EP3232295A2 - Steuerhebel für genaue operation - Google Patents
Steuerhebel für genaue operation Download PDFInfo
- Publication number
- EP3232295A2 EP3232295A2 EP17151342.7A EP17151342A EP3232295A2 EP 3232295 A2 EP3232295 A2 EP 3232295A2 EP 17151342 A EP17151342 A EP 17151342A EP 3232295 A2 EP3232295 A2 EP 3232295A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- control lever
- circuit board
- printed circuit
- lever
- spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 22
- 239000011347 resin Substances 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 13
- 239000000945 filler Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 230000005355 Hall effect Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000012815 thermoplastic material Substances 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 230000004308 accommodation Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/04703—Mounting of controlling member
- G05G2009/04714—Mounting of controlling member with orthogonal axes
- G05G2009/04718—Mounting of controlling member with orthogonal axes with cardan or gimbal type joint
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/0474—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
- G05G2009/04755—Magnetic sensor, e.g. hall generator, pick-up coil
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G9/00—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
- G05G9/02—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
- G05G9/04—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
- G05G9/047—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
- G05G2009/04766—Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks providing feel, e.g. indexing means, means to create counterforce
Definitions
- the present invention relates to an industrial control lever and more particularly to a reliable control lever with increased precision suitable to be used in industry, agriculture, construction equipment, marine vessels, aviation and similar fields of operation.
- control levers also called as joysticks
- joysticks are often used in industrial field in order to control movement in a number of axes.
- control levers are used wherein a first axle part is connected to the body and a second axle part is connected on the first axle.
- An example of such control levers is disclosed in US6462731 (B1).
- a magnetic member should exactly face to the integrated circuit (IC) focus, and since the IC must exactly be positioned on the rotation axis and is located at the center, the first axle is formed as a convex and the second axle is formed as a concave so that a space is created therebetween.
- a main board must be disposed at the lower section, and by the very nature of the system, those parts forming the first and second axles project outward.
- control lever of the prior art is ball-joint control lever systems.
- International patent application no. WO00/39654 may be given as an example for such control levers actuated with ball joints.
- the control lever is spherically connected to the body, and it would be hard to eliminate the space which is thus created in the ball joints. Therefore, there is a need to provide a durable control lever with increased precision and increased security.
- Principal object of the present invention is to provide a compact, reliable and precise control lever wherein a number of components are eliminated through use of a single printed circuit board.
- Another object of the present invention is to provide a control lever with increased security achieved by means of independent springs.
- Another object of the present invention is to provide a control lever which prevents an undesired positioning of the spring and maloperation by comprising projections that retain the torsion springs at the center, so that it has an increased security.
- Another object of the present invention is to provide a control lever wherein a single magnetic member is sufficient.
- Another object of the present invention is to provide a control lever wherein use of single printed circuit board is sufficient.
- Another object of the present invention is to provide a control lever which provides a direct connector outlet for the user so that he will not need a cable.
- Another object of the present invention is to provide a control lever wherein undesired positioning of the springs and maloperation is prevented by means of projections that retain the torsion springs at the center.
- Another object of the present invention is to provide a control lever which prevents unauthorized persons to fill all components of the control lever assembly with resin so as to open the components.
- Another object of the present invention is to provide a control lever which ensures effective friction due to the fact that the bottom of the pressure plate is made of TPE material and the upper part thereof is made of a more rigid material.
- the present invention relates to a control lever for a heavy equipment, comprising a body; a printed circuit board assembly having a printed circuit board having thereon at least one sensor; a lever holder which has a central hole, through which a control arm is at least party engaged, wherein the control arm is rotatable about its longitudinal axis, and which has at least one cocking spring at each end, a magnetic member fastened to an end of the said control lever and suitable to interact with the sensor provided on the printed circuit board.
- Said control lever comprises a lever supporting member in the form of "C”, which is arranged such that its opened section faces to the printed circuit board and which is suitable to rotate about its longitudinal axis, wherein the control arm is engaged into a slot provided at the center thereof, and at least one cocking spring is arranged at its each end.
- the control lever (40) for a heavy equipment is formed to be used in industrial filed, agriculture, marine vessels, aviation and similar fields of operation.
- Said control lever (40) mainly comprises at least one body (13), a printed circuit board (21) with a HAII IC (Hall-effect sensor integrated circuit) which is preferably disposed at the center of the body (13) in a horizontal manner, a lever holder (4) fastened to the said body (13) so as to move pivotally about an axis Y, a control arm (1) fastened to the lever holder (4) so as to freely rotate about an axis X, a magnetic member (7) fastened to the lower surface of the control lever and facing to the printed circuit board, and a lever supporting member (11) fastened to the axis X of the control arm (1) such that it can move pivotally.
- HAII IC Haall-effect sensor integrated circuit
- the lever supporting member (11) of the invention is C-shaped, which is arranged such that the closed section of C-shaped structure is located at the upper section, and which has a cavity at the center thereof which is suitable for allowing the control arm (1) to rotate freely at the axis Y, and which comprises at least two cocking springs (10) at each axis.
- the control arm (1) is made of a material suitable for being attracted by a magnet, and it has a recess at a lower section (1a) facing to a printed circuit board (21) that is located immediately therebelow, in which recess a suitable magnetic member is received.
- a suitable magnetic member For the said magnetic member, NdFeB or SmCo may be selected.
- connection hole (1b) immediately above the recess, and in this cylindrical connection hole, a bushing (2) member corresponding to the hole (1b) is engaged.
- a bushing connecting member (3) Disposed at the right and left sides of the bushing (2) member, there is provided one bushing connecting member (3) which is received in a suitable bushing hole (4a) in the lever holder (4).
- each bushing (2) member is preferably used together with a suitable segment (6).
- FIG 1 there is a hollow and preferably circular pin hole (4d) which is provided in the lever holder (4) in order to allow the lever holder (4) to rotate about the axis Y, and which is suitable for receiving a pin (8).
- a bushing (9) is inserted onto an outer projection of each pin (8).
- the spring arms (10a) of a corresponding cocking spring (10) are mounted into the montage area (4f) thereon, with a section of a lateral projection (4e) having a crescent (arc) shape and formed along the longitudinal axis of the lever holder (4) that is substantially formed in a cylindrical form being typically closed, which section facing to the printed circuit board (21).
- Figure 6 shows a corresponding bushing (9), a cocking spring (10) and the spring arm (10a) mounted on the said control arm (1) as well as the montage area (4f) where they is mounted. Furthermore, figure 6 also includes recesses (13b and 13c) shaped and formed in a suitable manner.
- a spring alignment projection (4g) supports the bottom section of the cocking spring (10) where there are no arms, thereby preventing undesired incidents such as undesired displacement of the spring.
- the lever supporting member (11) having a C-shape has, at the center of its upper section, a slot (11a) which extends transversally. Said control arm (1) is engaged into the slot (11a) so that the control arm (1) is allowed to rotate about the longitudinal axis "Y", as seen in figure 6 .
- two bushings (12) are shaped according to these lever supporting projections (11c) and inserted therein.
- spring projections (11d) formed as a crescent and preferably positioned at that side facing to the printed circuit board (21).
- two cocking springs (10) are inserted in the inner surface, i.e. inside (11e), of the opposite spring projections (11d) and set therein.
- the spring alignment projections (11f) as shown in figure 5 support the bottom side of the spring arm that faces outward so that undesired displacement of the spring is avoided.
- connecting members i.e. nuts are engaged into the said body (13) and they are fitted on the connection areas (15) by means of injection molding.
- connection areas 15
- the spring alignment projection (14d) supports the bottom side of the spring where there are no arms and prevents undesired displacement of the spring.
- the connecting plate (16a) of the stopper plate (16) is inserted into the rectangular recess (13e) situated at the handle side of the said body (13) and is fixed by means of suitable connecting bolts (17) corresponding to the specific connection areas (15).
- the bolt headspaces (16c) create a volume for resin filler (18) after montage. Loosening of the bolts that due to the vibrations that may occur during use is prevented and an intervention of unauthorized persons to the control lever (40) upon its purchase may be prevented.
- each friction plate (19) preferably comprises two pressure springs (20) that extend in vertical direction.
- such options are available as two free axles, two detent axles, 1 detent axle, 1 free axle (or vice versa), 1 detent axle, 1 friction axle (or vice versa), 1 friction axle 1 free axle (or vice versa), 2 friction axles.
- the printed circuit board (21) is fixed to the printed circuit board hole (22) by means of a plurality of screws and through the corresponding connection holes (22a).
- the inner side of the printed circuit board hole (22) that faces to the control lever has a hole for receiving the printed circuit board (21) also called as PCB.
- FIG. 7 shows a printed circuit board assembly (25), inside of which is preferably coated with resin filler (25a). With this resin filler, a complete isolation may be achieved during the coating process, except the programming pins.
- the printed circuit board assembly (25) is fixed to a mechanical assembly (26) shown in figure 10 preferably by means of four bolts (27) which are engaged into the connection areas (15) of the body (13) provided with special nuts. In this way, the entire control lever (40) is established.
- the programming space is filled with resin filler (25a) so that it is fully sealed, and there is a resin hole (22f) on the area where the bolts are located which may filled with resin filler. In this way, loosening of the bolts due to vibration is prevented and an intervention to the control lever after purchase is avoided.
- EMC contact sheet (23) is compressed between the protection sheet and the outer surface of the printed circuit board hole (22), while it is being engaged into the EMC external protection sheet (29), so that it is allowed to have a permanent contact therewith.
- a bellow (30) which is preferably made of rubber material is placed around the circumference of upper body (13) and a cut seal (31) is fixed on the lower surface of the EMC external protection sheet (29), at its lower side, in order to ensure sealing of the control lever inner chamber.
- the lever holder (4) there are two projections (4e) in the form of a semi spring like an arc, which are opened at that side facing to the printed circuit board (21) and have an arc shape in the direction of the axis Y, and said torsion springs are placed underside of these projections.
- the lower side (19b) of the friction plates is preferably circular and the surface (4h) of the lever holder seats on the bearing area (11h), at the upper side of which, there is at least one spring. Said spring is pressed against the body (13) or the stopper plate (16) on the body.
- the lower portion (19b) of the friction plates is made of rubber-based material (19c) and the upper portion (19a) thereof is made of rigid thermoplastic or metal and fixed by means of a clamp-fit surface (19d).
- the printed circuit board assembly (25) is filled with resin filler until the elements of the printed circuit board (21) are located thereunder, and at the lower surface of the printed circuit board hole (22), there is a hole (22b) corresponding to the printed circuit board pins (21a) for programming. There is an elastic member (24) between this hole (22b) and the printed circuit board (21).
- the outer surfaces of the corresponding bushing holes (13b, 13c) (14b, 14c) of the upper body (13) and the lower body member (14) are closed, and the upper body (13), the lower body member (14) and the printed circuit board body (22) are made of electrical insulating thermoplastic material.
- the ESD sheet protects the control lever (40) against the external effects by means of a grid generated upon a strong magnetic current.
- Hall effect sensors have certain criteria for efficient operation.
- One of them is rotation angle ( ⁇ ), which is determined to be 20° in standard, meaning that it cannot be changed.
- Another parameter is the distance (h) between the magnetic member and hall-effect sensor, which distance is also determined in standard based on the flux density accepted by the said sensor. It is also not possible to change this parameter in the designing process.
- Another important distance is the distance (d1, d2) between the rotation point, i.e. pivot point (P) and the magnetic member (7). This is the only parameter that may be mechanically intervened. Reducing the distance between the pivot point (P) and the magnetic member, i.e. the distance d2 as shown in figure 12a increases measurement precision.
- the gap between the pivot point (P) and the magnetic member (40) may be made shorter compared to that in the single board configuration.
- the distance (d1) of the pivot point (P) to the magnetic member (7) may be optimized so as to be shorter. Especially upon a full rotation of the magnetic member, and also travelled to the extreme points within the ranges it is allowed to travel, the magnetic angle will not be increased tremendously and the magnetic flux density will be prevented to reduce further so that the hall-effect sensor can make a precise measurement.
- the distance (d2) between the said pivot point (P) and the magnetic member (7) is kept longer. In this way, if the distance is long, precision will be lower than that in figure 12a .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Switches With Compound Operations (AREA)
- Mechanical Control Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR2016/04770U TR201604770U (tr) | 2016-04-13 | 2016-04-13 | Hassas Şekilde Çalışmaya Uygun Bir Endüstriyel Kumanda Kolu. |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3232295A2 true EP3232295A2 (de) | 2017-10-18 |
EP3232295A3 EP3232295A3 (de) | 2018-01-31 |
EP3232295B1 EP3232295B1 (de) | 2023-08-23 |
Family
ID=57821827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17151342.7A Active EP3232295B1 (de) | 2016-04-13 | 2017-01-13 | Steuerhebel für genaue operation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3232295B1 (de) |
TR (1) | TR201604770U (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020145910A1 (en) * | 2019-01-10 | 2020-07-16 | Makersan Makina Otomotiv Sanayi Ticaret Anonim Sirketi | Joystick movable in multi-axes with an enhanced security |
WO2020145911A1 (en) * | 2019-01-10 | 2020-07-16 | Makersan Makina Otomotiv Sanayi Ticaret Anonim Sirketi | Joystick with a precise control |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4559420A (en) | 1983-10-14 | 1985-12-17 | Alps Electric Co., Ltd. | Omnidirectional changeover switch |
US5068499A (en) | 1989-04-14 | 1991-11-26 | Alps Electric Co., Ltd. | Control lever type input device |
WO2000039654A2 (de) | 1998-12-24 | 2000-07-06 | Mannesmann Rexroth Ag | Handbetätigtes elektrisches steuergerät |
US6462731B1 (en) | 1998-08-21 | 2002-10-08 | Itt Manufacturing Enterprises, Inc. | Joystick |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008022850A1 (de) * | 2007-11-27 | 2009-05-28 | Fernsteuergeräte Kurt Oelsch GmbH | Induktiver Handsteuergeber |
DE202008008259U1 (de) * | 2008-06-19 | 2009-10-29 | Rema Lipprandt Gmbh & Co. Kg | Joystick |
DE102009010244A1 (de) * | 2009-02-17 | 2010-08-19 | Linde Material Handling Gmbh | Steuerungsvorrichtung für eine mobile Arbeitsmaschine, insbesondere ein Flurförderzeug |
-
2016
- 2016-04-13 TR TR2016/04770U patent/TR201604770U/tr unknown
-
2017
- 2017-01-13 EP EP17151342.7A patent/EP3232295B1/de active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4559420A (en) | 1983-10-14 | 1985-12-17 | Alps Electric Co., Ltd. | Omnidirectional changeover switch |
US5068499A (en) | 1989-04-14 | 1991-11-26 | Alps Electric Co., Ltd. | Control lever type input device |
US6462731B1 (en) | 1998-08-21 | 2002-10-08 | Itt Manufacturing Enterprises, Inc. | Joystick |
WO2000039654A2 (de) | 1998-12-24 | 2000-07-06 | Mannesmann Rexroth Ag | Handbetätigtes elektrisches steuergerät |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020145910A1 (en) * | 2019-01-10 | 2020-07-16 | Makersan Makina Otomotiv Sanayi Ticaret Anonim Sirketi | Joystick movable in multi-axes with an enhanced security |
WO2020145911A1 (en) * | 2019-01-10 | 2020-07-16 | Makersan Makina Otomotiv Sanayi Ticaret Anonim Sirketi | Joystick with a precise control |
Also Published As
Publication number | Publication date |
---|---|
EP3232295B1 (de) | 2023-08-23 |
TR201604770U (tr) | 2017-10-23 |
EP3232295A3 (de) | 2018-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4639668A (en) | Analog manipulator with proximity detection of a moveable magnetizable mass | |
JP5644657B2 (ja) | 車載用電気機器のシールカバー | |
EP3232295B1 (de) | Steuerhebel für genaue operation | |
CN101499596B (zh) | 螺线管和连接器组件 | |
EP3422485B1 (de) | Verbinder und verbindungsstruktur eines verbinders und eines metallgehäuses | |
KR20180048865A (ko) | 예압 하의 잠금 부재를 포함하는 플러그 커넥터 모듈용 파지 프레임 | |
US9754747B1 (en) | Relay device | |
KR101809216B1 (ko) | 신속 연결분리 커넥터 조립체 | |
JP7223151B2 (ja) | コイル部材及びそれを有する電子膨張弁 | |
DE112010004410T5 (de) | Berührungslose Sensoranordnung | |
DE4202144B4 (de) | Differenzdruckschalter | |
KR102061368B1 (ko) | 봉입된 근접 스위치 어셈블리 | |
EP3189563B1 (de) | Stecker mit riegel, verfahren zur verwendung eines steckers und verfahren zur herstellung eines steckers | |
DE19956313A1 (de) | Magnetfeldsensor zur Ermittlung der Position eines beweglichen Objekts | |
CN102402333A (zh) | 操作位置检测装置 | |
TWI473362B (zh) | 插座及具有該插座之裝置 | |
KR102123733B1 (ko) | 사다리 고정장치 | |
JP6892781B2 (ja) | 固定構造及び電気接続箱 | |
JP2007323188A (ja) | 操作レバー装置 | |
JP2006220561A (ja) | 液面検出装置 | |
DE10051888A1 (de) | Drehstellungssensor | |
EP2457788B1 (de) | Hydrauliksteuervorrichtung und Herstellungsverfahren dafür | |
US9711888B2 (en) | Cable assembly with connector and connector assembly | |
JP6856008B2 (ja) | スイッチ | |
JP3412172B2 (ja) | 電解コンデンサの固定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G05G 9/047 20060101AFI20171222BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAKERSAN MAKINA OTOMOTIV SANAYI TICARET ANONIM SIR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180710 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210426 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230330 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017072993 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1603346 Country of ref document: AT Kind code of ref document: T Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231123 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231223 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231124 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240115 Year of fee payment: 8 Ref country code: GB Payment date: 20240119 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017072993 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240105 Year of fee payment: 8 Ref country code: FR Payment date: 20240131 Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230823 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240131 |