EP3201370B1 - Wrought product of an alloy of aluminium, magnesium, lithium - Google Patents

Wrought product of an alloy of aluminium, magnesium, lithium Download PDF

Info

Publication number
EP3201370B1
EP3201370B1 EP15785159.3A EP15785159A EP3201370B1 EP 3201370 B1 EP3201370 B1 EP 3201370B1 EP 15785159 A EP15785159 A EP 15785159A EP 3201370 B1 EP3201370 B1 EP 3201370B1
Authority
EP
European Patent Office
Prior art keywords
product
weight
wrought
less
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15785159.3A
Other languages
German (de)
French (fr)
Other versions
EP3201370A1 (en
Inventor
Gaëlle POUGET
Bernard Bes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1402187A external-priority patent/FR3026410B1/en
Priority claimed from FR1402186A external-priority patent/FR3026411B1/en
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3201370A1 publication Critical patent/EP3201370A1/en
Application granted granted Critical
Publication of EP3201370B1 publication Critical patent/EP3201370B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the invention relates to wrought aluminum-magnesium-lithium alloy products, more particularly such products with an improved compromise in properties, in particular an improved compromise between tensile elastic limit and toughness of said products.
  • the invention also relates to a manufacturing process as well as the use of these products intended in particular for aeronautical and aerospace construction.
  • Wrought aluminum alloy products are developed to produce high strength parts intended in particular for the aeronautical industry and the aerospace industry.
  • Aluminum alloys containing lithium are very interesting in this regard, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • aluminum alloys containing simultaneously magnesium and lithium make it possible to achieve particularly low densities and have therefore been extensively studied.
  • the patent GB 1,172,736 teaches an alloy containing 4 to 7% by weight Mg, 1.5 - 2.6% Li, 0.2 - 1% Mn and / or 0.05 - 0.3% Zr, aluminum residue, useful for processing of products with high mechanical strength, good corrosion resistance, low density and high elastic modulus. Said products are obtained by a process comprising an optional quenching followed by tempering.
  • the products resulting from the process according to GB 1,172,736 have a tensile strength ranging from approximately 440 MPa to approximately 490 MPa, a tensile elastic limit ranging from approximately 270 MPa to approximately 340 MPa and an elongation at rupture of the order of 5-8%.
  • This document also discloses a process for obtaining said alloy comprising the steps: a) pouring an ingot of the composition described above, b) removing the residual stresses from said ingot by heat treatment, c) homogenizing by heating and maintaining temperature then cool the ingot, d) hot roll said ingot to its final thickness, e) dissolve and then soak the product thus laminated, f) tract the product and g) achieve an income of said product by heating and maintaining temperature .
  • the patent US 5,431,876 teaches a group of ternary aluminum alloys lithium and magnesium or copper, including at least one additive such as zirconium, chromium and / or manganese.
  • the alloy is prepared according to methods known to a person skilled in the art, comprising, for example, extrusion, dissolving, quenching, pulling the product from 2 to 7% and then tempering.
  • the patent US 6,551,424 describes a process for manufacturing rolled aluminum-magnesium-lithium alloy products with a composition (in% by weight) Mg: 3.0 - 6.0; Li: 0.4 - 3.0; Zn up to 2.0; Mn up to 1.0; Ag up to 0.5; Fe up to 0.3; If up to 0.3; Cu up to 0.3; 0.02 - 0.5 of an element selected from the group consisting of Sc, Hf, Ti, V, Nd, Zr, Cr, Y, Be, said method including cold rolling lengthwise and in the sense of width.
  • the patent US 6,461,566 describes an alloy of composition (in% by weight) Li: 1.5 - 1.9; Mg: 4.1 - 6.0; Zn 0.1 - 1.5; Zr 0.05 - 0.3; Mn 0.01 - 0.8; H 0.9 x 10 -5 - 4.5 x 10 -5 and at least one element selected from the group Be 0.001 - 0.2; Y 0.001 - 0.5 and Sc 0.01 - 0.3.
  • the patent application WO 2012/16072 describes a wrought aluminum alloy product of composition in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.6; Zr: 0.05-0.15; Ti: 0.01 - 0.15; Fe: 0.02 - 0.2; If: 0.02 - 0.2; Mn: ⁇ 0.5; Cr ⁇ 0.5; Ag: ⁇ 0.5; Cu ⁇ 0.5; Zn ⁇ 0.5; Sc ⁇ 0.01; other items ⁇ 0.05; remains aluminum.
  • Said product is in particular obtained according to a manufacturing process comprising in particular successively the casting of the alloy in raw form, its deformation hot and optionally cold, the dissolution then the quenching of the product thus deformed, optionally the cold deformation of the product thus put in solution and quenched and finally the tempering of the product wrought at a temperature below 150 ° C.
  • the metallurgical state obtained for the rolled products is advantageously a T6 or T6X or T8 or T8X state and for the extruded products advantageously a T5 or T5X state in the case of press quenching or a T6 or T6X or T8 or T8X state.
  • Wrought aluminum-magnesium-lithium alloy products have a low density and are therefore particularly interesting in the extremely demanding field of aeronautics.
  • their performance must be significantly improved compared to that of existing products, in particular their performance in terms of compromise between the properties of static mechanical resistance (in particular tensile elastic limit and in compression, resistance to rupture) and the properties of tolerance to damage (toughness, resistance to the propagation of cracks in fatigue), these properties being in general contradictory.
  • These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined without substantial distortion during said machining.
  • a first object of the invention is a wrought aluminum alloy product of composition, in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
  • Another subject of the invention is the use of said wrought product to produce an aircraft structural element.
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional elastic limit at 0.2% elongation R p0.2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by standard EN 485-1.
  • the toughness is determined by a toughness test K1c according to standard ASTM E399.
  • a curve giving the effective stress intensity factor as a function of the effective crack extension is determined according to standard ASTM E399.
  • the results were also presented in K max (stress intensity factor corresponding to the maximum force P max ).
  • the increase in stresses on the product during the K1c toughness test according to ASTM E399 may be indicative of the propensity of the product to delamination.
  • delamination (“crack delamination” and / or “crack divider” in English) is understood here to mean cracking in planes orthogonal to the front of the main crack. The orientation of these plans corresponds to that of grain boundaries not recrystallized after deformation by wrought. Low delamination is a sign of less fragility in the planes concerned and minimizes the risk of crack deviation towards the longitudinal direction during propagation in fatigue or under monotonous stress.
  • a structural element or a structural element of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed.
  • These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin, the stiffeners or stringers of the fuselage (stringers), the bulkheads, the frames of fuselage (circumferential frames), the wings (such as upper or lower wing skin), stiffeners (stringers or stiffeners), ribs (ribs), spars, floor beams and the seat rails) and the tail unit composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the doors.
  • the fuselage such as the fuselage skin, the stiffeners or stringers of the fuselage (stringers), the bulkheads, the frames of fuselage (circumferential frames), the wings (such as upper or lower wing skin), stiffeners (stringers or stiffeners), ribs (ribs), spars, floor beams and the seat rails
  • the tail unit composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the doors.
  • the wrought aluminum alloy product according to the invention has the following particular composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05 - 0, 15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; Si: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination aluminum alloy products having such a composition associated in particular with the particular Mn content selected exhibit improved static mechanical properties as well as a low propensity for delamination.
  • the Mn content, in% by weight is preferably from 0.35 to 0.40.
  • the raw form of aluminum alloy has a silver content of less than or equal to 0.25% by weight, more preferably a silver content of 0.05% to 0.1% by weight.
  • This element contributes in particular to static mechanical properties.
  • the shape crude aluminum alloy has a total Ag and Cu content of less than 0.15% by weight, preferably less than or equal to 0.12%. Control of the maximum content of these two elements in combination makes it possible in particular to improve the resistance to intergranular corrosion of the wrought product.
  • the raw form has a zinc content, in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
  • a zinc content in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
  • the raw aluminum alloy form has an Fe content, in% by weight, of less than 0.08%, preferably less than or equal to 0.07%, more preferably still less than or equal to 0.06%.
  • the present inventors believe that a minimum content of Fe, and possibly that of Si, can contribute to improving the mechanical properties and in particular the fatigue properties of the alloy. Excellent results have in particular been obtained for an Fe content of 0.02 to 0.06% by weight and / or an Si content of 0.02 to 0.05% by weight.
  • the lithium content of the products according to the invention is between 1.0 and 1.8% by weight.
  • the crude form of aluminum alloy has a Li content, in% by weight, less than 1.6%, preferably less than or equal to 1.5%, preferably still less than or equal to 1 , 4%.
  • a minimum lithium content of 1.1% by weight and preferably 1.2% by weight is advantageous.
  • the present inventors have found that a limited lithium content, in the presence of certain addition elements, makes it possible to very significantly improve the toughness, which largely compensates for the slight increase in density and the decrease in static mechanical properties.
  • the raw form of aluminum alloy has a Zr content, in% by weight, of 0.10 to 0.15%.
  • the inventors have indeed found that such a Zr content makes it possible to obtain an alloy having a favorable fiber structure for improved static mechanical properties.
  • the raw form of aluminum alloy has an Mg content, in% by weight, of 4.5 to 4.9%. Excellent results have been obtained for alloys according to this embodiment in particular with regard to static mechanical properties.
  • the Cr content of the products according to the invention is less than 0.05% by weight, preferably less than 0.01% by weight.
  • Such a limited Cr content in combination with the other elements of the alloy according to the invention makes it possible in particular to limit the formation of primary phases during casting.
  • the Ti content of the products according to the invention is less than 0.15% by weight, preferably between 0.01 and 0.05% by weight.
  • the Ti content is limited in the particular alloy of the present invention, in particular to avoid the formation of primary phases during casting. On the other hand, it may be advantageous to control the Ti content to control the granular structure and in particular the grain size during the casting of the alloy.
  • the products according to the invention have a maximum content of 10 ppm of Na, preferably of 8 ppm of Na, and / or a maximum content of 20 ppm of Ca.
  • the raw form of aluminum alloy is substantially free of Sc, Be, Y, more preferably said raw form comprises less than 0.01% by weight of these elements taken in combination.
  • the process for manufacturing the products according to the invention comprises the successive stages of preparing a bath of liquid metal so as to obtain an Al-Mg-Li alloy of particular composition, the casting of said alloy in raw form, optionally the homogenization of said raw form thus cast, the hot deformation of said raw form to obtain a hot deformed product, optionally dissolving the product thus hot deformed, quenching of said hot deformed product, optionally dressing / leveling of the deformed and quenched product, optionally the cold deformation in a controlled manner of the deformed and quenched product to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5%, the income of said deformed and quenched product.
  • the tempering step is carried out before the cold deformation step in a controlled manner.
  • the manufacturing process therefore firstly consists in casting a raw form of Al-Mg-Li alloy with a composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 -1.8; Mn: 0.35 - 0.45; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
  • a bath of liquid metal is therefore produced and then poured in raw form, typically a rolling plate, a spinning billet or a forge blank.
  • the manufacturing process optionally includes a step of homogenizing the raw form so as to reach a temperature between 450 ° C and 550 ° C and, preferably, between 480 ° C and 520 ° C for a period of between 5 and 60 hours.
  • the homogenization treatment can be carried out in one or more stages.
  • the hot deformation is carried out directly following a simple reheating without carrying out homogenization.
  • the raw form is then deformed when hot, typically by spinning, rolling and / or forging, to obtain a deformed product.
  • This hot deformation is preferably carried out at an inlet temperature above 400 ° C and, advantageously, from 420 ° C to 450 ° C.
  • the hot deformation is a deformation by spinning of the raw form.
  • the product deformed hot and, optionally cold, is optionally subjected to a separate dissolution at a temperature of 360 ° C to 460 ° C, preferably from 380 ° C to 420 ° C, for 15 minutes to 8 hours.
  • the deformed product and, optionally, dissolved, is then quenched.
  • the quenching is carried out with water and / or air. It is advantageous to carry out air quenching because the intergranular corrosion properties are improved.
  • it is advantageous to carry out quenching on a press (or quenching on spinning heat), preferably a quenching on an air press, such quenching making it possible in particular to improve the static mechanical properties .
  • it can also be a quenching on a water press.
  • the product is dissolved in heat on spinning.
  • the hot deformed and quenched product can optionally be subjected to a dressing or leveling step depending on whether it is a profile or a sheet.
  • dressing or leveling is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation of less than 1%.
  • the product hot deformed, quenched and, optionally upright / planed, is also cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5 %, and more preferably still from 4 to 5%.
  • the permanent cold deformation is 2 to 4%.
  • Cold deformation can in particular be carried out by traction, compression and / or rolling. According to a preferred embodiment, the cold deformation is carried out by traction.
  • the deformed, hardened and optionally straightened / leveled product undergoes a tempering stage.
  • the tempering is carried out by heating, in one or more stages, at a temperature below 150 ° C, preferably at a temperature of 70 ° C to 140 ° C, for 5 to 100 hours.
  • the tempering step is carried out after the cold deformation step in a controlled manner.
  • the metallurgical state obtained for the wrought products corresponds in particular to a T8 state according to standard EN515.
  • the tempering step is carried out before the cold deformation step in a controlled manner.
  • the product hot deformed and tempered is then cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5%, and more preferably still 4 to 5%.
  • the permanent cold deformation is 2 to 4%.
  • the method for manufacturing a wrought product does not include any cold deformation step inducing a permanent deformation of at least 1% between the hot deformation step or, if this step is present, solution and the income stage.
  • the combination of the chosen composition, in particular of the content of Mg, Li and Mn and of the processing parameters, in particular the order of the stages of the manufacturing process, advantageously makes it possible to obtain wrought products having an improved compromise in properties. very particular, especially the compromise between mechanical resistance and tolerance to damage, while having a low density and good corrosion performance.
  • the wrought products according to the invention are preferably spun products such as profiles, rolled products such as sheets or thick sheets and / or forged products.
  • the wrought products according to the invention have particularly advantageous characteristics in comparison with identical wrought products but having the only difference in their Mn content, in particular an Mn content, in% by weight, of less than 0.3% or greater than 0.5%.
  • identical wrought products means aluminum alloy products of the same composition, in% by weight, with the exception of Mn, and obtained according to the same manufacturing process, in particular wrought products in the same metallurgical state. according to standard EN515 and having the same rate of deformation in permanent traction in traction obtained by traction in a controlled manner.
  • the wrought products according to the invention exhibit less delamination on the rupture surfaces of the K1c test pieces obtained according to ASTM E399 than identical wrought products but having the only difference in their Mn content, in particular a Mn content, in% by weight, less than 0.3% or more than 0.5%.
  • the wrought products according to the invention have at mid-thickness, for a thickness between 0.5 and 15 mm, a tensile strength Rm (L) greater than that of products identical wrought but with the only difference being their Mn content, in particular an Mn content, in% by weight, less than 0.3% or more than 0.5%.
  • the wrought products according to the invention have, at mid-thickness, for a thickness between 0.5 and 15 mm, a yield strength in tension Rp0,2 (L) higher than that of identical wrought products but having the only difference in their Mn content, in particular an Mn content, in% by weight, less than 0.3% or more than 0.5%.
  • the products wrought in the T8 or T9 state mentioned above have, for a thickness of between 0.5 and 15 mm, at mid-thickness at least two properties of static mechanical resistance chosen from the properties ( i) to (iii) and at least one damage tolerance property chosen from properties (iv) to (v).
  • the products spun according to the invention have particularly advantageous characteristics.
  • the spun products preferably have a thickness of between 0.5 mm and 15 mm, but products with a thickness greater than 15 mm, up to 50 mm or even 100 mm or more may also have advantageous properties.
  • the thickness of the extruded products is defined according to standard EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B being able to be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
  • the wrought products according to the invention are advantageously used to produce structural elements for aircraft, in particular for aircraft.
  • Preferred aircraft structural elements are in particular a fuselage skin, a fuselage frame, a stiffener or a fuselage beam or even a wing skin, a wing stiffener, a rib or a spar.
  • Alloy B has a composition according to the invention.
  • the density of alloys A and B calculated in accordance with the procedure of The Aluminum Association described on pages 2-12 and 2-13 of "Aluminum Standards and Data", is 2.55.
  • B 0.11 1.39 0.03 0.06 0.01 0.03 0.41 4.57 0.03 0.11 8 15 2.55
  • Alloy B has a composition according to the invention.
  • the values of K Q have always been invalid according to the ASTM E399 standard, in particular with respect to the criterion P max / P Q ⁇ 1.10. For this, the results are presented in K max (stress intensity factor corresponding to the maximum force P max ).
  • the results are reported in Tables 6 and 7 and illustrated in figures 2 and 3 (LT and TL test pieces respectively). These results are the means of at least two 2 values.
  • the products according to the invention have a satisfactory toughness whatever the Mn content of the alloy.
  • the figure 2 illustrates the elastic limit, Rp0,2, of the products of this example as a function of the toughness, K Q (all the values of K Q are invalid due to the criterion P max / P Q ⁇ 1.10).
  • the figure 3 illustrates the elastic limit, Rp0,2, of the products of this example as a function of the stress intensity factor corresponding to the maximum stress, K max .
  • the products in T9 exhibit an excellent compromise between their static properties, in particular Rp0.2, and their toughness, K Q , or their stress intensity factor corresponding to the maximum force, K max .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne des produits corroyés en alliage aluminium-magnésium-lithium, plus particulièrement de tels produits au compromis de propriétés amélioré, notamment un compromis amélioré entre limite d'élasticité en traction et ténacité desdits produits. L'invention a également pour objet un procédé de fabrication ainsi que l'utilisation de ces produits destinés en particulier à la construction aéronautique et aérospatiale.The invention relates to wrought aluminum-magnesium-lithium alloy products, more particularly such products with an improved compromise in properties, in particular an improved compromise between tensile elastic limit and toughness of said products. The invention also relates to a manufacturing process as well as the use of these products intended in particular for aeronautical and aerospace construction.

Etat de la techniqueState of the art

Des produits corroyés en alliage d'aluminium sont développés pour produire des pièces de haute résistance destinées notamment à l'industrie aéronautique et à l'industrie aérospatiale. Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. En particulier, les alliages d'aluminium contenant simultanément du magnésium et du lithium permettent d'atteindre des densités particulièrement faibles et ont donc été extensivement étudiés.Wrought aluminum alloy products are developed to produce high strength parts intended in particular for the aeronautical industry and the aerospace industry. Aluminum alloys containing lithium are very interesting in this regard, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added. In particular, aluminum alloys containing simultaneously magnesium and lithium make it possible to achieve particularly low densities and have therefore been extensively studied.

Le brevet GB 1,172,736 enseigne un alliage contenant 4 à 7% en poids Mg, 1,5 - 2,6 % Li, 0,2 - 1% Mn et/ou 0,05 - 0,3 % Zr, reste aluminium, utile pour l'élaboration de produits présentant une résistance mécanique élevée, une bonne résistance à la corrosion, une faible densité et un module d'élasticité élevé. Lesdits produits sont obtenus par un procédé comprenant une trempe optionnelle puis d'un revenu. A titre d'exemple, les produits issus du procédé selon GB 1,172,736 présentent une résistance à la rupture allant d'environ 440MPa à environ 490 MPa, une limite d'élasticité en traction allant d'environ 270 MPa à environ 340 MPa et un allongement à la rupture de l'ordre de 5-8%.The patent GB 1,172,736 teaches an alloy containing 4 to 7% by weight Mg, 1.5 - 2.6% Li, 0.2 - 1% Mn and / or 0.05 - 0.3% Zr, aluminum residue, useful for processing of products with high mechanical strength, good corrosion resistance, low density and high elastic modulus. Said products are obtained by a process comprising an optional quenching followed by tempering. By way of example, the products resulting from the process according to GB 1,172,736 have a tensile strength ranging from approximately 440 MPa to approximately 490 MPa, a tensile elastic limit ranging from approximately 270 MPa to approximately 340 MPa and an elongation at rupture of the order of 5-8%.

La demande internationale WO 92/03583 décrit un alliage utile pour les structures aéronautiques ayant une faible densité et de formule générale MgaLibZncAgdAlbal, dans lequel a est compris entre 0,5 et 10%, b est compris entre 0,5 et 3%, c est compris entre 0,1 et 5%, d est compris entre 0,1 et 2% et bal indique que le reste est de l'aluminium. Ce document divulgue également un procédé d'obtention dudit alliage comprenant les étapes : a) couler d'un lingot de composition ci-avant décrite, b) retirer les contraintes résiduelles dudit lingot par traitement thermique, c) homogénéiser par chauffage et maintien en température puis refroidir le lingot, d) laminer à chaud ledit lingot jusqu'à son épaisseur finale, e) mettre en solution puis tremper le produit ainsi laminé, f) tractionner le produit et g) réaliser un revenu dudit produit par chauffage et maintien en température.International demand WO 92/03583 describes an alloy useful for aeronautical structures having a low density and of general formula Mg a Li b Zn c Ag d Al bal , in which a is between 0.5 and 10%, b is between 0.5 and 3% , c is between 0.1 and 5%, d is between 0.1 and 2% and bal indicates that the rest is aluminum. This document also discloses a process for obtaining said alloy comprising the steps: a) pouring an ingot of the composition described above, b) removing the residual stresses from said ingot by heat treatment, c) homogenizing by heating and maintaining temperature then cool the ingot, d) hot roll said ingot to its final thickness, e) dissolve and then soak the product thus laminated, f) tract the product and g) achieve an income of said product by heating and maintaining temperature .

Le brevet US 5,431,876 enseigne un groupe d'alliages ternaire d'aluminium lithium et magnésium ou cuivre, incluant au moins un additif tel que le zirconium, le chrome et/ou le manganèse. L'alliage est préparé selon des procédés connus de l'homme du métier comprenant, à titre d'exemple, une extrusion, une mise en solution, une trempe, une traction du produit de 2 à 7 % puis un revenu.The patent US 5,431,876 teaches a group of ternary aluminum alloys lithium and magnesium or copper, including at least one additive such as zirconium, chromium and / or manganese. The alloy is prepared according to methods known to a person skilled in the art, comprising, for example, extrusion, dissolving, quenching, pulling the product from 2 to 7% and then tempering.

Le brevet US 6,551,424 décrit un procédé de fabrication de produits laminés en alliage aluminium-magnésium-lithium de composition (en % en poids) Mg : 3,0 - 6,0 ; Li : 0,4 - 3,0 ; Zn jusqu'à 2,0 ; Mn jusqu'à 1,0 ; Ag jusqu'à 0,5 ; Fe jusqu'à 0,3 ; Si jusqu'à 0,3 ; Cu jusqu'à 0,3 ; 0,02 - 0,5 d'un élément sélectionné dans le groupe consistant en Sc, Hf, Ti, V, Nd, Zr, Cr, Y, Be, ledit procédé incluant un laminage à froid dans le sens de la longueur et dans le sens de la largeur.The patent US 6,551,424 describes a process for manufacturing rolled aluminum-magnesium-lithium alloy products with a composition (in% by weight) Mg: 3.0 - 6.0; Li: 0.4 - 3.0; Zn up to 2.0; Mn up to 1.0; Ag up to 0.5; Fe up to 0.3; If up to 0.3; Cu up to 0.3; 0.02 - 0.5 of an element selected from the group consisting of Sc, Hf, Ti, V, Nd, Zr, Cr, Y, Be, said method including cold rolling lengthwise and in the sense of width.

Le brevet US 6,461,566 décrit un alliage de composition (en % en poids) Li : 1,5 - 1,9 ; Mg : 4,1 - 6,0 ; Zn 0,1 - 1,5 ; Zr 0,05 - 0,3 ; Mn 0,01 - 0,8 ; H 0,9 x 10-5 - 4,5 x 10-5 et au moins un élément sélectionné dans le groupe Be 0,001 - 0,2 ; Y 0,001 - 0,5 et Sc 0,01 - 0,3.The patent US 6,461,566 describes an alloy of composition (in% by weight) Li: 1.5 - 1.9; Mg: 4.1 - 6.0; Zn 0.1 - 1.5; Zr 0.05 - 0.3; Mn 0.01 - 0.8; H 0.9 x 10 -5 - 4.5 x 10 -5 and at least one element selected from the group Be 0.001 - 0.2; Y 0.001 - 0.5 and Sc 0.01 - 0.3.

La demande de brevet WO 2012/16072 décrit un produit corroyé en alliage d'aluminium de composition en % en poids, Mg : 4,0 - 5,0 ; Li : 1,0 - 1,6 ; Zr : 0,05 - 0,15 ; Ti : 0,01 - 0,15 ; Fe : 0,02 - 0,2 ; Si : 0,02 - 0,2 ; Mn : ≤ 0,5 ; Cr ≤ 0,5 ; Ag : ≤ 0,5 ; Cu ≤ 0,5 ; Zn ≤ 0,5 ; Sc < 0,01 ; autres éléments < 0,05 ; reste aluminium. Ledit produit est en particulier obtenu selon un procédé de fabrication comprenant notamment successivement la coulée de l'alliage sous forme brute, sa déformation à chaud et optionnellement à froid, la mise en solution puis la trempe du produit ainsi déformé, optionnellement la déformation à froid du produit ainsi mis en solution et trempé et enfin le revenu du produit corroyé à une température inférieure à 150 °C. L'état métallurgique obtenu pour les produits laminés est avantageusement un état T6 ou T6X ou T8 ou T8X et pour les produits filés avantageusement un état T5 ou T5X dans le cas de la trempe sur presse ou un état T6 ou T6X ou T8 ou T8X.The patent application WO 2012/16072 describes a wrought aluminum alloy product of composition in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.6; Zr: 0.05-0.15; Ti: 0.01 - 0.15; Fe: 0.02 - 0.2; If: 0.02 - 0.2; Mn: ≤ 0.5; Cr ≤ 0.5; Ag: ≤ 0.5; Cu ≤ 0.5; Zn ≤ 0.5; Sc <0.01; other items <0.05; remains aluminum. Said product is in particular obtained according to a manufacturing process comprising in particular successively the casting of the alloy in raw form, its deformation hot and optionally cold, the dissolution then the quenching of the product thus deformed, optionally the cold deformation of the product thus put in solution and quenched and finally the tempering of the product wrought at a temperature below 150 ° C. The metallurgical state obtained for the rolled products is advantageously a T6 or T6X or T8 or T8X state and for the extruded products advantageously a T5 or T5X state in the case of press quenching or a T6 or T6X or T8 or T8X state.

I. N. Fridlyander "Aluminium alloys containing lithium and magnesium", Metallovedenie i termicheskaya obrabotka metallov (RU), no. 9 (2003) pages 13-16 (ISSN: 0026-0819 ) divulgue un alliage Al-Li-Mg, qui comprend Mg 5,0-6,0%; Li 1,9-2,3%; Zr 0,09-0,15%; Si 0,1-0,3%; Fe ≤ 0,3%; Ti ≤ 0,1%; Mn ≤ 0,3%; Na ≤ 0,05%. IN Fridlyander "Aluminum alloys containing lithium and magnesium", Metallovedenie i termicheskaya obrabotka metallov (RU), no. 9 (2003) pages 13-16 (ISSN: 0026-0819 ) discloses an Al-Li-Mg alloy, which comprises Mg 5.0-6.0%; Li 1.9-2.3%; Zr 0.09-0.15%; If 0.1-0.3%; Fe ≤ 0.3%; Ti ≤ 0.1%; Mn ≤ 0.3%; Na ≤ 0.05%.

Les produits corroyés en alliage aluminium-magnésium-lithium présentent une faible densité et sont donc particulièrement intéressants dans le domaine extrêmement exigeant de l'aéronautique. Pour que de nouveaux produits soient sélectionnés dans un tel domaine, leur performance doit être significativement améliorée par rapport à celle des produits existants, en particulier leur performance en terme de compromis entre les propriétés de résistance mécanique statique (notamment limite d'élasticité en traction et en compression, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques.Wrought aluminum-magnesium-lithium alloy products have a low density and are therefore particularly interesting in the extremely demanding field of aeronautics. For new products to be selected in such a field, their performance must be significantly improved compared to that of existing products, in particular their performance in terms of compromise between the properties of static mechanical resistance (in particular tensile elastic limit and in compression, resistance to rupture) and the properties of tolerance to damage (toughness, resistance to the propagation of cracks in fatigue), these properties being in general contradictory.

Ces alliages doivent également présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés sans distorsion substantielle lors dudit usinage.These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined without substantial distortion during said machining.

Il existe donc un besoin pour des produits corroyés en alliage aluminium-magnésium-lithium présentant une faible densité ainsi que des propriétés améliorées par rapport à celles des produits connus, en particulier en termes de compromis entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages. Concernant les propriétés de tolérance aux dommages, les produits corroyés doivent en particulier présenter une ténacité élevée ainsi qu'une faible propension au délaminage. De tels produits doivent de plus pouvoir être obtenus selon un procédé de fabrication fiable, économique et facilement adaptable à une ligne de fabrication conventionnelle.There is therefore a need for wrought products of aluminum-magnesium-lithium alloy having a low density as well as improved properties compared to those of known products, in particular in terms of compromise between the properties of static mechanical strength and the properties of damage tolerance. Regarding damage tolerance properties, wrought products must in particular have a high toughness as well as a low propensity for delamination. Such products must also be able to be obtained according to a reliable, economical and easily adaptable manufacturing process to a conventional manufacturing line.

Objet de l'inventionSubject of the invention

Un premier objet de l'invention est un produit corroyé en alliage d'aluminium de composition, en % en poids, Mg : 4,0 - 5,0 ; Li : 1,0 - 1,8 ; Mn: 0,35 - 0,45 ; Zr : 0,05 - 0,15 ; Ag : ≤ 0,5 ; Fe : ≤ 0,1 ; Ti : < 0,15 ; Si : ≤ 0,05 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ; reste aluminium.A first object of the invention is a wrought aluminum alloy product of composition, in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05-0.15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: <0.15; If: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination; remains aluminum.

L'invention a également pour objet un procédé de fabrication dudit produit corroyé dans lequel :

  1. (a) on coule une forme brute en alliage d'aluminium de composition, en % en poids : Mg : 4,0 - 5,0 ; Li : 1,0 - 1,8; Mn: 0,35 - 0,45 ; Zr : 0,05 - 0,15; Ag : ≤ 0,5 ; Fe : ≤ 0,1 ; Ti : < 0,15 ; Si : ≤ 0,05 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ; reste aluminium ;
  2. (b) optionnellement, on homogénéise ladite forme brute ;
  3. (c) on déforme à chaud ladite forme brute pour obtenir un produit déformé à chaud;
  4. (d) optionnellement, on met en solution ledit produit déformé à chaud à une température de 360°C à 460°C, préférentiellement de 380°c à 420°C, pendant 15 minutes à 8 heures ;
  5. (e) on trempe ledit produit déformé à chaud ;
  6. (f) optionnellement, on effectue un dressage/planage dudit produit déformé et trempé ;
  7. (g) optionnellement, on déforme à froid de façon contrôlée le produit déformé et trempé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5% et, plus préférentiellement encore de 4 à 5%;
  8. (h) on réalise un revenu dudit produit déformé et trempé.
The invention also relates to a process for manufacturing said wrought product in which:
  1. (a) pouring a crude form of aluminum alloy of composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05-0.15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: <0.15; If: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination; remains aluminum;
  2. (b) optionally, said raw form is homogenized;
  3. (c) said raw form is hot deformed to obtain a hot deformed product;
  4. (d) optionally, said hot-deformed product is dissolved in a temperature of 360 ° C to 460 ° C, preferably from 380 ° c to 420 ° C, for 15 minutes to 8 hours;
  5. (e) soaking said hot-deformed product;
  6. (f) optionally, a straightening / leveling of said deformed and hardened product is carried out;
  7. (g) optionally, the deformed and quenched product is cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5% and, more preferably another 4 to 5%;
  8. (h) an income of said deformed and quenched product is produced.

L'invention a encore pour objet l'utilisation dudit produit corroyé pour réaliser un élément de structure d'aéronefs.Another subject of the invention is the use of said wrought product to produce an aircraft structural element.

Description des figuresDescription of the figures

  • Figure 1 : Profilé pour cadre de fuselage de l'exemple 1 Figure 1 : Profile for fuselage frame of Example 1
  • Figure 2 : Limite d'élasticité, Rp0,2, en fonction de la ténacité, KQ* pour une barre plate de 10 mm d'épaisseur (* toutes les valeurs de KQ sont invalides en raison du critère Pmax / PQ ≤ 1,10 de la norme ASTM E399) Figure 2 : Yield strength, Rp0,2, depending on the toughness, K Q * for a flat bar 10 mm thick (* all values of K Q are invalid due to the criterion P max / P Q ≤ 1 , 10 of ASTM E399)
  • Figure 3 : Limite d'élasticité, Rp0,2, en fonction du facteur d'intensité de contrainte correspondant à la force maximale, Kmax (évaluée selon la norme ASTM E399) pour une barre plate de 10 mm d'épaisseur Figure 3 : Yield strength, Rp0.2, as a function of the stress intensity factor corresponding to the maximum force, K max (evaluated according to standard ASTM E399) for a flat bar 10 mm thick
Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. A titre d'exemple, l'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.Unless otherwise stated, all indications concerning the chemical composition of the alloys are expressed as a percentage by weight based on the total weight of the alloy. By way of example, the expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of the alloys is done in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a weight measurement method. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2-13 of "Aluminum Standards and Data". The definitions of metallurgical states are given in European standard EN 515.

Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. La ténacité est déterminée par essai de ténacité K1c selon la norme ASTM E399. Une courbe donnant le facteur d'intensité de contrainte effectif en fonction de l'extension de fissure effective est déterminée selon la norme ASTM E399. Les essais ont été réalisés avec une éprouvette CT8 (B = 8mm, W = 16 mm). Dans le cas de valeurs de KQ invalides selon la norme ASTM E399, en particulier par rapport au critère Pmax/PQ ≤ 1,10, les résultats ont été aussi présentés en Kmax (facteur d'intensité de contrainte correspondant à la force maximale Pmax).The static mechanical characteristics in tension, in other words the tensile strength R m , the conventional elastic limit at 0.2% elongation R p0.2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by standard EN 485-1. The toughness is determined by a toughness test K1c according to standard ASTM E399. A curve giving the effective stress intensity factor as a function of the effective crack extension is determined according to standard ASTM E399. The tests were carried out with a CT8 test piece (B = 8mm, W = 16mm). In the case of invalid K Q values according to ASTM E399, in particular with respect to the criterion P max / P Q ≤ 1.10, the results were also presented in K max (stress intensity factor corresponding to the maximum force P max ).

L'augmentation des contraintes sur le produit lors de l'essai de ténacité K1c selon la norme ASTM E399 peut être révélatrice de la propension du produit au délaminage. On entend ici par « délaminage » (« crack delamination » et/ou « crack divider » en anglais) une fissuration dans des plans orthogonaux au front de la fissure principale. L'orientation de ces plans correspond à celle des joints de grains non recristallisés après déformation par corroyage. Un faible délaminage est le signe d'une moindre fragilité des plans concernés et minimise les risques de déviation de fissure vers la direction longitudinale lors d'une propagation en fatigue ou sous sollicitation monotone.The increase in stresses on the product during the K1c toughness test according to ASTM E399 may be indicative of the propensity of the product to delamination. The term “delamination” (“crack delamination” and / or “crack divider” in English) is understood here to mean cracking in planes orthogonal to the front of the main crack. The orientation of these plans corresponds to that of grain boundaries not recrystallized after deformation by wrought. Low delamination is a sign of less fragility in the planes concerned and minimizes the risk of crack deviation towards the longitudinal direction during propagation in fatigue or under monotonous stress.

Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.Unless otherwise stated, the definitions of standard EN 12258 apply.

Par ailleurs, on appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage, (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure extrados ou intrados (upper or lower wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs), les longerons (spars), les profilés de plancher (floor beams) et les rails de sièges (seat tracks)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les portes. Le produit corroyé en alliage d'aluminium selon l'invention a la composition particulière suivante , en % en poids,: Mg : 4,0 - 5,0 ; Li : 1,0 - 1,8 ; Mn: 0,35 - 0,45 ; Zr : 0,05 - 0,15 ; Ag : ≤ 0,5 ; Fe : ≤ 0,1 ; Ti : < 0,15 ; Si : ≤ 0,05 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ; reste aluminium. Les produits en alliage d'aluminium ayant une telle composition associée notamment à la teneur en Mn particulière sélectionnée présentent des propriétés mécaniques statiques améliorées ainsi qu'une faible propension au délaminage. Selon un mode de réalisation encore plus avantageux, la teneur en Mn, en % en poids, est préférentiellement de 0,35 à 0,40.Furthermore, here a structural element or a structural element of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed. These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin, the stiffeners or stringers of the fuselage (stringers), the bulkheads, the frames of fuselage (circumferential frames), the wings (such as upper or lower wing skin), stiffeners (stringers or stiffeners), ribs (ribs), spars, floor beams and the seat rails) and the tail unit composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the doors. The wrought aluminum alloy product according to the invention has the following particular composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05 - 0, 15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: <0.15; Si: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination aluminum alloy products having such a composition associated in particular with the particular Mn content selected exhibit improved static mechanical properties as well as a low propensity for delamination. According to an even more advantageous embodiment, the Mn content, in% by weight, is preferably from 0.35 to 0.40.

Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en argent inférieure ou égale à 0,25 % en poids, plus préférentiellement une teneur en argent de 0,05 % à 0,1 % en poids. Cet élément contribue notamment aux propriétés mécaniques statiques. De plus, selon un mode de réalisation encore plus avantageux, la forme brute en alliage d'aluminium présente une teneur totale en Ag et Cu inférieure à 0,15 % en poids, préférentiellement inférieure ou égale à 0,12%. Le contrôle de la teneur maximale en ces deux éléments en association permet en particulier d'améliorer la résistance à la corrosion intergranulaire du produit corroyé.According to an advantageous embodiment, the raw form of aluminum alloy has a silver content of less than or equal to 0.25% by weight, more preferably a silver content of 0.05% to 0.1% by weight. This element contributes in particular to static mechanical properties. In addition, according to an even more advantageous embodiment, the shape crude aluminum alloy has a total Ag and Cu content of less than 0.15% by weight, preferably less than or equal to 0.12%. Control of the maximum content of these two elements in combination makes it possible in particular to improve the resistance to intergranular corrosion of the wrought product.

Selon un mode de réalisation particulier, la forme brute présente une teneur en zinc, en % en poids, inférieure à 0,04%, préférentiellement inférieure ou égale à 0,03%. Une telle limitation de teneur en zinc dans l'alliage particulier décrit précédemment a donné d'excellents résultats en termes de densité et de résistance à la corrosion de l'alliage.According to a particular embodiment, the raw form has a zinc content, in% by weight, of less than 0.04%, preferably less than or equal to 0.03%. Such a limitation of the zinc content in the particular alloy described above has given excellent results in terms of density and corrosion resistance of the alloy.

Selon un autre mode de réalisation compatible avec les modes précédents, la forme brute en alliage d'aluminium présente une teneur en Fe, en % en poids, inférieure à 0,08%, préférentiellement inférieure ou égale à 0,07%, plus préférentiellement encore inférieure ou égale à 0,06%. Les présents inventeurs pensent qu'une teneur minimum en Fe, ainsi qu'éventuellement celle de Si, peut contribuer à améliorer les propriétés mécaniques et notamment les propriétés en fatigue de l'alliage. D'excellents résultats ont en particulier été obtenus pour une teneur en Fe de 0,02 à 0,06 % en poids et/ ou une teneur en Si de 0,02 à 0,05% en poids.According to another embodiment compatible with the preceding modes, the raw aluminum alloy form has an Fe content, in% by weight, of less than 0.08%, preferably less than or equal to 0.07%, more preferably still less than or equal to 0.06%. The present inventors believe that a minimum content of Fe, and possibly that of Si, can contribute to improving the mechanical properties and in particular the fatigue properties of the alloy. Excellent results have in particular been obtained for an Fe content of 0.02 to 0.06% by weight and / or an Si content of 0.02 to 0.05% by weight.

La teneur en lithium des produits selon l'invention est comprise entre 1,0 et 1,8 % en poids. Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en Li, en % en poids, inférieure à 1,6%, préférentiellement inférieure ou égale à 1,5%, préférentiellement encore inférieure ou égale à 1,4%. Une teneur minimale en lithium de 1,1 % en poids et de préférence de 1,2 % en poids est avantageuse. Les présents inventeurs ont constaté qu'une teneur en lithium limitée, en présence de certains éléments d'addition, permet d'améliorer très significativement la ténacité, ce qui compense largement la légère augmentation de densité et la diminution des propriétés mécaniques statiques.The lithium content of the products according to the invention is between 1.0 and 1.8% by weight. According to an advantageous embodiment, the crude form of aluminum alloy has a Li content, in% by weight, less than 1.6%, preferably less than or equal to 1.5%, preferably still less than or equal to 1 , 4%. A minimum lithium content of 1.1% by weight and preferably 1.2% by weight is advantageous. The present inventors have found that a limited lithium content, in the presence of certain addition elements, makes it possible to very significantly improve the toughness, which largely compensates for the slight increase in density and the decrease in static mechanical properties.

Selon un mode de réalisation préféré, la forme brute en alliage d'aluminium présente une teneur en Zr, en % en poids, de 0,10 à 0,15%. Les inventeurs ont en effet constaté qu'une telle teneur en Zr permet d'obtenir un alliage présentant une structure fibrée favorable pour des propriétés mécaniques statiques améliorées.According to a preferred embodiment, the raw form of aluminum alloy has a Zr content, in% by weight, of 0.10 to 0.15%. The inventors have indeed found that such a Zr content makes it possible to obtain an alloy having a favorable fiber structure for improved static mechanical properties.

Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en Mg, en % en poids, de 4,5 à 4,9%. D'excellents résultats ont été obtenus pour des alliages selon ce mode de réalisation notamment pour ce qui concerne les propriétés mécaniques statiques.According to an advantageous embodiment, the raw form of aluminum alloy has an Mg content, in% by weight, of 4.5 to 4.9%. Excellent results have been obtained for alloys according to this embodiment in particular with regard to static mechanical properties.

Selon un mode de réalisation avantageux, la teneur en Cr des produits selon l'invention est inférieure à 0,05% en poids, préférentiellement inférieure à 0,01% en poids. Une telle teneur limitée en Cr en association avec les autres éléments de l'alliage selon l'invention permet notamment de limiter la formation de phases primaires lors de la coulée.According to an advantageous embodiment, the Cr content of the products according to the invention is less than 0.05% by weight, preferably less than 0.01% by weight. Such a limited Cr content in combination with the other elements of the alloy according to the invention makes it possible in particular to limit the formation of primary phases during casting.

La teneur en Ti des produits selon l'invention est inférieure à 0,15% en poids, préférentiellement comprise entre 0,01 et 0,05% en poids. La teneur en Ti est limitée dans l'alliage particulier de la présente invention notamment pour éviter la formation de phases primaires lors de la coulée. D'autre part, il peut être avantageux de contrôler la teneur en Ti pour maîtriser la structure granulaire et notamment la taille de grain lors de la coulée de l'alliage.The Ti content of the products according to the invention is less than 0.15% by weight, preferably between 0.01 and 0.05% by weight. The Ti content is limited in the particular alloy of the present invention, in particular to avoid the formation of primary phases during casting. On the other hand, it may be advantageous to control the Ti content to control the granular structure and in particular the grain size during the casting of the alloy.

Certains éléments peuvent être néfastes pour les alliages Al-Mg-Li tels que précédemment décrits, en particulier pour des raisons de transformation de l'alliage telles que la toxicité et/ou les casses lors de la déformation. Il est donc préférable de limiter ces éléments à un niveau très faible, i.e. inférieur à 0,05 % en poids ou même moins. Dans un mode de réalisation avantageux, les produits selon l'invention ont une teneur maximale de 10 ppm de Na, préférentiellement de 8 ppm de Na, et/ou une teneur maximale de 20 ppm de Ca. Selon un mode de réalisation particulièrement avantageux, la forme brute en alliage d'aluminium est substantiellement exempte de Sc, Be, Y, plus préférentiellement ladite forme brute comprend moins de 0,01% en poids de ces éléments pris en combinaison.Certain elements can be harmful for Al-Mg-Li alloys as described above, in particular for reasons of transformation of the alloy such as toxicity and / or breakage during deformation. It is therefore preferable to limit these elements to a very low level, i.e. less than 0.05% by weight or even less. In an advantageous embodiment, the products according to the invention have a maximum content of 10 ppm of Na, preferably of 8 ppm of Na, and / or a maximum content of 20 ppm of Ca. According to a particularly advantageous embodiment, the raw form of aluminum alloy is substantially free of Sc, Be, Y, more preferably said raw form comprises less than 0.01% by weight of these elements taken in combination.

Selon un mode de réalisation particulièrement avantageux, la forme brute en alliage d'aluminium présente une composition, en % en poids :

  • Mg : 4,0 - 5,0, préférentiellement 4,5 - 4,9;
  • Li : 1,1 -1,6, préférentiellement 1,2 - 1,5 ;
  • Zr : 0,05 - 0,15, préférentiellement 0,10 - 0,15 ;
  • Ti : < 0,15, préférentiellement 0,01-0,05 ;
  • Fe : 0,02 - 0,1, préférentiellement 0,02 - 0,06 ;
  • Si : 0,02 - 0,05 ;
  • Mn : 0,35 à 0,45, préférentiellement de 0,35 à 0,40 ;
  • Cr : < 0,05, préférentiellement < 0,01 ;
  • Ag : ≤ 0,5 ; préférentiellement ≤ 0,25 ; plus préférentiellement encore ≤ 0,1 ;
  • Sc : < 0,01 ;
  • autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ;
  • reste aluminium. D'excellents résultats ont été obtenus avec un alliage présentant une telle composition.
According to a particularly advantageous embodiment, the raw form of aluminum alloy has a composition, in% by weight:
  • Mg: 4.0 - 5.0, preferably 4.5 - 4.9;
  • Li: 1.1 -1.6, preferably 1.2-1.5;
  • Zr: 0.05 - 0.15, preferably 0.10 - 0.15;
  • Ti: <0.15, preferably 0.01-0.05;
  • Fe: 0.02 - 0.1, preferably 0.02 - 0.06;
  • If: 0.02 - 0.05;
  • Mn: 0.35 to 0.45, preferably 0.35 to 0.40;
  • Cr: <0.05, preferably <0.01;
  • Ag: ≤ 0.5; preferably ≤ 0.25; more preferably still ≤ 0.1;
  • Sc: <0.01;
  • other elements ≤ 0.05 each and ≤ 0.15 in combination;
  • remains aluminum. Excellent results have been obtained with an alloy having such a composition.

Le procédé de fabrication des produits selon l'invention comprend les étapes successives d'élaboration d'un bain de métal liquide de façon à obtenir un alliage Al-Mg-Li de composition particulière, la coulée dudit alliage sous forme brute, optionnellement l'homogénéisation de ladite forme brute ainsi coulée, la déformation à chaud de ladite de forme brute pour obtenir un produit déformé à chaud, optionnellement la mise en solution séparée du produit ainsi déformé à chaud, la trempe dudit produit déformé à chaud, optionnellement le dressage/planage du produit déformé et trempé, optionnellement la déformation à froid de façon contrôlée du produit déformé et trempé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, le revenu dudit produit déformé et trempé. Selon un mode de réalisation avantageux, l'étape de revenu est réalisée avant l'étape de déformation à froid de façon contrôlée.The process for manufacturing the products according to the invention comprises the successive stages of preparing a bath of liquid metal so as to obtain an Al-Mg-Li alloy of particular composition, the casting of said alloy in raw form, optionally the homogenization of said raw form thus cast, the hot deformation of said raw form to obtain a hot deformed product, optionally dissolving the product thus hot deformed, quenching of said hot deformed product, optionally dressing / leveling of the deformed and quenched product, optionally the cold deformation in a controlled manner of the deformed and quenched product to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5%, the income of said deformed and quenched product. According to an advantageous embodiment, the tempering step is carried out before the cold deformation step in a controlled manner.

Le procédé de fabrication consiste donc tout d'abord à la coulée d'une forme brute en alliage Al-Mg-Li de composition, en % en poids : Mg : 4,0 - 5,0 ; Li : 1,0 -1,8; Mn: 0,35 - 0,45 ; Zr : 0,05 - 0,15; Ag : ≤ 0,5 ; Fe : ≤ 0,1 ; Ti : < 0,15 ; Si : ≤ 0,05 ; autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ; reste aluminium. Un bain de métal liquide est donc réalisé puis coulé sous forme brute, typiquement une plaque de laminage, une billette de filage ou une ébauche de forge.The manufacturing process therefore firstly consists in casting a raw form of Al-Mg-Li alloy with a composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 -1.8; Mn: 0.35 - 0.45; Zr: 0.05-0.15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: <0.15; If: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination; remains aluminum. A bath of liquid metal is therefore produced and then poured in raw form, typically a rolling plate, a spinning billet or a forge blank.

Suite à l'étape de coulée de la forme brute, le procédé de fabrication comprend optionnellement une étape d'homogénéisation de la forme brute de façon à atteindre une température comprise entre 450 °C et 550 °C et, de préférence, entre 480 °C et 520 °C pendant une durée comprise entre 5 et 60 heures. Le traitement d'homogénéisation peut être réalisé en un ou plusieurs paliers. Selon un mode de réalisation préféré de l'invention, on procède directement à la déformation à chaud à la suite d'un simple réchauffage sans effectuer d'homogénéisation.Following the step of casting the raw form, the manufacturing process optionally includes a step of homogenizing the raw form so as to reach a temperature between 450 ° C and 550 ° C and, preferably, between 480 ° C and 520 ° C for a period of between 5 and 60 hours. The homogenization treatment can be carried out in one or more stages. According to a preferred embodiment of the invention, the hot deformation is carried out directly following a simple reheating without carrying out homogenization.

La forme brute est ensuite déformée à chaud, typiquement par filage, laminage et/ou forgeage, pour obtenir un produit déformé. Cette déformation à chaud est effectuée de préférence à une température d'entrée supérieure à 400 °C et, de manière avantageuse, de 420°C à 450°C. Selon un mode de réalisation avantageux, la déformation à chaud est une déformation par filage de la forme brute.The raw form is then deformed when hot, typically by spinning, rolling and / or forging, to obtain a deformed product. This hot deformation is preferably carried out at an inlet temperature above 400 ° C and, advantageously, from 420 ° C to 450 ° C. According to an advantageous embodiment, the hot deformation is a deformation by spinning of the raw form.

Dans le cas de la fabrication de tôles par laminage, il peut être nécessaire de réaliser une étape de laminage à froid (qui constitue alors une première étape optionnelle de déformation à froid) pour les produits dont l'épaisseur est inférieure à 3 mm. Il peut s'avérer utile de réaliser un ou plusieurs traitements thermiques intermédiaires, typiquement réalisés à une température comprise entre 300 et 420 °C, avant ou au cours du laminage à froid.In the case of sheet metal fabrication by rolling, it may be necessary to carry out a cold rolling step (which then constitutes an optional first cold deformation step) for products whose thickness is less than 3 mm. It may prove useful to carry out one or more intermediate heat treatments, typically carried out at a temperature between 300 and 420 ° C, before or during cold rolling.

Le produit déformé à chaud et, optionnellement à froid, est optionnellement soumis à une mise en solution séparée à une température de 360°C à 460°C, préférentiellement de 380°C à 420°C, pendant 15 minutes à 8 heures.The product deformed hot and, optionally cold, is optionally subjected to a separate dissolution at a temperature of 360 ° C to 460 ° C, preferably from 380 ° C to 420 ° C, for 15 minutes to 8 hours.

Le produit déformé et, optionnellement, mis en solution est ensuite trempé. La trempe est effectuée à l'eau et/ou à l'air. Il est avantageux de réaliser la trempe à l'air car les propriétés de corrosion intergranulaire sont améliorées. Dans le cas d'un produit filé, il est avantageux de réaliser la trempe sur presse (ou trempe sur chaleur de filage), préférentiellement une trempe sur presse à l'air, une telle trempe permettant en particulier d'améliorer les propriétés mécaniques statiques. Selon un autre mode de réalisation, il peut également s'agir d'une trempe sur presse à l'eau. Dans le cas de la trempe sur presse, le produit est mis en solution sur chaleur de filage.The deformed product and, optionally, dissolved, is then quenched. The quenching is carried out with water and / or air. It is advantageous to carry out air quenching because the intergranular corrosion properties are improved. In the case of a spun product, it is advantageous to carry out quenching on a press (or quenching on spinning heat), preferably a quenching on an air press, such quenching making it possible in particular to improve the static mechanical properties . According to another embodiment, it can also be a quenching on a water press. In the case of hardening on a press, the product is dissolved in heat on spinning.

Le produit déformé à chaud et trempé peut éventuellement être soumis à une étape de dressage ou de planage selon qu'il s'agit d'un profilé ou d'une tôle. On entend ici par « dressage/planage » une étape de déformation à froid sans déformation permanente ou avec une déformation permanente inférieure à 1%.The hot deformed and quenched product can optionally be subjected to a dressing or leveling step depending on whether it is a profile or a sheet. The term “dressing / leveling” is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation of less than 1%.

Le produit déformé à chaud, trempé et, optionnellement dressé/plané, est également déformé à froid de façon contrôlée pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, et plus préférentiellement encore de 4 à 5%. Selon un mode de réalisation avantageux, la déformation permanente à froid est de 2 à 4%. La déformation à froid peut en particulier être réalisée par traction, compression et/ou laminage. Selon un mode de réalisation préféré, la déformation à froid est réalisée par traction.The product hot deformed, quenched and, optionally upright / planed, is also cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5 %, and more preferably still from 4 to 5%. According to an advantageous embodiment, the permanent cold deformation is 2 to 4%. Cold deformation can in particular be carried out by traction, compression and / or rolling. According to a preferred embodiment, the cold deformation is carried out by traction.

Le produit déformé, trempé et, optionnellement dressé/plané, subit une étape de revenu. Avantageusement, le revenu est réalisé par chauffage, en un ou plusieurs paliers, à une température inférieure à 150 °C, de préférence à une température de 70 °C à 140 °C, pendant 5 à 100 heures.The deformed, hardened and optionally straightened / leveled product undergoes a tempering stage. Advantageously, the tempering is carried out by heating, in one or more stages, at a temperature below 150 ° C, preferably at a temperature of 70 ° C to 140 ° C, for 5 to 100 hours.

Selon un premier mode de réalisation, l'étape de revenu est réalisée après l'étape de déformation à froid de façon contrôlée. L'état métallurgique obtenu pour les produits corroyé correspond notamment à un état T8 selon la norme EN515.According to a first embodiment, the tempering step is carried out after the cold deformation step in a controlled manner. The metallurgical state obtained for the wrought products corresponds in particular to a T8 state according to standard EN515.

Selon un second mode de réalisation, l'étape de revenu est réalisée avant l'étape de déformation à froid de façon contrôlée. Le produit déformé à chaud et revenu est alors déformé à froid de façon contrôlée pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, et plus préférentiellement encore de 4 à 5%. Selon un mode de réalisation avantageux, la déformation permanente à froid est de 2 à 4%. De façon tout à fait inattendue, il a en effet été mis en évidence que, lorsqu'elle est réalisée après l'étape de revenu, la déformation à froid de façon contrôlée d'un produit corroyé de composition telle que décrite précédemment permet d'obtenir un excellent compromis entre les propriétés mécaniques statiques et celles de tolérance aux dommages, en particulier de ténacité. L'état métallurgique obtenu pour les produits corroyé correspond notamment à un état T9 selon la norme EN515.According to a second embodiment, the tempering step is carried out before the cold deformation step in a controlled manner. The product hot deformed and tempered is then cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably still 3 to 5%, and more preferably still 4 to 5%. According to an advantageous embodiment, the permanent cold deformation is 2 to 4%. Quite unexpectedly, it has indeed been demonstrated that, when it is carried out after the tempering step, the cold deformation in a controlled manner of a wrought product of composition as described above makes it possible to obtain an excellent compromise between static mechanical properties and those of damage tolerance, in particular toughness. The metallurgical state obtained for the wrought products corresponds in particular to a T9 state according to standard EN515.

Selon un mode de réalisation avantageux, le procédé de fabrication d'un produit corroyé ne comprend aucune étape de déformation à froid induisant une déformation permanente d'au moins 1% entre l'étape de déformation à chaud ou, si cette étape est présente, de mise en solution et l'étape de revenu.According to an advantageous embodiment, the method for manufacturing a wrought product does not include any cold deformation step inducing a permanent deformation of at least 1% between the hot deformation step or, if this step is present, solution and the income stage.

La combinaison de la composition choisie, en particulier de la teneur en Mg, Li et Mn et des paramètres de transformation, en particulier l'ordre des étapes du procédé de fabrication, permet avantageusement d'obtenir des produits corroyés ayant un compromis de propriétés amélioré tout à fait particulier, notamment le compromis entre la résistance mécanique et la tolérance aux dommages, tout en présentant une faible densité et une bonne performance en corrosion.The combination of the chosen composition, in particular of the content of Mg, Li and Mn and of the processing parameters, in particular the order of the stages of the manufacturing process, advantageously makes it possible to obtain wrought products having an improved compromise in properties. very particular, especially the compromise between mechanical resistance and tolerance to damage, while having a low density and good corrosion performance.

Les produits corroyés selon l'invention sont préférentiellement des produits filés tels que des profilés, des produits laminés tels que des tôles ou des tôles épaisses et/ou des produits forgés.The wrought products according to the invention are preferably spun products such as profiles, rolled products such as sheets or thick sheets and / or forged products.

Les produits corroyés selon l'invention présentent des caractéristiques particulièrement avantageuses en comparaison à des produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%. On entend par « produits corroyés identiques » des produits en alliage d'aluminium de même composition, en % en poids, à l'exception du Mn, et obtenus selon le même procédé de fabrication, en particulier des produits corroyés dans le même état métallurgique selon la norme EN515 et présentant le même taux de déformation en traction permanente en traction obtenu par traction de façon contrôlée.The wrought products according to the invention have particularly advantageous characteristics in comparison with identical wrought products but having the only difference in their Mn content, in particular an Mn content, in% by weight, of less than 0.3% or greater than 0.5%. The term "identical wrought products" means aluminum alloy products of the same composition, in% by weight, with the exception of Mn, and obtained according to the same manufacturing process, in particular wrought products in the same metallurgical state. according to standard EN515 and having the same rate of deformation in permanent traction in traction obtained by traction in a controlled manner.

Selon un mode de réalisation avantageux, les produits corroyés selon l'invention présentent un moindre délaminage sur les surfaces de rupture des éprouvettes K1c obtenues suivant la norme ASTM E399 que des produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.According to an advantageous embodiment, the wrought products according to the invention exhibit less delamination on the rupture surfaces of the K1c test pieces obtained according to ASTM E399 than identical wrought products but having the only difference in their Mn content, in particular a Mn content, in% by weight, less than 0.3% or more than 0.5%.

Selon un mode de réalisation compatible avec le mode précédent, les produits corroyés selon l'invention ont à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une résistance à la rupture Rm (L) supérieure à celle de produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.According to an embodiment compatible with the previous mode, the wrought products according to the invention have at mid-thickness, for a thickness between 0.5 and 15 mm, a tensile strength Rm (L) greater than that of products identical wrought but with the only difference being their Mn content, in particular an Mn content, in% by weight, less than 0.3% or more than 0.5%.

Selon un mode de réalisation compatible avec les modes précédents, les produits corroyés selon l'invention ont, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une limite d'élasticité en traction Rp0,2 (L) supérieure à celle de produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.According to an embodiment compatible with the preceding modes, the wrought products according to the invention have, at mid-thickness, for a thickness between 0.5 and 15 mm, a yield strength in tension Rp0,2 (L) higher than that of identical wrought products but having the only difference in their Mn content, in particular an Mn content, in% by weight, less than 0.3% or more than 0.5%.

Selon un mode de réalisation avantageux, les produits corroyés à l'état T8, avantageusement à l'état T8 avec une déformation permanente à froid supérieure à 4%, selon l'invention présentent, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, au moins une propriété de résistance mécanique statique parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages parmi les propriétés (iv) à (v) :

  1. (i) une résistance à la rupture Rm (L) ≥ 450 MPa, de préférence Rm (L) ≥ 455 MPa;
  2. (ii) une limite d'élasticité en traction Rp0,2 (L) ≥ 330 MPa ; de préférence Rp0,2 (L) ≥ 335 MPa et, plus préférentiellement encore Rp0,2 (L) ≥ 350 MPa;
  3. (iii) une limite d'élasticité en traction R p0,2 (TL) ≥ 300 MPa,de préférence Rp0,2 (TL) ≥ 305 et, plus préférentiellement encore Rp0,2 (TL) ≥ 320 MPa;
  4. (iv) une ténacité, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8 mm, KQ (L-T) ≥ 24 MPa√m, de préférence KQ (L-T) ≥ 26 MPa√m ;
  5. (v) un facteur d'intensité de contrainte correspondant à la force maximale Pmax, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8mm, Kmax (L-T) ≥ 30 MPa√m, de préférence Kmax (L-T) ≥ 32 MPa√m.
According to an advantageous embodiment, the products wrought in the T8 state, advantageously in the T8 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness of between 0 , 5 and 15 mm, at least one property of static mechanical resistance among properties (i) to (iii) and at least one property of tolerance to damage among properties (iv) to (v):
  1. (i) a tensile strength Rm (L) ≥ 450 MPa, preferably Rm (L) ≥ 455 MPa;
  2. (ii) a tensile elastic limit Rp0,2 (L) ≥ 330 MPa; preferably Rp0.2 (L) ≥ 335 MPa and, more preferably still Rp0.2 (L) ≥ 350 MPa;
  3. (iii) a yield strength in tension R p0,2 (TL) ≥ 300 MPa, preferably Rp0,2 (TL) ≥ 305 and, more preferably still Rp0,2 (TL) ≥ 320 MPa;
  4. (iv) toughness, measured according to ASTM E399 standard with CT8 test pieces of width W = 16 mm and thickness = 8 mm, K Q (LT) ≥ 24 MPa√m, preferably K Q (LT) ≥ 26 MPa√m;
  5. (v) a stress intensity factor corresponding to the maximum force Pmax, measured according to standard ASTM E399 with CT8 test pieces of width W = 16 mm and thickness = 8mm, K max (LT) ≥ 30 MPa√m , preferably K max (LT) ≥ 32 MPa√m.

Selon un mode de réalisation avantageux, les produits corroyés à l'état T9, avantageusement à l'état T9 avec une déformation permanente à froid supérieure à 4%, selon l'invention présentent, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, au moins une propriété de résistance mécanique statique parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages parmi les propriétés (iv) à (v) :

  1. (i) une résistance à la rupture Rm (L) ≥ 450 MPa, de préférence Rm (L) ≥ 460 MPa;
  2. (ii) une limite d'élasticité en traction Rp0,2 (L) ≥ 380 MPa, de préférence Rp0,2 (L) ≥ 390 MPa et, plus préférentiellement encore, Rp0,2 (L) ≥ 410 MPa;
  3. (iii) une limite d'élasticité en traction Rp0,2 (TL) ≥ 320 MPa, de préférence Rp0,2 (TL) ≥ 335 MPa plus préférentiellement Rp0,2 (TL) ≥ 340 MPa et, plus préférentiellement encore, Rp0,2 (TL) ≥ 350 MPa;
  4. (iv) une ténacité, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8 mm, KQ (L-T) ≥ 20 MPa√m, de préférence KQ (L-T) ≥ 22 MPa√m ;
  5. (v) un facteur d'intensité de contrainte correspondant à la force maximale Pmax, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8mm, Kmax (L-T) ≥ 22 MPa√m, de préférence Kmax (L-T) ≥ 25 MPa√m.
According to an advantageous embodiment, the products wrought in the T9 state, advantageously in the T9 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness between 0 , 5 and 15 mm, at least one property of static mechanical resistance among properties (i) to (iii) and at least one property of tolerance to damage among properties (iv) to (v):
  1. (i) a tensile strength Rm (L) ≥ 450 MPa, preferably Rm (L) ≥ 460 MPa;
  2. (ii) a tensile elastic limit Rp0,2 (L) ≥ 380 MPa, preferably Rp0,2 (L) ≥ 390 MPa and, more preferably still, Rp0,2 (L) ≥ 410 MPa;
  3. (iii) a yield strength in tension Rp0,2 (TL) ≥ 320 MPa, preferably Rp0,2 (TL) ≥ 335 MPa more preferably Rp0,2 (TL) ≥ 340 MPa and, more preferably still, Rp0, 2 (TL) ≥ 350 MPa;
  4. (iv) toughness, measured according to ASTM E399 standard with CT8 test pieces of width W = 16 mm and thickness = 8 mm, K Q (LT) ≥ 20 MPa√m, preferably K Q (LT) ≥ 22 MPa√m;
  5. (v) a stress intensity factor corresponding to the maximum force Pmax, measured according to standard ASTM E399 with CT8 test pieces of width W = 16 mm and thickness = 8mm, K max (LT) ≥ 22 MPa√m , preferably K max (LT) ≥ 25 MPa√m.

Selon un mode de réalisation préféré, les produits corroyés à l'état T8 ou T9 précédemment cités ont, pour une épaisseur comprise entre 0,5 et 15 mm, à mi-épaisseur au moins deux propriétés de résistance mécanique statique choisies parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages choisies parmi les propriétés (iv) à (v).According to a preferred embodiment, the products wrought in the T8 or T9 state mentioned above have, for a thickness of between 0.5 and 15 mm, at mid-thickness at least two properties of static mechanical resistance chosen from the properties ( i) to (iii) and at least one damage tolerance property chosen from properties (iv) to (v).

Les produits corroyés selon l'invention présentent en outre une moindre propension au délaminage, ce dernier étant évalué sur les surfaces de rupture d'éprouvettes K1c suivant la norme ASTME399 (éprouvette CT8, B = 8mm, W = 16 mm).The wrought products according to the invention also have a lower propensity for delamination, the latter being evaluated on the fracture surfaces of test pieces K1c according to standard ASTME399 (test piece CT8, B = 8 mm, W = 16 mm).

Les produits filés selon l'invention présentent des caractéristiques particulièrement avantageuses. Les produits filés ont de préférence une épaisseur comprise entre 0,5 mm et 15 mm, mais des produits d'épaisseur supérieure à 15 mm, jusque 50 mm ou même 100 mm ou plus peuvent avoir également des propriétés avantageuses. L'épaisseur des produits filés est définie selon la norme EN 2066 : 2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.The products spun according to the invention have particularly advantageous characteristics. The spun products preferably have a thickness of between 0.5 mm and 15 mm, but products with a thickness greater than 15 mm, up to 50 mm or even 100 mm or more may also have advantageous properties. The thickness of the extruded products is defined according to standard EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B being able to be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.

Les produits corroyés selon l'invention sont avantageusement utilisés pour réaliser des éléments de structure d'aéronef, notamment d'avions. Des éléments de structure d'aéronef préférés sont notamment une peau de fuselage, un cadre de fuselage, un raidisseur ou une lisse de fuselage ou encore une peau de voilure, un raidisseur de voilure, une nervure ou un longeron. Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détails à l'aide des exemples illustratifs et non limitatifs suivants.The wrought products according to the invention are advantageously used to produce structural elements for aircraft, in particular for aircraft. Preferred aircraft structural elements are in particular a fuselage skin, a fuselage frame, a stiffener or a fuselage beam or even a wing skin, a wing stiffener, a rib or a spar. These and other aspects of the invention are explained in more detail with the aid of the following illustrative and nonlimiting examples.

ExemplesExamples Exemple 1Example 1

Plusieurs formes brutes en alliage Al-Mg-Li dont la composition est donnée dans le tableau 1 ont été coulées. L'alliage B présente une composition selon l'invention. La densité des alliages A et B, calculée en conformité avec la procédure de The Aluminium Association décrite en pages 2-12 et 2-13 de « Aluminum Standards and Data », est de 2,55. Tableau 1 - Composition en % en poids et densité des alliages Al-Mg-Li utilisés Alliage Ag Li Si Fe Cu Ti Mn Mg Zn Zr Na (ppm) Ca (ppm) Densité A 0,10 1,39 0,04 0,05 0,01 0,03 0,14 4,56 0,03 0,12 8 22 2,55 B 0,11 1,39 0,03 0,06 0,01 0,03 0,41 4,57 0,03 0,11 8 15 2,55 Several raw forms of Al-Mg-Li alloy, the composition of which is given in Table 1, were cast. Alloy B has a composition according to the invention. The density of alloys A and B, calculated in accordance with the procedure of The Aluminum Association described on pages 2-12 and 2-13 of "Aluminum Standards and Data", is 2.55. Table 1 - Composition in% by weight and density of the Al-Mg-Li alloys used Alloy Ag Li Yes Fe Cu Ti Mn Mg Zn Zr Na (ppm) Ca (ppm) Density AT 0.10 1.39 0.04 0.05 0.01 0.03 0.14 4.56 0.03 0.12 8 22 2.55 B 0.11 1.39 0.03 0.06 0.01 0.03 0.41 4.57 0.03 0.11 8 15 2.55

Des billettes de 358 mm de diamètre ont été réalisées dans les formes brutes. Elles ont été réchauffées à 430-440°C puis déformées à chaud par filage sur une presse sous forme d'un profilé pour cadre de fuselage tel que représenté à la figure 1. Les produits ainsi filés ont été trempés à l'air (trempe sur presse). Ils ont ensuite subi :

  • pour les produits à l'état final T6 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C ;
  • pour les produits à l'état final T8 : une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T8-3% et T8-5%) puis un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C;
  • pour les produits à l'état final T9 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C puis une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T9-3% et T9-5%).
Billet 358 mm in diameter were produced in the raw forms. They were reheated to 430-440 ° C and then deformed hot by spinning on a press in the form of a profile for the fuselage frame as shown in FIG. figure 1 . The products thus spun were quenched in air (quenching on a press). They then underwent:
  • for products in the final state T6: two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C;
  • for products in the T8 final state: controlled traction with permanent deformation of 3 or 5% (respectively T8-3% and T8-5%) then two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C;
  • for products in the final state T9: two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C then a controlled traction with permanent deformation of 3 or 5% (respectively T9-3% and T9- 5%).

Des échantillons ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2 en MPa, résistance à la rupture Rm en MPa, et allongement A en %).Samples were tested to determine their static mechanical properties (yield strength R p0.2 in MPa, breaking strength R m in MPa, and elongation A in%).

Les résultats obtenus sont donnés dans les tableaux 2 (sens L) et 3 (sens TL) ci-dessous. Ces résultats sont les moyennes de 4 mesures effectuées sur des échantillons pleine épaisseur prélevés sur 4 positions sur le cadre de fuselage (postions référencées a, b, c et d sur la figure 1) pour le sens L et de 2 mesures effectuées sur des échantillons pleine épaisseur prélevés sur 1 position unique, référencée c sur la figure 1, pour le sens TL. Tableau 2 - Propriétés mécaniques des produits obtenus (sens L) Alliage Propriété mécanique T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Rm (MPa) 427 447 449 449 460 Rp0,2 (MPa) 298 330 346 382 409 A (%) 12 11 10 9 9 B Rm (MPa) 441 453 459 460 468 Rp0,2 (MPa) 321 340 354 398 418 A (%) 11 10 9 8 7 Tableau 3 - Propriétés mécaniques des produits obtenus (sens TL) Alliage Propriété mécanique T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Rm (MPa) 441 441 439 441 454 Rp0,2 (MPa) 308 308 302 335 371 A (%) 14 14 13 11 9 B Rm (MPa) 444 456 459 456 467 Rp0,2 (MPa) 298 309 333 328 347 A (%) 15 14 14 10 11 The results obtained are given in Tables 2 (L direction) and 3 (TL direction) below. These results are the means of 4 measurements made on full thickness samples taken from 4 positions on the fuselage frame (positions referenced a, b, c and d on the figure 1 ) for direction L and 2 measurements made on full thickness samples taken from 1 single position, referenced c on the figure 1 , for the sense TL. Table 2 - Mechanical properties of the products obtained (direction L) Alloy Mechanical property T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT Rm (MPa) 427 447 449 449 460 Rp0.2 (MPa) 298 330 346 382 409 AT (%) 12 11 10 9 9 B Rm (MPa) 441 453 459 460 468 Rp0.2 (MPa) 321 340 354 398 418 AT (%) 11 10 9 8 7 Alloy Mechanical property T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT Rm (MPa) 441 441 439 441 454 Rp0.2 (MPa) 308 308 302 335 371 AT (%) 14 14 13 11 9 B Rm (MPa) 444 456 459 456 467 Rp0.2 (MPa) 298 309 333 328 347 AT (%) 15 14 14 10 11

Une teneur en Mn de l'alliage Al-Mg-Li d'environ 0,4 % en poids (alliage B) permet d'améliorer significativement la résistance mécanique de alliage (Rp0,2 et Rm), notamment la résistance mécanique dans le sens L, par rapport à celle d'un alliage présentant une teneur en Mn d'environ 0,14 % en poids (alliage A). Par ailleurs, les propriétés mécaniques, en particulier pour l'alliage B, augmentent avec l'augmentation de la traction contrôlée (T6 < TX-3% < TX-5% avec TX = T8 ou T9). Enfin, les meilleurs résultats sont généralement obtenus lorsque la traction contrôlée est effectuée après le revenu (T8 < T9).An Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight (alloy B) makes it possible to significantly improve the mechanical resistance of the alloy (Rp0.2 and Rm), in particular the mechanical resistance in the direction L, relative to that of an alloy having an Mn content of approximately 0.14% by weight (alloy A). Furthermore, the mechanical properties, in particular for alloy B, increase with the increase in controlled traction (T6 <TX-3% <TX-5% with TX = T8 or T9). Finally, the best results are generally obtained when controlled traction is carried out after tempering (T8 <T9).

Exemple 2Example 2

Plusieurs formes brutes en alliage Al-Mg-Li dont la composition est donnée dans le tableau 1 de l'exemple précédent ont été coulées. L'alliage B présente une composition selon l'invention.Several raw forms of Al-Mg-Li alloy, the composition of which is given in Table 1 of the previous example, were cast. Alloy B has a composition according to the invention.

Des billettes de 358 mm de diamètre ont été réalisées dans les formes brutes. Elles ont été réchauffées à 430-440°C puis déformées à chaud par filage sur une presse sous forme d'une barre plate (100 mm x 10 mm). Les produits ainsi filés ont été trempés à l'air (trempe sur presse). Ils ont ensuite subit :

  • pour les produits à l'état final T6 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C ;
  • pour les produits à l'état final T8 : une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T8-3% et T8-5%) puis un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C;
  • pour les produits à l'état final T9 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à 100°C puis une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T9-3% et T9-5%).
Billet 358 mm in diameter were produced in the raw forms. They were reheated to 430-440 ° C and then deformed hot by spinning on a press in the form of a flat bar (100 mm x 10 mm). The products thus spun were quenched in air (quenching on a press). They then underwent:
  • for products in the final state T6: two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C;
  • for products in the T8 final state: controlled traction with permanent deformation of 3 or 5% (respectively T8-3% and T8-5%) then two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C;
  • for products in the final state T9: two-stage tempering carried out for 30 hours at 120 ° C followed by 10 hours at 100 ° C then a controlled traction with permanent deformation of 3 or 5% (respectively T9-3% and T9- 5%).

Des échantillons cylindriques de 4 mm de diamètre ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité, Rp0,2, en MPa ; résistance à la rupture, Rm, en MPa et allongement, A, en %).Cylindrical samples with a diameter of 4 mm were tested to determine their static mechanical properties (yield strength, R p0.2 , in MPa; breaking strength, Rm, in MPa and elongation, A, in%).

Les résultats obtenus sont donnés dans les tableaux 4 (sens L) et 5 (sens TL) ci-dessous. Tableau 4 - Propriétés mécaniques des produits obtenus (sens L). Alliage Propriété mécanique T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Rm (MPa) 421 439 441 444 453 Rp0,2 (MPa) 286 319 330 381 398 A (%) 13 11 11 9 10 B Rm (MPa) 439 453 456 451 462 Rp0,2 (MPa) 309 337 352 383 424 A (%) 11 10 8 9 6 Tableau 5 - Propriétés mécaniques des produits obtenus (sens TL). Alliage Propriété mécanique T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Rm (MPa) 400 428 417 430 438 Rp0,2 (MPa) 267 300 303 334 345 A (%) 16 17 15 14 14 B Rm (MPa) 423 437 447 448 449 Rp0,2 (MPa) 290 315 323 339 371 A (%) 16 16 16 14 12 The results obtained are given in Tables 4 (L direction) and 5 (TL direction) below. Table 4 - Mechanical properties of the products obtained (direction L). Alloy Mechanical property T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT Rm (MPa) 421 439 441 444 453 Rp0.2 (MPa) 286 319 330 381 398 AT (%) 13 11 11 9 10 B Rm (MPa) 439 453 456 451 462 Rp0.2 (MPa) 309 337 352 383 424 AT (%) 11 10 8 9 6 Alloy Mechanical property T6 T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT Rm (MPa) 400 428 417 430 438 Rp0.2 (MPa) 267 300 303 334 345 AT (%) 16 17 15 14 14 B Rm (MPa) 423 437 447 448 449 Rp0.2 (MPa) 290 315 323 339 371 AT (%) 16 16 16 14 12

Une teneur en Mn de l'alliage Al-Mg-Li d'environ 0,4 % en poids (alliage B) permet d'améliorer significativement la résistance mécanique de alliage (Rp0,2 et Rm), notamment la résistance mécanique dans le sens L, par rapport à celle d'un alliage présentant une teneur en Mn d'environ 0,14 % en poids (alliage A). Par ailleurs, les propriétés mécaniques, en particulier Rp0,2, augmentent avec l'augmentation de la traction contrôlée (T6 < TX-3% < TX-5% avec TX = T8 ou T9). Enfin, les meilleurs résultats sont généralement obtenus lorsque la traction contrôlée est effectuée après le revenu (T8 < T9).An Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight (alloy B) makes it possible to significantly improve the mechanical resistance of the alloy (Rp0.2 and Rm), in particular the mechanical resistance in the direction L, relative to that of an alloy having an Mn content of approximately 0.14% by weight (alloy A). Furthermore, the mechanical properties, in particular Rp0.2, increase with the increase in controlled traction (T6 <TX-3% <TX-5% with TX = T8 or T9). Finally, the best results are generally obtained when controlled traction is carried out after tempering (T8 <T9).

La ténacité des produits a été caractérisée par l'essai de K1c suivant la norme ASTM E399. Les essais ont été effectués avec une éprouvette CT8 (B = 8mm, W = 16 mm) prélevée à mi-épaisseur. Les valeurs de KQ ont toujours été invalides selon la norme ASTM E399, en particulier par rapport au critère Pmax/PQ ≤ 1,10. Pour cela, les résultats sont présentés en Kmax (facteur d'intensité de contrainte correspondant à la force maximale Pmax). Les résultats sont reportés dans les tableaux 6 et 7 et illustrés aux figures 2 et 3 (éprouvettes L-T et T-L respectivement). Ces résultats sont les moyennes d'au moins deux 2 valeurs. Tableau 6 - Résultats des essais de ténacité sur éprouvettes L-T (Kmax et KQ en MPa√m) Alliage Ténactité T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Kmax L-T 32,2 33,6 32,5 25,9 KQ L-T 24,6 26,3 25,2 22,3 B Kmax L-T 30,0 32,2 25,9 - KQ L-T 24,6 26,2 22,0 - Tableau 7 - Résultats des essais de ténacité sur éprouvettes T-L (Kmax et KQ en MPa√m) Alliage Ténactité T8 (3%) T8 (5%) T9 (3%) T9 (5%) A Kmax T-L 30,8 29,5 29,9 - KQ T-L 25,4 25,0 24,7 - B Kmax T-L 28,5 28,2 25,2 - KQ T-L 24,2 24,3 22,4 - The toughness of the products was characterized by the test of K1c according to standard ASTM E399. The tests were carried out with a CT8 test piece (B = 8mm, W = 16 mm) taken at mid-thickness. The values of K Q have always been invalid according to the ASTM E399 standard, in particular with respect to the criterion P max / P Q ≤ 1.10. For this, the results are presented in K max (stress intensity factor corresponding to the maximum force P max ). The results are reported in Tables 6 and 7 and illustrated in figures 2 and 3 (LT and TL test pieces respectively). These results are the means of at least two 2 values. Table 6 - Results of the tenacity tests on LT specimens (K <sub> max </sub> and K <sub> Q </sub> in MPa√m) Alloy Tenacity T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT K max LT 32.2 33.6 32.5 25.9 K Q LT 24.6 26.3 25.2 22.3 B K max LT 30.0 32.2 25.9 - K Q LT 24.6 26.2 22.0 - Alloy Tenacity T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT K max TL 30.8 29.5 29.9 - K Q TL 25.4 25.0 24.7 - B K max TL 28.5 28.2 25.2 - K Q TL 24.2 24.3 22.4 -

Les produits selon l'invention présentent une ténacité satisfaisante quelle que soit la teneur en Mn de l'alliage.The products according to the invention have a satisfactory toughness whatever the Mn content of the alloy.

La figure 2 illustre la limite d'élasticité, Rp0,2, des produits du présent exemple en fonction de la ténacité, KQ (toutes les valeurs de KQ sont invalides en raison du critère Pmax / PQ ≤ 1,10 ). La figure 3 illustre la limite d'élasticité, Rp0,2, des produits du présent exemple en fonction du facteur d'intensité de contrainte correspondant à la contrainte maximale, Kmax.The figure 2 illustrates the elastic limit, Rp0,2, of the products of this example as a function of the toughness, K Q (all the values of K Q are invalid due to the criterion P max / P Q ≤ 1.10). The figure 3 illustrates the elastic limit, Rp0,2, of the products of this example as a function of the stress intensity factor corresponding to the maximum stress, K max .

Les produits en T9 présentent un excellent compromis entre leurs propriétés statiques, en particulier Rp0,2, et leur ténacité, KQ, ou leur facteur d'intensité de contrainte correspondant à la force maximale, Kmax.The products in T9 exhibit an excellent compromise between their static properties, in particular Rp0.2, and their toughness, K Q , or their stress intensity factor corresponding to the maximum force, K max .

Le délaminage a été quantifié de façon semi-quantitative sur les surfaces de rupture des éprouvettes K1c précédemment décrites selon un score de 0 à 2 : score 0 = absence de délaminage visible, score 1 = faible délaminage, score 2 = délaminage marqué (plusieurs feuillets/fissures secondaires dans le sens L visibles). Les tableaux 8 et 9 récapitulent les scores attribués aux différentes éprouvettes (éprouvettes L-T et T-L respectivement). Tableau 8 - Evaluation du délaminage sur éprouvettes L-T (scores) Alliage T8 (3%) T8 (5%) T9 (3%) T9 (5%) A 1 2 2 1 B 0 1 0 - Tableau 9 - Evaluation du délaminage sur éprouvettes T- L (scores) Alliage T8 (3%) T8 (5%) T9 (3%) T9 (5%) A 0 1 1 - B 0 0 0 - Delamination was quantified semi-quantitatively on the rupture surfaces of the K1c test pieces previously described according to a score of 0 to 2: score 0 = no visible delamination, score 1 = weak delamination, score 2 = marked delamination (several sheets / secondary cracks in the visible L direction). Tables 8 and 9 summarize the scores assigned to the different test pieces (LT and TL test pieces respectively). Table 8 - Evaluation of delamination on LT specimens (scores) Alloy T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT 1 2 2 1 B 0 1 0 - Alloy T8 (3%) T8 (5%) T9 (3%) T9 (5%) AT 0 1 1 - B 0 0 0 -

Les produits en alliage B présentent un délaminage plus faible que les produits en alliage A.Alloy B products exhibit lower delamination than Alloy A products.

Claims (13)

  1. Wrought product made of aluminium alloy having the composition, in % by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05 - 0.15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: < 0.15; Si: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination; the balance being aluminium.
  2. Wrought product according to claim 1 having a concentration of Mn, in % by weight, of 0.35 to 0.40.
  3. Wrought product according to claim 1 or 2 having a concentration of Zn, in % by weight, of less than 0.04%, preferably less than or equal to 0.03%.
  4. Wrought product according to any one of claims 1 to 3 having a concentration of Fe, in % by weight, of less than 0.08%, preferably less than or equal to 0.07%, more preferably less than or equal to 0.06%.
  5. Wrought product according to any one of claims 1 to 4 having a concentration of Li, in % by weight, of less than 1.6%, preferably less than or equal to 1.5%, more preferably less than or equal to 1.4%.
  6. Wrought product according to any one of claims 1 to 5, having less delamination on the rupture surfaces of the K1c test pieces obtained according to the standard ASTM E399 than a wrought product identical but having the sole difference of a concentration of Mn, in % by weight, of less than 0.3.
  7. Wrought product according to any one of claims 1 to 6, having at mid-thickness, for a thickness between 0.5 and 15mm, an ultimate strength in the direction L Rm (L) greater than that of a wrought product identical but having the sole difference of a concentration of Mn, in % by weight, of less than 0.3.
  8. Wrought product according to any one of claims 1 to 6, having at mid-thickness, for a thickness between 0.5 and 15mm, an elastic limit under tension in the direction L Rp0.2(L) greater than that of a wrought product identical but having the sole difference of a concentration of Mn, in % by weight, of less than 0.3.
  9. Method for manufacturing a wrought product, wherein:
    (a) an unwrought product is cast from aluminium alloy having the composition, in % by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.35 - 0.45; Zr: 0.05 - 0.15; Ag: ≤ 0.5; Fe: ≤ 0.1; Ti: < 0.15; Si: ≤ 0.05; other elements ≤ 0.05 each and ≤ 0.15 in combination; the balance being aluminium;
    (b) optionally, said unwrought product is homogenised;
    (c) said unwrought product is hot worked to obtain a hot-worked product;
    (d) optionally, said hot-worked product is solution heat treated at a temperature from 360°C to 460°C, preferably from 380°C to 420°C for 15 minutes to 8 hours;
    (e) said hot-worked product is quenched;
    (f) optionally, a straightening of said worked and quenched product is carried out;
    (g) optionally, the worked product is cold worked in a controlled manner to obtain a cold permanent set of 1 to 10%, preferably of 2 to 6%, even more preferably of 3 to 5%;
    (h) an ageing of said worked and quenched product is carried out.
  10. Method according to claim 9, wherein the step of ageing (h) is carried out before the step of cold working in a controlled manner (g).
  11. Method according to claim 9 or 10, wherein the hot working of step (c) is a working by extrusion of the unwrought product.
  12. Method according to any one of claims 9 to 11, wherein the quenching of step (e) is press quenching.
  13. Use of a wrought product according to any one of claims 1 to 8 or obtained according to any one of claims 9 to 12, to produce an aircraft structural element, preferably a fuselage skin, a fuselage frame, a fuselage stiffener or stringer or a rib.
EP15785159.3A 2014-09-29 2015-09-29 Wrought product of an alloy of aluminium, magnesium, lithium Active EP3201370B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1402187A FR3026410B1 (en) 2014-09-29 2014-09-29 CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM
FR1402186A FR3026411B1 (en) 2014-09-29 2014-09-29 METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS
PCT/FR2015/052580 WO2016051060A1 (en) 2014-09-29 2015-09-29 Wrought product made of a magnesium-lithium-aluminum alloy

Publications (2)

Publication Number Publication Date
EP3201370A1 EP3201370A1 (en) 2017-08-09
EP3201370B1 true EP3201370B1 (en) 2020-04-15

Family

ID=54356641

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15785159.3A Active EP3201370B1 (en) 2014-09-29 2015-09-29 Wrought product of an alloy of aluminium, magnesium, lithium
EP15785160.1A Active EP3201371B1 (en) 2014-09-29 2015-09-29 Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15785160.1A Active EP3201371B1 (en) 2014-09-29 2015-09-29 Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product

Country Status (8)

Country Link
US (2) US20170292180A1 (en)
EP (2) EP3201370B1 (en)
JP (1) JP2017532456A (en)
KR (1) KR20170067810A (en)
CN (2) CN106715735A (en)
BR (2) BR112017006131A2 (en)
CA (2) CA2960947A1 (en)
WO (2) WO2016051061A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3032261A1 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
FR3057476B1 (en) * 2016-10-17 2018-10-12 Constellium Issoire ALUMINUM-MAGNESIUM-SCANDIUM ALLOY THIN SHEET FOR AEROSPATIAL APPLICATIONS
EP3529394A4 (en) 2016-10-24 2020-06-24 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
FR3080861B1 (en) * 2018-05-02 2021-03-19 Constellium Issoire METHOD OF MANUFACTURING AN ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY
WO2020206161A1 (en) * 2019-04-05 2020-10-08 Arconic Technologies Llc Methods of cold forming aluminum lithium alloys
CA3163346C (en) * 2019-12-17 2024-05-21 Novelis Inc. Suppression of stress corrosion cracking in high magnesium alloys through the addition of calcium
CN112226656A (en) * 2020-09-25 2021-01-15 西南铝业(集团)有限责任公司 Production process of Al-Mg-Mn-Er aluminum alloy extruded product
CN112410691B (en) * 2020-11-10 2021-12-24 中国航发北京航空材料研究院 Annealing process of aluminum-lithium alloy material
CN114054531A (en) * 2021-11-18 2022-02-18 西南铝业(集团)有限责任公司 Extrusion method of high-uniformity 2196 aluminum lithium alloy profile

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1519021A (en) * 1967-03-07 1968-03-29 Iosif Naumovich Fridlyander Ni Aluminum based alloy
SU1367517A1 (en) * 1986-01-16 1995-07-25 И.Н. Фридляндер Alloy based on aluminum
CA1337747C (en) * 1986-12-01 1995-12-19 K. Sharvan Kumar Ternary aluminium-lithium alloys
US4790884A (en) * 1987-03-02 1988-12-13 Aluminum Company Of America Aluminum-lithium flat rolled product and method of making
BR8807653A (en) * 1987-08-10 1990-06-12 Martin Marietta Corp ALUMINUM-LITHIUM ALLOYS ULTRA HIGH RESISTANCE WELDINGS
CA1338007C (en) * 1988-01-28 1996-01-30 Roberto J. Rioja Aluminum-lithium alloys
ATE254188T1 (en) * 1998-12-18 2003-11-15 Corus Aluminium Walzprod Gmbh PRODUCTION PROCESS OF A PRODUCT MADE OF ALUMINUM-MAGNESIUM-LITHIUM ALLOY
RU2256720C1 (en) * 2004-04-02 2005-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Method of thermomechanical treatment of semi-finished products made from aluminum alloys
US7998402B2 (en) * 2005-08-16 2011-08-16 Aleris Aluminum Koblenz, GmbH High strength weldable Al-Mg alloy
FR2894985B1 (en) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
CN101896631B (en) * 2007-11-15 2015-11-25 阿勒里斯铝业科布伦茨有限公司 Al-Mg-Zn wrought alloy product and manufacture method thereof
FR2975403B1 (en) * 2011-05-20 2018-11-02 Constellium Issoire MAGNESIUM LITHIUM ALUMINUM ALLOY WITH IMPROVED TENACITY
CN103045975A (en) * 2012-12-29 2013-04-17 湖南工程学院 Method for improving high probability of cracking in rolling of Al-Mg-Li system alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20170067810A (en) 2017-06-16
CA2960942A1 (en) 2016-04-07
CA2960947A1 (en) 2016-04-07
BR112017006273A2 (en) 2017-12-12
CN107075623A (en) 2017-08-18
EP3201371B1 (en) 2021-04-28
WO2016051061A1 (en) 2016-04-07
US20170292180A1 (en) 2017-10-12
BR112017006131A2 (en) 2017-12-19
CN106715735A (en) 2017-05-24
BR112017006273B1 (en) 2021-06-08
US20170218493A1 (en) 2017-08-03
EP3201371A1 (en) 2017-08-09
EP3201370A1 (en) 2017-08-09
JP2017532456A (en) 2017-11-02
WO2016051060A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
EP3201370B1 (en) Wrought product of an alloy of aluminium, magnesium, lithium
EP2710163B1 (en) Aluminum magnesium lithium alloy having improved toughness
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP2766503B1 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
EP1492896A1 (en) Al-zn-mg-cu alloys welded products with high mechanical properties, and aircraft structural elements
EP2569456B1 (en) Aluminum-copper-lithium alloy for lower surface element
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
US20210207254A1 (en) Al-Cu-Li-Mg-Mn-Zn ALLOY WROUGHT PRODUCT
EP3411508B1 (en) Thick al - cu - li - alloy sheets having improved fatigue properties
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
EP3610048B1 (en) Low-density aluminium-copper-lithium alloy products
EP1544316B1 (en) Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
EP3610047B1 (en) Aluminium-copper-lithium alloy products
FR3026410B1 (en) CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM
EP3362584B1 (en) Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications
FR3026411A1 (en) METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS
EP3788179A1 (en) Method for manufacturing an aluminum-copper-lithium alloy with improved compressive strength and improved toughness

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190826

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015050782

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1257360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200925

Year of fee payment: 6

Ref country code: DE

Payment date: 20200929

Year of fee payment: 6

Ref country code: GB

Payment date: 20200928

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1257360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015050782

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200929

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015050782

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210929

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401