種をオゾンや触媒や熱エネルギーを使用せずに、常温で簡易に除去できる小型装置を提供できる。   According to the present invention, a volatile organic substance can be efficiently converted into carbon dioxide, and active chemical species that are by-produced without being converted can be easily removed at room temperature without using ozone, catalyst, or thermal energy. Equipment can be provided.

以下、本発明を詳細に説明する。
本発明の空気清浄装置で処理対象とする大気中の主な揮発性有機物質としては、炭化水素、アルコール、アルデヒド、有機酸などの揮発性有機化合物(VOCs:Volatile Organic Compounds)である。
本発明の空気清浄装置で使用する微細電極素子は、誘電体薄膜基板上に放電電極として複数の尖状突起を連結したものであり、対極として尖状突起に近接した線状の微細電極回路から形成されるものである。
このような電極は、すでに本発明者らにより開発され、出願されている(特許文献8)。この電極は、両極が誘電体薄膜で遮蔽され、高電圧印加により、高エネルギー電子、イオン、ラジカルを放出することができる。
図1にその概要を示す。電極基板215上に、微細電極素子211、接地電極213が設けられ、それぞれ導線212と導線214により電源に接続されている。
電源は、周波数が50〜100KHz、ピーク電圧が±3.0〜5.0KVであり、代表的なものとしては、圧電トランスを用いた高周波電源等が挙げられる。
ここで周波数が50KHz以下の場合あるいは3.0KV以下の場合は、分解効率が低減し、また100KHz以上、5.0KV以上の場合は電極の劣化が生じる。
本発明の空気清浄装置においては、揮発性有機物質を含む空気が、微細電極素子基板上に到達すると共に、高エネルギー電子やイオン、酸素ラジカルと衝突反応を起こし、多くは二酸化炭素まで分解される。しかし、同時に分解過程で副生するイオンを含む活性化学種が基板上で生成し、ゾル状ないしゲル状物質として浮遊しており、これを吸着、ポリマー化させるための絶縁物質薄膜へと流通するように置かれた構成を特徴とする装置である。
Hereinafter, the present invention will be described in detail.
The main volatile organic substances in the atmosphere to be treated by the air cleaning apparatus of the present invention are volatile organic compounds (VOCs) such as hydrocarbons, alcohols, aldehydes, and organic acids.
The fine electrode element used in the air cleaning device of the present invention is obtained by connecting a plurality of pointed protrusions as discharge electrodes on a dielectric thin film substrate, and from a linear fine electrode circuit close to the pointed protrusions as a counter electrode. Is formed.
Such an electrode has already been developed and filed by the present inventors (Patent Document 8). Both electrodes are shielded by a dielectric thin film, and can emit high-energy electrons, ions, and radicals when a high voltage is applied.
The outline is shown in FIG. A fine electrode element 211 and a ground electrode 213 are provided on the electrode substrate 215, and are connected to a power source by a conducting wire 212 and a conducting wire 214, respectively.
The power source has a frequency of 50 to 100 KHz and a peak voltage of ± 3.0 to 5.0 KV. A typical example is a high-frequency power source using a piezoelectric transformer.
Here, when the frequency is 50 KHz or less or 3.0 KV or less, the decomposition efficiency is reduced, and when the frequency is 100 KHz or more and 5.0 KV or more, the electrode is deteriorated.
In the air cleaning apparatus of the present invention, air containing a volatile organic substance reaches the fine electrode element substrate and causes a collision reaction with high energy electrons, ions, and oxygen radicals, and is mostly decomposed to carbon dioxide. . However, at the same time, active chemical species containing ions produced as a by-product in the decomposition process are generated on the substrate and floated as a sol or gel substance, which circulates into an insulating material thin film for adsorption and polymerization. It is the apparatus characterized by the structure put in this way.

とくに、活性化学種が生成するのは、高エネルギー電子やイオンと衝突反応する基板近傍であり、二酸化炭素以外の副生しているそれらの活性化学種は経路を流れる過程で会合、帯電したエアロゾルへと変化する。この反応過程は、大気の流量に依存するが、通常は基板から30cmまでに起こっている。そこで、本発明では、基板から30cm以内に帯電している化学活性種を効率よく吸着させ、吸着後に安定な樹脂状有機物質に変換させて固定化する絶縁物薄膜とすることができる。微細電極素子基板の近傍に置かれる絶縁物薄膜としては、紙類やプラスチックス類で作成された薄膜状のものなどで良い。絶縁物薄膜は、多孔質なものが望ましくとくに濾紙が好適に用いられる。
また、その配置は処理する大気の流通を妨げないように、かつ、浮遊する活性化学種を効果的に捕捉できるように、段違いに配置すると良いが、これに限定されるものではない。
さらに、プラズマ放電処理した空気中のゾル状ないしゲル状物質を荷電させるイオン発生装置は、プラズマ放電電極と共有することができる。このことによって、プラズマ放電処理された空気中にあるゾル状ないしゲル状の物質を、これらと同時に生成する正あるいは負イオンによって帯電させることにより、捕捉部で捕捉しやすくすることができる。この際には、捕捉部の絶縁物薄膜は帯電させておくと良い。

本発明によれば、二酸化炭素以外に副生する活性中間体からなるエアロゾルをろ紙やプラスチックス膜上に凝縮して固定化できるので、大量の大気を流すことが可能である。また、エアロゾル状物質から樹脂状に固定化される量は極めて少量であり、絶縁性薄膜は長時間に亘って使用できる。さらにまた、捕捉部全体を紙製とし、適宜取替可能な構造とするといつも清潔にしておけるので、好ましい。
固定化物が蓄積された際は、絶縁性薄膜を容易に交換すると共に、使用後の絶縁性薄膜は有機高分子系樹脂であり、焼却廃棄できる。
また、本発明は、放電による高エネルギー電子や酸素ラジカルが生成し、揮発性有機物質を効率良く二酸化炭素まで分解し、同時に副生する活性化学種を生成直後に捕捉できるために、放電過程と捕捉過程を可能な限り近接した場で行うために、放電体として誘電体放電回路が小型素子化された微細電極素子を使用する。
In particular, active chemical species are generated in the vicinity of the substrate that collides with high-energy electrons and ions, and these active chemical species other than carbon dioxide are associated and charged in the course of the pathway. To change. This reaction process depends on the flow rate of the atmosphere, but usually occurs up to 30 cm from the substrate. Therefore, in the present invention, it is possible to obtain an insulating thin film in which chemically active species charged within 30 cm from the substrate are efficiently adsorbed and converted to a stable resinous organic substance after adsorption and immobilized. The insulator thin film placed in the vicinity of the microelectrode element substrate may be a thin film made of paper or plastics. The insulating thin film is preferably porous, and filter paper is particularly preferably used.
Further, the arrangement is not limited to this, although it may be arranged in a step so as not to disturb the circulation of the atmosphere to be treated and so that the active chemical species floating can be captured effectively.
Furthermore, the ion generator for charging the sol or gel substance in the air subjected to the plasma discharge treatment can be shared with the plasma discharge electrode. Thus, the sol-like or gel-like substance in the air subjected to the plasma discharge treatment can be easily trapped by the trapping portion by being charged by positive or negative ions generated at the same time. At this time, the insulating thin film of the capturing part is preferably charged.

According to the present invention, an aerosol composed of an active intermediate that is a by-product other than carbon dioxide can be condensed and fixed on a filter paper or a plastic film, so that a large amount of air can flow. In addition, the amount of the resin immobilized from the aerosol substance is very small, and the insulating thin film can be used for a long time. Furthermore, it is preferable that the entire capturing portion is made of paper and has a structure that can be replaced as appropriate, since it can always be kept clean.
When the immobilization material is accumulated, the insulating thin film is easily replaced, and the used insulating thin film is an organic polymer resin and can be incinerated.
Further, the present invention generates high-energy electrons and oxygen radicals by discharge, efficiently decomposes volatile organic substances to carbon dioxide, and simultaneously captures active chemical species by-produced immediately after the generation. In order to perform the capturing process as close as possible, a fine electrode element in which a dielectric discharge circuit is miniaturized is used as a discharge body.

本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
図2は本発明の空気清浄装置の一例を示す。
吸引部1より、トルエンを含む大気を空気清浄部2に導き、プラズマ放電電極2−1の微細電極素子221近傍に当該トルエンを含む大気を当てる。
まず閉鎖空間での分解率を求めるために、トルエンを含む大気を吸入部から導いた後、一定時間後入口と出口のバルブを閉鎖して実験を行った。微細電極素子221は、67KHz、3.5KVで駆動した。
トルエンを含む大気は、空気清浄部2内で分解され、二酸化炭素とゾル状ないしゲル状物質である活性中間体となると見られる。
その後、捕捉部3の絶縁性薄膜(ろ紙部)を通過して、排気部より排出する。
絶縁性薄膜(ろ紙部)は処理すべき大気の流れを著しく妨げないようにかつ浮遊する活性化学種を効果的に捕捉できるように電極素子基板の近傍に配置することが望ましい。
図3はトルエンを約30ppm含む大気を本発明の処理装置において、処理前と処理後に試料採取したガスクロマトグラフ質量分析計での測定結果を示す図である。図4はトルエンを約30ppm含む大気を閉じた容量が75cmのガラス製容器内で一定時間微細電極素子を作動して処理した際のトルエンの分解率を示す図である。本発明の空気浄化素子を用いることで、閉鎖空間中30分程度の電圧印加によって99%以上の分解率が得られていることが分かる。
ここで用いたプラズマ放電電極の写真を図7に示し、プラズマ放電したときの写真を図8に示す。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
FIG. 2 shows an example of the air cleaning device of the present invention.
From the suction part 1, the atmosphere containing toluene is guided to the air cleaning part 2, and the atmosphere containing toluene is applied to the vicinity of the fine electrode element 221 of the plasma discharge electrode 2-1.
First, in order to obtain the decomposition rate in the closed space, an experiment was conducted by introducing the atmosphere containing toluene from the suction portion and then closing the inlet and outlet valves after a certain period of time. The microelectrode element 221 was driven at 67 KHz and 3.5 KV.
It is considered that the atmosphere containing toluene is decomposed in the air cleaning unit 2 and becomes an active intermediate that is carbon dioxide and a sol or gel substance.
Then, it passes through the insulating thin film (filter paper part) of the capturing part 3 and is discharged from the exhaust part.
It is desirable that the insulating thin film (filter paper portion) is disposed in the vicinity of the electrode element substrate so as not to significantly impede the flow of the atmosphere to be processed and to effectively capture the floating active chemical species.
FIG. 3 is a diagram showing the measurement results with a gas chromatograph mass spectrometer sampled before and after treatment in the treatment apparatus of the present invention in an atmosphere containing about 30 ppm of toluene. FIG. 4 is a graph showing the decomposition rate of toluene when a fine electrode element is operated for a certain period of time in a glass container having a capacity of 75 cm 3 with the atmosphere closed containing about 30 ppm of toluene. It can be seen that by using the air purification element of the present invention, a decomposition rate of 99% or more is obtained by applying a voltage for about 30 minutes in a closed space.
A photograph of the plasma discharge electrode used here is shown in FIG. 7, and a photograph of the plasma discharge is shown in FIG.

トルエンの量を変えたほかは、実施例1と同じ条件で、空気中に混入したトルエンの連続分解を行った。
図5は本発明の処理装置において、トルエンを、1から100ppm含む大気を一定の滞留時間で流通させ、処理前と処理後に試料採取したガスクロマトグラフ質量分析計での測定からトルエンの分解率を算出した結果を示す図である。
Except for changing the amount of toluene, continuous decomposition of toluene mixed in air was performed under the same conditions as in Example 1.
FIG. 5 shows the processing apparatus according to the present invention, in which an atmosphere containing 1 to 100 ppm of toluene is circulated with a constant residence time, and the decomposition rate of toluene is calculated from measurements with a gas chromatograph mass spectrometer sampled before and after the treatment. It is a figure which shows the result.

(比較例)
トルエンを約20ppm含む大気の経路にオゾン発生器からの10から20ppmのオゾンを単純混合させた状態で試料採取したガスクロマトグラフ質量分析計での測定結果を図6に示す。本発明である図3(2)ではほとんど検出されなかったベンズアルデヒド等が、副生成物としてより多く生成していることがわる。
(Comparative example)
FIG. 6 shows the results of measurement with a gas chromatograph mass spectrometer sampled in a state in which 10 to 20 ppm of ozone from an ozone generator was simply mixed in an atmospheric path containing about 20 ppm of toluene. It can be seen that a large amount of benzaldehyde and the like, which were hardly detected in FIG.

本発明の空気清浄装置は、室内や工場などに設置することで、空気中に存在する有機化合物の分解を行うことができる小型の空気浄化装置として広く用いることができる。またメンテナンスが簡単で、しかも従来の大型装置と比較してランニングコストも低減できる。   The air purifying apparatus of the present invention can be widely used as a small air purifying apparatus capable of decomposing organic compounds present in the air by being installed indoors or in a factory. In addition, the maintenance is simple and the running cost can be reduced as compared with the conventional large-sized apparatus.

プラズマ放電電極Plasma discharge electrode 実施例で用いた処理装置の概略図。The schematic of the processing apparatus used in the Example. トルエンを含む空気の本装置の使用前と処理後のガスクロマトグラフ質量分析計による測定結果を示すクロマトグラフ。(1)は処理前のクロマトグラフ、(2)は処理後のクロマトグラフ。The chromatograph which shows the measurement result by the gas chromatograph mass spectrometer before use of this apparatus of the air containing toluene, and after a process. (1) is a chromatograph before treatment, and (2) is a chromatograph after treatment. 密閉容器内で微細電極素子を印加した場合のトルエン残存率を表すグラフ。The graph showing the toluene residual rate at the time of applying a fine electrode element within an airtight container. 流通式容器内でトルエンを含む大気を本発明の装置で処理した場合に分解される割合を示すグラフ。The graph which shows the ratio decomposed | disassembled when the atmosphere containing toluene is processed with the apparatus of this invention in a flow-type container. トルエンを含む空気のオゾン処理後のガスクロマトグラフ質量分析測定によるクロマトグラフ。(2)は(1)のトータルイオン強度を10倍にした拡大図。Chromatograph by gas chromatograph mass spectrometry measurement after ozone treatment of air containing toluene. (2) is an enlarged view in which the total ion intensity of (1) is increased 10 times. プラズマ放電電極の実物写真Real photo of plasma discharge electrode プラズマ放電中のプラズマ放電電極の実物写真Real photo of plasma discharge electrode during plasma discharge

符号の説明Explanation of symbols

1 吸引部
2 空気浄化部
21 プラズマ放電電極
211 微細電極素子
212 導線
213 接地電極
214 導線
215 電極基板
3 排気部
DESCRIPTION OF SYMBOLS 1 Suction part 2 Air purification part 21 Plasma discharge electrode 211 Fine electrode element
212 conductor
213 Ground electrode 214 Conductor
215 Electrode substrate 3 exhaust part

Claims (9)

空気を吸引する吸引部、吸引した空気を浄化する空気浄化部、浄化した空気を排気する排気部からなる空気清浄装置であって、空気浄化部が誘電体薄膜基板上に複数の尖状突起を有する微細電極素子を持つプラズマ放電電極と、プラズマ放電処理した空気中のゾル状ないしゲル状物質を捕捉する捕捉部から構成されることを特徴とする空気清浄装置。   An air purifier comprising a suction part for sucking air, an air purification part for purifying the sucked air, and an exhaust part for exhausting the purified air, wherein the air purification part has a plurality of pointed protrusions on the dielectric thin film substrate. An air cleaning apparatus comprising: a plasma discharge electrode having a fine electrode element and a trap for capturing a sol or gel substance in air subjected to plasma discharge treatment. プラズマ放電電極が、50〜100KHz、3.0〜5.0KVで作動する請求項1に記載した空気清浄装置。   The air cleaning apparatus according to claim 1, wherein the plasma discharge electrode operates at 50 to 100 KHz and 3.0 to 5.0 KV. 誘電体薄膜基板が雲母であり、微細電極が加工された板状の金属板である請求項1又は請求項2に記載した空気清浄装置。   The air cleaning device according to claim 1 or 2, wherein the dielectric thin film substrate is mica and is a plate-like metal plate on which fine electrodes are processed. プラズマ放電処理した空気中のゾル状ないしゲル状物質を荷電させるイオン発生装置を兼ね備えることを特徴とする請求項1ないし請求項3のいずれかひとつに記載した空気清浄装置。   The air purifier according to any one of claims 1 to 3, further comprising an ion generator for charging a sol or gel substance in air subjected to plasma discharge treatment. 捕捉部が多孔質薄膜である請求項1ないし請求項4のいずれかひとつに記載した空気清浄装置。   The air cleaning device according to any one of claims 1 to 4, wherein the trapping portion is a porous thin film. 多孔質薄膜が、紙又はプラスチックスである請求項5に記載した空気清浄装置。   The air cleaning apparatus according to claim 5, wherein the porous thin film is paper or plastics. 多孔質薄膜が、段違い配置をとる請求項5に記載した空気清浄装置。   The air purifier according to claim 5, wherein the porous thin film has a stepped arrangement. 捕捉部全体を取替可能な構造とする請求項1ないし請求項7のいずれかひとつに記載した空気清浄装置。   The air purifier according to any one of claims 1 to 7, wherein the entire capturing section is replaceable. 捕捉部がプラス若しくはマイナスに荷電されていることを特徴とする請求項4ないし請求項8のいずれかひとつに記載した空気清浄装置。

The air cleaning device according to any one of claims 4 to 8, wherein the capturing unit is positively or negatively charged.

JP2005005246A 2005-01-12 2005-01-12 Air cleaning device Pending JP2006192013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005246A JP2006192013A (en) 2005-01-12 2005-01-12 Air cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005246A JP2006192013A (en) 2005-01-12 2005-01-12 Air cleaning device

Publications (1)

Publication Number Publication Date
JP2006192013A true JP2006192013A (en) 2006-07-27

Family

ID=36798537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005246A Pending JP2006192013A (en) 2005-01-12 2005-01-12 Air cleaning device

Country Status (1)

Country Link
JP (1) JP2006192013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535951A (en) * 2007-08-10 2010-11-25 ライプニッツ−インスティトゥート フュール プラズマフォルシュング ウント テヒノロギー エー.ファウ. Textile cleaning and sterilization method using plasma, and plasma lock
CN106568126A (en) * 2016-10-25 2017-04-19 珠海格力电器股份有限公司 Air purification device and method
WO2017177746A1 (en) * 2016-04-14 2017-10-19 颜为 Ionization dust collecting device
CN107427839A (en) * 2015-03-19 2017-12-01 沃克工业技术有限公司 For separating the apparatus and method of pollutant

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267113A (en) * 1990-03-17 1991-11-28 Senichi Masuda Method and device for treating gas by using high-frequency creeping discharge
JPH08240968A (en) * 1995-03-02 1996-09-17 Fuji Xerox Co Ltd Electrostatic discharging device
JPH10180138A (en) * 1996-12-27 1998-07-07 Kaiyoushiya:Kk Ion adsorption type air cleaner
JPH11152033A (en) * 1997-11-21 1999-06-08 Toshiba Corp Vehicular controller
JP2000140693A (en) * 1998-09-04 2000-05-23 Yasuo Ito Electric precipitator and method of adjusting silent discharge electric current
JP2003047651A (en) * 2001-08-07 2003-02-18 Sharp Corp Ion generating element, and ion generator, air conditioner, cleaner and refrigerator using it
JP2003065593A (en) * 2001-08-23 2003-03-05 Mitsubishi Electric Corp Air conditioner
JP2003181278A (en) * 2001-12-21 2003-07-02 Daikin Ind Ltd Deodorizing apparatus
JP2004008517A (en) * 2002-06-07 2004-01-15 Sharp Corp Air cleaner
JP2004033944A (en) * 2002-07-04 2004-02-05 Yaskawa Electric Corp Air cleaning apparatus
JP2004105811A (en) * 2002-09-13 2004-04-08 Toshiba Corp Photocatalytic reaction apparatus
JP2004105517A (en) * 2002-09-19 2004-04-08 Sharp Corp Ion generating element, method for producing the same, ion generator, and electric appliance with the generator
JP2004174409A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Air cleaning apparatus
JP2004363088A (en) * 2003-05-15 2004-12-24 Sharp Corp Ion generating element, ion generator, and electric device
JP2005515843A (en) * 2001-11-02 2005-06-02 プラズマゾル・コーポレイション Sterilization and decontamination system using plasma discharge and filter

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267113A (en) * 1990-03-17 1991-11-28 Senichi Masuda Method and device for treating gas by using high-frequency creeping discharge
JPH08240968A (en) * 1995-03-02 1996-09-17 Fuji Xerox Co Ltd Electrostatic discharging device
JPH10180138A (en) * 1996-12-27 1998-07-07 Kaiyoushiya:Kk Ion adsorption type air cleaner
JPH11152033A (en) * 1997-11-21 1999-06-08 Toshiba Corp Vehicular controller
JP2000140693A (en) * 1998-09-04 2000-05-23 Yasuo Ito Electric precipitator and method of adjusting silent discharge electric current
JP2003047651A (en) * 2001-08-07 2003-02-18 Sharp Corp Ion generating element, and ion generator, air conditioner, cleaner and refrigerator using it
JP2003065593A (en) * 2001-08-23 2003-03-05 Mitsubishi Electric Corp Air conditioner
JP2005515843A (en) * 2001-11-02 2005-06-02 プラズマゾル・コーポレイション Sterilization and decontamination system using plasma discharge and filter
JP2003181278A (en) * 2001-12-21 2003-07-02 Daikin Ind Ltd Deodorizing apparatus
JP2004008517A (en) * 2002-06-07 2004-01-15 Sharp Corp Air cleaner
JP2004033944A (en) * 2002-07-04 2004-02-05 Yaskawa Electric Corp Air cleaning apparatus
JP2004105811A (en) * 2002-09-13 2004-04-08 Toshiba Corp Photocatalytic reaction apparatus
JP2004105517A (en) * 2002-09-19 2004-04-08 Sharp Corp Ion generating element, method for producing the same, ion generator, and electric appliance with the generator
JP2004174409A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Corp Air cleaning apparatus
JP2004363088A (en) * 2003-05-15 2004-12-24 Sharp Corp Ion generating element, ion generator, and electric device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535951A (en) * 2007-08-10 2010-11-25 ライプニッツ−インスティトゥート フュール プラズマフォルシュング ウント テヒノロギー エー.ファウ. Textile cleaning and sterilization method using plasma, and plasma lock
CN107427839A (en) * 2015-03-19 2017-12-01 沃克工业技术有限公司 For separating the apparatus and method of pollutant
CN107427839B (en) * 2015-03-19 2020-11-17 沃克工业技术有限公司 Apparatus and method for separating contaminants
WO2017177746A1 (en) * 2016-04-14 2017-10-19 颜为 Ionization dust collecting device
CN106568126A (en) * 2016-10-25 2017-04-19 珠海格力电器股份有限公司 Air purification device and method

Similar Documents

Publication Publication Date Title
Mizuno Industrial applications of atmospheric non-thermal plasma in environmental remediation
KR930008083B1 (en) Reactive bed plasma air purification
CN1289151C (en) In situ sterilization and decontamination system using a non-thermal plasma discharge
US7192553B2 (en) In situ sterilization and decontamination system using a non-thermal plasma discharge
KR100625425B1 (en) Discharge device and air purifier
KR101433955B1 (en) Apparatus for air purification and disinfection
JPWO2004112940A1 (en) Gas processing method and gas processing apparatus using oxidation catalyst and low-temperature plasma
US6680033B2 (en) Composite deodorization system and ion deodorization system
RU94669U1 (en) DEVICE FOR SANITARY-HYGIENIC AIR TREATMENT
KR101178999B1 (en) Odor removal system and method using Pulsed Corona Discharge
JP2006192013A (en) Air cleaning device
US20020076370A1 (en) Meta-stable radical generator with enhanced output
JP5108492B2 (en) Air purification method and air purification device
KR20180129490A (en) High-voltage pulsed power, Plasma reactor, apparatus and method for removing contamination air
JP2005199235A (en) Photoelectron catalytic purification apparatus and method for removing contaminant
KR101817907B1 (en) Apparatus for eliminating stink and harzardous gas
KR101808443B1 (en) Pollution gas treatment apparatus and method for treating pollution gas using the same
KR101174137B1 (en) A device treating air pollutants with plasma
CN218235209U (en) Electric field device and VOCs gas treatment device
KR100195935B1 (en) Air cleaning apparatus for collecting and deordoring
JP2005246353A (en) Gas reforming apparatus
JP2006055512A (en) Air cleaner
JP2001247485A (en) Method for decomposition process of gas and apparatus for treating exhaust gas with atmospheric pressure plasma
CN216799377U (en) Plasma air cleaner for sterilization
RU203298U1 (en) Air purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831