EP3211645A1 - Dispositif actionneur électromagnétique - Google Patents

Dispositif actionneur électromagnétique Download PDF

Info

Publication number
EP3211645A1
EP3211645A1 EP17165459.3A EP17165459A EP3211645A1 EP 3211645 A1 EP3211645 A1 EP 3211645A1 EP 17165459 A EP17165459 A EP 17165459A EP 3211645 A1 EP3211645 A1 EP 3211645A1
Authority
EP
European Patent Office
Prior art keywords
yoke
unit
individual coils
yoke portion
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17165459.3A
Other languages
German (de)
English (en)
Inventor
Jonas BOLL
Daniela HÄRTER
Raphael BORY
Robert STEYER
Philipp TERHORST
Thomas Schiepp
Markus Laufenberg
Oliver Thode
Viktor Raff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO Magnetic GmbH
Original Assignee
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETO Magnetic GmbH filed Critical ETO Magnetic GmbH
Publication of EP3211645A1 publication Critical patent/EP3211645A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions

Definitions

  • the present invention relates to an electromagnetic actuator device according to the preamble of the main claim.
  • Such a device is for example from the JP 2000 170951 A is known and relates to an electromagnetic actuator device for implementing a 3-way valve, in which, in departure from the usual and beyond known as vortex actuator technologies, the coil winding does not surround the armature (or the associated working air gap), but the coil winding, in the Type of "outsourced coil” is offset laterally relative to an armature movement longitudinal axis (or an associated air gap) and a magnetic flux transfer to the armature unit or to the air gap by means of suitable flux-conducting portions of the yoke.
  • JP 2000 170951 A in a very special technical context, which in particular makes a transfer to other, generic actuating tasks (or else to other valve drives) only possible to a very limited extent.
  • the known from this prior art device requires a not inconsiderable space, in addition, a heat dissipation from the known device is not without problems.
  • Object of the present invention is therefore to provide an electromagnetic actuator according to the preamble of the main claim, wherein a Bestrombare coil unit encloses a first yoke portion of a stationary yoke unit and relative to the yoke unit movably guided, cooperating with a control partner and drivable for performing an actuating anchor means a second yoke portion of the yoke unit to form the working air gap cooperate to improve in terms of a more compact, and in particular more flexible mechanical realization, in particular to provide the ability to separate the coil unit from the working air gap, and the ability to create an improved To realize heat dissipation or heat to be distributed locally (and thus less concentrated on one place).
  • the coil unit is realized in the form of a plurality of separate, yet magnetic flux interconnected individual coils, which according to further preferred embodiments of the invention then in solution a locally distributed arrangement each (smaller to be dimensioned and thus also potentially less heat-generating) individual coils allow their respective magnetic flux then cumulatively for the common anchor (or the associated working air gap) merged and added so far.
  • the working air gap or the at least one air gap provided within the scope of the first aspect of the invention is / are formed outside the first yoke section, ie is not enclosed by a coil unit (typically cylindrical or rectangular in design) but instead is laterally outsourced in the sense discussed above.
  • a coil unit typically cylindrical or rectangular in design
  • each of the flux circuits by the (common coil carrying) first yoke portion and via a respective one of the plurality of anchor units associated air gaps is a magnetic flux resistance of Flußleitschn of at least one of the magnetic flux control circuits in response to a flowing magnetic flux therein variable.
  • the consequence of this effect is that a magnetic flux is then displaced from the relevant flux circuit into another of the flux circuits, insofar as an armature movement can then be triggered or influenced.
  • presetting or predetermined influencing of the movement behavior of the plurality of anchor units is to design the air gaps differently (in each case based on a predetermined, comparable anchor position, for example a stop position of the anchor units).
  • Another way to influence the switching or movement behavior of a respective armature unit of the anchor means is to associate this armature spring means or the like power storage and about further education to store one or more of the armature units against a restoring force of such a spring or lead (where in turn further education by different configurations such as the spring forces then the respective switching or movement behavior of the associated anchor units can be influenced in a predetermined manner).
  • the electromagnetic actuator device according to the second aspect of the invention, according to which a plurality of individual coils (in potentially small installation space) suitably arranged adjacent to the second yoke section with the working air gap, so that the working air gap lies between the individual coils, advantageously provides that at least one of the individual coils, more preferably, all of the individual coils extend parallel to a direction of movement of the armature unit, so that, for example, when arranging the individual coils around the working air gap around, a particularly compact unit can be created, which nevertheless must have no symmetry.
  • the present invention also makes it possible by the variability described to optimize one (or, in the case of several individual coils, several) effective cross-sectional areas of the first yoke section, so that, for example, the coil unit provided thereon (with regard, for example, to the copper weight of the winding) can be optimized ,
  • suitable provided Flußleitstoff in the form of suitable elements can be as a specific purpose (or respective site and the applicable installation conditions) implemented low-priced construction structures:
  • these flux-conducting elements are flat or planar elements, which are furthermore advantageous approximately both sides of central axes of both the plurality of coil devices, as well as the second yoke portion (with the working air gap) are provided for flux-conducting connection thereof, so again a simple and mass production manufacturable, nevertheless optimized in terms of a space utilization arrangement arises (in particular also constructive There are possibilities to make thermal optimizations).
  • the space-optimized (and, for further training, approximately angled) space-saving geometry realized by means of the flat or flat flux-conducting means is also analogous can be provided for implementation forms, in which about the end of the flux guide anchor units (with a respective working air gap) are provided suitable, while in a central region, the common coil unit is provided.
  • the electromagnetic actuator device according to the invention is indeed preferably for the realization of hydraulic or pneumatic valve solutions, especially in the vehicle sector, but is not limited to these applications.
  • the present invention can be used favorably and suitably configured for virtually any field of application in which structural or spatial flexibility can be used in conjunction with flexibly configurable magnetic flux guides or flow paths within the respective flux guide circuits.
  • the Fig. 1 illustrates in the schematic longitudinal sectional view of an electromagnetic actuator device for driving two anchor units 10, 12 by means of a common, centrally located (centrally) between them on a yoke section 13 coil unit 14. More specifically, as schematically with reference to the graph of Fig. 1 recognizable, the elongated armature units 10 and 12 shown axially movably guided (in a movement and drive direction perpendicular in the plane), wherein the armature units 10 and 12 cooperate with stationary yoke sections 15 and 16 and, for the realization thereof, together by the coil unit 14 extending flow control circuits, which are guided over flow-conducting connection sections 18 to 24. Accordingly arise for the anchor units 10 and 12 effective air gaps 26 and 28 respectively.
  • the Fig. 2 to 4 illustrate various operating conditions in response to energization of the coil unit 14: So shows about the Fig. 3 two flow paths in the flux guide circuits running through the respective armatures 10 and 12, respectively, on the basis of the arrowheads 30 and 32, these magnetic fluxes flowing through the yoke section 13 ("first yoke section") associated with the coil unit 14, as symbolized by the arrowhead 34. Is against it, as in the Fig. 2 shown by a shortened air gap 28 an effective flow resistance in the right flux guide circuit (ie with respect to the armature unit 12) is reduced with respect to the other arm, the magnetic flux concentrates as indicated by the arrowhead 36 in FIG Fig.
  • this simplest embodiment already realizes an inventive principle of the outsourced armature, namely an armature provided within a flow circle branch and laterally or adjacently arranged (including the associated air gap), so that an armature movement direction while further education parallel to an extension direction of the coil unit (or the associated first Jochabitess) can take place, but these axes are no longer coaxial.
  • FIG. 5 A first variant illustrates the Fig. 5 in the perspective view: on both sides of an axially movable armature 40 and a stationary yoke portion 42 having central arrangement, a pair of individual coils 44 and 46 is provided such that armature 40 and stator 42 are framed on both sides of the individual coils 44, 46.
  • a magnetic flux (resulting when the coils are energized) of the coils 44 and 46, respectively, is fed into the armature 40 or the stator 42 via common elongated plate-shaped flux conducting elements 48 and 50, the elements 48 and 50 additionally being used for a mechanical connection the overall arrangement (with an outlet opening 52 for the anchor unit) provide.
  • two flux guide circuits are formed, wherein a respective one of the flux circuits runs through one of the individual coils 44 and 46 and both flux circuits then flow together through the armature-stator arrangement 40, 42 (insofar the flow path corresponds analogously of the Fig. 3 but with a provision of a central armature-stator arrangement and two external individual coils).
  • This basic configuration of the Fig. 5 is, however, not limited to two individual coils, nor about the symmetrical arrangement shown; rather, by varying the geometry of the elements 48, 50, a change in distance can take place, it can also, as in the Fig. 6 to 8 clarifies, one opposite the elongated elements 48, 50 suitably kinked configuration, or there may be more than two individual coils to one (or even more) common armature-stator assembly (s) around provided: So describes about the Fig. 6 in plan view, a variation of the elements 48 and 50, such that now two legs 54, 56, angled away from each other by an angle 58 of about 135 °, extend and end, compare Fig.
  • FIG. 7 A comparison arrangement of the presupposed as known, traditional type in the representation of Fig. 7 illustrates the resulting installation space or geometry advantage: namely, in order to produce a magnetic flux behavior comparable to the pair of individual coils 44, 46, a single coil of a winding cross-section 60, as in FIG Fig. 7 indicated to be present, but possibly in a limited installation space (adapted to the configuration of Fig. 6, 8 ) not possible.
  • a further advantage of the solution according to the invention with a plurality of individual coils provided adjacent to an armature-stator arrangement with an adding or overlapping flow profile, such as in FIG Fig. 5 respectively. 6 and 8 shown, is that possible lateral forces are reduced (to the anchor) compared to a solution with only one adjacent the anchor unit outsourced coil (as far as a mutual compensation takes place, see for example the flowchart of Fig. 3 in analogous application to an arrangement with two external individual coils).
  • a reduction of the lateral forces on the anchor has a favorable effect on wear and therefore an effective service life.
  • the present invention offers numerous practical advantages: For example, arranging one (or more) armature unit (s) in a use as a valve offers significantly more flexible connection possibilities in the configuration according to the invention adjacent to the coil unit (s) Coil units), as compared to the known prior art, in which typically the elongated armature unit is surrounded by the coil unit (typically cylindrical-radial). Accordingly, the working air gap can be made more flexible (and suitable for a particular application).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
EP17165459.3A 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique Withdrawn EP3211645A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201120004021 DE202011004021U1 (de) 2011-03-16 2011-03-16 Elektromagnetische Aktuatorvorrichtung
EP12714594.4A EP2686853B1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP12714594.4A Division-Into EP2686853B1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique
EP12714594.4A Division EP2686853B1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique

Publications (1)

Publication Number Publication Date
EP3211645A1 true EP3211645A1 (fr) 2017-08-30

Family

ID=45974256

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17165459.3A Withdrawn EP3211645A1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique
EP12714594.4A Not-in-force EP2686853B1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12714594.4A Not-in-force EP2686853B1 (fr) 2011-03-16 2012-03-15 Dispositif actionneur électromagnétique

Country Status (5)

Country Link
US (1) US9117583B2 (fr)
EP (2) EP3211645A1 (fr)
CN (1) CN103443877B (fr)
DE (1) DE202011004021U1 (fr)
WO (1) WO2012123538A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117074A1 (de) * 2018-07-13 2020-01-16 Svm Schultz Verwaltungs-Gmbh & Co. Kg Elektromagnetischer Aktuator mit Ankerscheibe
CN113562203B (zh) * 2021-07-02 2022-12-13 哈尔滨工业大学 一种具有冗余气隙的电磁作动器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176343A (en) * 1985-06-08 1986-12-17 Lucas Ind Plc Electromagnetic actuator
JP2000170951A (ja) 1998-10-02 2000-06-23 Pacific Ind Co Ltd 自己保持型3方向電磁弁
DE10033923A1 (de) * 2000-07-12 2002-01-24 Lsp Innovative Automotive Sys Verfahren zur sensorlosen Ermittlung der Geschwindigkeit und Position elektromagnetischer Stellsysteme
DE10146899A1 (de) * 2001-09-24 2003-04-10 Abb Patent Gmbh Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
DE202008015303U1 (de) * 2008-11-19 2009-03-26 Bürkert Werke GmbH & Co. KG Hubanker-Antrieb
DE202008015980U1 (de) * 2008-12-03 2010-04-29 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157520A (en) * 1975-11-04 1979-06-05 Westinghouse Electric Corp. Magnetic flux shifting ground fault trip indicator
US4164721A (en) * 1975-12-11 1979-08-14 Minolta Camera Kabushiki Kaisha Magnetic actuator for a shutter mechanism
DE2816555A1 (de) * 1977-04-18 1978-10-19 Francaise App Elect Mesure Magnetkreisanordnung fuer einen elektromagneten fuer einen mit einem permanentmagneten als anker
GB1591471A (en) * 1977-06-18 1981-06-24 Hart J C H Electromagnetic actuators
US4127835A (en) * 1977-07-06 1978-11-28 Dynex/Rivett Inc. Electromechanical force motor
US4217507A (en) * 1979-01-08 1980-08-12 The Singer Company Linear motor
US4306207A (en) * 1980-05-07 1981-12-15 Hosiden Electronics Co., Ltd. Self-sustaining solenoid
JPH0134326Y2 (fr) * 1981-04-22 1989-10-19
JPS5829754U (ja) * 1981-08-21 1983-02-26 日立金属株式会社 ドアロツク用アクチユエ−タ
FR2520152B1 (fr) * 1982-01-20 1986-02-28 Telemecanique Electrique Electro-aimant a equipage mobile a aimant permanent a fonctionnement monostable
US4524797A (en) * 1982-02-25 1985-06-25 Robert Bosch Gmbh Solenoid valve
US4550302A (en) * 1982-11-09 1985-10-29 Matsushita Electric Industrial Co., Ltd. Solenoid
JPS59171314U (ja) * 1983-04-28 1984-11-16 オムロン株式会社 電磁石装置
EP0130423A3 (fr) * 1983-06-30 1985-09-18 EURO-Matsushita Electric Works Aktiengesellschaft Electro-aimant polarisé et son application dans un relais électromagnétique polarisé
DE3334159A1 (de) * 1983-09-21 1985-04-04 Sauer, Otto, 6800 Mannheim Magnetventil
US4797645A (en) * 1984-03-05 1989-01-10 Mitsubishi Mining & Cement Co., Ltd. Electromagnetic actuator
JPS60261111A (ja) * 1984-06-08 1985-12-24 Mitsubishi Mining & Cement Co Ltd 電磁アクチユエ−タ
FR2568402B1 (fr) * 1984-07-24 1987-02-20 Telemecanique Electrique Electro-aimant a courant continu, en particulier pour appareil electrique de commutation
CN1003822B (zh) * 1984-10-09 1989-04-05 三菱矿业水泥株式会社 电磁执行机构
US4679017A (en) * 1986-03-19 1987-07-07 Synchro-Start Products, Inc. Emergency manual actuation mechanism for a solenoid
US4835503A (en) * 1986-03-20 1989-05-30 South Bend Controls, Inc. Linear proportional solenoid
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
US4868695A (en) * 1988-03-30 1989-09-19 Magnetic Peripherals Inc. Head/arm lock mechanism for a disk drive
US4903578A (en) * 1988-07-08 1990-02-27 Allied-Signal Inc. Electropneumatic rotary actuator having proportional fluid valving
US5268662A (en) * 1988-08-08 1993-12-07 Mitsubishi Mining & Cement Co., Ltd. Plunger type electromagnet
US5388086A (en) * 1989-06-13 1995-02-07 Kabushiki Kaisha Toshiba Electro-magnetic actuator for driving an objective lens
US4994776A (en) * 1989-07-12 1991-02-19 Babcock, Inc. Magnetic latching solenoid
DE19646243C1 (de) * 1996-11-08 1997-10-23 Siemens Ag Elektromagnetischer Differenzstrom-Auslöser
US5032812A (en) * 1990-03-01 1991-07-16 Automatic Switch Company Solenoid actuator having a magnetic flux sensor
US5257014A (en) * 1991-10-31 1993-10-26 Caterpillar Inc. Actuator detection method and apparatus for an electromechanical actuator
JP3294382B2 (ja) * 1992-10-30 2002-06-24 株式会社デンソー 流量制御弁
US5303012A (en) * 1993-02-10 1994-04-12 Honeywell Inc. Single magnet latch valve with position indicator
JP2607670Y2 (ja) * 1993-10-21 2002-03-04 エスエムシー株式会社 自己保持型電磁弁
US5453724A (en) * 1994-05-27 1995-09-26 General Electric Flux shifter assembly for circuit breaker accessories
US5523684A (en) * 1994-11-14 1996-06-04 Caterpillar Inc. Electronic solenoid control apparatus and method with hall effect technology
US6836201B1 (en) * 1995-12-01 2004-12-28 Raytheon Company Electrically driven bistable mechanical actuator
US5809157A (en) * 1996-04-09 1998-09-15 Victor Lavrov Electromagnetic linear drive
US5969589A (en) * 1996-08-28 1999-10-19 Ferrofluidics Corporation Quiet ferrofluid solenoid
DE19712669C2 (de) * 1997-03-26 2000-03-30 Daimler Chrysler Ag Elektromagnetisch gesteuertes Ventil
US6242994B1 (en) * 1999-03-16 2001-06-05 Ferrofluidics Corporation Apparatus to reduce push back time in solenoid valves
DE19914372B4 (de) * 1999-03-30 2007-05-16 Pierburg Gmbh Vorrichtung zur Überwachung des Ventilhubes eines elektromagnetisch angetriebenen Ventils
US6293516B1 (en) * 1999-10-21 2001-09-25 Arichell Technologies, Inc. Reduced-energy-consumption actuator
US6265956B1 (en) * 1999-12-22 2001-07-24 Magnet-Schultz Of America, Inc. Permanent magnet latching solenoid
US6737946B2 (en) * 2000-02-22 2004-05-18 Joseph B. Seale Solenoid for efficient pull-in and quick landing
US6305662B1 (en) * 2000-02-29 2001-10-23 Arichell Technologies, Inc. Reduced-energy-consumption actuator
US20070241298A1 (en) * 2000-02-29 2007-10-18 Kay Herbert Electromagnetic apparatus and method for controlling fluid flow
US6948697B2 (en) * 2000-02-29 2005-09-27 Arichell Technologies, Inc. Apparatus and method for controlling fluid flow
US6501357B2 (en) * 2000-03-16 2002-12-31 Quizix, Inc. Permanent magnet actuator mechanism
US6401976B1 (en) * 2000-03-23 2002-06-11 Nordson Corporation Electrically operated viscous fluid dispensing apparatus and method
CN1234135C (zh) * 2001-01-18 2005-12-28 株式会社日立制作所 电磁铁和使用该电磁铁的开关装置的操作机构
JP3842990B2 (ja) * 2001-08-13 2006-11-08 Smc株式会社 電磁弁用ソレノイドの可動鉄心及びその製造方法
US6856222B1 (en) * 2001-08-31 2005-02-15 Caterpillar Inc. Biarmature solenoid
JP4148140B2 (ja) * 2001-12-27 2008-09-10 Nok株式会社 ソレノイド
JP3927089B2 (ja) * 2002-07-16 2007-06-06 日本電産サンキョー株式会社 リニアアクチュエータ、それを用いたポンプ装置並びにコンプレッサー装置
US7352268B2 (en) * 2002-09-26 2008-04-01 Engineering Matters, Inc. High intensity radial field magnetic actuator
US7280019B2 (en) * 2003-08-01 2007-10-09 Woodward Governor Company Single coil solenoid having a permanent magnet with bi-directional assist
JP2006108615A (ja) * 2004-09-07 2006-04-20 Toshiba Corp 電磁アクチュエータ
CN1291433C (zh) * 2005-09-09 2006-12-20 刘津平 低功耗数控接触器及其组成的控制系统
BRPI0615879A2 (pt) * 2005-09-13 2011-05-31 Armour Magnetic Components Inc atuador de solenóide e método para fabricar e utilizar o mesmo
US8159807B2 (en) * 2005-12-22 2012-04-17 Siemens Aktiengesellschaft Method and device for operating a switching device
FR2895594B1 (fr) * 2005-12-22 2008-03-07 Sagem Defense Securite Dispositif de deplacement lineaire d'un corps entre deux positions predeterminees
FR2896615A1 (fr) * 2006-01-20 2007-07-27 Areva T & D Sa Actionneur magnetique a aimant permanent a volume reduit
US20070210653A1 (en) * 2006-03-13 2007-09-13 Scanlon Matthew J Moving magnet actuator with counter-cogging end-ring and asymmetrical armature stroke
DE102007004377A1 (de) * 2007-01-29 2008-08-07 Diener Precision Pumps Ltd. Elektromagnetisch zu betätigendes Ventil
US8106734B2 (en) * 2007-04-25 2012-01-31 Saia-Burgess, Inc. Adjustable mid air gap magnetic latching solenoid
DE102007028600B4 (de) * 2007-06-19 2011-06-22 ETO MAGNETIC GmbH, 78333 Elektromagnetische Stellvorrichtung
DE202007013709U1 (de) * 2007-10-01 2007-12-20 Bürkert Werke GmbH & Co. KG Anordnung von angereihten Magnetantrieben
JP5444345B2 (ja) * 2008-08-01 2014-03-19 エト・マグネティック・ゲー・エム・ベー・ハー 電磁駆動装置
US7864008B2 (en) * 2008-10-22 2011-01-04 Deltrol Controls Solenoid assembly with shock absorbing feature
US7969772B2 (en) * 2008-11-18 2011-06-28 Seagate Technology Llc Magnetic mechanical switch
KR200451951Y1 (ko) * 2008-12-31 2011-01-25 엘에스산전 주식회사 적층 코어를 사용한 모노스테이블 영구자석형 액추에이터
DE202009006940U1 (de) * 2009-04-16 2010-09-02 Eto Magnetic Gmbh Elektromagnetische Nockenwellen-Verstellvorrichtung
US8581682B2 (en) * 2009-10-07 2013-11-12 Tyco Electronics Corporation Magnet aided solenoid for an electrical switch
DE202010010371U1 (de) * 2010-07-16 2011-10-17 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102011014193A1 (de) * 2011-03-16 2012-10-04 Eto Magnetic Gmbh Aktuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2176343A (en) * 1985-06-08 1986-12-17 Lucas Ind Plc Electromagnetic actuator
JP2000170951A (ja) 1998-10-02 2000-06-23 Pacific Ind Co Ltd 自己保持型3方向電磁弁
DE10033923A1 (de) * 2000-07-12 2002-01-24 Lsp Innovative Automotive Sys Verfahren zur sensorlosen Ermittlung der Geschwindigkeit und Position elektromagnetischer Stellsysteme
DE10146899A1 (de) * 2001-09-24 2003-04-10 Abb Patent Gmbh Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
DE202008015303U1 (de) * 2008-11-19 2009-03-26 Bürkert Werke GmbH & Co. KG Hubanker-Antrieb
DE202008015980U1 (de) * 2008-12-03 2010-04-29 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung

Also Published As

Publication number Publication date
US20140125437A1 (en) 2014-05-08
EP2686853A1 (fr) 2014-01-22
DE202011004021U1 (de) 2012-07-09
CN103443877B (zh) 2017-06-09
EP2686853B1 (fr) 2017-11-08
WO2012123538A1 (fr) 2012-09-20
US9117583B2 (en) 2015-08-25
CN103443877A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
EP2686894B1 (fr) Actionneur
DE102013110029C5 (de) Elektrodynamischer Aktor
AT518618B1 (de) Baukastensystem aus einer Vielzahl von Transportstreckenbaugruppen eines Langstatorlinearmotors
EP2370980B1 (fr) Dispositif activateur électromagnétique
DE112005003694T5 (de) Magnetmotor
EP2545564B1 (fr) Actionneur
EP2686854B1 (fr) Dispositif actionneur électromagnétique
EP2929550B1 (fr) Dispositif de réglage électromagnétique
WO2016037876A1 (fr) Dispositif de réglage électromagnétique
DE102013108164B4 (de) Ventil mit einem Linearantrieb für den Ventilkolben
WO2012041550A1 (fr) Actionneur
EP3211645A1 (fr) Dispositif actionneur électromagnétique
DE102013102276B4 (de) Verdrehschutz
DE102013109108A1 (de) MSM-Aktorsystem
DE102004062340B4 (de) Elektromagnetischer Antrieb mit Flußleitstücken
EP2845206B1 (fr) Dispositif de réglage électromagnétique
DE4409503C2 (de) Elektromagnetisches Gerät
DE202004011676U1 (de) Elektromagnetische Linear-Stelleinrichtung
DE102021211154B3 (de) Aktoreinrichtung
EP3449104B1 (fr) Dispositif de commande électromagnétique à bobine en forme de d pour actionneur à deux broches
WO2013034364A2 (fr) Actionneur
DE102010050755A1 (de) Multistabile elektromagnetische Stellvorrichtung
DE1086755B (de) Elektromagnetisches Schrittschaltwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2686853

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAERTER, DANIELA

Inventor name: SCHIEPP, THOMAS

Inventor name: BORY, RAPHAEL

Inventor name: LAUFENBERG, MARKUS

Inventor name: BOLL, JONAS

Inventor name: TERHORST, PHILIPP

Inventor name: STEYER, ROBERT

Inventor name: RAFF, VIKTOR

Inventor name: THODE, OLIVER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAERTER, DANIELA

Inventor name: BORY, RAPHAEL

Inventor name: THODE, OLIVER

Inventor name: BOLL, JONAS

Inventor name: TERHORST, PHILIPP

Inventor name: RAFF, VIKTOR

Inventor name: STEYER, ROBERT

Inventor name: LAUFENBERG, MARKUS

Inventor name: SCHIEPP, THOMAS

17P Request for examination filed

Effective date: 20180215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181005