EP3230487A1 - Procede et four de carbonitruration a basse pression - Google Patents

Procede et four de carbonitruration a basse pression

Info

Publication number
EP3230487A1
EP3230487A1 EP15817994.5A EP15817994A EP3230487A1 EP 3230487 A1 EP3230487 A1 EP 3230487A1 EP 15817994 A EP15817994 A EP 15817994A EP 3230487 A1 EP3230487 A1 EP 3230487A1
Authority
EP
European Patent Office
Prior art keywords
steps
value
chamber
during
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15817994.5A
Other languages
German (de)
English (en)
Other versions
EP3230487B1 (fr
Inventor
Yves Giraud
Hubert MULIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECM Technologies SAS
Original Assignee
ECM Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECM Technologies SAS filed Critical ECM Technologies SAS
Publication of EP3230487A1 publication Critical patent/EP3230487A1/fr
Application granted granted Critical
Publication of EP3230487B1 publication Critical patent/EP3230487B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0083Chamber type furnaces with means for circulating the atmosphere

Definitions

  • the present invention relates to processes for treating steel parts, and more particularly to carbonitriding processes, that is to say introducing carbon and nitrogen at the surface of steel parts to improve its performance. hardness and fatigue resistance.
  • a first category of carbonitriding processes corresponds to so-called high-pressure carbonitriding processes insofar as the enclosure containing the workpieces is maintained at a pressure generally close to atmospheric pressure for the duration of the treatment.
  • Such a process consists, for example, in maintaining the parts at a temperature plateau, for example at approximately 880 ° C., while supplying the enclosure with a gaseous mixture consisting of methanol and ammonia.
  • the carbonitriding step is followed by a quenching step, for example an oil quenching, and optionally a hardening step of the treated parts.
  • a second category of carbonitriding processes corresponds to so-called low pressure or reduced pressure carbonitriding processes, insofar as the enclosure containing the workpieces is maintained at a pressure generally less than a few hundred pascals (a few millibars).
  • US Pat. No. 8,303,731 describes an example of a low-pressure carbonitriding process comprising an alternation of carburizing steps and nitriding steps. Although this method gives satisfactory results, it may be desirable for certain applications to further increase the surface nitrogen enrichment of the treated pieces.
  • An object of an embodiment is to overcome all or part of the disadvantages of low pressure carbonitriding processes and low pressure carbonitriding furnaces previously described.
  • Another object of an embodiment is to obtain, precisely and reproducibly, the desired carbon and nitrogen concentration profiles in the treated parts.
  • Another object of an embodiment is that the implementation of the carbonitriding process is compatible with the treatment of steel parts in an industrial context.
  • Another object of the present invention is that the low pressure carbonitriding furnace has a simple structure.
  • an embodiment provides a method of carbonitriding a steel part disposed in an enclosure, comprising first stages and second stages, a cementation gas being injected into the chamber only during the first stages and a gas of nitriding being injected into the chamber only during the second stages, at least one of the second stages being situated between two of the first stages, the pressure in the chamber during at least a portion of said two first steps being maintained at a first value and the pressure in the chamber during at least a portion of said second step located between said first two steps being at a second value strictly greater than the first value.
  • the first value is between 0.1 hPa and 20 hPa, preferably between 0.1 hPa and 10 hPa.
  • the second value is between 10 hPa and 250 hPa, preferably between 30 hPa and 150 hPa.
  • the carburizing gas is propane or acetylene.
  • the nitriding gas is ammonia.
  • the method further comprises third steps, each third step being located between two of the first steps, between two of the second steps or between one of the first steps and one of the second steps, a neutral gas being injected into the chamber during each third step.
  • the method further comprises first, second and third successive phases, the first phase comprising only first steps alternating with third steps, the second phase comprising the successive repetition of a cycle successively comprising a second step, a third step, a first step and a second step, and the third step comprising only second alternate steps with third steps.
  • At least one of the third steps directly precedes one of the second steps and the pressure is increased from the first value to the second value during said first step before the beginning of said third step.
  • At least one of the third steps directly precedes one of the second steps and the pressure is maintained at the first value until the end of said first step and is increased from the first value to the second value after the beginning of said third step.
  • the part is maintained at a temperature step.
  • the temperature plateau is between 800 ° C and 1050 ° C.
  • the temperature plateau is greater than 900 ° C.
  • One embodiment also provides a carbonitriding furnace for receiving a steel part, comprising gas introduction and gas extraction circuits, and a control module adapted to control the gas introduction and gas introduction circuits. extraction of gas to introduce, during the first steps and second steps, a carburizing gas into the chamber only during the first stages and a nitriding gas into the chamber only during the second stages, at least one second steps being located between two first steps, and adapted to maintain the pressure in the chamber during at least a portion of the first two steps at a first value and the pressure in the chamber during at least a portion of said second step located between the first two steps to a second value strictly greater than the first value.
  • the furnace further comprises a heating element and the control module is adapted to control the heating element to maintain the room at a temperature step.
  • Figure 1 schematically shows an embodiment of a low pressure carbonitriding furnace
  • Figure 2 illustrates an embodiment of a low pressure carbonitriding process
  • FIGS. 3 to 6 illustrate more detailed embodiments of the evolution of the pressure in the carbonitriding furnace during the implementation of the embodiment of the carbonitriding process illustrated in FIG. 1 between a nitriding step and steps broadcasting;
  • FIGS. 7 and 8 respectively represent carbon and nitrogen concentration profiles obtained by the implementation of a carbonitriding process according to the embodiment illustrated in FIG. 1 and a known carbonitriding process.
  • alternating steps A and B means a succession of steps A and B in which each step B, with the exception of the last step of the succession, is located between two steps A and each step A , with the exception of the initial stage of succession, is located between two stages B.
  • an alternation of carbon enrichment steps is performed in an enclosure, containing steel parts to be treated maintained at a substantially constant temperature, at least during part of the carbonitriding process.
  • cementation steps also known as cementation steps, during which a cementation gas is injected into the chamber maintained at a first reduced pressure
  • nitrogen enrichment stages also called nitriding steps, during which a nitriding gas is injected in the chamber maintained at a second pressure greater than the first pressure.
  • a diffusion step during which the injection of the carburising gas and the injection of the nitriding gas into the chamber are interrupted.
  • a diffusion step during which the injection of the carburizing gas and the injection of the nitriding gas into the chamber are interrupted.
  • FIG. 1 schematically represents an embodiment of a low-pressure carbonitriding furnace 10.
  • the furnace 10 comprises a sealed wall 12 delimiting an internal enclosure 14 in which a charge to be treated 16 is disposed, generally a large number of parts arranged on a suitable support.
  • a vacuum at a pressure of a few hectopascals (a few millibars) to a few hundred hectopascals (a few hundred millibars) can be maintained in the chamber 14 through an extraction pipe 18 is connected to a vacuum pump 20.
  • An in ector 22 makes it possible to introduce gases distributed in the chamber 14.
  • gas inlets 22, 24, 26, 28 are respectively monitored. by valves 30, 32, 34, 36.
  • a heating element 38 is disposed in the chamber 14.
  • a control module 40 is connected to the valves 30, 32, 34, 36 and the vacuum pump 20, and optionally to the heating element 38.
  • the control module 40 is adapted to control the closing and opening of each valve 30, 32, 34, 36.
  • a pressure sensor 42 and a temperature sensor 44 may be provided in FIG. 14 and connected to the control module 40. From the signal provided by the temperature sensor 44, the control module 40 is adapted to control the heating element 38 to maintain the temperature in the chamber 14 to a value substantially constant. From the signal provided by the pressure sensor 42, the control module 40 is adapted to control the suction power of the vacuum pump 20 to maintain the pressure in the chamber 14 to a set value.
  • the control module 40 may comprise a microprocessor or a microcontroller.
  • the control module 40 may, in whole or in part, correspond to a dedicated circuit or include a processor adapted to execute instructions of a computer program stored in a memory.
  • FIG. 2 represents a curve ⁇ 3 ⁇ 4 ⁇ 1 of temperature evolution and a curve Cp res of evolution of the pressure in the chamber 14 of the carbonitriding furnace 10 of FIG. 1 during a carbonitriding cycle according to a embodiment of the carbonitriding process.
  • the method comprises an initial step H corresponding to an increase of the temperature in the chamber 14 containing the charge 16 to a temperature plateau 52 which, in the present example, can correspond to a temperature of between approximately 800 ° C. and about 1050 ° C, preferably between about 880 ° C and about 960 ° C, for example of the order of 930 ° C.
  • Step H is followed by a step PH equalizing the temperature of the parts constituting the load 16 at the temperature step 52.
  • the steps H and PH can be carried out in the presence of a neutral gas, to which a reducing gas is optionally added.
  • the neutral gas is, for example, nitrogen (3 ⁇ 4).
  • the reducing gas for example hydrogen (3 ⁇ 4)
  • the reducing gas may be added in a proportion ranging from 1% to 5% by volume of the neutral gas.
  • Step PH is followed by a succession of three phases PI, PII and PIII.
  • the phases PI, PII and PIII are carried out by maintaining the temperature in the chamber 14 at the temperature plateau 52.
  • a quenching step Q of the load 10 for example a gas quenching, closes the carbonitriding cycle by a decrease in temperature. of the temperature.
  • the PI phase may not be present.
  • phase PIII may not be present.
  • the PI phase comprises an alternation of carbon enrichment steps C j , during which a cementation gas is injected into the chamber 14, and carbon diffusion stages D j during which the carburizing gas is more injected into the enclosure 14.
  • the PI phase comprises at least successively a carburizing step, a diffusion step, a carburizing step and a diffusion step.
  • the phase PI comprises an alternation of two carburizing steps C j and two diffusion stages D j .
  • the carburizing gas is, for example, propane (C3H8) or acetylene (C23 ⁇ 4). It can also be any other hydrocarbon ( ⁇ ) likely to dissociate at the temperatures of the enclosure to cementer the surface of the parts to be treated.
  • the phase PII comprises alternating stages of enrichment in nitrogen JJ, during which a nitriding gas is injected into the chamber 14, and carbon enrichment stages CJJ during which the gas of cementation is injected into the chamber 14.
  • a nitriding step JJ is followed directly by a carburizing step CJ J.
  • a carburizing step CJ J is followed directly by a nitriding step JJ.
  • a diffusion step DJ J can be provided between each nitriding step J J and the cementation step CJ J following.
  • a diffusion step DJ J may be provided between each cementation step CJ J and the cementation step CJ J nitriding J J following.
  • the PII phase comprises at least successively a nitriding step, a diffusion step, a cementation step and a diffusion step.
  • the phase PII comprises two successive cycles each comprising a nitriding step JJ, a diffusion step DJ J, a cementation step CJ J and a diffusion step DJ J.
  • the nitriding gas is for example ammonia (NH3).
  • the phase PIII comprises alternating stages of enrichment in nitrogen JJJ, during which the nitriding gas is injected into the chamber 14, and stages of carbon diffusion DJ JJ during which the nitriding gas is no longer
  • the phase PIII preferably comprises at least one nitriding step, a diffusion step, a nitriding step and a diffusion step.
  • the phase PIII comprises an alternation of two nitriding steps and two DJ J J diffusion stages.
  • a hydrocarbon ( ⁇ ), on the inlet 24 of the valve 32 of the nitrogen, can be delivered to the inlet 22 of the valve 30 on the inlet 36 of the valve 34 of the hydrogen and the inlet 28 of the valve 36 of ammonia.
  • the pressure is maintained at a set point in the chamber 14 by the vacuum pump 20 controlled by the control module 40.
  • the pressure in the The enclosure is, at least on some of these steps, kept substantially constant at a first value.
  • the first pressure value is between 0.1 hPa and 20 hPa, preferably between 0.1 hPa and 10 hPa.
  • the pressure in the chamber 14 is kept substantially constant at the first value during at least a portion of each cementation step C j of the first phase P1.
  • the pressure in the enclosure 14 is kept substantially constant at the first value during at least a portion of each cementation step CJJ of the second phase PII.
  • the pressure in the chamber is maintained, at least over part of this step, substantially constant at a second value, strictly greater than the first value.
  • the second pressure value is between 10 hPa and 250 hPa, preferably between 30 hPa and 150 hPa.
  • the pressure in the chamber 14 is kept substantially constant at the second value during each nitriding step J of the third phase PIII.
  • the pressure in the chamber 14 is kept substantially constant at the second value during at least a portion of each NJ J nitriding step of the third PII phase.
  • the carbonitriding process remains a low pressure, or reduced pressure, carbonitriding process insofar as the pressure in the enclosure 14 is less than 500 mbar (500 hPa) during the entire process.
  • the pressure in the chamber 14 is, in addition, kept substantially constant at the first value during at least a portion of each diffusion step D j of the first phase PI, during at least a portion of each DJ J broadcast stage of the second phase PII and / or during at least a portion of each OJJJ diffusion step of the third phase PIII.
  • the pressure in the chamber 14 is furthermore kept substantially constant at the first value during the steps H and PH.
  • a neutral gas for example nitrogen (3 ⁇ 4), may, in addition, be injected during the steps H and PH and during the carburizing steps C, CJJ, nitriding NJ J, NJ JJ and diffusion D j , DJ J Yes- Alternatively, the inert gas may be injected only during the diffusion steps D j, DJ J, DJ and JJ not be injected during steps C carburizing and nitriding steps of Naked, Nm .
  • the passage of the pressure in the chamber 14 from the first value to the second value, which is strictly greater than the first value, can be obtained by temporarily reducing or stopping the suction of the vacuum pump 20.
  • increasing the pressure in the chamber 14 from the first value to the second value can be achieved in less than 2 minutes, preferably in less than 1 minute.
  • the passage of the pressure in the chamber 14 of the second value to the first value, strictly less than the second value, can be obtained by temporarily increasing the suction of the vacuum pump 20, to reduce the pressure in the enclosure 14, then reducing the suction power of the vacuum pump 20 to a level adapted to maintain the pressure in the chamber 14 to the second value.
  • the decrease in the pressure in the chamber 14 from the second value to the first value can be achieved in less than 2 minutes, preferably in less than 1 minute.
  • all the gases injected into the enclosure 14 of the furnace 10 or some of them may be In such a variant, for example, during the steps of temperature rise H and of equalization of temperature PH, it is possible to inject directly into the chamber 14 a mixture of nitrogen and hydrogen.
  • Figures 3 to 6 show curves of C] _, C2, C3, C4 of evolution of the pressure in the chamber 14 and illustrate different configurations for varying the pressure during the succession of a first diffusion step Dl , which may correspond to a step DJ J or a step D described above, of a nitriding step N, which may correspond to a step NJ J or a step JJJ described above, and a second diffusion step D2.
  • a first diffusion step Dl which may correspond to a step DJ J or a step D described above
  • a nitriding step N which may correspond to a step NJ J or a step JJJ described above
  • a second diffusion step D2 nitriding step N
  • nitriding gas is injected into the chamber 14.
  • neutral gas is injected into the chamber 14.
  • the injection of neutral gas into the chamber 14 can also be carried out during the nitriding step N.
  • Each curve C ] , 3 ⁇ 4 '3 ⁇ 4 and C4 comprises a first pressure bearing LP1 substantially constant at the first value in each diffusion step D1 and D2, a second pressure bearing LP2 substantially constant at the second value in the nitriding step N, an ascending phase PUP between the LP1 bearing and the bearing PP2 and a downward phase PDOWN between the bearing LP2 and the bearing LP1.
  • the ascending phase PUP is carried out in the nitriding step N and the downward phase PDOWN is carried out in the diffusion step D2.
  • the ascending phase PUP is carried out in the nitriding step N and the downward phase PDOWN is carried out in the nitriding step N.
  • the phase ascending PUP is performed in the diffusion step Dl and the PDOW down-phase is carried out in the nitriding step N.
  • the ascending phase PUP is carried out in the diffusion step D1 and the down-phase PDOWN is carried out in the step of D2 broadcast.
  • the nitriding step N is then advantageously carried out at a substantially constant pressure.
  • FIG. 7 represents an example of a PQ profile of weight concentration of the carbon element and an example of a PJJ profile of concentration by weight of the nitrogen element that has diffused into a treated part as a function of the depth, measured from the surface of the part during the implementation of a first carbonitriding process in which the pressure in the chamber 14 remains substantially constant at low pressure.
  • FIG. 8 represents an exemplary profile PQ 'of concentration by weight of the carbon element and an example of a PN' profile of concentration by weight of the nitrogen element having diffused into a treated part as a function of the depth, measured from of the surface of the part during the implementation of a second carbonitriding method according to the embodiment described above in connection with Figure 2 in which the pressure is increased during the nitriding steps.
  • the carburizing gas was acetylene, nitriding gas was ammonia and the inert gas was nitrogen.
  • the carbonitriding was carried out at a temperature level of 920 ° C.
  • the quenching step Q was gas quenching.
  • the first and second carbonitriding processes included the following steps:
  • steps H and PH 70 minutes in full
  • PI phase alternation of four carburizing stages C j (128 s, 60 s, 56 s and 55 s respectively) and four diffusion stages D j (185 s, 302 s, 420 s and 60 s respectively);
  • PII phase alternation of three NJJ nitriding steps (respectively 394 s, 424 s and 402 s), six DJJ diffusion steps (93 s, 120 s, 130 s, 180 ° s, 227 ° s and 120 s respectively). s) and three CJJ cementation steps (54 s each); and
  • phase PIII alternation of three nitriding stages N III (of 300 s each) and three diffusion stages DJJJ (respectively of 120 s, 120 s and 862 s).
  • the pressure in the chamber 14 was kept substantially at 8 mbar (8 hPa) during all stages H, PH, C j, D j, YJCs DJJ and DJJJ and the pressure in the chamber 14 was maintained at substantially 45 mbar (45 hPa) during the NJJ and NJJJ steps except for the first stage NJJ which was carried out at the pressure of 8 mbar (8 hPa).
  • the inventors have demonstrated that increasing the pressure during at least some NJJ and / or NJJJ nitriding steps makes it possible to obtain an increase in the nitrogen enrichment of the treated parts.
  • the nitrogen concentration was 0.1% by weight to 25 ⁇ m, 0.09% by weight to 100 ⁇ m, 0.045% by weight to 200 ⁇ m and 0.025% by weight. weight at 300 ⁇ m.
  • the nitrogen concentration was 0.4 wt% at 25 ⁇ m, 0.29 wt% at 100 ⁇ m, 0.14 wt% at 200 ⁇ m and 0.06 wt% at 300 ⁇ m.
  • the inventors have shown that increasing the pressure during at least some NJJ and / or NJJJ nitriding steps makes it possible, moreover, to obtain an increase in the carbon enrichment of the treated parts.
  • the carbon concentration was 0.725% by weight to 50 ⁇ m, 0.71% by weight to 100 ⁇ m, 0.675% by weight to 200 ⁇ m, and 0.6% by weight to 100 ⁇ m. 300 ⁇ m.
  • the carbon concentration was 0.8 wt% to 50 um, 0.8 wt% to 100 um, 0.775 wt% to 200 um and 0.68 wt% to 300 um.
  • the nitriding gas can be injected during step H of temperature rise, as soon as the temperature in the chamber 14 exceeds a given temperature, and / or during the equalizing step PH in temperature.
  • the nitriding gas is ammonia
  • the injection can be performed as soon as the temperature in the enclosure 14 exceeds about 800 ° C.
  • the control of the gaseous environment in the chamber 14 can hardly be carried out accurately, which makes it more difficult to obtain accurately and reproducibly, desired nitrogen and carbon concentration profiles of the treated pieces.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Details (AREA)

Abstract

L'invention concerne un procédé de carbonitruration d'une pièce en acier disposée dans une enceinte, comprenant des premières étapes et des deuxièmes étapes, un gaz de cémentation étant injecté dans l'enceinte seulement pendant les premières étapes et un gaz de nitruration étant injecté dans l'enceinte seulement pendant les deuxièmes étapes, au moins l'une des deuxièmes étapes étant située entre deux des premières étapes, la pression dans l'enceinte pendant au moins une partie desdites deux premières étapes étant maintenue à une première valeur et la pression dans l'enceinte pendant au moins une partie de ladite deuxième étape située entre lesdites deux premières étapes étant à une deuxième valeur supérieure strictement à la première valeur.

Description

PROCEDE ET FOUR DE CARBONITRURATION A BASSE PRESSION
La présente demande de brevet revendique la priorité de la demande de brevet français FR14/62260 qui sera considérée comme faisant partie intégrante de la présente description.
Domaine
La présente invention concerne les procédés de traitement de pièces en acier, et plus particulièrement les procédés de carbonitruration, c'est-à-dire d'introduction de carbone et d'azote au niveau de la surface de pièces en acier pour en améliorer la dureté et la tenue en fatigue.
Exposé de l'art antérieur
Il existe plusieurs types de procédés de carboni¬ truration de pièces en acier permettant 1 ' introduction de carbone et d'azote au niveau de la surface des pièces jusqu'à des profondeurs pouvant atteindre plusieurs centaines de micromètres.
Une première catégorie de procédés de carbonitruration correspond aux procédés de carbonitruration dits à haute pression dans la mesure où l'enceinte contenant les pièces à traiter est maintenue à une pression généralement proche de la pression atmosphérique pendant toute la durée du traitement. Un tel procédé consiste, par exemple, à maintenir les pièces à un palier de température, par exemple à environ 880°C, tout en alimentant l'enceinte avec un mélange gazeux constitué de méthanol et d'ammoniac. L'étape de carbonitruration est suivie d'une étape de trempe, par exemple une trempe à l'huile, et éventuellement d'une étape d' écrouissage des pièces traitées.
Une seconde catégorie de procédés de carbonitruration correspond aux procédés de carbonitruration dits à basse pression ou à pression réduite, dans la mesure où l'enceinte contenant les pièces à traiter est maintenue à une pression généralement inférieure à quelques centaines de pascals (quelques millibars) .
Le brevet US 8 303 731 décrit un exemple de procédé de carbonitruration à basse pression comprenant une alternance d'étapes de cémentation et d'étapes de nitruration. Bien que ce procédé donne des résultats satisfaisants, il peut être souhaitable, pour certaines applications, d'augmenter d'avantage l'enrichissement en azote en surface des pièces traitées.
Résumé
Un objet d'un mode de réalisation est de pallier tout ou partie des inconvénients des procédés de carbonitruration à basse pression et des fours de carbonitruration à basse pression décrits précédemment.
Un autre objet d'un mode de réalisation est l'obtention, de façon précise et reproductible, des profils de concentrations de carbone et d'azote souhaités dans les pièces traitées.
Un autre objet d'un mode de réalisation est que la mise en oeuvre du procédé de carbonitruration est compatible avec le traitement de pièces en acier dans un contexte industriel.
Un autre objet de la présente invention est que le four de carbonitruration à basse pression a une structure simple.
Ainsi, un mode de réalisation prévoit un procédé de carbonitruration d'une pièce en acier disposée dans une enceinte, comprenant des premières étapes et des deuxièmes étapes, un gaz de cémentation étant injecté dans l'enceinte seulement pendant les premières étapes et un gaz de nitruration étant injecté dans l'enceinte seulement pendant les deuxièmes étapes, au moins l'une des deuxièmes étapes étant située entre deux des premières étapes, la pression dans l'enceinte pendant au moins une partie desdites deux premières étapes étant maintenue à une première valeur et la pression dans l'enceinte pendant au moins une partie de ladite deuxième étape située entre lesdites deux premières étapes étant à une deuxième valeur supérieure strictement à la première valeur.
Selon un mode de réalisation, la première valeur est comprise entre 0,1 hPa et 20 hPa, de préférence entre 0,1 hPa et 10 hPa.
Selon un mode de réalisation, la deuxième valeur est comprise entre 10 hPa et 250 hPa, de préférence entre 30 hPa et 150 hPa.
Selon un mode de réalisation, le gaz de cémentation est le propane ou l'acétylène.
Selon un mode de réalisation, le gaz de nitruration est 1 ' ammoniac .
Selon un mode de réalisation, le procédé comprend, en outre, des troisièmes étapes, chaque troisième étape étant située entre deux des premières étapes, entre deux des deuxièmes étapes ou entre l'une des premières étapes et l'une des deuxièmes étapes, un gaz neutre étant injecté dans l'enceinte pendant chaque troisième étape.
Selon un mode de réalisation, le procédé comprend, en outre, des première, deuxième et troisième phases successives, la première phase comprenant seulement des premières étapes alternées avec des troisièmes étapes, la deuxième phase comprenant la répétition successive d'un cycle comprenant successivement une deuxième étape, une troisième étape, une première étape et une deuxième étape, et la troisième phase comprenant seulement des deuxièmes étapes alternées avec des troisièmes étapes.
Selon un mode de réalisation, au moins l'une des troisièmes étapes précède directement l'une des deuxièmes étapes et la pression est augmentée de la première valeur à la deuxième valeur pendant ladite première étape avant le début de ladite troisième étape.
Selon un mode de réalisation, au moins l'une des troisièmes étapes précède directement l'une des deuxièmes étapes et la pression est maintenue à la première valeur jusqu'à la fin de ladite première étape et est augmentée de la première valeur à la deuxième valeur après le début de ladite troisième étape.
Selon un mode de réalisation, la pièce est maintenue à un palier de température.
Selon un mode de réalisation, le palier de température est compris entre 800°C et 1050°C.
Selon un mode de réalisation, le palier de température est supérieur à 900 °C.
Un mode de réalisation prévoit également un four de carbonitruration destiné à recevoir une pièce en acier, comprenant des circuits d'introduction de gaz et d'extraction de gaz, et un module de commande adapté à commander les circuits d'introduction de gaz et d'extraction de gaz pour introduire, au cours de premières étapes et de deuxièmes étapes, un gaz de cémentation dans l'enceinte seulement pendant les premières étapes et un gaz de nitruration dans l'enceinte seulement pendant les deuxièmes étapes, au moins l'une des deuxièmes étapes étant située entre deux premières étapes, et adapté à maintenir la pression dans l'enceinte pendant au moins une partie des deux premières étapes à une première valeur et la pression dans l'enceinte pendant au moins une partie de ladite deuxième étape située entre les deux premières étapes à une deuxième valeur supérieure strictement à la première valeur.
Selon un mode de réalisation, le four comprend, en outre, un élément de chauffage et le module de commande est adapté à commander l'élément de chauffage pour maintenir la pièce à un palier de température.
Brève description des dessins
Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
la figure 1 représente schématiquement un mode de réalisation d'un four de carbonitruration à basse pression ; la figure 2 illustre un mode de réalisation d'un procédé de carbonitruration à basse pression ;
les figures 3 à 6 illustrent des modes de réalisation plus détaillés de l'évolution de la pression dans le four de carbonitruration lors de la mise en oeuvre du mode de réalisation du procédé de carbonitruration illustré en figure 1 entre une étape de nitruration et des étapes de diffusion ; et
les figures 7 et 8 représentent respectivement des profils de concentration de carbone et d'azote obtenus par la mise en oeuvre d'un procédé de carbonitruration selon le mode de réalisation illustré en figure 1 et d'un procédé de carbonitruration connu.
Description détaillée
De mêmes éléments ont été désignés par de mêmes références aux différentes figures et, de plus, les diverses figures ne sont pas tracées à l'échelle. Par souci de clarté, seuls les éléments qui sont utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés.
Dans la description qui suit, sauf précision contraire, les expressions "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près. En outre, par alternance d'étapes A et B, on entend une succession d'étapes A et B dans laquelle chaque étape B, à l'exception de la dernière étape de la succession, est située entre deux étapes A et chaque étape A, à l'exception de l'étape initiale de la succession, est située entre deux étapes B.
Selon un mode de réalisation, il est réalisé dans une enceinte, contenant des pièces en acier à traiter maintenues à une température sensiblement constante, au moins au cours d'une partie du procédé de carbonitruration, une alternance d'étapes d'enrichissement en carbone, également appelées étapes de cémentation, pendant lesquelles un gaz de cémentation est injecté dans l'enceinte maintenue à une première pression réduite, et d'étapes d'enrichissement en azote, également appelées étapes de nitruration, pendant lesquelles un gaz de nitruration est injecté dans l'enceinte maintenue à une deuxième pression supérieure à la première pression. Pendant chaque étape de cémentation, il n'y a pas d'injection de gaz de nitruration dans l'enceinte et pendant chaque étape de nitruration, il n'y a pas d'injection de gaz de cémentation dans l'enceinte.
Ceci permet avantageusement de contrôler, de façon précise et reproductible, les profils de concentrations de carbone et d'azote obtenus dans les pièces traitées puisque l'injection du gaz de nitruration est réalisée séparément de l'injection du gaz de cémentation. De plus, comme l'injection du gaz de nitruration est réalisée dans l'enceinte alors que l'enceinte est maintenue à une pression plus élevée que la pression régnant dans l'enceinte lors de l'injection du gaz de cémentation, l'enrichissement en azote des pièces traitées est augmenté par rapport à un procédé dans lequel la même pression est maintenue dans l'enceinte lors de l'injection du gaz de cémentation et de l'injection du gaz de nitruration.
Il peut être prévu, entre au moins une étape de cémentation et l'étape de nitruration suivante, une étape de diffusion pendant lesquelles l'injection du gaz de cémentation et l'injection du gaz de nitruration dans l'enceinte sont interrompues. De même, il peut être prévu, entre au moins une étape de nitruration et l'étape de cémentation suivante, une étape de diffusion pendant laquelle l'injection du gaz de cémentation et l'injection du gaz de nitruration dans l'enceinte sont interrompues .
La figure 1 représente de façon schématique un mode de réalisation d'un four de carbonitruration à basse pression 10. Le four 10 comprend une paroi étanche 12 délimitant une enceinte interne 14 dans laquelle est disposée une charge à traiter 16, généralement un grand nombre de pièces disposées sur un support approprié. Un vide à une pression de l'ordre de quelques hectopascals (quelques millibars) à quelques centaines d'hectopascals (quelques centaines de millibars) peut être maintenu dans l'enceinte 14 grâce à une canalisation d'extraction 18 reliée à une pompe à vide 20. Un in ecteur 22 permet d'introduire des gaz de façon répartie dans l'enceinte 14. On a représenté à titre d'exemple, des entrées de gaz 22, 24, 26, 28 respectivement contrôlées par des vannes 30, 32, 34, 36. Un élément de chauffage 38 est disposé dans l'enceinte 14. Un module de commande 40 est relié aux vannes 30, 32, 34, 36 et à la pompe à vide 20, et éventuellement à l'élément de chauffage 38. Le module de commande 40 est adapté à commander la fermeture et l'ouverture de chaque vanne 30, 32, 34, 36. Un capteur de pression 42 et un capteur de température 44 peuvent être prévus dans l'enceinte 14 et reliés au module de commande 40. A partir du signal fourni par le capteur de température 44, le module de commande 40 est adapté à commander l'élément de chauffage 38 pour maintenir la température dans l'enceinte 14 à une valeur sensiblement constante. A partir du signal fourni par le capteur de pression 42, le module de commande 40 est adapté à commander la puissance d'aspiration de la pompe à vide 20 pour maintenir la pression dans l'enceinte 14 à une valeur de consigne. Le module de commande 40 peut comprendre un microprocesseur ou un microcontrôleur. Le module de commande 40 peut, en totalité ou en partie, correspondre à un circuit dédié ou comprendre un processeur adapté à exécuter des instructions d'un programme d'ordinateur stocké dans une mémoire.
La figure 2 représente une courbe <¾ΘΠ1 d'évolution de la température et une courbe Cpres d'évolution de la pression dans l'enceinte 14 du four de carbonitruration 10 de la figure 1 au cours d'un cycle de carbonitruration selon un mode de réalisation de procédé de carbonitruration.
Le procédé comprend une étape initiale H correspondant à une élévation 50 de la température dans l'enceinte 14 contenant la charge 16 jusqu'à un palier de température 52 qui, dans le présent exemple, peut correspondre à une température comprise entre environ 800°C et environ 1050°C, de préférence entre environ 880°C et environ 960°C, par exemple de l'ordre de 930°C. L'étape H est suivie d'une étape PH d'égalisation de la température des pièces constituant la charge 16 au palier de température 52. Les étapes H et PH peuvent être réalisées en présence d'un gaz neutre, auquel est éventuellement ajouté un gaz réducteur. Le gaz neutre est par exemple l'azote (¾) . Le gaz réducteur, par exemple de l'hydrogène (¾), peut être ajouté selon une proportion variant dans une plage de 1 % à 5 % en volume du gaz neutre. Pour des raisons de sécurité, il peut être souhaitable de limiter la proportion d'hydrogène à des proportions inférieures à environ 5 % pour prévenir tout risque d'explosion dans le cas où l'hydrogène viendrait accidentellement en contact avec l'atmosphère ambiante. L'étape PH est suivie d'une succession de trois phases PI, PII et PIII. Les phases PI, PII et PIII sont réalisées en maintenant la température dans l'enceinte 14 au palier de température 52. Une étape de trempe Q de la charge 10, par exemple une trempe au gaz, clôt le cycle de carbonitruration par une diminution 54 de la température. La phase PI peut ne pas être présente. De même, la phase PIII peut ne pas être présente.
La phase PI comprend une alternance d'étapes d'enrichissement en carbone Cj, pendant lesquelles un gaz de cémentation est injecté dans l'enceinte 14, et d'étapes de diffusion du carbone Dj pendant lesquelles le gaz de cémentation n'est plus injecté dans l'enceinte 14. De préférence, la phase PI comprend au moins successivement une étape de cémentation, une étape de diffusion, une étape de cémentation et une étape de diffusion. A titre d'exemple, en figure 2, la phase PI comprend une alternance de deux étapes de cémentation Cj et de deux étapes de diffusion Dj . Le gaz de cémentation est, par exemple, du propane ( C3H8 ) ou de l'acétylène ( C2¾ ) . Il peut aussi s'agir de tout autre hydrocarbure (ΟχΗγ) susceptible de se dissocier aux températures de l'enceinte pour cémenter la surface des pièces à traiter.
La phase PII comprend une alternance d'étapes d'enrichissement en azote J J, pendant lesquelles un gaz de nitruration est injecté dans l'enceinte 14, et d'étapes d'enrichissement en carbone C J J pendant lesquelles le gaz de cémentation est injecté dans l'enceinte 14. Pendant les étapes de nitruration NJ J, le gaz de cémentation n'est pas injecté dans l'enceinte 14 et, pendant les étapes de cémentation CJ J, le gaz de nitruration n'est pas injecté dans l'enceinte 14. Selon un mode de réalisation, une étape de nitruration J J est suivie directement par une étape de cémentation CJ J. Selon un mode de réalisation, une étape de cémentation CJ J, à l'exception de la dernière étape de cémentation CJ J de la phase PII, est suivie directement par une étape de nitruration J J .
Selon un mode de réalisation, une étape de diffusion DJ J peut être prévue entre chaque étape de nitruration J J et l'étape de cémentation CJ J suivante. Selon un mode de réalisation, une étape de diffusion DJ J peut être prévue entre chaque étape de cémentation CJ J et l'étape de cémentation CJ J de nitruration J J suivante. De préférence, la phase PII comprend au moins successivement une étape de nitruration, une étape de diffusion, une étape de cémentation et une étape de diffusion. A titre d'exemple, en figure 2, la phase PII comprend deux cycles successifs comprenant chacun une étape de nitruration J J, une étape de diffusion DJ J, une étape de cémentation CJ J et une étape de diffusion DJ J. Le gaz de nitruration est par exemple de l'ammoniac (NH3 ) .
La phase PIII comprend une alternance d'étapes d'enrichissement en azote J J J, pendant lesquelles le gaz de nitruration est injecté dans l'enceinte 14, et d'étapes de diffusion du carbone DJ J J pendant lesquelles le gaz de nitruration n'est plus injecté dans l'enceinte 14. De préférence, la phase PIII comprend au moins successivement une étape de nitruration, une étape de diffusion, une étape de nitruration et une étape de diffusion. A titre d'exemple, en figure 2, la phase PIII comprend une alternance de deux étapes de nitruration et de deux étapes de diffusion DJ J J .
En reprenant le schéma de la figure 1, on peut faire arriver sur l'entrée 22 de la vanne 30 un hydrocarbure (ΟχΗγ) , sur l'entrée 24 de la vanne 32 de l'azote, sur l'entrée 36 de la vanne 34 de l'hydrogène et sur l'entrée 28 de la vanne 36 de 1 ' ammoniac .
La pression est maintenue à une valeur de consigne dans l'enceinte 14 par la pompe à vide 20 commandée par le module de commande 40. Selon un mode de réalisation, pendant au moins certaines des étapes de cémentation C et CJJ, la pression dans l'enceinte est, au moins sur une partie de ces étapes, maintenue sensiblement constante à une première valeur. Selon un mode de réalisation, la première valeur de pression est comprise entre 0,1 hPa et 20 hPa, de préférence entre 0,1 hPa et 10 hPa. De préférence, la pression dans l'enceinte 14 est maintenue sensiblement constante à la première valeur pendant au moins une partie de chaque étape de cémentation Cj de la première phase PI . De préférence, la pression dans l'enceinte 14 est maintenue sensiblement constante à la première valeur pendant au moins une partie de chaque étape de cémentation C J J de la deuxième phase PII.
Selon un mode de réalisation, pendant au moins certaines des étapes de nitruration NJ J et J J J, la pression dans l'enceinte est maintenue, au moins sur une partie de cette étape, sensiblement constante à une deuxième valeur, supérieure strictement à la première valeur. Selon un mode de réalisation, la deuxième valeur de pression est comprise entre 10 hPa et 250 hPa, de préférence entre 30 hPa et 150 hPa. De préférence, la pression dans l'enceinte 14 est maintenue sensiblement constante à la deuxième valeur pendant chaque étape de nitruration J J J de la troisième phase PIII. De préférence, la pression dans l'enceinte 14 est maintenue sensiblement constante à la deuxième valeur pendant au moins une partie de chaque étape de nitruration NJ J de la troisième phase PII.
Le procédé de carbonitruration demeure un procédé de carbonitruration à basse pression, ou pression réduite, dans la mesure où la pression dans l'enceinte 14 est inférieure à 500 mbar (500 hPa) pendant la totalité du procédé. Selon un mode de réalisation, la pression dans l'enceinte 14 est, en outre, maintenue sensiblement constante à la première valeur pendant au moins une partie de chaque étape de diffusion Dj de la première phase PI, pendant au moins une partie de chaque étape de diffusion DJ J de la deuxième phase PII et/ou pendant au moins une partie de chaque étape de diffusion OJJJ de la troisième phase PIII. Selon un mode de réalisation, la pression dans l'enceinte 14 est, en outre, maintenue sensiblement constante à la première valeur pendant les étapes H et PH. Un gaz neutre, par exemple de l'azote (¾) , peut, en outre, être injecté pendant les étapes H et PH et pendant les étapes de cémentation C , CJJ, de nitruration NJ J , NJ J J et de diffusion Dj, DJ J , Oui- A titre de variante, le gaz neutre peut est injecté seulement pendant les étapes de diffusion Dj, DJ J , DJ J J et ne pas être injecté pendant les étapes de cémentation C , et les étapes de nitruration Nu, Nm.
Le passage de la pression dans l'enceinte 14 de la première valeur à la deuxième valeur, strictement supérieure à la première valeur, peut être obtenu en diminuant, voire en arrêtant, temporairement l'aspiration de la pompe à vide 20. De préférence, l'augmentation de la pression dans l'enceinte 14 de la première valeur à la deuxième valeur peut être réalisée en moins de 2 minutes, de préférence en moins de 1 minute.
Le passage de la pression dans l'enceinte 14 de la deuxième valeur à la première valeur, strictement inférieure à la deuxième valeur, peut être obtenu en augmentant temporairement l'aspiration de la pompe à vide 20, pour faire chuter la pression dans l'enceinte 14, puis en réduisant la puissance d'aspiration de la pompe à vide 20 jusqu'à un niveau adapté pour maintenir la pression dans l'enceinte 14 à la deuxième valeur. De préférence, la diminution la pression dans l'enceinte 14 de la deuxième valeur à la première valeur peut être réalisée en moins de 2 minutes, de préférence en moins de 1 minute.
Selon un mode de réalisation, tous les gaz injectés dans l'enceinte 14 du four 10 ou certains d'entre eux peuvent être mélangés avant l'injection dans l'enceinte 14. Une telle variante permet par exemple, lors des étapes de montée en température H et d'égalisation de température PH, d'injecter directement dans l'enceinte 14 un mélange d'azote et d'hydrogène du type contenant une proportion d'hydrogène inférieure à 5 % en volume, une telle proportion d'hydrogène excluant tout risque d'explosion.
Les figures 3 à 6 représentent respectivement des courbes C]_, C2 , C3 , C4 d'évolution de la pression dans l'enceinte 14 et illustrent différentes configurations de variation de la pression lors de la succession d'une première étape de diffusion Dl, pouvant correspondre à une étape DJ J ou une étape D décrite précédemment, d'une étape de nitruration N, pouvant correspondre à une étape NJ J ou une étape J J J décrite précédemment, et d'une deuxième étape de diffusion D2. Dans l'étape de nitruration N, du gaz de nitruration est injecté dans l'enceinte 14. Pendant chaque étape de diffusion Dl et D2, du gaz neutre est injecté dans l'enceinte 14. L'injection de gaz neutre dans l'enceinte 14 peut, en outre, être réalisée également pendant l'étape de nitruration N. La variation de la pression est réalisée en modifiant la puissance d'aspiration de la pompe à vide 20. Chaque courbe C]_, ¾' ¾ et C4 comprend un premier palier LP1 de pression sensiblement constante à la première valeur dans chaque étape de diffusion Dl et D2, un deuxième palier LP2 de pression sensiblement constante à la deuxième valeur dans l'étape de nitruration N, une phase ascendante PUP entre le palier LP1 et le palier PP2 et une phase descendante PDOWN entre le palier LP2 et le palier LP1.
Dans le mode de réalisation illustré en figure 3, la phase ascendante PUP est réalisée dans l'étape de nitruration N et la phase descendante PDOWN est réalisée dans l'étape de diffusion D2. Dans le mode de réalisation illustré en figure 4, la phase ascendante PUP est réalisée dans l'étape de nitruration N et la phase descendante PDOWN est réalisée dans l'étape de nitruration N. Dans le mode de réalisation illustré en figure 5, la phase ascendante PUP est réalisée dans l'étape de diffusion Dl et la phase descendante PDOW est réalisée dans l'étape de nitruration N. Dans le mode de réalisation illustré en figure 6, la phase ascendante PUP est réalisée dans l'étape de diffusion Dl et la phase descendante PDOWN est réalisée dans l'étape de diffusion D2. L'étape de nitruration N est alors avantageusement réalisée à une pression sensiblement constante.
La figure 7 représente un exemple de profil PQ de concentration en poids de l'élément carbone et un exemple de profil PJJ de concentration en poids de l'élément azote ayant diffusé dans une pièce traitée en fonction de la profondeur, mesurée à partir de la surface de la pièce lors de la mise en oeuvre d'un premier procédé de carbonitruration dans lequel la pression dans l'enceinte 14 reste sensiblement constante à basse pression.
La figure 8 représente un exemple de profil PQ' de concentration en poids de l'élément carbone et un exemple de profil PN' de concentration en poids de l'élément azote ayant diffusé dans une pièce traitée en fonction de la profondeur, mesurée à partir de la surface de la pièce lors de la mise en oeuvre d'un deuxième procédé de carbonitruration selon le mode de réalisation décrit précédemment en relation avec la figure 2 dans lequel la pression est augmentée lors des étapes de nitruration.
Pour les premier et deuxième procédés de carboni¬ truration, le gaz de cémentation était l'acétylène, le gaz de nitruration était l'ammoniac et le gaz neutre était l'azote. Dans les premier et deuxième procédés de carbonitruration, la carbonitruration était réalisée à un palier de température de 920°C. L'étape de trempe Q était une trempe au gaz.
Les premier et deuxième procédés de carbonitruration comprenaient les étapes suivantes :
étapes H et PH : 70 minutes en totalité ;
phase PI : alternance de quatre étapes de cémentation Cj (respectivement de 128 s, 60 s, 56 s et 55 s) et de quatre étapes de diffusion Dj (respectivement de 185 s, 302 s, 420 s et 60 s) ; phase PII : alternance de trois étapes de nitruration NJJ (respectivement de 394 s, 424 s et 402 s) , de six étapes de diffusion DJJ (respectivement de 93 s, 120 s, 130 s, 180°s, 227°s et 120 s) et de trois étapes de cémentation CJJ (de 54 s chacune) ; et
phase PIII : alternance de trois étapes de nitruration NIII (de 300 s chacune) et de trois étapes de diffusion DJJJ (respectivement de 120 s, 120 s et 862 s) .
La pression dans l'enceinte 14 était maintenue sensiblement à 8 mbar (8 hPa) pendant l'ensemble des étapes H, PH, Cj, Dj, CJJ, DJJ et DJJJ et la pression dans l'enceinte 14 était maintenue sensiblement à 45 mbar (45 hPa) pendant les étapes NJJ et NJJJ à l'exception de la première étape NJJ qui a été réalisée à la pression de 8 mbar (8 hPa) .
Les inventeurs ont mis en évidence que l'augmentation de la pression pendant au moins certaines étapes de nitruration NJJ et/OU NJJJ permet d'obtenir une augmentation de l'enrichissement en azote des pièces traitées. En particulier, pour le premier procédé, la concentration en azote était de 0,1 % en poids à 25 um, de 0,09 % en poids à 100 um, de 0, 045 % en poids à 200 um et de 0,025 % en poids à 300 um. Pour le deuxième procédé, la concentration en azote était de 0,4 % en poids à 25 um, de 0,29 % en poids à 100 um, de 0,14 % en poids à 200 um et de 0,06 % en poids à 300 um.
Les inventeurs ont mis en évidence que l'augmentation de la pression pendant au moins certaines étapes de nitruration NJJ et/ou NJJJ permet, en outre, d'obtenir une augmentation de l'enrichissement en carbone des pièces traitées. En particulier, pour le premier procédé, la concentration en carbone était de 0,725 % en poids à 50 um, de 0,71 % en poids à 100 um, de 0,675 % en poids à 200 um et de 0,6 % en poids à 300 um. Pour le deuxième procédé, la concentration en carbone était de 0,8 % en poids à 50 um, de 0,8 % en poids à 100 um, de 0,775 % en poids à 200 um et de 0,68 % en poids à 300 um. Selon une variante de l'invention, le gaz de nitruration peut être injecté pendant l'étape H de montée en température, dès que la température dans l'enceinte 14 dépasse une température donnée, et/ou pendant l'étape PH d'égalisation en température. A titre d'exemple, lorsque le gaz de nitruration est l'ammoniac, l'injection peut être réalisée dès que la température dans l'enceinte 14 dépasse environ 800°C.
Le fait que les gaz de cémentation et de nitruration ne sont pas injectés simultanément permet d'augmenter la pression dans l'enceinte 14 pendant au moins certaines des étapes de nitruration NJ J et/ou NJ J J. Ceci entraîne un meilleur enrichissement en azote et en carbone des pièces traitées.
De plus, le fait que les gaz de cémentation et de nitruration ne sont pas injectés simultanément permet d'obtenir les profils de concentrations de carbone et d'azote souhaités de façon précise et reproductible. En effet, si le gaz de nitruration est injecté simultanément au gaz de cémentation, il se produit une dilution du gaz de cémentation et du gaz de nitruration. Ceci n'est pas un facteur favorisant la réaction du carbone issu du gaz de cémentation ou la réaction de l'azote issu du gaz de nitruration avec les pièces à traiter, ce qui ralentit l'enrichissement des pièces en azote et en carbone. En outre, si le gaz de cémentation et le gaz de nitruration sont mélangés, le contrôle de l'ambiance gazeuse dans l'enceinte 14 peut difficilement être effectué avec précision, ce qui rend plus difficile l'obtention, de façon précise et reproductible, des profils de concentrations en azote et en carbone souhaités des pièces traitées.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. A titre d'exemple, l'étape de trempe au gaz précédemment décrite peut être remplacée par une étape de trempe à l'huile.

Claims

REVENDICATIONS
1. Procédé de carbonitruration d'une pièce (16) en acier disposée dans une enceinte (14) , comprenant des premières étapes et des deuxièmes étapes, un gaz de cémentation étant injecté dans l'enceinte seulement pendant les premières étapes et un gaz de nitruration étant injecté dans l'enceinte seulement pendant les deuxièmes étapes, au moins l'une des deuxièmes étapes étant située entre deux des premières étapes, la pression dans l'enceinte pendant au moins une partie desdites deux premières étapes étant maintenue à une première valeur et la pression dans l'enceinte pendant au moins une partie de ladite deuxième étape située entre lesdites deux premières étapes étant à une deuxième valeur supérieure strictement à la première valeur.
2. Procédé selon la revendication 1, dans lequel la première valeur est comprise entre 0, 1 hPa et 20 hPa, de préférence entre 0,1 hPa et 10 hPa.
3. Procédé selon la revendication 1 ou 2, dans lequel la deuxième valeur est comprise entre 10 hPa et 250 hPa, de préférence entre 30 hPa et 150 hPa.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le gaz de cémentation est le propane ou
1 ' acétylène .
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le gaz de nitruration est l'ammoniac.
6. Procédé selon l'une quelconque des revendications 1 à 5, comprenant, en outre, des troisièmes étapes, chaque troisième étape étant située entre deux des premières étapes, entre deux des deuxièmes étapes ou entre l'une des premières étapes et l'une des deuxièmes étapes, un gaz neutre étant injecté dans l'enceinte pendant chaque troisième étape.
7. Procédé selon la revendication 6, comprenant des première, deuxième et troisième phases successives, et dans lequel la première phase comprend seulement des premières étapes alternées avec des troisièmes étapes, dans lequel la deuxième phase comprend la répétition successive d'un cycle comprenant successivement une deuxième étape, une troisième étape, une première étape et une deuxième étape, et dans lequel la troisième phase comprend seulement des deuxièmes étapes alternées avec des troisièmes étapes.
8. Procédé selon la revendication 6 ou 7, dans lequel au moins l'une des troisièmes étapes précède directement l'une des deuxièmes étapes et dans lequel la pression est augmentée de la première valeur à la deuxième valeur pendant ladite première étape avant le début de ladite troisième étape.
9. Procédé selon la revendication 6 ou 7, dans lequel au moins l'une des troisièmes étapes précède directement l'une des deuxièmes étapes et dans lequel la pression est maintenue à la première valeur jusqu'à la fin de ladite première étape et est augmentée de la première valeur à la deuxième valeur après le début de ladite troisième étape.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la pièce (6) est maintenue à un palier de température .
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le palier de température est compris entre 800 °C et 1050°C.
12. Procédé selon la revendication 11, dans lequel le palier de température est supérieur à 900 °C.
13. Four de carbonitruration (10) destiné à recevoir, dans une enceinte (14), une pièce en acier, comprenant des circuits d'introduction de gaz (22, 24, 26, 28) et d'extraction de gaz (18, 20) , et un module de commande (40) adapté à commander les circuits d'introduction de gaz et d'extraction de gaz pour introduire, au cours de premières étapes et de deuxièmes étapes, un gaz de cémentation dans l'enceinte seulement pendant les premières étapes et un gaz de nitruration dans l'enceinte seulement pendant les deuxièmes étapes, au moins l'une des deuxièmes étapes étant située entre deux premières étapes, et adapté à maintenir la pression dans l'enceinte pendant au moins une partie des deux premières étapes à une première valeur et la pression dans l'enceinte pendant au moins une partie de ladite deuxième étape située entre les deux premières étapes à une deuxième valeur supérieure strictement à la première valeur.
14. Four de carbonitruration selon la revendication 13, comprenant, en outre, un élément de chauffage (38) et dans lequel le module de commande (40) est adapté à commander l'élément de chauffage (38) pour maintenir la pièce (16) à un palier de température .
EP15817994.5A 2014-12-11 2015-12-10 Procede de carbonitruration a basse pression Active EP3230487B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462260A FR3029938B1 (fr) 2014-12-11 2014-12-11 Procede et four de carbonitruration a basse pression
PCT/FR2015/053419 WO2016092219A1 (fr) 2014-12-11 2015-12-10 Procede et four de carbonitruration a basse pression

Publications (2)

Publication Number Publication Date
EP3230487A1 true EP3230487A1 (fr) 2017-10-18
EP3230487B1 EP3230487B1 (fr) 2019-05-08

Family

ID=52450486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15817994.5A Active EP3230487B1 (fr) 2014-12-11 2015-12-10 Procede de carbonitruration a basse pression

Country Status (9)

Country Link
US (1) US11242594B2 (fr)
EP (1) EP3230487B1 (fr)
JP (1) JP7177592B2 (fr)
KR (1) KR102576343B1 (fr)
CN (1) CN107406960B (fr)
CA (1) CA2970247C (fr)
FR (1) FR3029938B1 (fr)
MX (1) MX2017007484A (fr)
WO (1) WO2016092219A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524143A1 (de) * 2020-09-10 2022-03-15 Miba Sinter Austria Gmbh Verfahren zur Härtung eines Sinterbauteils

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081884B1 (fr) * 2018-06-05 2021-05-21 Safran Helicopter Engines Procede de cementation basse pression d'une piece comprenant de l'acier
CN112095073B (zh) * 2020-08-20 2022-04-01 湖南申亿五金标准件有限公司 一种强韧性的qpq处理工艺
CN111945103A (zh) * 2020-09-16 2020-11-17 湖南南方宇航高精传动有限公司 一种16Cr3NiWMoVNbE材料低压真空碳氮共渗方法
FR3132720A1 (fr) * 2022-02-11 2023-08-18 Skf Aerospace France Procédé de renforcement d’une pièce en acier par carbonitruration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1462260A (fr) 1963-12-11 1966-04-15 Velsicol Chemical Corp Composés herbicides nouveaux, compositions les contenant et procédé pour les préparer
JP3867376B2 (ja) * 1997-12-01 2007-01-10 日本精工株式会社 転動部材の製造方法
DE19909694A1 (de) 1999-03-05 2000-09-14 Stiftung Inst Fuer Werkstoffte Verfahren zum Varbonitrieren bei Unterdruckverfahren ohne Plasmaunterstützung
DE10118494C2 (de) * 2001-04-04 2003-12-11 Aichelin Gesmbh Moedling Verfahren zur Niederdruck-Carbonitrierung von Stahlteilen
CN1263887C (zh) 2001-12-13 2006-07-12 光洋热系统株式会社 真空碳氮共渗方法
JP4655528B2 (ja) * 2004-07-12 2011-03-23 日産自動車株式会社 高強度機械構造用部品の製造方法、および高強度機械構造用部品
FR2884523B1 (fr) * 2005-04-19 2008-01-11 Const Mecaniques Sa Et Procede et four de carbonitruration a basse pression
DE102009058642A1 (de) * 2009-12-16 2011-06-22 Ipsen International GmbH, 47533 Verfahren und Einrichtung zur Regelung von Prozessgasen für Wärmebehandlungen von metallischen Werkstoffen/Werkstücken in Industrieöfen
DE102010001936A1 (de) * 2010-02-15 2011-08-18 Robert Bosch GmbH, 70469 Verfahren zur Carbonitrierung mindestens eines Bauteils in einer Behandlungskammer
DE102010028165A1 (de) * 2010-04-23 2011-10-27 Robert Bosch Gmbh Verfahren zur Carbonitrierung von metallischen Bauteilen
JP2012087384A (ja) * 2010-10-21 2012-05-10 Ipsen Co Ltd 工業炉における金属材料/金属ワークピースの熱処理用のプロセスガスを調整する方法および装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524143A1 (de) * 2020-09-10 2022-03-15 Miba Sinter Austria Gmbh Verfahren zur Härtung eines Sinterbauteils
AT524143B1 (de) * 2020-09-10 2022-12-15 Miba Sinter Austria Gmbh Verfahren zur Härtung eines Sinterbauteils

Also Published As

Publication number Publication date
MX2017007484A (es) 2017-10-02
JP2018505301A (ja) 2018-02-22
CA2970247C (fr) 2023-09-12
CA2970247A1 (fr) 2016-06-16
CN107406960B (zh) 2020-09-22
US20170356077A1 (en) 2017-12-14
CN107406960A (zh) 2017-11-28
FR3029938B1 (fr) 2019-04-26
US11242594B2 (en) 2022-02-08
FR3029938A1 (fr) 2016-06-17
WO2016092219A1 (fr) 2016-06-16
KR20170093855A (ko) 2017-08-16
JP7177592B2 (ja) 2022-11-24
EP3230487B1 (fr) 2019-05-08
KR102576343B1 (ko) 2023-09-07

Similar Documents

Publication Publication Date Title
EP1885904B1 (fr) Procede et four de carbonitruration a basse pression
EP3230487B1 (fr) Procede de carbonitruration a basse pression
EP3218530B1 (fr) Procédé et installation de carbonitruration de pièce(s) en acier sous basse pression et haute température
JP5930960B2 (ja) 浸炭窒化法
JP5680185B2 (ja) 金属コンポーネントの浸炭窒化法
KR101678512B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 기록 매체
FR2681332A1 (fr) Procede et dispositif de cementation d&#39;un acier dans une atmosphere a basse pression.
EP1280943B1 (fr) Procede de cementation basse pression
EP3109339B1 (fr) Procede de traitement d&#39;une pièce en tantale ou en un alliage de tantale
JP2008260994A (ja) 浸炭製品の製造方法
FR2678287A1 (fr) Procede et four de cementation a basse pression.
Stubbs et al. The kinetics of the thermal decomposition of normal paraffin hydrocarbons II. Comparative measurements on the series from propane to n-decane
EP0707661A1 (fr) Procede pour la nitruration a basse pression d&#39;une piece metallique et four pour la mise en uvre dudit procede
FR2999607A1 (fr) Procede de traitement d&#39;acier comprenant un pretraitement d&#39;affinage du grain
WO2016124849A1 (fr) Installation de carbonitruration en série de pièce(s) en acier sous basse pression et haute température
WO2005038076A1 (fr) Procede et four de cementation basse pression
FR3033079A1 (fr) Procede de passivation d&#39;un substrat et machine pour la mise en oeuvre de ce procede
FR3023850A1 (fr) Procede de nitruration d&#39;une piece en acier inoxydable
FR2999609A1 (fr) Procede de renforcement de l&#39;acier par effets thermochimiques et effet de re-austenitisation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015030057

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1130246

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015030057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

P02 Opt-out of the competence of the unified patent court (upc) changed

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231218

Year of fee payment: 9

Ref country code: IT

Payment date: 20231213

Year of fee payment: 9

Ref country code: FR

Payment date: 20231228

Year of fee payment: 9

Ref country code: DE

Payment date: 20231208

Year of fee payment: 9