EP3526358B1 - Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications - Google Patents

Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications Download PDF

Info

Publication number
EP3526358B1
EP3526358B1 EP17794387.5A EP17794387A EP3526358B1 EP 3526358 B1 EP3526358 B1 EP 3526358B1 EP 17794387 A EP17794387 A EP 17794387A EP 3526358 B1 EP3526358 B1 EP 3526358B1
Authority
EP
European Patent Office
Prior art keywords
mpa
temperature
range
hours
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17794387.5A
Other languages
German (de)
French (fr)
Other versions
EP3526358A1 (en
Inventor
Bernard Bes
Jean-Christophe Ehrstrom
Gaëlle POUGET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58401638&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3526358(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3526358A1 publication Critical patent/EP3526358A1/en
Application granted granted Critical
Publication of EP3526358B1 publication Critical patent/EP3526358B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Definitions

  • the subject of the invention is a process for manufacturing wrought products made of an aluminum and magnesium alloy, also known under the name of aluminum alloy of the 5XXX series according to the Aluminum Association, more particularly products made of Al alloy. -Mg containing Sc having high mechanical strength, high toughness and good formability.
  • a subject of the invention is also products capable of being obtained by said process as well as the use of these products intended for transport and in particular for aeronautical and space construction.
  • Wrought aluminum alloy products are developed in particular to produce structural elements intended for the transport industry, in particular the aeronautics industry and the space industry. For these industries, product performance must constantly be improved and new alloys are developed to present in particular high mechanical strength, low density, high toughness, excellent corrosion resistance and very good processability. form.
  • the shaping can be carried out hot, for example by creep forming, and the mechanical properties must not decrease at the end of this shaping.
  • Al-Mg alloys have been extensively studied in the transportation industry, especially road and maritime transport, due to their excellent working properties such as weldability, corrosion resistance and formability, especially in little hardened such as state O and state H111.
  • the patent US 5,624,632 describes an alloy of composition 3 - 7% by weight of magnesium, 0.03 - 0.2% by weight of zirconium, 0.2 - 1.2% by weight of manganese, up to 0.15% by weight of silicon and 0.05 - 0.5% by weight of a dispersoid-forming element in the group scandium, erbium, yttrium, gadolinium, holmium and hafnium.
  • the patent US 6,695,935 describes an alloy of composition, in% by weight, Mg 3.5-6.0, Mn 0.4-1.2, Zn 0.4-1.5, Zr 0.25 max., Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max. , Cu 0.4 max, one or more elements in the group: Bi 0.005-0.1, Pb 0.005-0.1, Sn 0.01-0.1, Ag 0.01-0.5, Sc 0.01-0.5, Li 0.01-0.5, V 0.01-0.3, Ce 0.01 -0.3, Y 0.01-0.3, and Ni 0.01-0.3.
  • the patent application WO 01/12869 describes an alloy of composition in% by weight 1.0-8.0% Mg, 0.05-0.6% Sc, 0.05-0.20% Hf and / or 0.05-0.20% Zr, 0.5-2.0% Cu and / or 0.5-2.0% Zn and in addition 0.1-0.8% by weight of Mn.
  • the patent application WO2007 / 020041 describes an alloy of composition, in% by weight, Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe ⁇ 0.5, Si ⁇ 0.5, Cu ⁇ 0.15, Zr ⁇ 0.5, Cr ⁇ 0.3, Ti 0.03 to 0.2, Sc ⁇ 0.5, Zn ⁇ 1.7, Li ⁇ 0.5, Ag ⁇ 0.4, optionally one or more elements forming dispersoids in the group erbium, yttrium, hafnium, vanadium, each ⁇ 0.5% by weight.
  • the products described in these patents are not sufficient in terms of compromise between mechanical strength, toughness and suitability for hot forming. In particular, it is important that the mechanical properties do not decrease after heat treatment at 300 - 350 ° C, typical temperature of the forming temperature.
  • alloys are expressed as a percentage by weight based on the total weight of the alloy.
  • expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4.
  • the designation of the alloys is made in accordance with the regulations of “The Aluminum Association”, known to those skilled in the art.
  • structural element or “structural element” of a mechanical construction is used to refer to a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed. These are typically elements whose failure is likely to endanger the safety of said construction, its users, users or others.
  • these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin), the stiffeners or runners of the fuselage (stringers), the watertight bulkheads, the frames of the fuselage (circumferential frames), the wings (such as the upper or lower wing skin), the stiffeners (stringers or stiffeners), the ribs, the spars (spars), the floor (floor beams) and seat tracks (seat tracks)) and the tail unit composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the doors.
  • the present inventors have observed that, for a composition according to the invention, it is possible to obtain, by controlling the homogenization conditions, an advantageous wrought product, the mechanical properties of which exhibit a compromise between mechanical resistance and tenacity useful for aircraft construction and whose properties are stable after a heat treatment corresponding to hot shaping conditions.
  • a bath of liquid metal based on aluminum is prepared with the composition, in% by weight, Mg: 3.8-4.2; Mn: 0.3 - 0.8, preferably 0.5-0.7; Sc: 0.1-0.3; Zn: 0.1-0.4; Ti: 0.01 - 0.05, preferably 0.015-0.030; Zr: 0.07 - 0.15, preferably 0.08-0.12; Cr: ⁇ 0.01; Fe: ⁇ 0.15; If ⁇ 0.1 other elements ⁇ 0.05 each and ⁇ 0.15 in combination, aluminum remains.
  • composition according to the invention is remarkable due to a small addition of titanium of 0.01 - 0.05 and preferably from 0.015 to 0.030% by weight and preferably from 0.018 to 0.024% by weight and by weight. absence of addition of chromium, the content of which is less than 0.01% by weight. High static mechanical properties (Rp0.2, Rm) are obtained despite these small additions because the homogenization conditions are carefully controlled.
  • Rp0.2, Rm high static mechanical properties
  • the addition of Mn, Sc, Zn and Zr is necessary to obtain the desired compromise between mechanical strength, toughness and suitability for hot shaping.
  • the iron content is kept below 0.15% by weight and preferably below 0.1% by weight.
  • the silicon content is kept below 0.1% by weight and preferably below 0.05% by weight.
  • the presence of iron and silicon beyond the indicated maximums has an unfavorable impact, in particular on toughness.
  • the other elements are impurities, that is to say elements whose presence is not intentional, their presence must be limited to 0.05% each and 0.15% in combination and preferably to 0.03% each and 0.10% in combination.
  • the homogenization time is between 5 and 30 hours.
  • the equivalent time at 400 ° C. is between 6 and 30 hours.
  • Hot deformation can be carried out directly after homogenization without cooling down to room temperature, the initial hot deformation temperature having to be between 350 and 450 ° C.
  • the raw form can be cooled down to room temperature after homogenization and the raw form can be reheated to an initial hot deformation temperature of between 350 and 450 ° C.
  • the time equivalent to 400 ° C during reheating is low, typically less than 10%, in comparison with the time equivalent to 400 ° C during homogenization.
  • the temperature of the metal can in some cases increase, however care should be taken that the time equivalent to 400 ° C during hot deformation is low, typically less than 10%, compared to the time equivalent to 400 ° C during homogenization. In any case, it is preferable that the temperature during hot deformation does not exceed 460 ° C and preferably does not exceed 440 ° C. After hot deformation, a cold deformation can be carried out.
  • the wringing is carried out by rolling to obtain a sheet.
  • the final thickness of the sheet obtained is less than 12 mm.
  • the wringing is carried out by extrusion to obtain a profile.
  • Table 1 Composition in% by weight (analysis by optical spark emission spectrometer, S-OES). Yes Fe Cr Mn Mg Zn Ti Zr Sc AT 0.02 0.05 ⁇ 0.01 0.62 4.05 0.28 0.023 0.10 0.19 B 0.02 0.04 ⁇ 0.01 0.59 3.99 0.29 0.038 0.10 0.19
  • the alloy A plate was homogenized for 5 hours at 445 ° C while the alloy B plate was homogenized for 15 hours at 515 ° C.
  • the plates thus homogenized were hot rolled directly after homogenization with a hot rolling start temperature of 415 ° C for plate A and 480 ° C for plate B, to obtain sheets having a thickness of 4 mm.
  • the 4mm sheets were cold rolled to a thickness of 2mm in three passes without intermediate heat treatment, and then underwent leveling. Different heat treatments were carried out after cold rolling. The results of the mechanical tensile tests are shown in Table 3. Table 3: Static mechanical characteristics obtained for the various cold-rolled sheets which have undergone annealing under different conditions.
  • the granular structure of the sheets was observed after a metallographic attack of the anodic oxidation type and under polarized light after cold rolling (LAF) or after cold rolling and annealing for 2 hours at 325 ° C.
  • LAF cold rolling
  • Table 4 shows the results of the microstructural observations of the sheets of composition A and B in the as-cold-rolled states and after annealing treatment (2h 325 ° C).
  • Table 4 Microstructure (LxTC plane, at mid-thickness) of the sheets Alloy Reference Microstructure AT LAF Essentially non-recrystallized 2h325 ° C Essentially non-recrystallized B LAF Essentially non-recrystallized 2h325 ° C Recrystallized
  • Alloy A according to the invention exhibits excellent resistance to recrystallization.
  • the products obtained by the process according to the invention exhibit advantageous mechanical characteristics, in particular Rp0.2 in the L direction of at least 260 MPa after LAC and after annealing for 4 hours at 325.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)

Description

Domaine de l'inventionField of the invention

L'invention a pour objet un procédé de fabrication de produits corroyés en alliage d'aluminium et de magnésium, connus également sous le nom d'alliage d'aluminium de la série 5XXX selon l'Aluminium Association, plus particulièrement des produits en alliage Al-Mg contenant du Sc présentant une résistance mécanique élevée, une ténacité élevée et une bonne aptitude à la mise en forme. L'invention a également pour objet des produits susceptibles d'être obtenus par ledit procédé ainsi que l'utilisation de ces produits destinés aux transports et en particulier à la construction aéronautique et spatiale.The subject of the invention is a process for manufacturing wrought products made of an aluminum and magnesium alloy, also known under the name of aluminum alloy of the 5XXX series according to the Aluminum Association, more particularly products made of Al alloy. -Mg containing Sc having high mechanical strength, high toughness and good formability. A subject of the invention is also products capable of being obtained by said process as well as the use of these products intended for transport and in particular for aeronautical and space construction.

Etat de la techniqueState of the art

Des produits corroyés en alliage d'aluminium sont développés notamment pour produire des éléments de structure destinés à l'industrie du transport, en particulier à l'industrie aéronautique et à l'industrie spatiale. Pour ces industries, les performances des produits doivent sans cesse être améliorées et de nouveaux alliages sont développés pour présenter notamment une résistance mécanique élevée, une faible densité, une ténacité élevée, une excellente résistance à la corrosion et une très bonne aptitude à la mise en forme. En particulier, la mise en forme peut être réalisée à chaud, par exemple par fluage (creep forming), et les propriétés mécaniques ne doivent pas diminuer à l'issue de cette mise en forme.Wrought aluminum alloy products are developed in particular to produce structural elements intended for the transport industry, in particular the aeronautics industry and the space industry. For these industries, product performance must constantly be improved and new alloys are developed to present in particular high mechanical strength, low density, high toughness, excellent corrosion resistance and very good processability. form. In particular, the shaping can be carried out hot, for example by creep forming, and the mechanical properties must not decrease at the end of this shaping.

Les alliages Al-Mg ont été intensivement étudiés dans l'industrie du transport, notamment du transport routier et maritime, en raison de leurs excellentes propriétés d'emploi telles que la soudabilité, la résistance à la corrosion et la formabilité, notamment dans les états peu écrouis tels que l'état O et l'état H111.Al-Mg alloys have been extensively studied in the transportation industry, especially road and maritime transport, due to their excellent working properties such as weldability, corrosion resistance and formability, especially in little hardened such as state O and state H111.

Ces alliages présentent cependant une résistance mécanique relativement faible pour l'industrie aéronautique et l'industrie spatiale.
Le brevet US 5,624,632 décrit un alliage de composition 3 - 7 % en poids de magnésium, 0.03 - 0.2 % en poids de zirconium, 0.2 - 1.2 % en poids de manganèse, jusque 0.15 % en poids de silicium et 0,05 - 0,5 % en poids d'un élément formant des dispersoïdes dans le groupe scandium, erbium, yttrium, gadolinium, holmium et hafnium.
Le brevet US 6,695,935 décrit un alliage de composition, en % en poids, Mg 3.5-6.0, Mn 0.4-1.2, Zn 0.4-1.5, Zr 0.25 max., Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max., Cu 0.4 max, un ou plusieurs éléments dans le groupe: Bi 0.005-0.1, Pb 0.005-0.1, Sn 0.01-0.1, Ag 0.01-0.5, Sc 0.01-0.5, Li 0.01-0.5, V 0.01-0.3, Ce 0.01-0.3, Y 0.01-0.3, and Ni 0.01-0.3.
La demande de brevet WO 01/12869 décrit un alliage de composition en % en poids 1.0-8.0 % Mg, 0.05-0,6 % Sc, 0.05-0.20 % Hf et/ou 0.05-0.20 % Zr, 0.5-2.0 % Cu et/ou 0.5-2.0 % Zn et en addition 0.1-0.8 % en poids de Mn.
La demande de brevet WO2007/020041 décrit un alliage de composition, en % en poids, Mg 3.5 à 6.0, Mn 0.4 à 1.2, Fe < 0.5, Si < 0.5, Cu < 0.15, Zr < 0.5, Cr < 0.3, Ti 0.03 à 0.2, Sc < 0.5, Zn < 1.7, Li < 0.5, Ag < 0.4, optionnellement un ou plusieurs éléments formant des dispersoïdes dans le groupe erbium, yttrium, hafnium, vanadium, chacun < 0.5 % en poids.
Les produits décrits dans ces brevets ne sont pas suffisants en termes de compromis entre résistance mécanique, ténacité et aptitude à la mise en forme à chaud. En particulier, il est important que les propriétés mécaniques ne diminuent pas après un traitement thermique à 300 - 350 °C, température typique de la température de mise en forme.
However, these alloys have relatively low mechanical strength for the aeronautical industry and the space industry.
The patent US 5,624,632 describes an alloy of composition 3 - 7% by weight of magnesium, 0.03 - 0.2% by weight of zirconium, 0.2 - 1.2% by weight of manganese, up to 0.15% by weight of silicon and 0.05 - 0.5% by weight of a dispersoid-forming element in the group scandium, erbium, yttrium, gadolinium, holmium and hafnium.
The patent US 6,695,935 describes an alloy of composition, in% by weight, Mg 3.5-6.0, Mn 0.4-1.2, Zn 0.4-1.5, Zr 0.25 max., Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max. , Cu 0.4 max, one or more elements in the group: Bi 0.005-0.1, Pb 0.005-0.1, Sn 0.01-0.1, Ag 0.01-0.5, Sc 0.01-0.5, Li 0.01-0.5, V 0.01-0.3, Ce 0.01 -0.3, Y 0.01-0.3, and Ni 0.01-0.3.
The patent application WO 01/12869 describes an alloy of composition in% by weight 1.0-8.0% Mg, 0.05-0.6% Sc, 0.05-0.20% Hf and / or 0.05-0.20% Zr, 0.5-2.0% Cu and / or 0.5-2.0% Zn and in addition 0.1-0.8% by weight of Mn.
The patent application WO2007 / 020041 describes an alloy of composition, in% by weight, Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe <0.5, Si <0.5, Cu <0.15, Zr <0.5, Cr <0.3, Ti 0.03 to 0.2, Sc <0.5, Zn <1.7, Li <0.5, Ag <0.4, optionally one or more elements forming dispersoids in the group erbium, yttrium, hafnium, vanadium, each <0.5% by weight.
The products described in these patents are not sufficient in terms of compromise between mechanical strength, toughness and suitability for hot forming. In particular, it is important that the mechanical properties do not decrease after heat treatment at 300 - 350 ° C, typical temperature of the forming temperature.

Il existe donc un besoin pour des produits corroyés en alliage Al-Mg présentant une faible densité ainsi que des propriétés améliorées par rapport à celles des produits connus, en particulier en termes de résistance mécanique, ténacité et aptitude à la mise en forme à chaud. De tels produits doivent de plus pouvoir être obtenus selon un procédé de fabrication fiable, économique et facilement adaptable à une ligne de fabrication conventionnelle.There is therefore a need for wrought Al-Mg alloy products exhibiting a low density as well as improved properties with respect to those of known products, in particular in terms of mechanical strength, toughness and heat-forming ability. Such products must also be obtainable according to a reliable, economical and easily adaptable manufacturing process to a conventional manufacturing line.

Objet de l'inventionObject of the invention

Un premier objet de l'invention est un procédé de fabrication d'un produit corroyé en alliage d'aluminium dans lequel :

  1. a) on élabore un bain de métal liquide à base d'aluminium de composition, en % en poids,
    • Mg : 3,8-4,2 ;
    • Mn : 0,3-0,8 ; de préférence 0,5 - 0,7
    • Sc : 0,1-0,3 ;
    • Zn : 0,1-0,4 ;
    • Ti : 0,01 - 0,05 de préférence 0,015-0,030 ;
    • Zr : 0,07 - 0,15 de préférence 0,08-0,12 ;
    • Cr : < 0,01 ;
    • Fe : < 0,15 ;
    • Si < 0,1 ;
    • autres éléments ≤ 0,05 chacun et ≤ 0,15 en association, reste aluminium ;
  2. b) on coule une forme brute à partir dudit bain de métal ;
  3. c) on homogénéise la dite forme brute à une température comprise entre 370°C et 450 °C, pendant une durée comprise entre 2 et 50 heures telle que le temps équivalent à 400 °C soit compris entre 5 et 100 heures,
    le temps équivalent t(eq) à 400 °C étant défini par la formule : t eq = exp 29122 / T dt exp 29122 / T ref
    Figure imgb0001
    dans laquelle T est la température instantanée exprimée en Kelvin qui évolue avec le temps t (en heures) et Tref est une température de référence de 400 °C (673 K), t(eq) étant exprimé en heures, la constante Q/R = 29122 K étant dérivée de l'énergie d'activation pour la diffusion du Zr, Q = 242000 J/mol,
  4. d) on déforme à chaud avec une température initiale comprise entre 350°C et 450 °C et on déforme optionnellement à froid la forme brute ainsi homogénéisée ;
  5. e) optionnellement on effectue un planage et/ou un redressage
  6. f) optionnellement on réalise un recuit à une température comprise entre 300 °C et 350 °C.
A first object of the invention is a process for manufacturing a wrought aluminum alloy product in which:
  1. a) a bath of liquid metal based on aluminum is prepared with the composition, in% by weight,
    • Mg: 3.8-4.2;
    • Mn: 0.3-0.8; preferably 0.5 - 0.7
    • Sc: 0.1-0.3;
    • Zn: 0.1-0.4;
    • Ti: 0.01 - 0.05, preferably 0.015-0.030;
    • Zr: 0.07 - 0.15, preferably 0.08-0.12;
    • Cr: <0.01;
    • Fe: <0.15;
    • If <0.1;
    • other elements ≤ 0.05 each and ≤ 0.15 in combination, remainder aluminum;
  2. b) casting a rough form from said metal bath;
  3. c) the said crude form is homogenized at a temperature between 370 ° C and 450 ° C, for a period of between 2 and 50 hours such that the time equivalent to 400 ° C is between 5 and 100 hours,
    the equivalent time t (eq) at 400 ° C being defined by the formula: t eq = exp - 29122 / T dt exp - 29122 / T ref
    Figure imgb0001
    in which T is the instantaneous temperature expressed in Kelvin which evolves with time t (in hours) and Tref is a reference temperature of 400 ° C (673 K), t (eq) being expressed in hours, the constant Q / R = 29122 K being derived from the activation energy for the diffusion of Zr, Q = 242000 J / mol,
  4. d) hot deforming with an initial temperature of between 350 ° C and 450 ° C and optionally cold deforming the raw form thus homogenized;
  5. e) optionally, planing and / or straightening is carried out
  6. f) optionally, annealing is carried out at a temperature between 300 ° C and 350 ° C.

Un second objet de l'invention est un produit corroyé en alliage d'aluminium de composition, en % en poids,

  • Mg : 3,8-4,2 ;
  • Mn : 0,3 - 0,8 de préférence 0,5-0,7 ;
  • Sc : 0,1-0,3 ;
  • Zn : 0,1-0,4 ;
  • Ti : 0,01 - 0,05 de préférence 0,015-0,030 ;
  • Zr : 0,07 - 0,15 de préférence 0,08-0,12 ;
  • Cr : < 0,01 ;
  • Fe : < 0,15 ;
  • Si < 0,1 ;
autres éléments ≤ 0,05 chacun et ≤ 0,15 en association ; reste aluminium.
susceptible d'être obtenu par le procédé selon l'invention.A second object of the invention is a wrought aluminum alloy product of composition, in% by weight,
  • Mg: 3.8-4.2;
  • Mn: 0.3 - 0.8, preferably 0.5-0.7;
  • Sc: 0.1-0.3;
  • Zn: 0.1-0.4;
  • Ti: 0.01 - 0.05, preferably 0.015-0.030;
  • Zr: 0.07 - 0.15, preferably 0.08-0.12;
  • Cr: <0.01;
  • Fe: <0.15;
  • If <0.1;
other elements ≤ 0.05 each and ≤ 0.15 in combination; remains aluminum.
obtainable by the process according to the invention.

Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. A titre d'exemple, l'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de « The Aluminium Association », connus de l'homme du métier.Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy. By way of example, the expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of the alloys is made in accordance with the regulations of “The Aluminum Association”, known to those skilled in the art.

Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515 (1993). Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1 (2009), le prélèvement et le sens de l'essai étant définis par la norme EN 485-1 (2016).
La ténacité sous contrainte plane est déterminée grâce à une courbe du facteur d'intensité de contrainte KR en fonction de l'extension de fissure effective Δaeff connue comme la courbe R, selon la norme ASTM E 561 (2010). Le facteur d'intensité de contrainte critique Kc, en d'autres termes le facteur d'intensité qui rend la fissure instable, est calculé à partir de la courbe R. Le facteur d'intensité de contrainte Kco est également calculé en attribuant la longueur de fissure initiale à la charge critique, au commencement de la charge monotone. Ces deux valeurs sont calculées pour une éprouvette de la forme requise. Kapp représente le facteur KCO correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. Keff représente le facteur Kc correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. KR60 correspond à la valeur de KR pour une extension de fissure effective Δaeff= 60 mm.
Dans le cadre de l'invention, la structure granulaire des échantillons est caractérisée dans le plan LxTC à mi-épaisseur, t/2, et est évaluée quantitativement après une attaque métallographique de type oxydation anodique et sous lumière polarisée :

  • _ le terme « essentiellement non-recristallisé » est utilisé lorsque la structure granulaire ne présente pas ou peu de grains recristallisés, typiquement moins de 20%, préférentiellement moins de 15% et plus préférentiellement encore moins de 10% des grains sont recristallisés;
  • _ le terme « recristallisé » est utilisé lorsque la structure granulaire présente une proportion importante de grains recristallisés, typiquement plus de 50%, préférentiellement plus de 60% et plus préférentiellement encore plus de 80% des grains sont recristallisés.
Sauf mention contraire, les définitions de la norme EN 12258-1 (1998) s'appliquent.The definitions of metallurgical states are given in European standard EN 515 (1993). The static mechanical properties in tension, in other words the tensile strength R m , the conventional yield strength at 0.2% elongation R p0.2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1 (2009), the sampling and direction of the test being defined by standard EN 485-1 (2016).
The tenacity under plane stress is determined by means of a curve of the stress intensity factor K R as a function of the effective crack extension Δa eff known as the curve R, according to standard ASTM E 561 (2010). The critical stress intensity factor Kc, in other words the intensity factor which makes the crack unstable, is calculated from the curve R. The stress intensity factor Kco is also calculated by assigning the length from initial crack to critical load, at the onset of monotonic load. These two values are calculated for a test piece of the required shape. K app represents the factor K CO corresponding to the test piece which was used to carry out the curve test R. K eff represents the factor Kc corresponding to the test piece which was used to carry out the curve test R. K R 60 corresponds to the value of K R for an effective crack extension Δa eff = 60 mm.
In the context of the invention, the granular structure of the samples is characterized in the LxTC plane at mid-thickness, t / 2, and is evaluated quantitatively after a metallographic attack of the anodic oxidation type and under polarized light:
  • _ the term “essentially non-recrystallized” is used when the granular structure exhibits little or no recrystallized grains, typically less than 20%, preferably less than 15% and more preferably still less than 10% of the grains are recrystallized;
  • _ the term “recrystallized” is used when the granular structure has a large proportion of recrystallized grains, typically more than 50%, preferably more than 60% and more preferably still more than 80% of the grains are recrystallized.
Unless stated otherwise, the definitions of standard EN 12258-1 (1998) apply.

Dans le cadre de la présente invention, on appelle « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage, (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure extrados ou intrados (upper or lower wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs), les longerons (spars), les profilés de plancher (floor beams) et les rails de sièges (seat tracks)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les portes.In the context of the present invention, the term “structural element” or “structural element” of a mechanical construction is used to refer to a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed. These are typically elements whose failure is likely to endanger the safety of said construction, its users, users or others. For an airplane, these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin), the stiffeners or runners of the fuselage (stringers), the watertight bulkheads, the frames of the fuselage (circumferential frames), the wings (such as the upper or lower wing skin), the stiffeners (stringers or stiffeners), the ribs, the spars (spars), the floor (floor beams) and seat tracks (seat tracks)) and the tail unit composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the doors.

Les présents inventeurs ont constaté que pour une composition selon l'invention, il est possible d'obtenir en contrôlant les conditions d'homogénéisation un produit corroyé avantageux, dont les propriétés mécaniques présentent un compromis entre résistance mécanique et ténacité utile pour la construction aéronautique et dont les propriétés sont stables après un traitement thermique correspondant à des conditions de mises en forme à chaud.
Selon l'invention, on élabore un bain de métal liquide à base d'aluminium de composition, en % en poids, Mg : 3,8-4,2 ; Mn : 0,3 - 0,8 de préférence 0,5-0,7 ; Sc : 0,1-0,3 ; Zn : 0,1-0,4 ; Ti : 0,01 - 0,05 de préférence 0,015-0,030 ; Zr : 0,07 - 0,15 de préférence 0,08-0,12 ; Cr : < 0,01 ; Fe : < 0,15 ; Si < 0,1 autres éléments ≤0,05 chacun et ≤0,15 en association, reste aluminium.
The present inventors have observed that, for a composition according to the invention, it is possible to obtain, by controlling the homogenization conditions, an advantageous wrought product, the mechanical properties of which exhibit a compromise between mechanical resistance and tenacity useful for aircraft construction and whose properties are stable after a heat treatment corresponding to hot shaping conditions.
According to the invention, a bath of liquid metal based on aluminum is prepared with the composition, in% by weight, Mg: 3.8-4.2; Mn: 0.3 - 0.8, preferably 0.5-0.7; Sc: 0.1-0.3; Zn: 0.1-0.4; Ti: 0.01 - 0.05, preferably 0.015-0.030; Zr: 0.07 - 0.15, preferably 0.08-0.12; Cr: <0.01; Fe: <0.15; If <0.1 other elements ≤0.05 each and ≤0.15 in combination, aluminum remains.

La composition selon l'invention est remarquable du fait d'une faible addition de titane de 0,01 - 0,05 et de préférence de 0,015 à 0,030 % en poids et de manière préférée de 0,018 à 0,024 % en poids et par l'absence d'addition de chrome, dont la teneur est inférieure à 0,01 % en poids. Des propriétés mécaniques statiques élevées (Rp0.2, Rm) sont obtenues malgré ces faibles additions car les conditions d'homogénéisation sont soigneusement contrôlées. Ainsi, de façon surprenante, il est possible d'éviter la recristallisation lors de la mise en forme à chaud avec de faibles additions de titane et en l'absence d'addition de chrome, et d'atteindre simultanément des propriétés mécaniques statiques élevées, ce qui pourrait être obtenu notamment par de fortes additions de Cr et Ti, et une ténacité élevée.
L'addition de Mn, Sc, Zn et Zr est nécessaire pour obtenir le compromis souhaité entre résistance mécanique, ténacité et aptitude à la mise en forme à chaud. La teneur en fer est maintenue inférieure à 0,15 % en poids et de préférence inférieure à 0,1 % en poids. La teneur en silicium est maintenue inférieure à 0,1 % en poids et de préférence inférieure à 0,05 % en poids. La présence de fer et de silicium au-delà des maxima indiqués a un impact défavorable notamment sur la ténacité. Les autres éléments sont des impuretés c'est-à-dire des éléments dont la présence n'est pas intentionnelle, leur présence doit être limitée à 0,05 % chacun et 0,15 % en association et de préférence à 0,03 % chacun et 0,10 % en association.
Selon l'invention, on homogénéise la dite forme brute à une température comprise entre 370°C et 450 °C, pendant une durée comprise entre 2 et 50 heures telle que le temps équivalent à 400 °C soit compris entre 5 et 100 heures,
le temps équivalent t(eq) à 400 °C étant défini par la formule : t eq = exp 29122 / T dt exp 29122 / T ref

Figure imgb0002
dans laquelle T est la température instantanée exprimée en Kelvin qui évolue avec le temps t (en heures) et Tref est une température de référence de 400 °C (673 K), t(eq) étant exprimé en heures, la constante Q/R = 29122 K étant dérivée de l'énergie d'activation pour la diffusion du Zr, Q = 242000 J/mol.
De préférence la durée d'homogénéisation est comprise entre 5 et 30 heures. De manière avantageuse le temps équivalent à 400 °C est compris entre 6 et 30 heures.The composition according to the invention is remarkable due to a small addition of titanium of 0.01 - 0.05 and preferably from 0.015 to 0.030% by weight and preferably from 0.018 to 0.024% by weight and by weight. absence of addition of chromium, the content of which is less than 0.01% by weight. High static mechanical properties (Rp0.2, Rm) are obtained despite these small additions because the homogenization conditions are carefully controlled. Thus, surprisingly, it is possible to avoid recrystallization during hot forming with small additions of titanium and in the absence of addition of chromium, and simultaneously to achieve high static mechanical properties, which could be obtained in particular by strong additions of Cr and Ti, and a high tenacity.
The addition of Mn, Sc, Zn and Zr is necessary to obtain the desired compromise between mechanical strength, toughness and suitability for hot shaping. The iron content is kept below 0.15% by weight and preferably below 0.1% by weight. The silicon content is kept below 0.1% by weight and preferably below 0.05% by weight. The presence of iron and silicon beyond the indicated maximums has an unfavorable impact, in particular on toughness. The other elements are impurities, that is to say elements whose presence is not intentional, their presence must be limited to 0.05% each and 0.15% in combination and preferably to 0.03% each and 0.10% in combination.
According to the invention, the said raw form is homogenized at a temperature between 370 ° C and 450 ° C, for a period of between 2 and 50 hours such that the time equivalent to 400 ° C is between 5 and 100 hours,
the equivalent time t (eq) at 400 ° C being defined by the formula: t eq = exp - 29122 / T dt exp - 29122 / T ref
Figure imgb0002
in which T is the instantaneous temperature expressed in Kelvin which evolves with time t (in hours) and Tref is a reference temperature of 400 ° C (673 K), t (eq) being expressed in hours, the constant Q / R = 29122 K being derived from the activation energy for the diffusion of Zr, Q = 242000 J / mol.
Preferably, the homogenization time is between 5 and 30 hours. Advantageously, the equivalent time at 400 ° C. is between 6 and 30 hours.

Une trop faible température et/ou durée d'homogénéisation ne permettent pas de former des dispersoïdes pour contrôler la recristallisation. De façon surprenante, lorsque température et/ou durée d'homogénéisation sont trop élevées, les propriétés obtenues ne sont pas stables à la température typique de mise en forme à chaud de 300 - 350 °C, notamment car les produits recristallisent.
La déformation à chaud peut être réalisée directement après l'homogénéisation sans refroidissement jusqu'à température ambiante, la température initiale de déformation à chaud devant être comprise entre 350 et 450 °C. Alternativement, on peut refroidir la forme brute jusqu'à température ambiante après homogénéisation et réchauffer la forme brute jusqu'à une température initiale de déformation à chaud comprise entre 350 et 450 °C. Dans le cas d'un réchauffage, il convient de veiller à ce que le temps équivalent à 400 °C lors du réchauffage soit faible, typiquement inférieur à 10%, en comparaison avec le temps équivalent à 400 °C lors de l'homogénéisation.
Lors de la déformation à chaud, la température du métal peut dans certains cas augmenter, cependant il convient de veiller à ce que le temps équivalent à 400 °C lors de la déformation à chaud soit faible, typiquement inférieur à 10%, en comparaison avec le temps équivalent à 400 °C lors de l'homogénéisation. Il est en tous cas préférable que la température lors de la déformation à chaud ne dépasse pas 460 °C et de préférence ne dépasse pas 440 °C. Après déformation à chaud on peut réaliser une déformation à froid.
Too low a temperature and / or homogenization time does not make it possible to form dispersoids in order to control recrystallization. Surprisingly, when temperature and / or homogenization time are too high, the properties obtained are not stable at the typical hot forming temperature of 300-350 ° C, in particular because the products recrystallize.
Hot deformation can be carried out directly after homogenization without cooling down to room temperature, the initial hot deformation temperature having to be between 350 and 450 ° C. Alternatively, the raw form can be cooled down to room temperature after homogenization and the raw form can be reheated to an initial hot deformation temperature of between 350 and 450 ° C. In the case of reheating, it should be ensured that the time equivalent to 400 ° C during reheating is low, typically less than 10%, in comparison with the time equivalent to 400 ° C during homogenization.
During hot deformation, the temperature of the metal can in some cases increase, however care should be taken that the time equivalent to 400 ° C during hot deformation is low, typically less than 10%, compared to the time equivalent to 400 ° C during homogenization. In any case, it is preferable that the temperature during hot deformation does not exceed 460 ° C and preferably does not exceed 440 ° C. After hot deformation, a cold deformation can be carried out.

Dans un premier mode de réalisation, le corroyage est réalisé par laminage pour obtenir une tôle. Selon ce premier mode l'épaisseur finale de la tôle obtenue est inférieure à 12 mm.
Dans un second mode de réalisation, le corroyage est réalisé par extrusion pour obtenir un profilé.
In a first embodiment, the wringing is carried out by rolling to obtain a sheet. According to this first embodiment, the final thickness of the sheet obtained is less than 12 mm.
In a second embodiment, the wringing is carried out by extrusion to obtain a profile.

Dans le premier mode de réalisation, on réalise typiquement la déformation à chaud jusqu'à une épaisseur d'environ 4 mm puis la déformation à froid pour une épaisseur comprise entre 0,5 et 4 mm.
Après déformation à chaud et optionnellement à froid, il peut être avantageux d'effectuer un planage et/ou un redressage. Lors des opérations de planage et/ou de redressage, la déformation permanente est typiquement inférieure à 2%, de préférence d'environ 1%.
Optionnellement on réalise un recuit à une température comprise entre 300 °C et 350 °C. La durée du recuit est typiquement comprise entre 1 et 4 heures. Ce recuit a principalement une fonction de stabilisation des propriétés mécaniques de façon à ce qu'elles n'évoluent pas lors d'une mise en forme ultérieure à une température voisine. Les produits selon l'invention présentent l'avantage d'avoir des propriétés mécaniques très stables à cette température. Ainsi pour les produits dont l'épaisseur finale de 4 à 6 mm est obtenue par laminage à chaud, la variation de propriété mécanique statique est au plus de 10% et de préférence au plus de 6% après un recuit entre 300 et 350 °C et pour les produits dont l'épaisseur finale d'environ 2 mm est obtenue par laminage à froid, la variation de propriété mécanique statique est au plus de 40% et de préférence au plus de 30% après un recuit entre 300 et 350 °C. Il est donc possible dans le cadre du procédé selon l'invention de ne pas réaliser de recuit de stabilisation et de procéder directement à la mise en forme, en particulier pour les produits dont l'épaisseur finale est obtenue par laminage à chaud. Grâce au procédé selon l'invention, les produits selon l'invention conservent une structure granulaire essentiellement non-recristallisée après un recuit entre 300 et 350 °C.
Les tôles d'épaisseur inférieure à 12 mm obtenues par le procédé selon l'invention sont avantageuses, ayant de préférence les caractéristiques suivantes :

  1. (a) une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens TL d'au moins 250 MPa, et de préférence d'au moins 260 MPa et/ou
  2. (b) une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L d'au moins 260 MPa, et de préférence d'au moins 270 MPa, ces propriétés étant atteintes même dans le cas où l'étape optionnelle de recuit à une température comprise entre 300 °C et 350 °C est effectuée.
Avantageusement les tôles d'épaisseur inférieure à 4 mm obtenues par le procédé selon l'invention ont une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens TL d'au moins 300 MPa, et de préférence d'au moins 320 MPa, ces propriétés étant atteintes même dans le cas où l'étape optionnelle de recuit à une température comprise entre 300 °C et 350 °C est effectuée.In the first embodiment, the hot deformation is typically carried out to a thickness of about 4 mm, then the cold deformation for a thickness of between 0.5 and 4 mm.
After hot and optionally cold deformation, it may be advantageous to perform leveling and / or straightening. During leveling and / or straightening, the permanent set is typically less than 2%, preferably about 1%.
Optionally, annealing is carried out at a temperature between 300 ° C. and 350 ° C. The duration of the annealing is typically between 1 and 4 hours. This annealing mainly has a function of stabilizing the mechanical properties so that they do not change during subsequent shaping at a neighboring temperature. The products according to the invention have the advantage of having very stable mechanical properties at this temperature. Thus for products whose final thickness of 4 to 6 mm is obtained by hot rolling, the variation in static mechanical property is at most 10% and preferably at most 6% after annealing between 300 and 350 ° C. and for products whose final thickness of about 2 mm is obtained by cold rolling, the variation in static mechanical property is at most 40% and preferably at most 30% after annealing between 300 and 350 ° C. . It is therefore possible, within the framework of the process according to the invention, not to carry out stabilization annealing and to proceed directly with the shaping, in particular for products whose final thickness is obtained by hot rolling. Thanks to the process according to the invention, the products according to the invention retain an essentially non-recrystallized granular structure after annealing between 300 and 350 ° C.
The sheets with a thickness of less than 12 mm obtained by the process according to the invention are advantageous, preferably having the following characteristics:
  1. (a) a conventional yield strength measured at 0.2% elongation in the TL direction of at least 250 MPa, and preferably at least 260 MPa and / or
  2. (b) a conventional elastic limit measured at 0.2% elongation in the L direction of at least 260 MPa, and preferably at least 270 MPa, these properties being achieved even in the case where the optional step of annealing at a temperature between 300 ° C and 350 ° C is carried out.
Advantageously, the sheets of thickness less than 4 mm obtained by the process according to the invention have a conventional elastic limit measured at 0.2% elongation in the TL direction of at least 300 MPa, and preferably of at least 320 MPa, these properties being achieved even in the case where the optional step of annealing at a temperature between 300 ° C and 350 ° C is carried out.

Les tôles selon l'invention présentent de manière préférée des propriétés de ténacité avantageuses, notamment :

  • (c) une ténacité KR60, mesurée sur des éprouvettes de type CCT760 dans le sens L-T (avec 2ao = 253 mm), pour une extension de fissure effective Δaeff de 60 mm d'au moins 155 MPa m ,
    Figure imgb0003
    et de préférence d'au moins 165 MPa m
    Figure imgb0004
    et/ou
  • (d) une ténacité KR60, mesurée sur des éprouvettes de type CCT760 dans le sens T-L (avec 2ao = 253 mm), pour une extension de fissure effective Δaeff de 60 mm d'au moins 160 MPa m ,
    Figure imgb0005
    et de préférence d'au moins 170 MPa m .
    Figure imgb0006
De préférence, pour les produits selon l'invention, la ténacité KR dans le sens T-L est supérieure à celle dans le sens L-T.
De préférence la ténacité Kapp, mesurée sur des éprouvettes de type CCT760 dans le sens T-L (avec 2ao = 253 mm), est d'au moins 125 MPa , et de préférence d'au moins 130 MPa
Les produits selon l'invention peuvent être mis en forme à une température comprise entre 300 °C et 350 °C pour obtenir des éléments de structure pour avion, de préférence des éléments de fuselage.
Les éléments de fuselage d'aéronef selon l'invention sont avantageux car ils présentent
  1. (a) une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens TL est d'au moins 250 MPa, et de préférence d'au moins 260 MPa et/ou
  2. (b) une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L est d'au moins 260 MPa, et de préférence d'au moins 270 MPa.
The sheets according to the invention preferably exhibit advantageous toughness properties, in particular:
  • (c) a toughness K R 60, measured on specimens of type CCT760 in the LT direction (with 2ao = 253 mm), for an effective crack extension Δa eff of 60 mm of at least 155 MPa m ,
    Figure imgb0003
    and preferably at least 165 MPa m
    Figure imgb0004
    and or
  • (d) a toughness K R 60, measured on type CCT760 specimens in the TL direction (with 2ao = 253 mm), for an effective crack extension Δa eff of 60 mm of at least 160 MPa m ,
    Figure imgb0005
    and preferably at least 170 MPa m .
    Figure imgb0006
Preferably, for the products according to the invention, the toughness K R in the TL direction is greater than that in the LT direction.
Preferably the toughness Kapp, measured on specimens of the CCT760 type in the TL direction (with 2ao = 253 mm), is at least 125 MPa, and preferably at least 130 MPa
The products according to the invention can be shaped at a temperature between 300 ° C and 350 ° C to obtain structural elements for an airplane, preferably fuselage elements.
The aircraft fuselage elements according to the invention are advantageous because they have
  1. (a) a conventional yield strength measured at 0.2% elongation in the TL direction is at least 250 MPa, and preferably at least 260 MPa and / or
  2. (b) a conventional yield strength measured at 0.2% elongation in the L direction is at least 260 MPa, and preferably at least 270 MPa.

ExemplesExamples Exemple 1Example 1

Plusieurs plaques d'épaisseur 400 mm dont la composition est donnée dans le tableau 1 ont été coulées. Tableau 1 : Composition en % en poids (analyse par spectromètre d'émissions optiques à étincelles, S-OES). Si Fe Cr Mn Mg Zn Ti Zr Sc A 0,02 0,05 <0,01 0,62 4,05 0,28 0,023 0,10 0,19 B 0,02 0,04 <0,01 0,59 3,99 0,29 0,038 0,10 0,19 Several plates 400 mm thick, the composition of which is given in Table 1, were cast. Table 1: Composition in% by weight (analysis by optical spark emission spectrometer, S-OES). Yes Fe Cr Mn Mg Zn Ti Zr Sc AT 0.02 0.05 <0.01 0.62 4.05 0.28 0.023 0.10 0.19 B 0.02 0.04 <0.01 0.59 3.99 0.29 0.038 0.10 0.19

La plaque en alliage A a été homogénéisée 5h à 445°C tandis que la plaque en alliage B a été homogénéisée 15h à 515 °C. Les plaques ainsi homogénéisées ont été laminées à chaud directement après homogénéisation avec une température de début de laminage à chaud de 415 °C pour la plaque A et de 480 °C pour la plaque B, pour obtenir des tôles ayant une épaisseur de 4 mm.The alloy A plate was homogenized for 5 hours at 445 ° C while the alloy B plate was homogenized for 15 hours at 515 ° C. The plates thus homogenized were hot rolled directly after homogenization with a hot rolling start temperature of 415 ° C for plate A and 480 ° C for plate B, to obtain sheets having a thickness of 4 mm.

Les caractéristiques mécaniques statiques en traction de la tôle en alliage A sont restées élevées tant à l'état tel que laminé à chaud (LAC) qu'à l'état recuit (traitement de recuit de 4h à 325°C) tandis que celles de la tôle en alliage B ont chuté après recuit. Tableau 2 : Caractéristiques mécaniques statiques obtenues pour les différentes tôles à l'état tel que laminé à chaud (LAC) et à l'état recuit (4h à 325°C). Tôle en alliage A Epaisseur 4 mm Tôle en alliage B Epaisseur 4 mm LAC Recuit LAC Recuit Rp0.2 L, MPa 303 289 287 233 Rm L, MPa 400 393 364 352 A L, % 14,5 16,2 14,8 17,6 Rp0.2 TL, MPa 311 292 276 238 Rm TL, MPa 396 387 361 349 A TL, % 17,7 19,5 18,2 23,0 Kapp MPa√m L-T 129,9 129,1 128,5 Kapp MPa√m T-L 134,9 134,0 125,8 Kr60 MPa√m L-T 172,9 171,5 171,2 Kr60MPa√m T-L 178,9 177,1 164 The static mechanical tensile characteristics of the alloy A sheet remained high both in the hot rolled state (LAC) and in the annealed state (annealing treatment of 4 hours at 325 ° C) while those of Alloy B sheet fell off after annealing. Table 2: Static mechanical characteristics obtained for the various sheets in the state such as hot rolled (LAC) and in the annealed state (4h at 325 ° C). Alloy A sheet 4 mm thickness Alloy B sheet 4 mm thick LAKE Annealing LAKE Annealing Rp0.2 L, MPa 303 289 287 233 Rm L, MPa 400 393 364 352 AL,% 14.5 16.2 14.8 17.6 Rp0.2 TL, MPa 311 292 276 238 Rm TL, MPa 396 387 361 349 At TL,% 17.7 19.5 18.2 23.0 K app MPa√m LT 129.9 129.1 128.5 K app MPa√m TL 134.9 134.0 125.8 Kr60 MPa√m LT 172.9 171.5 171.2 Kr60MPa√m TL 178.9 177.1 164

Les tôles de 4 mm ont été laminées à froid jusqu'à une épaisseur de 2 mm en trois passes sans traitement thermique intermédiaire, puis ont subi un planage. Différents traitement thermiques ont été réalisés après laminage à froid. Les résultats des essais mécaniques en traction sont présentés dans le tableau 3. Tableau 3 : Caractéristiques mécaniques statiques obtenues pour les différentes tôles laminées à froid et ayant subi un recuit dans différentes conditions. Recuit après laminage à froid Tôle en alliage A Epaisseur 2 mm Tôle en alliage B Epaisseur 2 mm Rp02 (TL) Rm (TL) A% TL Rp02 (TL) Rm (TL) A% TL - 417 466 9,95 358 422 10,5 2h 275°C 349,5 415 19 256 355 18,2 2h 325°C 333 405 21,7 168 311 23,0 2h 375°C 297,5 393 21,4 156 301 23,1 The 4mm sheets were cold rolled to a thickness of 2mm in three passes without intermediate heat treatment, and then underwent leveling. Different heat treatments were carried out after cold rolling. The results of the mechanical tensile tests are shown in Table 3. Table 3: Static mechanical characteristics obtained for the various cold-rolled sheets which have undergone annealing under different conditions. Annealing after cold rolling Alloy sheet A thickness 2 mm Alloy B sheet 2 mm thick Rp02 (TL) Rm (TL) A% TL Rp02 (TL) Rm (TL) A% TL - 417 466 9.95 358 422 10.5 2h 275 ° C 349.5 415 19 256 355 18.2 2h 325 ° C 333 405 21.7 168 311 23.0 2h 375 ° C 297.5 393 21.4 156 301 23.1

La structure granulaire des tôles a été observée après une attaque métallographique de type oxydation anodique et sous lumière polarisée après laminage à froid (LAF) ou après laminage à froid et recuit de 2h à 325 °C.The granular structure of the sheets was observed after a metallographic attack of the anodic oxidation type and under polarized light after cold rolling (LAF) or after cold rolling and annealing for 2 hours at 325 ° C.

Une évaluation qualitative de la microstructure a été réalisée :
Le tableau 4 présente les résultats des observations microstructurales des tôles de composition A et B aux états brut de laminage à froid et après traitement de recuit (2h 325°C). Tableau 4 : Microstructure (plan LxTC, à mi-épaisseur) des tôles Alliage Référence Microstructure A LAF Essentiellement non-recristallisée 2h325°C Essentiellement non-recristallisée B LAF Essentiellement non-recristallisée 2h325°C Recristallisée
A qualitative assessment of the microstructure was carried out:
Table 4 shows the results of the microstructural observations of the sheets of composition A and B in the as-cold-rolled states and after annealing treatment (2h 325 ° C). Table 4: Microstructure (LxTC plane, at mid-thickness) of the sheets Alloy Reference Microstructure AT LAF Essentially non-recrystallized 2h325 ° C Essentially non-recrystallized B LAF Essentially non-recrystallized 2h325 ° C Recrystallized

L'alliage A selon l'invention présente une excellente résistance à la recristallisation.Alloy A according to the invention exhibits excellent resistance to recrystallization.

Exemple 2Example 2

Dans cet exemple, on a étudié l'effet des conditions d'homogénéisation avant déformation à chaud sur les propriétés mécaniques. Des blocs en alliage A de dimension 250 x 180 x 120 mm ont été laminés à chaud dans différentes conditions, jusqu'à une épaisseur de 8 ou 12 mm. Les conditions sont décrites dans le Tableau 5 Tableau 5 : Conditions de transformation de différents blocs en alliage A Température d'homogénéisation (°C) Durée d'homogénéisation (h) T(eq) à 400 °C Température initiale de laminage (°C) Epaisseur finale (mm) Température finale de laminage(°C) CD2 450 15 298 440 12 329 CD3 400 15 15 390 12 319 CD4 450 15 298 440 8 325 CF1 450 5 99 440 8 330 CF2 450 5 99 12 327 CF3 400 5 5 405 12 320 CF4 515 17 9341 8 325 In this example, the effect of the homogenization conditions before hot deformation on the mechanical properties was studied. Alloy A blocks of dimension 250 x 180 x 120 mm were hot rolled under different conditions, up to a thickness of 8 or 12 mm. The conditions are described in Table 5 Table 5: Processing conditions for different blocks in alloy A Homogenization temperature (° C) Homogenization time (h) T (eq) at 400 ° C Initial rolling temperature (° C) Final thickness (mm) Final rolling temperature (° C) CD2 450 15 298 440 12 329 CD3 400 15 15 390 12 319 CD4 450 15 298 440 8 325 CF1 450 5 99 440 8 330 CF2 450 5 99 12 327 CF3 400 5 5 405 12 320 CF4 515 17 9341 8 325

Les propriétés mécaniques ont été mesurées sur les tôles telles que laminées ou ayant subi un traitement. Les résultats sont présentés dans le tableau 6 Tableau 6 Caractéristiques mécaniques statiques obtenues pour les différentes tôles à l'état tel que laminé à chaud (LAC) et à l'état recuit (4h à 325°C). LAC Recuit 4h 325 °C bloc sens Rp0,2 Rm A Rp0,2 Rm A MPa MPa % MPa MPa % CD2 L 251 377 15,4 243 370 16,0 CD3 L 286 398 14,5 278 391 15,4 CD4 L 260 371 13,6 252 366 16,7 CF1 L 275 381 16,1 267 373 17,1 CF2 L 268 390 12,9 262 382 13,8 CF3 L 288 399 14,8 280 392 15,4 CF4 L 223 341 15,7 209 339 17,3 The mechanical properties were measured on sheets such as rolled or treated. The results are shown in Table 6 Table 6 Static mechanical characteristics obtained for the various sheets in the state such as hot rolled (LAC) and in the annealed state (4h at 325 ° C). LAKE Annealing 4h 325 ° C block meaning Rp0.2 Rm AT Rp0.2 Rm AT MPa MPa % MPa MPa % CD2 L 251 377 15.4 243 370 16.0 CD3 L 286 398 14.5 278 391 15.4 CD4 L 260 371 13.6 252 366 16.7 CF1 L 275 381 16.1 267 373 17.1 CF2 L 268 390 12.9 262 382 13.8 CF3 L 288 399 14.8 280 392 15.4 CF4 L 223 341 15.7 209 339 17.3

Les produits obtenus par le procédé selon l'invention (CD3, CF1, CF2, CF3) présentent des caractéristiques mécaniques avantageuses, notamment Rp0.2 dans le sens L d'au moins 260 MPa après LAC et après recuit de 4h à 325.The products obtained by the process according to the invention (CD3, CF1, CF2, CF3) exhibit advantageous mechanical characteristics, in particular Rp0.2 in the L direction of at least 260 MPa after LAC and after annealing for 4 hours at 325.

Claims (9)

  1. Method for producing a wrought product made of an aluminium alloy wherein:
    a) a molten metal bath having an aluminium base is produced, composed, in wt%, of
    Mg: 3.8-4.2;
    Mn: 0.3 - 0.8 and preferably 0.5-0.7;
    Sc: 0.1-0.3;
    Zn: 0.1-0.4;
    Ti: 0.01 - 0.05 and preferably 0.015-0.030;
    Zr: 0.07 - 0.15 and preferably 0.08-0.12;
    Cr: ≤ 0.01;
    Fe: ≤ 0.15;
    Si < 0.1;
    other elements ≤ 0.05 each and ≤ 0.15 combined, the remainder being aluminium;
    b) an unwrought product is cast from said metal bath;
    c) said unwrought product is homogenised at a temperature that lies in the range 370°C to 450°C, for a duration that lies in the range 2 to 50 hours such that the equivalent time at 400°C lies in the range 5 to 100 hours,
    the equivalent time t(eq) at 400°C being defined by the formula: t eq = exp 29122 / T dt exp 29122 / T ref
    Figure imgb0017
    where T is the current temperature expressed in Kelvin, which changes over time t (in hours) and Tref is a reference temperature of 400°C (673 K), t(eq) being expressed in hours, the constant Q/R = 29122 K being derived from the activation energy for the diffusion of Zr, Q = 242000 J/mol,
    d) the unwrought product thus homogenised is hot-worked with an initial temperature in the range 350°C to 450°C and is optionally cold-worked;
    e) a flattening and/or straightening process is optionally carried out;
    f) an annealing process is optionally carried out at a temperature that lies in the range 300°C to 350°C.
  2. Method according to claim 1, wherein the homogenisation duration lies in the range 5 to 30 hours.
  3. Method according to any of claims 1 to 2, wherein working is carried out by rolling in order to obtain a sheet metal and wherein the final thickness of the sheet obtained is less than 12 mm.
  4. Method according to any of claims 1 to 2, wherein working is carried out by extrusion in order to obtain a profile.
  5. Wrought product made of an aluminium alloy having the composition, in wt %,
    Mg: 3.8-4.2;
    Mn: 0.3 - 0.8 and preferably 0.5-0.7;
    Sc: 0.1-0.3;
    Zn: 0.1-0.4;
    Ti: 0.01 - 0.05 and preferably 0.015-0.030;
    Zr: 0.07 - 0.15 and preferably 0.08-0.12;
    Cr: ≤ 0.01;
    Fe: ≤ 0.15;
    Si < 0.1;
    other elements ≤ 0.05 each and ≤ 0.15 combined, the remainder being aluminium,
    obtainable by the method according to any of claims 1 to 4.
  6. Wrought product according to claim 5 in the form of a sheet having a thickness of less than 12 mm, obtainable by the method according to claim 3, characterised in that
    (a) the tensile yield stress thereof measured at 0.2% elongation in the LT direction is at least 250 MPa, and preferably at least 260 MPa and/or
    (b) the tensile yield stress thereof measured at 0.2% elongation in the L direction is at least 260 MPa, and preferably at least 270 MPa.
  7. Sheet according to claim 6, characterised in that
    (c) the toughness KR60 thereof, measured on specimens of type CCT760 in the L-T direction (where 2ao = 253 mm), for an effective crack growth Δaeff of 60 mm, is at least 155 MPa m ,
    Figure imgb0018
    and preferably at least 165 MPa m
    Figure imgb0019
    and/or
    (d) the toughness KR60 thereof, measured on specimens of type CCT760 in the T-L direction (where 2ao = 253 mm), for an effective crack growth Δaeff of 60 mm, is at least 160 MPa m ,
    Figure imgb0020
    and preferably at least 170 MPa m .
    Figure imgb0021
  8. Method according to any of claims 1 to 4, wherein, at the end of step f, forming is carried out at a temperature that lies in the range 300°C to 350°C.
  9. Aircraft fuselage element obtainable according to the method according to claim 8, characterised in that
    (a) the tensile yield stress thereof measured at 0.2% elongation in the LT direction is at least 250 MPa, and preferably at least 260 MPa and/or
    (b) the tensile yield stress thereof measured at 0.2% elongation in the L direction is at least 260 MPa, and preferably at least 270 MPa.
EP17794387.5A 2016-10-17 2017-10-17 Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications Active EP3526358B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660049A FR3057476B1 (en) 2016-10-17 2016-10-17 ALUMINUM-MAGNESIUM-SCANDIUM ALLOY THIN SHEET FOR AEROSPATIAL APPLICATIONS
PCT/FR2017/052856 WO2018073533A1 (en) 2016-10-17 2017-10-17 Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications

Publications (2)

Publication Number Publication Date
EP3526358A1 EP3526358A1 (en) 2019-08-21
EP3526358B1 true EP3526358B1 (en) 2020-07-22

Family

ID=58401638

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17794387.5A Active EP3526358B1 (en) 2016-10-17 2017-10-17 Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications

Country Status (7)

Country Link
US (2) US20190249285A1 (en)
EP (1) EP3526358B1 (en)
CN (1) CN109844151B (en)
BR (1) BR112019006323A2 (en)
CA (1) CA3037115A1 (en)
FR (1) FR3057476B1 (en)
WO (1) WO2018073533A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2878315T3 (en) * 2019-01-17 2021-11-18 Aleris Rolled Prod Germany Gmbh Manufacturing procedure for an AlMgSc series alloy product
EP3964597B1 (en) * 2019-12-27 2024-09-04 Obshchestvo s Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno- Tekhnologicheskiy Tsentr" Aluminium-based alloy
RU2734675C1 (en) * 2020-05-21 2020-10-21 Федеральное государственное бюджетное учреждение науки Самарский федеральный исследовательский центр Российской академии наук (СамНЦ РАН) Method of making rolled articles from thermally nonhardenable aluminum-magnesium system alloys and an article obtained using said method
US20220195561A1 (en) * 2020-12-21 2022-06-23 Divergent Technologies, Inc. 3-d printable alloys
CN115287504B (en) * 2022-08-23 2023-05-19 中南大学 Light Al-Sc-Zr-Y-O heat-resistant aluminum alloy and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624632A (en) 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
US6551424B1 (en) 1998-12-18 2003-04-22 Corus Aluminium Walzprodukte Gmbh Method for the manufacturing of an aluminium-magnesium-lithium alloy product
US20120103476A1 (en) 2010-10-29 2012-05-03 Alcoa Inc. 5xxx aluminum alloys, and methods for producing the same
US20120152415A1 (en) 2010-12-20 2012-06-21 Constellium France Aluminum copper lithium alloy with improved resistance under compression and fracture toughness
US20130092294A1 (en) 2011-10-14 2013-04-18 Constellium France Transformation process of Al-Cu-Li alloy sheets
US20130146186A1 (en) 2005-08-16 2013-06-13 Aleris Aluminum Koblenz Gmbh High strength weldable al-mg alloy
US9217622B2 (en) 2009-07-24 2015-12-22 Alcoa Inc. 5XXX aluminum alloys and wrought aluminum alloy products made therefrom

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6695935B1 (en) 1999-05-04 2004-02-24 Corus Aluminium Walzprodukte Gmbh Exfoliation resistant aluminium magnesium alloy
US6139653A (en) 1999-08-12 2000-10-31 Kaiser Aluminum & Chemical Corporation Aluminum-magnesium-scandium alloys with zinc and copper
DE602004005529T2 (en) * 2003-05-20 2007-10-25 Aleris Aluminum Duffel Bvba Wrought aluminum alloy
DE10352932B4 (en) * 2003-11-11 2007-05-24 Eads Deutschland Gmbh Cast aluminum alloy
RU2280705C2 (en) * 2004-09-15 2006-07-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Aluminum-based alloy and articles made from this alloy
FR2889852B1 (en) * 2005-08-16 2009-12-04 Corus Aluminium Walzprod Gmbh ALUMINUM ALUMINUM ALLOY ALLOY WELDING AND VERY RESISTANT, AND PRODUCED IN SUCH ALLOY
FR2975403B1 (en) * 2011-05-20 2018-11-02 Constellium Issoire MAGNESIUM LITHIUM ALUMINUM ALLOY WITH IMPROVED TENACITY
KR101246106B1 (en) * 2012-06-13 2013-03-20 주식회사 대호에이엘 Aluminium alloy plate for automobile interor/exterior materials and its manufacturing method
FR3026411B1 (en) * 2014-09-29 2018-12-07 Constellium France METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS
WO2016051061A1 (en) * 2014-09-29 2016-04-07 Constellium Issoire Method for manufacturing products made of magnesium-lithium-aluminum alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624632A (en) 1995-01-31 1997-04-29 Aluminum Company Of America Aluminum magnesium alloy product containing dispersoids
US6551424B1 (en) 1998-12-18 2003-04-22 Corus Aluminium Walzprodukte Gmbh Method for the manufacturing of an aluminium-magnesium-lithium alloy product
US20130146186A1 (en) 2005-08-16 2013-06-13 Aleris Aluminum Koblenz Gmbh High strength weldable al-mg alloy
US9217622B2 (en) 2009-07-24 2015-12-22 Alcoa Inc. 5XXX aluminum alloys and wrought aluminum alloy products made therefrom
US20120103476A1 (en) 2010-10-29 2012-05-03 Alcoa Inc. 5xxx aluminum alloys, and methods for producing the same
US20120152415A1 (en) 2010-12-20 2012-06-21 Constellium France Aluminum copper lithium alloy with improved resistance under compression and fracture toughness
US20130092294A1 (en) 2011-10-14 2013-04-18 Constellium France Transformation process of Al-Cu-Li alloy sheets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE ALUMINUM ASSOCIATION: "International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys", THE ALUMINUM ASSOCIATION - TEAL SHEETS, January 2015 (2015-01-01), pages 1 - 84, XP055494916

Also Published As

Publication number Publication date
CN109844151A (en) 2019-06-04
FR3057476B1 (en) 2018-10-12
EP3526358A1 (en) 2019-08-21
WO2018073533A1 (en) 2018-04-26
CA3037115A1 (en) 2018-04-26
US20230151473A1 (en) 2023-05-18
CN109844151B (en) 2021-03-19
FR3057476A1 (en) 2018-04-20
US20190249285A1 (en) 2019-08-15
BR112019006323A2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP2766503B2 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP3011068B1 (en) Extrados structural element made from an aluminium copper lithium alloy
EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
FR2902442A1 (en) ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP3201371B1 (en) Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
EP1644546B1 (en) Use of pipes made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
EP3610048B1 (en) Low-density aluminium-copper-lithium alloy products
EP3362584B1 (en) Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications
EP3610047B1 (en) Aluminium-copper-lithium alloy products
FR3026411A1 (en) METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS
FR3026410A1 (en) CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017020311

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1293446

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017020311

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: ARCONIC CORPORATION

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201017

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 7

Ref country code: DE

Payment date: 20231027

Year of fee payment: 7