EP2984195B1 - Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance - Google Patents

Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance Download PDF

Info

Publication number
EP2984195B1
EP2984195B1 EP14721432.4A EP14721432A EP2984195B1 EP 2984195 B1 EP2984195 B1 EP 2984195B1 EP 14721432 A EP14721432 A EP 14721432A EP 2984195 B1 EP2984195 B1 EP 2984195B1
Authority
EP
European Patent Office
Prior art keywords
weight
sheet
mpa
heat treatment
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14721432.4A
Other languages
German (de)
French (fr)
Other versions
EP2984195A1 (en
Inventor
Christophe Sigli
Bernard Bes
Frank Eberl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP2984195A1 publication Critical patent/EP2984195A1/en
Application granted granted Critical
Publication of EP2984195B1 publication Critical patent/EP2984195B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to aluminum-copper-lithium alloy products, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
  • Aluminum alloy rolled products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.
  • Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • the patent US 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.
  • the patent US5,455,003 discloses a process for producing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, particularly through proper work-hardening and tempering.
  • the patent US 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.
  • the patent application US 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2 to 0.8% Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.
  • the patent EP 1,966,402 just like the demand WO2007080267 discloses a non-zirconium-containing alloy for fuselage sheets of substantially recrystallized structure comprising (in% by weight) (2.1-2.8) Cu, (1.1-1.7) Li, (0 , 2-0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn.
  • the products obtained in the T8 state are not suitable for substantial shaping, with in particular a ratio R m / / R p0.2 of less than 1.2 in the directions L and LT.
  • This document describes an income by heating at 140 to 170 ° C for 5 to 80 hours.
  • the patent EP 1,891,247 just like the demand WO2006131627 discloses an alloy for fuselage plates comprising (in% by weight) (3.0-3.4) Cu, (0.8-1.2) Li, (0.2-0.6) Mg, (0.2-0.5) Ag and at least one of Zr, Mn, Cr, Sc, Hf and Ti, wherein the Cu and Li contents are Cu + 5/3 Li ⁇ 5, 2.
  • the products obtained in the T8 state are not suitable for substantial shaping, in particular with a ratio R m / R p0.2 of less than 1.2 in the directions L and LT.
  • the patent EP 1045043 describes the process for manufacturing parts formed from AA2024 type alloy, and in particular of highly deformed parts, by the combination of an optimized chemical composition and particular manufacturing processes, making it possible to avoid as much as possible the dissolution in solution on formed sheet.
  • state "T3” or “T4" even in the annealed state (“O” state), subject them to a solution heat treatment followed by quenching, and then to form them on fresh quenching (state "W"), before finally subjecting them to natural or artificial aging, so as to obtain the required mechanical characteristics.
  • This variant is used in particular when the targeted shaping is too important to be carried out in a single operation from a state W, but can however be performed in two passes from a state O.
  • the plates in the state O being stable in time are easier to transform.
  • the manufacture of the sheet in the O state involves a final annealing of the raw rolling sheet, and therefore generally an additional manufacturing step, and also a dissolution and quenching of the product formed which is contrary the aim of simplification aimed at by the present invention.
  • the shaping of complex structural elements in the T8 state is limited to cases of small shaping because the elongation and the ratio R m / R p0,2 are too low in this state.
  • the properties that are optimal in terms of compromise of properties must be obtained once the part has been shaped, in particular as a fuselage element, since it is the shaped part which must in particular have good performances. in damage tolerance to avoid too frequent repair of fuselage elements. It is generally accepted that the large deformations after dissolution and quenching lead to an increase in the mechanical strength but a strong degradation of the tenacity.
  • the sheets that are delivered to the aircraft manufacturer can be stored for a sometimes significant period before being shaped and to incur an income. It is therefore necessary to prevent these sheets are sensitive to corrosion, in particular to simplify the storage conditions.
  • Another subject of the invention is a laminated product that can be obtained by the process according to the invention having a yield strength R p0.2 (L) and / or R p0.2 (LT) of between 75%. and 90%, preferably between 80 and 85% and preferably between 81% and 84% of the yield strength in the same direction of a sheet of the same composition in the T4 or T3 state having undergone the same controlled traction after quenching, at least one property selected from a ratio R m / R p0.2 (L) of at least 1.40 and preferably at least 1.45 and a ratio R m / R p0.2 (LT) at least 1.45 and preferably at least 1.50 and exhibits at least one corrosion resistance property chosen from a quotation according to ASTM G34 for sheets subjected to the conditions of the ASTM G85 A2 test of P and / or EA and a poorly developed intergranular corrosion for plates subject to the conditions of ASTM G110.
  • Yet another object of the invention is the use of a product obtained by a method according to the invention for the manufacture of a structural element for an airplane, in particular an aircraft fuselage skin.
  • Corrosion resistance tests are performed according to ASTM G34, ASTM G85 A2 and ASTM G110 standards.
  • solution, quenching and optionally leveling and / or pulling is carried out at least one short heat treatment with a duration and a temperature such that the sheet reaches a temperature between 145 ° C and 175 ° C and preferably between 150 ° C and 170 ° C for 0.1 to 45 minutes, preferably from 0.2 to 20 minutes, preferably for 0.5 to 5 minutes and preferably for 1 to 3 minutes, the heating rate being between 3 and 600 ° C / min.
  • the short heat treatment is advantageously carried out after natural aging for at least 24 hours after quenching and preferably at least 48 hours after quenching.
  • the elastic limit R p0,2 is significantly lower, that is to say at least 20 MPa or even at least 40 MPa in the directions L and LT, compared to that of the same sheet in a state T3 or T4.
  • the short heat treatment is not an income with which one would obtain a T8 state but a particular heat treatment which makes it possible to obtain a non-standardized state particularly suitable for shaping.
  • a sheet in the T8 state has a yield strength greater than that of the same sheet in a T3 or T4 state while after the short heat treatment according to the invention the elastic limit is instead more weak than that of a T3 or T4 state.
  • the present inventors have found that the mechanical properties obtained at the end of the short heat treatment are stable over time, which makes it possible to use the sheets in the state obtained at the end of the short heat treatment.
  • the sheet metal place in a state O or in a state W for the shaping.
  • the present inventors have found that, surprisingly, the high heating rate during treatment Short thermal and / or short duration of the short heat treatment make it possible to obtain an improved ability to shape while maintaining a corrosion resistance of the sheet resulting from the short heat treatment, in particular to the intergranular and exfoliating corrosion, equivalent to that of a sheet in the state T3 or T4.
  • the heating rate is between 10 and 400 ° C / min and preferably between 40 and 300 ° C / min.
  • the heating rate is typically the average slope of the sheet temperature as a function of time during heating between room temperature and 145 ° C.
  • the heating rate is preferably at least 80 ° C./min.
  • the cooling rate is between 1 and 1000 ° C./min, preferably between 10 and 800 ° C./min.
  • the cooling rate is typically the average slope of the sheet temperature as a function of time during cooling between 145 ° C and 70 ° C or even between 145 ° C and 30 ° C.
  • the cooling is carried out by spraying a liquid such as for example water or by immersion in such a liquid.
  • the cooling is carried out in air with optional forced convection, the cooling rate then preferably being between 1 and 400 ° C./min, preferably between 40 and 200 ° C. / min.
  • the short heat treatment is carried out in a continuous treatment furnace.
  • a continuous treatment furnace is an oven such that the sheet is supplied in the form of a coil which is continuously unwound for heat treatment in the furnace and then cooled and wound.
  • the present inventors have found that, surprisingly, not only the short heat treatment makes it possible to simplify the manufacturing process of the products by eliminating the shaping on state O or W, but moreover that the compromise between static mechanical resistance and tolerance to damage to the tempering state is at least the same or even improved by the method of the invention, compared to a method not comprising short heat treatment.
  • the compromise obtained between static mechanical strength and toughness is improved compared to the state of the art.
  • the advantage of the process according to the invention is obtained for products having a copper content of between 2.1 and 3.9% by weight.
  • the copper content is at least 2.8% or 3% by weight.
  • a maximum copper content of 3.7 or 3.4% by weight is preferred.
  • the lithium content is between 0.6% or 0.7% and 2.0% by weight.
  • the lithium content is at least 0.70% by weight.
  • a maximum lithium content of 1.4 or even 1.1% by weight is preferred.
  • the magnesium content is between 0.1% and 1.0% by weight.
  • the magnesium content is at least 0.2% or even 0.25% by weight.
  • the maximum magnesium content is 0.6% by weight.
  • the silver content is between 0% and 0.6% by weight.
  • the silver content is between 0.1 and 0.5% by weight and preferably between 0.15 and 0.4% by weight.
  • the addition of silver contributes to improving the compromise of mechanical properties of the products obtained by the process according to the invention.
  • the zinc content is between 0% and 1% by weight.
  • the zinc content is less than 0.6% by weight, preferably less than 0.40% by weight.
  • Zinc is generally an undesirable impurity, especially because of its contribution to the density of the alloy, in one embodiment of the invention the zinc content is less than 0.2% by weight and preferably less than 0. , 04% by weight.
  • zinc may be used alone or in combination with silver, a minimum zinc content of 0.2% by weight is then advantageous.
  • the alloy also contains at least one element that can contribute to controlling the grain size selected from Zr, Mn, Cr, Sc, Hf and Ti, the amount of the element, if selected, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Sc, O 0.5 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti.
  • zirconium is at least 0.11% by weight.
  • the manganese content is between 0.2 and 0.4% by weight and the zirconium content is less than 0.04% by weight.
  • the sum of the iron content and the silicon content is at most 0.20% by weight.
  • the iron and silicon contents are each at most 0.08% by weight.
  • the iron and silicon contents are at most 0.06% and 0.04% by weight, respectively.
  • a controlled and limited iron and silicon content contributes to the improvement of the compromise between mechanical resistance and damage tolerance.
  • the other elements have a content of at most 0.05% by weight each and 0.15% by weight in total, it is inevitable impurities, the rest is aluminum.
  • the manufacturing method according to the invention comprises the steps of production, casting, rolling, dissolution, quenching, optionally planing and / or pulling and short heat treatment.
  • a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then cast as a rolling plate.
  • the rolling plate can then optionally be homogenized so as to reach a temperature between 450 ° C and 550 ° and preferably between 480 ° C and 530 ° C for a period of between 5 and 60 hours.
  • the homogenization treatment can be carried out in one or more stages.
  • the rolling plate is then hot-rolled and optionally cold-rolled into a sheet.
  • the thickness of said sheet is between 0.5 and 10 mm, advantageously between 0.8 and 8 mm and preferably between 1 and 6 mm.
  • the product thus obtained is then put in solution typically by a heat treatment making it possible to reach a temperature of between 490 and 530 ° C. for 5 min to 8 h, and then typically quenched with water at ambient temperature or, preferably, with water. Cold water. It is optionally possible to carry out a planing and / or controlled traction of the sheet thus dissolved and quenched, with a cumulative deformation of at least 0.5% and less than 3%.
  • planing the deformation performed during planing is not always known precisely but it is estimated at about 0.5%.
  • the controlled traction is implemented with a permanent deformation of between 0.5 to 2.5% and preferably between 0.5 to 1.5%.
  • the short heat treatment is carried out directly after quenching without intermediate work-hardening, but advantageously after a natural aging of at least 24 hours.
  • This embodiment without intermediate work-hardening is advantageous in particular when the steps of dissolution, quenching and short heat treatment are carried out continuously in a continuous treatment furnace.
  • the present inventors have found that in the absence of intermediate hardening between quenching and short heat treatment defects such as lines Lüders appearing after shaping could be removed in some cases.
  • the sheet obtained by the process according to the invention advantageously has, typically for at least 50 days and even for at least 200 days, after a short heat treatment, a yield strength R p 0.2 (L) and / or R p0,2 (LT) of between 75% and 90%, preferably between 80 and 85% and preferably between 81% and 84% of the yield strength in the same direction of a sheet metal of the same composition in the T4 or T3 state having undergone the same controlled pull after quenching, at least one property chosen from a ratio R m / R p0.2 (L) of at least 1.40 and preferably at least 1 , 45 and a ratio R m / R p0.2 (LT) of at least 1.45 and preferably at least 1.50 and has at least one corrosion resistance property selected from a rating according to ASTM G34 for plates subject to the conditions of the P ASTM G85 A2 test and / or EA and poorly developed intergranular corrosion for
  • the sheet obtained by the process according to the invention typically exhibits for at least 50 days and even for at least 200 days after a short heat treatment, a combination of at least one property selected from R p0.2 (L) of at least 220 MPa and preferably at least 250 MPa, R p0.2 (LT) of at least 200 MPa and preferably at least 230 MPa , R m (L) of at least 340 MPa and preferably at least 380 MPa, R m (LT) of at least 320 MPa and preferably at least 360 MPa with a property selected from A% ( L) at least 14% and preferably at least 15%, A% (LT) at least 24% and preferably at least 26%, R m / R p0.2 (L) at least 1.40 and preferably at least at least 1.45, R m / R p0.2 (LT) at least 1.45 and preferably at least 1.50 and has at least one corrosion resistance property selected from a rating according to ASTM G34 for
  • the sheet obtained by the process according to the invention has a ratio R m / R p0,2 in the direction LT of at least 1.52. or 1.53.
  • the sheet obtained by the process according to the invention has a yield strength R p0.2 (L) of less than 290 MPa and of preferably less than 280 MPa and R p0.2 (LT) less than 270 MPa and / or a rupture strength R m (L) less than 410 MPa and preferably less than 400 MPa and R p0.2 (LT) less than 390 MPa.
  • the rating according to ASTM G34 for sheets subject to the conditions of the ASTM G85 A2 test is P or P-EA.
  • the intergranular corrosion for sheets subjected to the conditions of the ASTM G110 standard is not very developed if it corresponds to the images of the Figures 1 or 2 .
  • the sheet obtained by the process according to the invention has an intercrystalline corrosion resistance at least equal to that of a sheet of the same composition in the T3 or T4 state.
  • the sheet can be stored without particular difficulties thanks to its resistance to intercrystalline corrosion.
  • the sheet resulting from the short heat treatment is ready for additional cold deformation, in particular a 3-dimensional forming operation.
  • An advantage of the invention is that this additional deformation can locally or generally reach values of 6 to 8% or even up to 10%.
  • a minimum cumulative deformation of 2% between said additional deformation and the cumulative deformation by planing and / or controlled tension optionally performed before the short heat treatment is advantageous.
  • the additional cold deformation is locally or generally at least 1%, preferably at least 4% and preferably at least 6%.
  • an income is produced in which said sheet thus shaped reaches a temperature of between 130 and 170 ° C., advantageously between 145 and 165 ° C. and preferably between 150 and 160 ° C. for 5 to 100 hours, and preferably at 70h.
  • the income can be achieved in one or more levels.
  • the cold deformation is performed by one or more forming processes such as stretching, stretch-forming, stamping, spinning or folding. In an advantageous embodiment, it is a shaping in the three dimensions of the space to obtain a piece of complex shape, preferably by stretch-forming.
  • the product obtained after the short heat treatment can be shaped as a product in a state O or a product in a state W.
  • the compromise between the static mechanical properties and the damage-tolerance properties obtained at the end of the income is advantageous compared to that obtained for a similar treatment that does not include short heat treatment.
  • the sheets were then trimmed in a controlled manner. Controlled traction was achieved with a permanent elongation of 2%. Natural aging was at least 24 hours after quenching.
  • the sheets were then subjected to a short heat treatment, the conditions of which are given in Table 2.
  • the highest heating rates, representative of the heating rates obtained in a continuous treatment furnace, were obtained by immersion in an immersion bath. oil while the lowest heating rates were obtained by controlled air treatment, representative of industrial conditions in a static furnace.
  • the cooling rate was of the order of 60 ° C./min for all the tests.
  • the corrosion resistance properties of the sheets were evaluated under the conditions of standardized intergranular corrosion tests (ASTM G110) and exfoliation corrosion tests (MASTMAASIS dry bottom ASTM G85-A2).
  • ASTM G110 test immersion time is 6 hours and the test duration of the MASTMAASIS test is 750 hours.
  • the characterizations were performed on the surface ("skin") and after machining one-tenth of the thickness ("T / 10").
  • the results of intergranular corrosion tests according to ASTM G110 are shown in Table 4. Micrographic sections representative of poorly developed intergranular corrosion and pitting are given on the Figures 1 (sample S) and 2 (sample H2). The observations were made under an optical microscope at magnifications of X200.
  • a micrographic section representative of a developed intergranular corrosion and pitting is given on the Figure 3 (sample A30).
  • a micrographic section representative of a developed intergranular corrosion is given on the Figure 4 (sample A120).
  • Table 4 Results of intergranular corrosion tests according to ASTM G110 Sample Surface tested Skin T / 10 S Less developed CI + sting Less developed CI + sting H1 Less developed CI + sting Less developed CI + sting H2 Less developed CI + sting Less developed CI + sting H4 Less developed CI + sting Less developed CI + sting H8 Less developed CI + sting Less developed CI + sting H16 Less developed CI + sting Less developed CI + sting H30 Less developed CI + sting Less developed CI + sting A30 CI developed + sting CI developed + sting A60 CI developed CI developed A120 CI developed CI developed A240 CI developed CI developed CI: intergranular corrosion
  • Sample S is a sample in the T3 state. It does not have mechanical properties to consider its shaping for the highest deformations.
  • Samples A30, A60, A120, A240 have mechanical properties which make it possible to envisage shaping for the highest deformations but exhibit a resistance to corrosion requiring particular precautions during storage.
  • Samples H1, H2, H4, H8, H16 and H30 simultaneously have mechanical properties to consider its shaping for the highest deformations and corrosion resistance to consider storage without special precautions.
  • Sample H1 however, has slightly less mechanical properties favorable, especially in terms of lengthening in the LT direction.
  • Sample H30 has slightly less favorable properties, particularly in terms of corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne les produits en alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés en particulier à la construction aéronautique et aérospatiale.The invention relates to aluminum-copper-lithium alloy products, more particularly, such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.

Etat de la techniqueState of the art

Des produits laminés en alliage d'aluminium sont développés pour produire des pièces de haute résistance destinées notamment à l'industrie aéronautique et à l'industrie aérospatiale.Aluminum alloy rolled products are developed to produce high strength parts for the aerospace industry and the aerospace industry in particular.

Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté.Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.

Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pourcent en poids, permet d'augmenter la résistance mécanique.The patent US 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength.

Le brevet US 5,455,003 décrit un procédé de fabrication d'alliages Al-Cu-Li qui présentent une résistance mécanique et une ténacité améliorés à température cryogénique, en particulier grâce à un écrouissage et un revenu appropriés. Ce brevet recommande en particulier la composition, en pourcentage en poids, Cu = 3,0 - 4,5, Li = 0,7 - 1,1, Ag = 0 - 0,6, Mg = 0,3-0,6 et Zn = 0 - 0,75.The patent US5,455,003 discloses a process for producing Al-Cu-Li alloys which have improved mechanical strength and toughness at cryogenic temperature, particularly through proper work-hardening and tempering. This patent recommends in particular the composition, in percentage by weight, Cu = 3.0-4.5, Li = 0.7-1.1, Ag = 0-0.6, Mg = 0.3-0.6. and Zn = 0 - 0.75.

Le brevet US 7,438,772 décrit des alliages comprenant, en pourcentage en poids, Cu : 3-5, Mg : 0,5-2, Li : 0,01-0,9.The patent US7,438,772 discloses alloys comprising, in weight percent, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9.

Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5) Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Sc, V.The patent US 7,229,509 discloses an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.

La demande de brevet US 2009/142222 A1 décrit des alliages comprenant (en % en poids), 3,4 à 4,2% de Cu, 0,9 à 1,4 % de Li, 0,3 à 0,7 % de Ag, 0,1 à 0,6% de Mg, 0,2 à 0,8 % de Zn, 0,1 à 0,6 % de Mn et 0,01 à 0,6 % d'au moins un élément pour le contrôle de la structure granulaire. Cette demande décrit également un procédé de fabrication de produits filés.The patent application US 2009/142222 A1 discloses alloys comprising (in% by weight), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2 to 0.8% Zn, 0.1 to 0.6% Mn and 0.01 to 0.6% of at least one element for controlling the granular structure. This application also describes a process for manufacturing spun products.

Le brevet EP 1,966,402 , tout comme la demande WO2007080267 , décrit un alliage ne contenant pas de zirconium destiné à des tôles de fuselage de structure essentiellement recristallisée comprenant (en % en poids) (2,1-2,8)Cu, (1,1-1,7) Li, (0,2-0,6) Mg, (0,1-0,8) Ag, (0,2-0,6) Mn. Les produits obtenus à l'état T8 ne sont pas aptes à une mise en forme importante, avec notamment un rapport Rm// Rp0.2 inférieur à 1,2 dans les directions L et LT. Ce document décrit un revenu par chauffage à 140 à 170°C pendant 5 à 80 heures.The patent EP 1,966,402 just like the demand WO2007080267 discloses a non-zirconium-containing alloy for fuselage sheets of substantially recrystallized structure comprising (in% by weight) (2.1-2.8) Cu, (1.1-1.7) Li, (0 , 2-0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn. The products obtained in the T8 state are not suitable for substantial shaping, with in particular a ratio R m / / R p0.2 of less than 1.2 in the directions L and LT. This document describes an income by heating at 140 to 170 ° C for 5 to 80 hours.

Le brevet EP 1,891,247 , tout comme la demande WO2006131627 , décrit un alliage destiné à des tôles de fuselage comprenant (en % en poids) (3,0-3,4)Cu, (0,8-1,2) Li, (0,2-0,6) Mg, (0,2-0,5) Ag et au moins un élément parmi Zr, Mn, Cr, Sc, Hf et Ti, dans lequel les teneurs en Cu et en Li répondent à la condition Cu + 5/3 Li < 5,2. Les produits obtenus à l'état T8 ne sont pas apte à une mise en forme importante, avec notamment un rapport Rm/ Rp0.2 inférieur à 1,2 dans les directions L et LT. Il a de plus été constaté que l'énergie globale à rupture mesurée par test Kahn qui est reliée à la ténacité diminue avec la déformation et de façon plus brutale pour une déformation de 6%, ce qui pose le problème de l'obtention d'une ténacité élevée quelque soit le taux de déformation local lors de la mise en forme. Ce document décrit un revenu par chauffage à 140 à 170 °C pendant 5 à 30 heures.The patent EP 1,891,247 just like the demand WO2006131627 discloses an alloy for fuselage plates comprising (in% by weight) (3.0-3.4) Cu, (0.8-1.2) Li, (0.2-0.6) Mg, (0.2-0.5) Ag and at least one of Zr, Mn, Cr, Sc, Hf and Ti, wherein the Cu and Li contents are Cu + 5/3 Li <5, 2. The products obtained in the T8 state are not suitable for substantial shaping, in particular with a ratio R m / R p0.2 of less than 1.2 in the directions L and LT. It has also been found that the overall fracture energy measured by Kahn test which is related to the toughness decreases with the deformation and more brutally for a deformation of 6%, which poses the problem of obtaining a high tenacity whatever the rate of local deformation during the shaping. This document describes an income by heating at 140 to 170 ° C for 5 to 30 hours.

Le brevet EP 1045043 décrit le procédé de fabrication de pièces formées en alliage de type AA2024, et notamment de pièces fortement déformées, par l'association d'une composition chimique optimisée et de procédés de fabrication particuliers, permettant d'éviter autant que possible la mise en solution sur tôle formée.The patent EP 1045043 describes the process for manufacturing parts formed from AA2024 type alloy, and in particular of highly deformed parts, by the combination of an optimized chemical composition and particular manufacturing processes, making it possible to avoid as much as possible the dissolution in solution on formed sheet.

Dans l'article « Al--(4.5-6.3)Cu--1.3Li--0.4Ag--0.4Mg--0.14Zr Alloy Weldalite 049 » from Pickens, J R ; Heubaum, F H; Langan, T J ; Kramer, L S publié dans Aluminum--Lithium Alloys. Vol. III; Williamsburg, Virginia; USA; 27-31 Mar. 1989. (March 27, 1989 ), différents traitements thermique sont décrits pour ces alliages à forte teneur en cuivre.In the article "Al - (4.5-6.3) Cu - 1.3Li - 0.4Ag - 0.4Mg - 0.14Zr Alloy Weldalite 049" from Pickens, JR; Heubaum, FH; Langan, TJ; Kramer, LS published in Aluminum - Lithium Alloys. Flight. III; Williamsburg, Virginia; USA; 27-31 Mar. 1989. (March 27, 1989) ), different heat treatments are described for these alloys with high copper content.

Pour que ces alliages soient sélectionnés dans les avions, leur performance par rapport aux autres propriétés d'usage doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite d'élasticité, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. L'amélioration du compromis entre la résistance mécanique la tolérance aux dommages est constamment recherchée. Par ailleurs leur résistance à la corrosion doit être suffisante que ce soit dans l'état final utilisé ou dans les états intermédiaires au cours de la gamme de fabrication.
Une autre propriété importante des tôles minces en alliage Al-Cu-Li, notamment celles dont l'épaisseur est comprise entre 0,5 et 10 mm, est l'aptitude à la mise en forme. Ces tôles sont notamment utilisées pour fabriquer des éléments de fuselage d'avion ou des éléments de fusée qui ont une forme générale complexe en 3 dimensions. Pour diminuer le coût de fabrication, les constructeurs aéronautiques cherchent à minimiser le nombre des étapes de formage des tôles, et à utiliser des tôles pouvant être fabriquées de manière peu onéreuse à l'aide de gammes de transformation courtes, c'est-à-dire comprenant aussi peu d'étapes individuelles que possible.
Pour la fabrication des panneaux de fuselage, plusieurs procédés sont connus. Pour des faibles déformations lors de la mise en forme, typiquement inférieures à 4 %, il est possible d'approvisionner des tôles dans un état trempé mûri (état " T3 " peu écroui ou " T4 "), et de mettre en forme les tôles dans cet état.
Cependant, dans la plupart des cas, la déformation recherchée est importante, localement d'au moins 5% ou 6%. Une pratique actuelle des constructeurs aéronautiques consiste en général alors à approvisionner des tôles laminées à chaud ou à froid selon l'épaisseur requise, à l'état brut de fabrication (état " F " selon la norme EN 515) à l'état trempé mûri (état " T3 " ou " T4 "), voire à l'état recuit (état « O »), à les soumettre à un traitement thermique de mise en solution suivi d'une trempe, puis à les mettre en forme sur trempe fraîche (état « W »), avant enfin de les soumettre à un vieillissement naturel ou artificiel, de manière à obtenir les caractéristiques mécaniques requises.
Dans une autre pratique, on part d'une tôle dans un état O, voire un état T3, T4 ou à l'état F, on effectue une première opération de mise en forme à partir de cet état, et une deuxième mise en forme après mise en solution et trempe. Cette variante est notamment utilisée lorsque la mise en forme visée est trop importante pour pouvoir être effectuée en une seule opération à partir d'un état W, mais peut cependant être effectuée en deux passes à partir d'un état O. De plus les tôles à l'état O étant stables dans le temps sont plus aisées à transformer. Toutefois, la fabrication de la tôle à l'état O fait intervenir un recuit final de la tôle brute de laminage, et donc généralement une étape de fabrication supplémentaire, et également une mise en solution et une trempe sur le produit formé ce qui est contraire au but de simplification visé par la présente invention.
La mise en forme d'éléments de structure complexes à l'état T8 se limite à des cas de mise en forme peu importante car l'allongement et le rapport Rm/Rp0,2 sont trop faibles dans cet état.
On notera que les propriétés optimales en termes de compromis de propriétés doivent être obtenues une fois la pièce mise en forme, notamment en tant qu'élément de fuselage, puisque que c'est la pièce mise en forme qui doit en particulier avoir de bonnes performances en tolérance aux dommages pour éviter une réparation trop fréquente d'éléments de fuselage. Il est généralement admis que les fortes déformations après mise en solution et trempe conduisent à une augmentation de la résistance mécanique mais à une forte dégradation de la ténacité.
For these alloys to be selected in the aircraft, their performance compared to other properties of use must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (yield strength, resistance to rupture) and the properties of damage tolerance (toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic. The improvement of the compromise between mechanical resistance and damage tolerance is constantly sought. Furthermore their corrosion resistance must be sufficient whether in the final state used or in the intermediate states during the manufacturing range.
Another important property of thin sheets of Al-Cu-Li alloy, particularly those whose thickness is between 0.5 and 10 mm, is the fitness to form. These sheets are used in particular to manufacture aircraft fuselage elements or rocket elements that have a complex overall shape in 3 dimensions. To reduce the cost of manufacture, aircraft manufacturers seek to minimize the number of sheet forming steps, and to use sheets that can be manufactured inexpensively using short transformation ranges, that is to say, say including as few individual steps as possible.
For the manufacture of the fuselage panels, several methods are known. For small deformations during shaping, typically less than 4%, it is possible to supply the sheets in a hardened state matured (state "T3" little hardened or "T4"), and to shape the sheets in this state.
However, in most cases, the deformation sought is important, locally at least 5% or 6%. A current practice of aeronautical manufacturers is generally to supply hot-rolled or cold-rolled sheets according to the required thickness, in the raw state of manufacture (state "F" according to EN 515) in the matured tempered state. (state "T3" or "T4"), even in the annealed state ("O" state), subject them to a solution heat treatment followed by quenching, and then to form them on fresh quenching (state "W"), before finally subjecting them to natural or artificial aging, so as to obtain the required mechanical characteristics.
In another practice, one starts from a sheet in a state O, even a state T3, T4 or in the state F, one carries out a first operation of formatting starting from this state, and a second formatting after dissolution and quenching. This variant is used in particular when the targeted shaping is too important to be carried out in a single operation from a state W, but can however be performed in two passes from a state O. In addition, the plates in the state O being stable in time are easier to transform. However, the manufacture of the sheet in the O state involves a final annealing of the raw rolling sheet, and therefore generally an additional manufacturing step, and also a dissolution and quenching of the product formed which is contrary the aim of simplification aimed at by the present invention.
The shaping of complex structural elements in the T8 state is limited to cases of small shaping because the elongation and the ratio R m / R p0,2 are too low in this state.
It should be noted that the properties that are optimal in terms of compromise of properties must be obtained once the part has been shaped, in particular as a fuselage element, since it is the shaped part which must in particular have good performances. in damage tolerance to avoid too frequent repair of fuselage elements. It is generally accepted that the large deformations after dissolution and quenching lead to an increase in the mechanical strength but a strong degradation of the tenacity.

Par ailleurs, les tôles qui sont délivrées au fabricant d'avion peuvent être stockées pendant une durée parfois significative avant d'être mises en forme et de subir un revenu. Il convient donc d'éviter que ces tôles soient sensibles à la corrosion de façon notamment à simplifier les conditions de stockage.In addition, the sheets that are delivered to the aircraft manufacturer can be stored for a sometimes significant period before being shaped and to incur an income. It is therefore necessary to prevent these sheets are sensitive to corrosion, in particular to simplify the storage conditions.

Il existe un besoin pour un procédé de fabrication simplifié permettant la mise en forme des produits laminés en alliage aluminium-cuivre-lithium pour obtenir notamment des éléments de fuselage de façon économique, tout en obtenant des caractéristiques mécaniques satisfaisantes, les produits présentant avant la mise en forme une résistance à la corrosion élevée.There is a need for a simplified manufacturing process allowing the shaping of aluminum-copper-lithium alloy rolled products to obtain in particular fuselage elements economically, while obtaining satisfactory mechanical characteristics, the products having before the implementation in form a high corrosion resistance.

Objet de l'inventionObject of the invention

Un premier objet de l'invention est un procédé de fabrication d'un produit laminé à base d'alliage d'aluminium notamment pour l'industrie aéronautique dans lequel, successivement

  1. a) on élabore un bain de métal liquide à base d'aluminium comprenant 2,1 à 3,9 % en poids de Cu, 0,6 à 2.0 % en poids de Li, 0,1 à 1,0 % en poids de Mg, 0 à 0,6 % en poids d'Ag, 0 à 1% % en poids de Zn, au plus 0,20 % en poids de la somme de Fe et de Si, au moins un élément choisi parmi Zr, Mn, Cr, Sc, Hf et Ti, la quantité dudit élément, s'il est choisi, étant 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti, les autres éléments au plus 0,05% en poids chacun et 0,15% en poids au total, le reste aluminium ;
  2. b) on coule une plaque de laminage à partir dudit bain de métal liquide ;
  3. c) optionnellement, on homogénéise ladite plaque de laminage ;
  4. d) on lamine à chaud et optionnellement à froid ladite plaque de laminage en une tôle d'épaisseur comprise entre 0,5 et 10 mm,
  5. e) on met en solution ladite tôle et on la trempe;
  6. f) optionnellement on réalise un planage et/ou on tractionne de façon contrôlée ladite tôle avec une déformation cumulée d'au moins 0,5% et inférieure à 3%,
  7. g) on réalise un traitement thermique court dans lequel ladite tôle atteint une température comprise entre 145°C et 175°C et de préférence entre 150°C et 170°C pendant 0,1 à 45 minutes et de préférence pendant 0,5 à 5 minutes, la vitesse de chauffage étant comprise entre 3 et 600 °C/min, dans lequel le dit traitement thermique court est réalisé de façon à obtenir un temps équivalent à 150 °C de 0,5 à 35 minutes et de préférence de 1 à 20 minutes, le temps équivalent t i à 150 °C est défini par la formule : t i = exp 16400 / T dt exp 16400 / T ref
    Figure imgb0001
    où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en minutes), et Tref est une température de référence fixée à 423 K, ti est exprimé en minutes, la constante Q/R = 16400 K est dérivée de l'énergie d'activation pour la diffusion du Cu, pour laquelle la valeur Q = 136100 J/mol a été utilisée et dans lequel, la vitesse de refroidissement est comprise entre 1 et 1000 °C/min.
A first object of the invention is a process for manufacturing a laminated product based on aluminum alloy, in particular for the aeronautical industry in which, successively
  1. a) an aluminum-based liquid metal bath comprising 2.1 to 3.9% by weight of Cu, 0.6 to 2.0% by weight of Li, 0.1 to 1.0% by weight of Mg, 0 to 0.6% by weight of Ag, 0 to 1% by weight of Zn, at most 0.20% by weight of the sum of Fe and Si, at least one element selected from Zr, Mn , Cr, Sc, Hf and Ti, the amount of said element, if selected, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 0.3% by weight for Cr, 0.02 to 0.2% by weight for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the other elements not more than 0.05% by weight each and 0.15% by weight in total, the balance aluminum;
  2. b) casting a rolling plate from said bath of liquid metal;
  3. c) optionally, homogenizing said rolling plate;
  4. d) said laminating plate is hot-rolled and optionally cold-rolled to a sheet thickness of between 0.5 and 10 mm,
  5. e) said sheet is dissolved and quenched;
  6. f) optionally planing is carried out and / or controlled traction said sheet with a cumulative deformation of at least 0.5% and less than 3%,
  7. g) a short heat treatment is carried out in which said sheet reaches a temperature of between 145 ° C. and 175 ° C. and preferably between 150 ° C. and 170 ° C. for 0.1 to 45 minutes and preferably for 0.5 to 5 minutes, the heating rate being between 3 and 600 ° C / min, wherein said short heat treatment is carried out so as to obtain a time equivalent to 150 ° C of 0.5 to 35 minutes and preferably 1 at 20 minutes, the equivalent time t i at 150 ° C. is defined by the formula: t i = exp - 16400 / T dt exp - 16400 / T ref
    Figure imgb0001
    where T (in Kelvin) is the instantaneous metal processing temperature, which changes with time t (in minutes), and T ref is a reference temperature set at 423 K, t i is expressed in minutes, the constant Q / R = 16400 K is derived from the activation energy for the diffusion of Cu, for which the value Q = 136100 J / mol was used and in which, the cooling rate is between 1 and 1000 ° C / min .

Un autre objet de l'invention est un produit laminé susceptible d'être obtenu par le procédé selon l'invention présentant une limite d'élasticité Rp0,2(L) et/ou Rp0,2(LT) comprise entre 75% et 90 %, préférentiellement entre 80 et 85% et de préférence entre 81% et 84% de la limite d'élasticité dans la même direction d'une tôle de même composition à l'état T4 ou T3 ayant subi la même traction contrôlée après trempe, au moins une propriété choisie parmi un rapport Rm /Rp0,2 (L) d'au moins 1,40 et de préférence au moins 1,45 et un rapport Rm /Rp0,2 (LT) au moins 1,45 et de préférence au moins 1,50 et présente au moins une propriété de résistance à la corrosion choisie parmi une cotation selon la norme ASTM G34 pour des tôles soumises aux conditions du test ASTM G85 A2 de P et/ou EA et une corrosion intergranulaire peu développée pour des tôles soumises aux conditions de la norme ASTM G110.Another subject of the invention is a laminated product that can be obtained by the process according to the invention having a yield strength R p0.2 (L) and / or R p0.2 (LT) of between 75%. and 90%, preferably between 80 and 85% and preferably between 81% and 84% of the yield strength in the same direction of a sheet of the same composition in the T4 or T3 state having undergone the same controlled traction after quenching, at least one property selected from a ratio R m / R p0.2 (L) of at least 1.40 and preferably at least 1.45 and a ratio R m / R p0.2 (LT) at least 1.45 and preferably at least 1.50 and exhibits at least one corrosion resistance property chosen from a quotation according to ASTM G34 for sheets subjected to the conditions of the ASTM G85 A2 test of P and / or EA and a poorly developed intergranular corrosion for plates subject to the conditions of ASTM G110.

Encore un autre objet de l'invention est l'utilisation d'un produit obtenu par un procédé selon l'invention pour la fabrication d'un élément de structure pour avion, notamment d'une peau de fuselage d'avion.Yet another object of the invention is the use of a product obtained by a method according to the invention for the manufacture of a structural element for an airplane, in particular an aircraft fuselage skin.

Description des figuresDescription of figures

  • Figure 1 : Coupe micrographique de l'échantillon S après exposition dans les conditions ASTM G110. Figure 1 : Micrograph section of sample S after exposure under ASTM G110 conditions.
  • Figure 2 : Coupe micrographique de l'échantillon H2 après exposition dans les conditions ASTM G110. Figure 2 : Micrograph section of H2 sample after exposure under ASTM G110 conditions.
  • Figure 3 : Coupe micrographique de l'échantillon A30 après exposition dans les conditions ASTM G110. Figure 3 : Micrograph section of the A30 sample after exposure under ASTM G110 conditions.
  • Figure 4 : Coupe micrographique de l'échantillon A120 après exposition dans les conditions ASTM G110. Figure 4 Microscopic section of sample A120 after exposure under ASTM G110 conditions.
Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.
Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Les tests de résistance à la corrosion sont effectués selon les normes ASTM G34, ASTM G85 A2 et ASTM G110.
Selon l'invention, on réalise après laminage sous forme de tôle, mise en solution, trempe et optionnellement planage et/ou traction au moins un traitement thermique court avec une durée et une température telles que la tôle atteint une température comprise entre 145°C et 175°C et de préférence entre 150°C et 170°C pendant 0,1 à 45 minutes, avantageusement de 0,2 à 20 minutes, de préférence pendant 0,5 à 5 minutes et de manière préférée pendant 1 à 3 minutes, la vitesse de chauffage étant comprise entre 3 et 600 °C/min. Le traitement thermique court est avantageusement réalisé après un vieillissement naturel d'au moins 24 heures après la trempe et de préférence au moins 48 heures après la trempe. En effet, il est avantageux qu'un vieillissement ait lieu avec apparition de précipités durcissants pour que le traitement thermique court ait l'effet désiré. Typiquement, suite au traitement thermique court, la limite d'élasticité Rp0,2 est significativement plus faible, c'est-à-dire d'au moins 20 MPa ou même d'au moins 40 MPa dans les directions L et LT, par rapport à celle de la même tôle dans un état T3 ou T4. Le traitement thermique court n'est pas un revenu avec lequel on obtiendrait un état T8 mais un traitement thermique particulier qui permet d'obtenir un état non standardisé particulièrement apte à la mise en forme. En effet, une tôle à l'état T8 présente une limite d'élasticité supérieure à celle de la même tôle dans un état T3 ou T4 alors qu'après le traitement thermique court selon l'invention la limite d'élasticité est au contraire plus faible que celle d'un état T3 ou T4. Le traitement thermique court est réalisé de façon à obtenir un temps équivalent à 150 °C de 0,5 à 35 minutes, de préférence de 1 à 20 minutes et de manière préférée de 2 à 10 minutes, le temps équivalent t i à 150 °C est défini par la formule : t i = exp 16400 / T dt exp 16400 / T ref

Figure imgb0002
où T (en Kelvin) est la température instantanée de traitement du métal, qui évolue avec le temps t (en minutes), et Tref est une température de référence fixée à 423 K, ti est exprimé en minutes, la constante Q/R = 16400 K est dérivée de l'énergie d'activation pour la diffusion du Cu, pour laquelle la valeur Q = 136100 J/mol a été utilisée.
De manière surprenante, les présents inventeurs ont constaté que les propriétés mécaniques obtenues à l'issue du traitement thermique court sont stables dans le temps, ce qui permet d'utiliser les tôles dans l'état obtenu à l'issue du traitement thermique court à la place de tôle dans un état O ou dans un état W pour la mise en forme. De plus les présents inventeurs ont constaté que de manière surprenante, la vitesse de chauffage élevée lors du traitement thermique court et/ou une faible durée du traitement thermique court permettent d'obtenir une aptitude améliorée à la mise en forme tout en maintenant une résistance à la corrosion de la tôle issue du traitement thermique court, notamment à la corrosion intergranulaire et exfoliante, équivalente à celle d'une tôle à l'état T3 ou T4.
De manière préférée, pour le traitement thermique court, la vitesse de chauffage est comprise entre 10 et 400 °C/min et préférentiellement entre 40 et 300 °C/min. La vitesse de chauffage est typiquement la pente moyenne de la température de la tôle en fonction du temps pendant le chauffage entre la température ambiante et 145°C.
Pour des tôles d'épaisseur inférieure à 6 mm la vitesse de chauffage est préférentiellement au moins 80 °C/min.
De façon à limiter le temps équivalent à 150 °C, il est préférable également de refroidir suffisamment vite les tôles après le traitement court. Lors du traitement thermique court la vitesse de refroidissement est comprise entre 1 et 1000 °C/min, préférentiellement entre 10 et 800 °C/min. La vitesse de refroidissement est typiquement la pente moyenne de la température de la tôle en fonction du temps pendant le refroidissement entre 145°C et 70 °C ou même entre 145°C et 30 °C. Dans un mode de réalisation de l'invention le refroidissement est réalisé par aspersion d'un liquide tel que par exemple de l'eau ou par immersion dans un tel liquide. Dans un autre mode de réalisation de l'invention, le refroidissement est réalisé à l'air avec optionnellement une convection forcée, la vitesse de refroidissement étant alors de préférence comprise entre 1 et 400 °C/min, préférentiellement entre 40 et 200 °C/min. Avantageusement le traitement thermique court est réalisé dans un four de traitement en continu. Typiquement, un four de traitement en continu est un four tel que la tôle est approvisionnée sous la forme d'une bobine qui est déroulée de façon continue pour être traitée thermiquement dans le four puis refroidie et bobinée.Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The definitions of the metallurgical states are given in the European standard EN 515.
The static mechanical characteristics in tension, in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 , and the elongation at break A% are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard. Corrosion resistance tests are performed according to ASTM G34, ASTM G85 A2 and ASTM G110 standards.
According to the invention, after rolling in the form of sheet metal, solution, quenching and optionally leveling and / or pulling is carried out at least one short heat treatment with a duration and a temperature such that the sheet reaches a temperature between 145 ° C and 175 ° C and preferably between 150 ° C and 170 ° C for 0.1 to 45 minutes, preferably from 0.2 to 20 minutes, preferably for 0.5 to 5 minutes and preferably for 1 to 3 minutes, the heating rate being between 3 and 600 ° C / min. The short heat treatment is advantageously carried out after natural aging for at least 24 hours after quenching and preferably at least 48 hours after quenching. Indeed, it is advantageous that aging occurs with the appearance of hardening precipitates for the short heat treatment to have the desired effect. Typically, following the short heat treatment, the elastic limit R p0,2 is significantly lower, that is to say at least 20 MPa or even at least 40 MPa in the directions L and LT, compared to that of the same sheet in a state T3 or T4. The short heat treatment is not an income with which one would obtain a T8 state but a particular heat treatment which makes it possible to obtain a non-standardized state particularly suitable for shaping. Indeed, a sheet in the T8 state has a yield strength greater than that of the same sheet in a T3 or T4 state while after the short heat treatment according to the invention the elastic limit is instead more weak than that of a T3 or T4 state. The short heat treatment is performed so as to obtain a time equivalent to 150 ° C for 0.5 to 35 minutes, preferably 1 to 20 minutes and preferably from 2 to 10 minutes, the equivalent time t i to 150 ° C is defined by the formula: t i = exp - 16400 / T dt exp - 16400 / T ref
Figure imgb0002
where T (in Kelvin) is the instantaneous metal processing temperature, which changes with time t (in minutes), and T ref is a reference temperature set at 423 K, t i is expressed in minutes, the constant Q / R = 16400 K is derived from the activation energy for Cu diffusion, for which Q = 136100 J / mol was used.
Surprisingly, the present inventors have found that the mechanical properties obtained at the end of the short heat treatment are stable over time, which makes it possible to use the sheets in the state obtained at the end of the short heat treatment. the sheet metal place in a state O or in a state W for the shaping. Moreover, the present inventors have found that, surprisingly, the high heating rate during treatment Short thermal and / or short duration of the short heat treatment make it possible to obtain an improved ability to shape while maintaining a corrosion resistance of the sheet resulting from the short heat treatment, in particular to the intergranular and exfoliating corrosion, equivalent to that of a sheet in the state T3 or T4.
Preferably, for the short heat treatment, the heating rate is between 10 and 400 ° C / min and preferably between 40 and 300 ° C / min. The heating rate is typically the average slope of the sheet temperature as a function of time during heating between room temperature and 145 ° C.
For sheets with a thickness of less than 6 mm, the heating rate is preferably at least 80 ° C./min.
In order to limit the equivalent time to 150 ° C., it is also preferable to cool the sheets sufficiently quickly after the short treatment. During the short heat treatment, the cooling rate is between 1 and 1000 ° C./min, preferably between 10 and 800 ° C./min. The cooling rate is typically the average slope of the sheet temperature as a function of time during cooling between 145 ° C and 70 ° C or even between 145 ° C and 30 ° C. In one embodiment of the invention the cooling is carried out by spraying a liquid such as for example water or by immersion in such a liquid. In another embodiment of the invention, the cooling is carried out in air with optional forced convection, the cooling rate then preferably being between 1 and 400 ° C./min, preferably between 40 and 200 ° C. / min. Advantageously, the short heat treatment is carried out in a continuous treatment furnace. Typically, a continuous treatment furnace is an oven such that the sheet is supplied in the form of a coil which is continuously unwound for heat treatment in the furnace and then cooled and wound.

Les présents inventeurs ont constaté que de manière surprenante, non seulement le traitement thermique court permet de simplifier le procédé de fabrication des produits en supprimant la mise en forme sur état O ou W, mais de plus que le compromis entre résistance mécanique statique et tolérance aux dommages à l'état revenu est au moins identique ou même amélioré grâce au procédé de l'invention, par rapport à un procédé ne comprenant pas de traitement thermique court. En particulier pour une déformation supplémentaire à froid d'au moins 5% après traitement thermique court, le compromis obtenu entre résistance mécanique statique et ténacité est amélioré par rapport à l'état de la technique.The present inventors have found that, surprisingly, not only the short heat treatment makes it possible to simplify the manufacturing process of the products by eliminating the shaping on state O or W, but moreover that the compromise between static mechanical resistance and tolerance to damage to the tempering state is at least the same or even improved by the method of the invention, compared to a method not comprising short heat treatment. In particular for an additional cold deformation of at least 5% after short heat treatment, the compromise obtained between static mechanical strength and toughness is improved compared to the state of the art.

L'avantage du procédé selon l'invention est obtenu pour des produits ayant une teneur en cuivre comprise entre 2,1 et 3,9 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en cuivre est au moins de 2,8 % ou 3% en poids. Une teneur en cuivre maximale de 3,7 ou 3,4 % en poids est préférée.
La teneur en lithium est comprise entre 0,6% ou 0,7% et 2,0 % en poids. Avantageusement, la teneur en lithium est au moins 0,70 % en poids. Une teneur en lithium maximale de 1,4 ou même 1,1 % en poids est préférée.
La teneur en magnésium est comprise entre 0,1% et 1,0% en poids. Préférentiellement, la teneur en magnésium est au moins de 0,2 % ou même 0,25 % en poids. Dans un mode de réalisation de l'invention la teneur maximale en magnésium est de 0,6 % en poids.
La teneur en argent est comprise entre 0 % et 0,6 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en argent est comprise entre 0,1 et 0,5 % en poids et de manière préférée entre 0,15 et 0,4 % en poids. L'addition d'argent contribue à améliorer le compromis de propriétés mécaniques des produits obtenus par le procédé selon l'invention. La teneur en zinc est comprise entre 0 % et 1 % en poids. De manière préférée, la teneur en zinc est inférieure à 0,6 % en poids, de préférence inférieure à 0,40% en poids. Le zinc est généralement une impureté indésirable, notamment en raison de sa contribution à la densité de l'alliage, dans un mode de réalisation de l'invention la teneur en zinc est inférieure à 0,2% en poids et de préférence inférieure à 0,04 % en poids. Cependant dans un autre mode de réalisation le zinc peut être utilisé seul ou en combinaison avec l'argent, une teneur minimale en zinc de 0,2 % en poids est alors avantageuse.
The advantage of the process according to the invention is obtained for products having a copper content of between 2.1 and 3.9% by weight. In an advantageous embodiment of the invention, the copper content is at least 2.8% or 3% by weight. A maximum copper content of 3.7 or 3.4% by weight is preferred.
The lithium content is between 0.6% or 0.7% and 2.0% by weight. Advantageously, the lithium content is at least 0.70% by weight. A maximum lithium content of 1.4 or even 1.1% by weight is preferred.
The magnesium content is between 0.1% and 1.0% by weight. Preferably, the magnesium content is at least 0.2% or even 0.25% by weight. In one embodiment of the invention, the maximum magnesium content is 0.6% by weight.
The silver content is between 0% and 0.6% by weight. In an advantageous embodiment of the invention, the silver content is between 0.1 and 0.5% by weight and preferably between 0.15 and 0.4% by weight. The addition of silver contributes to improving the compromise of mechanical properties of the products obtained by the process according to the invention. The zinc content is between 0% and 1% by weight. Preferably, the zinc content is less than 0.6% by weight, preferably less than 0.40% by weight. Zinc is generally an undesirable impurity, especially because of its contribution to the density of the alloy, in one embodiment of the invention the zinc content is less than 0.2% by weight and preferably less than 0. , 04% by weight. However, in another embodiment zinc may be used alone or in combination with silver, a minimum zinc content of 0.2% by weight is then advantageous.

L'alliage contient également au moins un élément pouvant contribuer au contrôle de la taille de grain choisi parmi Zr, Mn, Cr, Sc, Hf et Ti, la quantité de l'élément, s'il est choisi, étant de 0,05 à 0,18 % en poids pour Zr, 0,1 à 0,6% en poids pour Mn, 0,05 à 0,3 % en poids pour Cr, 0,02 à 0,2 % en poids pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti. De manière préférée on choisit d'ajouter entre 0,08 et 0,15 % en poids de zirconium et entre 0,01 et 0,10 % en poids de titane et on limite la teneur en Mn, Cr, Sc et Hf à au maximum 0,05 % en poids, ces éléments pouvant avoir un effet défavorable, notamment sur la densité et n'étant ajoutés que pour favoriser encore l'obtention d'une structure essentiellement non-recristallisée si nécessaire.
Dans un mode de réalisation avantageux de l'invention, la teneur en zirconium est au moins égale à 0,11 % en poids.
Dans un autre mode de réalisation de l'invention, la teneur en manganèse est comprise entre 0,2 et 0,4 % en poids et la teneur en zirconium est inférieure à 0,04 % en poids.
The alloy also contains at least one element that can contribute to controlling the grain size selected from Zr, Mn, Cr, Sc, Hf and Ti, the amount of the element, if selected, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Sc, O 0.5 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti. Preferably, it is preferred to add between 0.08 and 0.15% by weight of zirconium and between 0.01 and 0.10% by weight of titanium and the content of Mn, Cr, Sc and Hf to be limited to maximum 0.05% by weight, these elements may have an adverse effect, especially on the density and being added only to further promote the obtaining of a substantially non-recrystallized structure if necessary.
In an advantageous embodiment of the invention, the zirconium content is at least 0.11% by weight.
In another embodiment of the invention, the manganese content is between 0.2 and 0.4% by weight and the zirconium content is less than 0.04% by weight.

La somme de la teneur en fer et de la teneur en silicium est au plus de 0,20 % en poids. De préférence, les teneurs en fer et en silicium sont chacune au plus de 0,08 % en poids. Dans une réalisation avantageuse de l'invention les teneurs en fer et en silicium sont au plus de 0,06 % et 0,04 % en poids, respectivement. Une teneur en fer et en silicium contrôlée et limitée contribue à l'amélioration du compromis entre résistance mécanique et tolérance aux dommages.
Les autres éléments on une teneur au plus 0,05% en poids chacun et 0,15% en poids au total, il s'agit d'impuretés inévitables, le reste est de l'aluminium.
The sum of the iron content and the silicon content is at most 0.20% by weight. Preferably, the iron and silicon contents are each at most 0.08% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.06% and 0.04% by weight, respectively. A controlled and limited iron and silicon content contributes to the improvement of the compromise between mechanical resistance and damage tolerance.
The other elements have a content of at most 0.05% by weight each and 0.15% by weight in total, it is inevitable impurities, the rest is aluminum.

Le procédé de fabrication selon l'invention comprend les étapes d'élaboration, coulée, laminage, mise en solution, trempe, optionnellement planage et/ou traction et traitement thermique court.
Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention.
Le bain de métal liquide est ensuite coulé sous forme de plaque de laminage.
La plaque de laminage peut ensuite optionnellement être homogénéisée de façon à atteindre une température comprise entre 450°C et 550° et de préférence entre 480 °C et 530°C pendant une durée comprise entre 5 et 60 heures. Le traitement d'homogénéisation peut être réalisé en un ou plusieurs paliers.
The manufacturing method according to the invention comprises the steps of production, casting, rolling, dissolution, quenching, optionally planing and / or pulling and short heat treatment.
In a first step, a bath of liquid metal is produced so as to obtain an aluminum alloy of composition according to the invention.
The liquid metal bath is then cast as a rolling plate.
The rolling plate can then optionally be homogenized so as to reach a temperature between 450 ° C and 550 ° and preferably between 480 ° C and 530 ° C for a period of between 5 and 60 hours. The homogenization treatment can be carried out in one or more stages.

La plaque de laminage est ensuite laminée à chaud et optionnellement à froid en une tôle. L'épaisseur de ladite tôle est comprise entre 0,5 et 10 mm, avantageusement entre 0,8 et 8 mm et de préférence entre 1 et 6 mm.The rolling plate is then hot-rolled and optionally cold-rolled into a sheet. The thickness of said sheet is between 0.5 and 10 mm, advantageously between 0.8 and 8 mm and preferably between 1 and 6 mm.

Le produit ainsi obtenu est ensuite mis en solution typiquement par un traitement thermique permettant d'atteindre une température comprise entre 490 et 530 °C pendant 5 min à 8 h, puis trempé typiquement avec de l'eau à température ambiante ou préférentiellement de l'eau froide.
On peut optionnellement réaliser ensuite un planage et/ou on tractionne de façon contrôlée la tôle ainsi mise en solution et trempée, avec une déformation cumulée d'au moins 0,5% et inférieure à 3%. Lorsque qu'un planage est réalisé, la déformation effectuée lors du planage n'est pas toujours connue précisément mais elle est estimée à environ 0,5 %. Quand elle est réalisée, la traction contrôlée est mise en oeuvre avec une déformation permanente comprise entre 0,5 à 2,5 % et de préférence comprise entre 0,5 à 1,5 %. Cependant dans un mode de réalisation de l'invention on réalise le traitement thermique court directement après trempe sans écrouissage intermédiaire, mais avantageusement après un vieillissement naturel d'au moins 24 heures. Ce mode de réalisation sans écrouissage intermédiaire est avantageux en particulier lorsque les étapes de mise en solution, trempe et traitement thermique court sont réalisées en continu dans un four de traitement en continu. Par ailleurs les présents inventeurs ont constaté qu'en l'absence d'écrouissage intermédiaire entre trempe et traitement thermique court des défauts tels que les lignes de Lüders apparaissant après mise en forme pouvaient être supprimés dans certains cas.
The product thus obtained is then put in solution typically by a heat treatment making it possible to reach a temperature of between 490 and 530 ° C. for 5 min to 8 h, and then typically quenched with water at ambient temperature or, preferably, with water. Cold water.
It is optionally possible to carry out a planing and / or controlled traction of the sheet thus dissolved and quenched, with a cumulative deformation of at least 0.5% and less than 3%. When planing is performed, the deformation performed during planing is not always known precisely but it is estimated at about 0.5%. When it is performed, the controlled traction is implemented with a permanent deformation of between 0.5 to 2.5% and preferably between 0.5 to 1.5%. However, in one embodiment of the invention, the short heat treatment is carried out directly after quenching without intermediate work-hardening, but advantageously after a natural aging of at least 24 hours. This embodiment without intermediate work-hardening is advantageous in particular when the steps of dissolution, quenching and short heat treatment are carried out continuously in a continuous treatment furnace. Furthermore, the present inventors have found that in the absence of intermediate hardening between quenching and short heat treatment defects such as lines Lüders appearing after shaping could be removed in some cases.

Le produit subit ensuite un traitement thermique court déjà décrit.
A l'issue du traitement thermique court, la tôle obtenue par le procédé selon l'invention présente avantageusement, typiquement pendant au moins 50 jours et même pendant au moins 200 jours, après traitement thermique court, une limite d'élasticité Rp0,2(L) et/ou Rp0,2(LT) comprise entre 75% et 90%, préférentiellement entre 80 et 85% et de préférence entre 81% et 84% de la limite d'élasticité dans la même direction d'une tôle de même composition à l'état T4 ou T3 ayant subi la même traction contrôlée après trempe, au moins une propriété choisie parmi un rapport Rm /Rp0,2 (L) d'au moins 1,40 et de préférence au moins 1,45 et un rapport Rm /Rp0,2 (LT) au moins 1,45 et de préférence au moins 1,50 et présente au moins une propriété de résistance à la corrosion choisie parmi une cotation selon la norme ASTM G34 pour des tôles soumises aux conditions du test ASTM G85 A2 de P et/ou EA et une corrosion intergranulaire peu développée pour des tôles soumises aux conditions de la norme ASTM G110.
The product then undergoes a short heat treatment already described.
At the end of the short heat treatment, the sheet obtained by the process according to the invention advantageously has, typically for at least 50 days and even for at least 200 days, after a short heat treatment, a yield strength R p 0.2 (L) and / or R p0,2 (LT) of between 75% and 90%, preferably between 80 and 85% and preferably between 81% and 84% of the yield strength in the same direction of a sheet metal of the same composition in the T4 or T3 state having undergone the same controlled pull after quenching, at least one property chosen from a ratio R m / R p0.2 (L) of at least 1.40 and preferably at least 1 , 45 and a ratio R m / R p0.2 (LT) of at least 1.45 and preferably at least 1.50 and has at least one corrosion resistance property selected from a rating according to ASTM G34 for plates subject to the conditions of the P ASTM G85 A2 test and / or EA and poorly developed intergranular corrosion for plates subject to the conditions of ASTM G110.

Dans un mode de réalisation avantageux, à l'issue du traitement thermique court, la tôle obtenue par le procédé selon l'invention présente typiquement pendant au moins 50 jours et même pendant au moins 200 jours après traitement thermique court, une combinaison d'au moins une propriété choisie parmi Rp0,2(L) d'au moins 220 MPa et de préférence d'au moins 250 MPa, Rp0,2(LT) d'au moins 200 MPa et de préférence d'au moins 230 MPa, Rm(L) d'au moins 340 MPa et de préférence d'au moins 380 MPa, Rm(LT) d'au moins 320 MPa et de préférence d'au moins 360 MPa avec une propriété choisie parmi A%(L) au moins 14% et de préférence au moins 15%, A%(LT) au moins 24% et de préférence au moins 26%, Rm /Rp0,2 (L) au moins 1,40 et de préférence au moins 1,45, Rm /Rp0,2 (LT) au moins 1,45 et de préférence au moins 1,50 et présente au moins une propriété de résistance à la corrosion choisie parmi une cotation selon la norme ASTM G34 pour des tôles soumises aux conditions du test ASTM G85 A2 de P et/ou EA et une corrosion intergranulaire peu développée pour des tôles soumises aux conditions de la norme ASTM G110.In an advantageous embodiment, at the end of the short heat treatment, the sheet obtained by the process according to the invention typically exhibits for at least 50 days and even for at least 200 days after a short heat treatment, a combination of at least one property selected from R p0.2 (L) of at least 220 MPa and preferably at least 250 MPa, R p0.2 (LT) of at least 200 MPa and preferably at least 230 MPa , R m (L) of at least 340 MPa and preferably at least 380 MPa, R m (LT) of at least 320 MPa and preferably at least 360 MPa with a property selected from A% ( L) at least 14% and preferably at least 15%, A% (LT) at least 24% and preferably at least 26%, R m / R p0.2 (L) at least 1.40 and preferably at least at least 1.45, R m / R p0.2 (LT) at least 1.45 and preferably at least 1.50 and has at least one corrosion resistance property selected from a rating according to ASTM G34 for sheet metal subject to P and / or EA ASTM G85 A2 test conditions and poorly developed intergranular corrosion for plates subject to ASTM G110.

Dans un mode de réalisation avantageux de l'invention à l'issue du traitement thermique court, la tôle obtenue par le procédé selon l'invention présente un rapport Rm /Rp0,2 dans la direction LT d'au moins 1,52 ou 1,53.In an advantageous embodiment of the invention after the short heat treatment, the sheet obtained by the process according to the invention has a ratio R m / R p0,2 in the direction LT of at least 1.52. or 1.53.

Avantageusement, pendant au moins 50 jours et manière préférée pendant au moins 200 jours après le traitement thermique court, la tôle obtenue par le procédé selon l'invention présente une limite d'élasticité Rp0,2(L) inférieure à 290 MPa et de préférence inférieure à 280 MPa et Rp0,2(LT) inférieure à 270 MPa et/ou une résistance à rupture Rm(L) inférieure à 410 MPa et de préférence inférieure à 400 MPa et Rp0,2(LT) inférieure à 390 MPa.Advantageously, for at least 50 days and preferably for at least 200 days after the short heat treatment, the sheet obtained by the process according to the invention has a yield strength R p0.2 (L) of less than 290 MPa and of preferably less than 280 MPa and R p0.2 (LT) less than 270 MPa and / or a rupture strength R m (L) less than 410 MPa and preferably less than 400 MPa and R p0.2 (LT) less than 390 MPa.

Avantageusement la cotation selon la norme ASTM G34 pour des tôles soumises aux conditions du test ASTM G85 A2 est P ou P-EA.Advantageously, the rating according to ASTM G34 for sheets subject to the conditions of the ASTM G85 A2 test is P or P-EA.

Dans le cadre de l'invention on considère que la corrosion intergranulaire pour les tôles soumises aux conditions de la norme ASTM G110 est peu développée si elle correspond aux images des figures 1 ou 2. Avantageusement, la tôle obtenue par le procédé selon l'invention présente une résistance à la corrosion intercristalline au moins égale à celle d'une tôle de même composition à l'état T3 ou T4.In the context of the invention, it is considered that the intergranular corrosion for sheets subjected to the conditions of the ASTM G110 standard is not very developed if it corresponds to the images of the Figures 1 or 2 . Advantageously, the sheet obtained by the process according to the invention has an intercrystalline corrosion resistance at least equal to that of a sheet of the same composition in the T3 or T4 state.

A l'issue du traitement thermique court, la tôle peut être stockée sans difficultés particulières grâce à sa résistance à la corrosion intercristalline. La tôle issue du traitement thermique court est prête pour une déformation supplémentaire à froid, notamment une opération de mise en forme en 3 dimensions. Un avantage de l'invention est que cette déformation supplémentaire peut atteindre localement ou de façon généralisée des valeurs de 6 à 8% ou même jusque 10%. Pour atteindre des propriétés mécaniques suffisantes à l'issue du revenu à l'état T8, une déformation minimale cumulée de 2% entre ladite déformation supplémentaire et la déformation cumulée par planage et/ou on traction contrôlée optionnellement réalisée avant le traitement thermique court est avantageuse. De manière préférée, la déformation supplémentaire à froid est localement ou de façon généralisée d'au moins 1% de préférence au moins 4% et de manière préférée d'au moins 6%.At the end of the short heat treatment, the sheet can be stored without particular difficulties thanks to its resistance to intercrystalline corrosion. The sheet resulting from the short heat treatment is ready for additional cold deformation, in particular a 3-dimensional forming operation. An advantage of the invention is that this additional deformation can locally or generally reach values of 6 to 8% or even up to 10%. To achieve sufficient mechanical properties at the end of the T8 state, a minimum cumulative deformation of 2% between said additional deformation and the cumulative deformation by planing and / or controlled tension optionally performed before the short heat treatment is advantageous. . Preferably, the additional cold deformation is locally or generally at least 1%, preferably at least 4% and preferably at least 6%.

On réalise enfin un revenu dans lequel ladite tôle ainsi mise en forme atteint une température comprise entre 130 et 170°C, avantageusement entre 145 et 165 °C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 10 à 70h. Le revenu peut-être réalisé en un ou plusieurs paliers.
Avantageusement la déformation à froid est effectuée par un ou plusieurs procédés de mise en forme tels que l'étirage, l'étirage-formage, l'emboutissage, le fluotournage ou le pliage. Dans une réalisation avantageuse, il s'agit d'une mise en forme dans les trois dimensions de l'espace pour obtenir une pièce de forme complexe, de préférence par étirage-formage. Ainsi le produit obtenu à l'issue du traitement thermique court peut être mis en forme comme un produit dans un état O ou un produit dans un état W. Cependant, par rapport à un produit dans un état O il a l'avantage de ne plus nécessiter de mise en solution et trempe pour atteindre les propriétés mécaniques finales, un simple traitement de revenu étant suffisant. Par rapport à un produit à dans un état W, il a l'avantage d'être stable et de ne pas nécessiter de chambre froide et de ne pas poser de problèmes liés à la déformation de cet état. Le produit présente également l'avantage en général de ne pas générer de lignes de Lüders rédhibitoires lors de la mise en forme. Ainsi on peut par exemple effectuer le traitement thermique court chez le fabriquant de tôle, le stocker sans précautions particulière grâce à sa résistance élevée à la corrosion intergranulaire et effectuer la mise en forme chez le fabricant de structure aéronautique, directement sur le produit livré. Le procédé selon l'invention permet d'effectuer la mise en forme en 3 dimensions d'une tôle à l'issue du traitement thermique court sans que la tôle ne soit dans un état T8, un état O ou un état W avant cette mise en forme en 3 dimensions.
Finally, an income is produced in which said sheet thus shaped reaches a temperature of between 130 and 170 ° C., advantageously between 145 and 165 ° C. and preferably between 150 and 160 ° C. for 5 to 100 hours, and preferably at 70h. The income can be achieved in one or more levels.
Advantageously, the cold deformation is performed by one or more forming processes such as stretching, stretch-forming, stamping, spinning or folding. In an advantageous embodiment, it is a shaping in the three dimensions of the space to obtain a piece of complex shape, preferably by stretch-forming. Thus the product obtained after the short heat treatment can be shaped as a product in a state O or a product in a state W. However, compared to a product in a state O it has the advantage of not more requiring solution and quenching to achieve the final mechanical properties, a simple income treatment is sufficient. Compared to a product in a state W, it has the advantage of being stable and not requiring cold room and not to pose any problems related to the deformation of this state. The product also has the advantage in general of not generating lines Lüders crippling during formatting. Thus one can for example perform the short heat treatment in the sheet metal manufacturer, store it without special precautions due to its high resistance to intergranular corrosion and perform the shaping at the manufacturer of aeronautical structure, directly on the product delivered. The method according to the invention makes it possible to carry out the 3-dimensional shaping of a sheet at the end of the short heat treatment without the sheet being in a state T8, a state O or a state W before this setting shaped in 3 dimensions.

De manière surprenante, le compromis entre les propriétés mécaniques statiques et les propriétés de tolérance aux dommages obtenues à l'issue du revenu est avantageux par rapport à celui obtenue pour un traitement semblable ne comprenant pas de traitement thermique court.Surprisingly, the compromise between the static mechanical properties and the damage-tolerance properties obtained at the end of the income is advantageous compared to that obtained for a similar treatment that does not include short heat treatment.

L'utilisation d'un produit susceptible d'être obtenu par le procédé selon l'invention comprenant les étapes de traitement thermique court, déformation à froid et revenu pour la fabrication d'un élément de structure pour avion, notamment d'une peau de fuselage est particulièrement avantageux.The use of a product that can be obtained by the process according to the invention, comprising the steps of short heat treatment, cold deformation and tempering for the manufacture of a structural element for an aircraft, in particular a skin of fuselage is particularly advantageous.

ExempleExample

Dans cet exemple, on a comparé des conditions de traitement thermique court pour une tôle en alliage AA2198 d'épaisseur 4,3 mm. Une plaque de laminage en alliage AA2198 dont la composition est donnée dans le Tableau 1 a été homogénéisée puis laminée à chaud jusqu'à l'épaisseur 4,3 mm. Les tôles ainsi obtenues ont été mises en solution 30 mn à 505 °C puis trempées à l'eau. Tableau 1. Composition de la tôle en alliage AA2198 utilisée, en % en poids. Si Fe Cu Mn Mg Zr Li Ag Ti Zn 0,03 0,05 3,3 0,05 0,34 0,14 0,99 0,28 0,03 0,03 In this example, we compared short heat treatment conditions for an alloy sheet AA2198 with a thickness of 4.3 mm. An AA2198 alloy rolling plate, the composition of which is given in Table 1, was homogenized and then hot rolled to a thickness of 4.3 mm. The sheets thus obtained were dissolved for 30 minutes at 505 ° C. and then quenched with water. Table 1. Composition of the AA2198 alloy sheet used, in% by weight. Yes Fe Cu mn mg Zr Li Ag Ti Zn 0.03 0.05 3.3 0.05 0.34 0.14 0.99 0.28 0.03 0.03

Les tôles ont ensuite été tractionnées de façon contrôlée. La traction contrôlée a été réalisée avec un allongement permanent de 2 %. Le vieillissement naturel a été d'au moins 24 heures après la trempe.
Les tôles ont ensuite subi un traitement thermique court dont les conditions sont données dans le Tableau 2. Les vitesses de chauffage les plus élevées, représentatives des vitesses de chauffages obtenues dans un four de traitement en continu, ont été obtenues par immersion dans un bain d'huile tandis que les vitesses de chauffage les plus faibles ont été obtenues par traitement à l'air contrôlé, représentatif des conditions industrielles dans un four statique. La vitesse de refroidissement était de l'ordre de 60 °C / min pour l'ensemble des essais. Tableau 2 - Conditions de traitement thermique court Invention ou Référence Echantillon Vitesse de chauffage (°C/min) Durée de maintien (min) Température de maintien (°C) Temps équivalent à 150 °C (min) Référence S - - - - Invention H1 100 1 150 1,3 Invention H2 100 2 150 2,3 Invention H4 100 4 150 4,3 Invention H8 100 8 150 8,3 Invention H16 100 16 150 16,3 Invention H30 100 30 150 30,3 Référence A30 0,33 30 150 61,8 Référence A60 0,33 60 150 91,8 Référence A120 0,33 120 150 151,8 Référence A240 0,33 240 150 271,8
The sheets were then trimmed in a controlled manner. Controlled traction was achieved with a permanent elongation of 2%. Natural aging was at least 24 hours after quenching.
The sheets were then subjected to a short heat treatment, the conditions of which are given in Table 2. The highest heating rates, representative of the heating rates obtained in a continuous treatment furnace, were obtained by immersion in an immersion bath. oil while the lowest heating rates were obtained by controlled air treatment, representative of industrial conditions in a static furnace. The cooling rate was of the order of 60 ° C./min for all the tests. Table 2 - Short Heat Treatment Conditions Invention or Reference Sample Heating speed (° C / min) Hold time (min) Holding temperature (° C) Time equivalent to 150 ° C (min) Reference S - - - - Invention H1 100 1 150 1.3 Invention H2 100 2 150 2.3 Invention H4 100 4 150 4.3 Invention H8 100 8 150 8.3 Invention H16 100 16 150 16.3 Invention H30 100 30 150 30.3 Reference A30 0.33 30 150 61.8 Reference A60 0.33 60 150 91.8 Reference A120 0.33 120 150 151.8 Reference A240 0.33 240 150 271.8

Les propriétés mécaniques statiques après traitement thermique court ont été caractérisées dans les directions longitudinale (L) et transverse (LT) et sont présentées dans le Tableau 3. Tableau 3 - Propriétés mécaniques statiques en MPa (Rp0,2 et Rm) ou en % (A%) Echantillon Rp0,2 (L) Rm (L) A%(L) Rp0,2 (LT) Rm (LT) A%(LT) S 322 438 13,4 288 408 23,2 H1 274 394 14,4 246 373 24,2 H2 271 393 14,0 246 373 26,0 H4 261 384 13,2 238 366 26,9 H8 260 382 13,8 236 365 25,4 H16 259 383 13,8 234 365 25,5 H30 257 384 13,5 233 364 27,1 A30 262 387 14,2 239 370 27,1 A60 261 391 14,9 237 368 26,4 A120 265 391 15,2 240 369 27,3 A240 285 403 16,5 254 375 27,4 The static mechanical properties after short heat treatment were characterized in the longitudinal (L) and transverse (LT) directions and are presented in Table 3. Table 3 - Static mechanical properties in MPa (R <sub> p0,2 </ sub> and R <sub> m </ sub>) or in% (A%) Sample R p0.2 (L) R m (L) A% (L) R p0.2 (LT) R m (LT) A% (LT) S 322 438 13.4 288 408 23.2 H1 274 394 14.4 246 373 24.2 H2 271 393 14.0 246 373 26.0 H4 261 384 13.2 238 366 26.9 H8 260 382 13.8 236 365 25.4 H16 259 383 13.8 234 365 25.5 H30 257 384 13.5 233 364 27.1 A30 262 387 14.2 239 370 27.1 A60 261 391 14.9 237 368 26.4 A120 265 391 15.2 240 369 27.3 A240 285 403 16.5 254 375 27.4

Les propriétés de résistance à la corrosion des tôles ont été évaluées dans les conditions des essais normalisés de corrosion intergranulaire (ASTM G110) et de corrosion exfoliante (MASTMAASIS dry bottom ASTM G85-A2). La durée d'essai d'immersion du test ASTM G110 est de 6h et la durée d'essai du test MASTMAASIS est de 750h. Les caractérisations ont été effectuées en surface (« peau ») et après usinage d'un dixième de l'épaisseur (« T/10 »).
Les résultats des essais de corrosion intergranulaire selon ASTM G110 sont présentés dans le Tableau 4.
Les coupes micrographiques représentatives d'une corrosion intergranulaire peu développée et piqûres sont données sur les Figures 1 (échantillon S) et 2 (échantillon H2). Les observations ont été faites au microscope optique à des grandissements de X200. Une coupe micrographique représentative d'une corrosion intergranulaire développée et piqûres est donné sur la Figure 3 (échantillon A30). Une coupe micrographique représentative d'une corrosion intergranulaire développée est donnée sur la Figure 4 (échantillon A120). Tableau 4 : résultats des essais de corrosion intergranulaire selon ASTM G110 Echantillon Surface testée Peau T/10 S C.I. peu développée + piqûre C.I. peu développée + piqûre H1 C.I. peu développée + piqûre C.I. peu développée + piqûre H2 C.I. peu développée + piqûre C.I. peu développée + piqûre H4 C.I. peu développée + piqûre C.I. peu développée + piqûre H8 C.I. peu développée + piqûre C.I. peu développée + piqûre H16 C.I. peu développée + piqûre C.I. peu développée + piqûre H30 C.I. peu développée + piqûre C.I. peu développée + piqûre A30 C.I. développée + piqûre C.I. développée + piqûre A60 C.I. développée C.I. développée A120 C.I. développée C.I. développée A240 C.I. développée C.I. développée C.I : corrosion intergranulaire
The corrosion resistance properties of the sheets were evaluated under the conditions of standardized intergranular corrosion tests (ASTM G110) and exfoliation corrosion tests (MASTMAASIS dry bottom ASTM G85-A2). The ASTM G110 test immersion time is 6 hours and the test duration of the MASTMAASIS test is 750 hours. The characterizations were performed on the surface ("skin") and after machining one-tenth of the thickness ("T / 10").
The results of intergranular corrosion tests according to ASTM G110 are shown in Table 4.
Micrographic sections representative of poorly developed intergranular corrosion and pitting are given on the Figures 1 (sample S) and 2 (sample H2). The observations were made under an optical microscope at magnifications of X200. A micrographic section representative of a developed intergranular corrosion and pitting is given on the Figure 3 (sample A30). A micrographic section representative of a developed intergranular corrosion is given on the Figure 4 (sample A120). Table 4: Results of intergranular corrosion tests according to ASTM G110 Sample Surface tested Skin T / 10 S Less developed CI + sting Less developed CI + sting H1 Less developed CI + sting Less developed CI + sting H2 Less developed CI + sting Less developed CI + sting H4 Less developed CI + sting Less developed CI + sting H8 Less developed CI + sting Less developed CI + sting H16 Less developed CI + sting Less developed CI + sting H30 Less developed CI + sting Less developed CI + sting A30 CI developed + sting CI developed + sting A60 CI developed CI developed A120 CI developed CI developed A240 CI developed CI developed CI: intergranular corrosion

Les résultats des essais de corrosion exfoliante côtés selon la norme ASTM G34 pour les tôles soumises aux conditions du test MASTMAASIS (dry bottom ASTM G85-A2) sont présentés dans le Tableau 5. Tableau 5 - Résultats des essais de corrosion exfoliante dans les conditions du test MASTMAASIS (dry bottom ASTM G85-A2). Echantillon Surface testée Peau T/10 S P P H1 P-EA P-EA H2 P-EA P-EA H4 P-EA P-EA H8 P-EA P-EA H16 P-EA P-EA H30 EA EA A30 EB-EC EB-EC A60 EC EB-EC A120 EC EC A240 EC EC The results of the exfoliating corrosion tests according to ASTM G34 for sheet subjected to MASTMAASIS test conditions (dry bottom ASTM G85-A2) are shown in Table 5. Table 5 - Results of exfoliation corrosion tests under MASTMAASIS test conditions (dry bottom ASTM G85-A2). Sample Surface tested Skin T / 10 S P P H1 P-EA P-EA H2 P-EA P-EA H4 P-EA P-EA H8 P-EA P-EA H16 P-EA P-EA H30 EA EA A30 EB-EC EB-EC A60 EC EB-EC A120 EC EC A240 EC EC

L'échantillon S est un échantillon à l'état T3. Il ne présente pas des propriétés mécaniques permettant d'envisager sa mise en forme pour les déformations les plus élevées. Les échantillons A30, A60 , A120 , A240 présentent des propriétés mécaniques permettant d'envisager la mise en forme pour les déformations les plus élevées mais présentent une résistance à la corrosion nécessitant des précautions particulières lors du stockage.
Les échantillons H1, H2, H4, H8, H16 et H30 présentent simultanément des propriétés mécaniques permettant d'envisager sa mise en forme pour les déformations les plus élevées et une résistance à la corrosion permettant d'envisager un stockage sans précautions particulières. L'échantillon H1 présente cependant des propriétés mécaniques un peu moins favorables, notamment en termes d'allongement dans la direction LT. L'échantillon H30 présente des propriétés un peu moins favorables, en particulier en termes de résistance à la corrosion.
Sample S is a sample in the T3 state. It does not have mechanical properties to consider its shaping for the highest deformations. Samples A30, A60, A120, A240 have mechanical properties which make it possible to envisage shaping for the highest deformations but exhibit a resistance to corrosion requiring particular precautions during storage.
Samples H1, H2, H4, H8, H16 and H30 simultaneously have mechanical properties to consider its shaping for the highest deformations and corrosion resistance to consider storage without special precautions. Sample H1, however, has slightly less mechanical properties favorable, especially in terms of lengthening in the LT direction. Sample H30 has slightly less favorable properties, particularly in terms of corrosion resistance.

Claims (12)

  1. Method for manufacturing a rolled product with an aluminium alloy base in particular for the aeronautical industry, successively,
    a) a bath of liquid metal with an aluminium base is elaborated comprising 2.1 to 3.9% by weight of Cu, 0.6 to 2.0% by weight of Li, 0.1 to 1.0% by weight of Mg, 0 to 0.6% by weight of Ag, 0 to 1% by weight of Zn, at most 0.20% by weight of the sum of Fe and of Si, at least one element from among Zr, Mn, Cr, Sc, Hf and Ti, the quantity of said element, if it is chosen, being 0.05 to 0.18% by weight for Zr, 0.1 to 0.6% by weight for Mn, 0.05 to 0.3% by weight for Cr, 0.02 to 0.2% by weight for Sc, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti, the other elements at most 0.05% by weight each and 0.15% by weight in total, the rest aluminium;
    b) a rolled slab is cast using said bath of liquid metal;
    c) optionally, said rolled slab is homogenised;
    d) said rolled slab is hot rolled and optionally cold rolled into a sheet of a thickness between 0.5 and 10 mm,
    e) said sheet is solution heat treated and quenched;
    f) optionally a levelling is carried out and/or said sheet is pulled in a controlled manner with a cumulative deformation of at least 0.5% and less than 3%,
    g) a short heat treatment is carried out wherein said sheet reaches a temperature between 145°C and 175°C and preferably between 150°C and 170°C for 0.1 to 45 minutes and preferably for 0.5 to 5 minutes, the speed of heating being between 3 and 600°C/min, in which said short heat treatment is carried out in such a way as to obtain an equivalent time at 150°C of 0.5 to 35 minutes and preferably from 1 to 20 minutes, the equivalent time ti at 150°C is defined by the formula: t i = exp 16400 / T dt exp 16400 / T ref
    Figure imgb0005
    where T (in Kelvin) is the instantaneous treatment temperature of the metal, which changes with the time t (in minutes), and Tref is a reference temperature set to 423 K, ti is expressed in minutes, the constant Q/R = 16400 K is derived from the activation energy for the diffusion of the Cu, for which the value Q = 136100 J/mol was used and wherein, the speed of cooling is between 1 and 1000°C/min.
  2. Method according the claim wherein, during the step g of short heat treatment the speed of cooling is between 10 and 800°C/min.
  3. Method according to any of claims 1 to 2 wherein said short heat treatment is carried out directly after quenching without intermediate strain-hardening.
  4. Method according to any of claims 1 to 3 wherein the content in copper is at least 2.8% and at most 3.4% by weight.
  5. Method according to any of claims 1 to 4 wherein the content in lithium is at least 0.70% by weight and at most 1.1% by weight.
  6. Method according to any of claims 1 to 5 wherein the content in magnesium is at least 0.2% and at most 0.6% by weight.
  7. Method according to any of claims 1 to 6 wherein the alloy contains between 0.08 and 0.15% by weight of zirconium, between 0.01 and 0.10% by weight of titanium and wherein the content in Mn, Cr, Sc and Hf is at most 0.05% by weight.
  8. Method according to any of claims 1 to 7 wherein after the step g,
    h) an additional cold deformation is carried out on said sheet in such a way that the additional deformation is less than 10%,
    i) a tempering is carried out wherein said sheet reaches a temperature between 130 and 170°C advantageously between 145 and 165°C and preferably between 150 and 160°C for 5 to 100 hours and preferably from 10 to 70h.
  9. Rolled product able to be obtained by the method according to any of claims 1 to 7, having a limit of elasticity Rp0.2 (L) and/or Rp0.2 (LT) between 75% and 90%, preferentially between 80 and 85% and preferably between 81% and 84% of the limit of elasticity in the same direction of a sheet of the same composition in the state T4 or T3 having been subjected to the same controlled traction after quenching, at least one property chosen from among a Rm /Rp0.2 (L) ratio of at least 1.40 and preferably at least 1.45 and a Rm /Rp0.2 (LT) ratio at least 1.45 and preferably at least 1.50 and has at least one corrosion resistance property chosen from among a grade according to the standard ASTM G34 for sheets subjected to the conditions of the test ASTM G85 A2 of P and/or EA and an intergranular corrosion that is little developed for sheets subjected to the conditions of the standard ASTM G110.
  10. Rolled product according to claim 9 having a combination of at least one property chosen from among Rp0.2 (L) of at least 220 MPa and preferably of at least 250 MPa, Rp0.2(LT) of at least 200 MPa and preferably of at least 230 MPa, Rm(L) of at least 340 MPa and preferably of at least 380 MPa, Rm(LT) of at least 320 MPa and preferably of at least 360 MPa with a property chosen from among A%(L) at least 14% and preferably at least 15%, A%(LT) at least 24% and preferably at least 26%, Rm /Rp0.2 (L) at least 1.40 and preferably at least 1.45, Rm /Rp0.2 (LT) at least 1.45 and preferably at least 1.50.
  11. Rolled product according to claim 9 or claim 10 such as the grade according to the standard ASTM G34 for sheets subjected to the conditions of the test ASTM G85 A2 is P or P-EA.
  12. Use of a product obtained by the method according to claim 8 for the manufacture of a structure element for aircraft, in particular an aircraft fuselage skin.
EP14721432.4A 2013-04-12 2014-04-07 Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance Active EP2984195B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300870A FR3004464B1 (en) 2013-04-12 2013-04-12 PROCESS FOR TRANSFORMING AL-CU-LI ALLOY SHEETS ENHANCING FORMABILITY AND RESISTANCE TO CORROSION
PCT/FR2014/000076 WO2014167191A1 (en) 2013-04-12 2014-04-07 Method for transforming al-cu-li alloy sheets improving formability and corrosion resistance

Publications (2)

Publication Number Publication Date
EP2984195A1 EP2984195A1 (en) 2016-02-17
EP2984195B1 true EP2984195B1 (en) 2019-01-16

Family

ID=49231527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14721432.4A Active EP2984195B1 (en) 2013-04-12 2014-04-07 Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance

Country Status (7)

Country Link
US (1) US10400313B2 (en)
EP (1) EP2984195B1 (en)
CN (1) CN105612266B (en)
BR (1) BR112015025477B1 (en)
CA (1) CA2908454C (en)
FR (1) FR3004464B1 (en)
WO (1) WO2014167191A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072985B2 (en) 2015-03-27 2020-08-26 Otto Fuchs KG Ag-free al-cu-mg-li alloy
US11220729B2 (en) * 2016-05-20 2022-01-11 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
CN109890663B (en) 2016-08-26 2023-04-14 形状集团 Warm forming process and apparatus for transverse bending extrusion of aluminum beams to warm form vehicle structural members
CN110114498A (en) 2016-10-24 2019-08-09 形状集团 Multistage aluminium alloy for producing vehicle part is formed and hot-working method
CN106480385B (en) * 2016-12-12 2018-01-16 中南大学 One kind improves the strong plasticity solid solution pre-treating method of aluminium lithium alloy thin plate and its heat treatment method
CN106893911B (en) * 2017-02-27 2018-05-15 广东省材料与加工研究所 A kind of high-strength temperature-resistant Al-Cu line aluminium alloys and preparation method thereof
FR3065011B1 (en) * 2017-04-10 2019-04-12 Constellium Issoire ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
US11242587B2 (en) 2017-05-12 2022-02-08 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11180839B2 (en) 2017-10-26 2021-11-23 Ut-Battelle, Llc Heat treatments for high temperature cast aluminum alloys
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
FR3082210B1 (en) * 2018-06-08 2020-06-05 Constellium Issoire THIN SHEETS OF ALUMINUM-COPPER-LITHIUM ALLOY FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES
CN110541131B (en) * 2019-08-29 2021-02-19 哈尔滨工业大学 Al-Cu-Li alloy thermomechanical treatment process based on particle-excited nucleation
CN110512125B (en) * 2019-08-30 2020-09-22 中国航发北京航空材料研究院 Preparation method of diameter aluminum-lithium alloy wire for additive manufacturing
FR3104172B1 (en) 2019-12-06 2022-04-29 Constellium Issoire Aluminum-copper-lithium alloy thin sheets with improved toughness and manufacturing method
CN116445781A (en) * 2022-12-20 2023-07-18 昆明理工大学 Method for improving corrosion resistance of aluminum-lithium alloy

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
GB8923047D0 (en) * 1989-10-12 1989-11-29 Secr Defence Auxilary heat treatment for aluminium-lithium alloys
US7438772B2 (en) * 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
FR2792001B1 (en) * 1999-04-12 2001-05-18 Pechiney Rhenalu PROCESS FOR MANUFACTURING TYPE 2024 ALUMINUM ALLOY SHAPED PARTS
WO2004106570A1 (en) * 2003-05-28 2004-12-09 Pechiney Rolled Products New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness
CN101189353A (en) * 2005-06-06 2008-05-28 爱尔康何纳吕公司 High-strength aluminum-copper-lithium sheet metal for aircraft fuselages
WO2006131627A1 (en) * 2005-06-06 2006-12-14 Alcan Rhenalu High-strength aluminum-copper-lithium sheet metal for aircraft fuselages
FR2894985B1 (en) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
RU2497967C2 (en) * 2007-12-04 2013-11-10 Алкоа Инк. Improved aluminium-copper-lithium alloys

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160304995A1 (en) 2016-10-20
US10400313B2 (en) 2019-09-03
CN105612266B (en) 2018-12-14
BR112015025477A2 (en) 2017-07-18
WO2014167191A1 (en) 2014-10-16
FR3004464A1 (en) 2014-10-17
CN105612266A (en) 2016-05-25
CA2908454C (en) 2021-05-18
EP2984195A1 (en) 2016-02-17
FR3004464B1 (en) 2015-03-27
BR112015025477B1 (en) 2020-04-28
CA2908454A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
EP2766503B2 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP3011068B1 (en) Extrados structural element made from an aluminium copper lithium alloy
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2655680B1 (en) Aluminium-copper-lithium alloy with improved compressive strength and toughness
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
FR2853666A1 (en) HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
FR3076837A1 (en) PROCESS FOR MANUFACTURING 6XXX ALUMINUM ALUMINUM THIN ALLOYS WITH HIGH SURFACE QUALITY
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
EP4069875A1 (en) Aluminum-copper-lithium alloy thin sheets with improved toughness, and process for manufacturing an aluminum-copper-lithium alloy thin sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014039977

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0021120000

Ipc: C22C0021140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 21/14 20060101AFI20180724BHEP

Ipc: C22C 21/18 20060101ALI20180724BHEP

Ipc: C22F 1/057 20060101ALI20180724BHEP

Ipc: C22C 21/16 20060101ALI20180724BHEP

Ipc: C22C 21/12 20060101ALI20180724BHEP

Ipc: B22D 7/00 20060101ALI20180724BHEP

INTG Intention to grant announced

Effective date: 20180808

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EBERL, FRANK

Inventor name: BES, BERNARD

Inventor name: SIGLI, CHRISTOPHE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1089752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014039977

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014039977

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20191017

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1089752

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140407

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240429

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240429

Year of fee payment: 11