EP3201372B1 - Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same - Google Patents

Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same Download PDF

Info

Publication number
EP3201372B1
EP3201372B1 EP15784082.8A EP15784082A EP3201372B1 EP 3201372 B1 EP3201372 B1 EP 3201372B1 EP 15784082 A EP15784082 A EP 15784082A EP 3201372 B1 EP3201372 B1 EP 3201372B1
Authority
EP
European Patent Office
Prior art keywords
weight
less
mpa
accordance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15784082.8A
Other languages
German (de)
French (fr)
Other versions
EP3201372A1 (en
Inventor
Juliette CHEVY
Bernard Bes
Jean-Christophe Ehrstrom
Frank Eberl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3201372A1 publication Critical patent/EP3201372A1/en
Application granted granted Critical
Publication of EP3201372B1 publication Critical patent/EP3201372B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to aluminum-copper-lithium alloy rolled products, more particularly such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
  • Rolled aluminum alloy products are developed to produce fuselage elements intended in particular for the aeronautical industry and the aerospace industry.
  • Aluminum - copper - lithium alloys are particularly promising for manufacturing this type of product.
  • the patent US 5,455,003 describes a process for the manufacture of Al-Cu-Li alloys which exhibit improved mechanical strength and toughness at cryogenic temperature, in particular by means of suitable hardening and tempering.
  • the patent US 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.
  • the patent application US 2009/142222 A1 describes alloys comprising (in weight%), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2-0.8% Zn, 0.1-0.6% Mn and 0.01-0.6% of at least one element for control of granular structure. This application also describes a process for manufacturing spun products.
  • the patent application US 2011/0247730 describes alloys comprising (in wt%), 2.75 to 5.0% Cu, 0.1 to 1.1% Li, 0.3 to 2.0% Ag, 0.2 to 0.8% Mg, 0 , 50 to 1.5% Zn, up to 1.0% Mn, with a Cu / Mg ratio of between 6.1 and 17, this alloy being not very sensitive to wringing.
  • the patent application CN101967588 describes alloys of composition (wt%) Cu 2.8 - 4.0; Li 0.8 - 1.9; Mn 0.2-0.6; Zn 0.20 - 0.80, Zr 0.04 - 0.20, Mg 0.20 - 0.80, Ag 0.1 - 0.7, Si ⁇ 0.10, Fe ⁇ 0.10, Ti ⁇ 0.12, she teaches the combined addition of zirconium and manganese.
  • the characteristics required for aluminum sheets intended for fuselage applications are described for example in the patent EP 1,891,247 . It is particularly desirable that the sheet has a high elastic limit (to resist buckling) as well as a tenacity under high plane stress, characterized in particular by a high value of intensity factor of apparent stress at break (K app ) high and a long curve R.
  • K app intensity factor of apparent stress at break
  • the patent EP 1 966 402 describes an alloy comprising 2.1 to 2.8 wt% Cu, 1.1 to 1.7 wt% Li, 01 to 0.8 wt% Ag, 0.2 to 0.6 wt% weight of Mg, 0.2 to 0.6% by weight of Mn, an amount of Fe and Si less than or equal to 0.1% by weight each, and inevitable impurities at a content of less than or equal to 0.05 % by weight each and 0.15% by weight in total, the alloy being substantially free of zirconium, particularly suitable for obtaining recrystallized thin sheets.
  • WO2006131627 discloses a low density aluminum-based alloy useful in an aircraft structure for fuselage sheet applications exhibiting high mechanical strength, high toughness and high corrosion resistance, containing in% by weight, 2, 7 to 3.4 Cu, 0.8 to 1.4 Li, 0.1 to 0.8 Ag, 0.2 to 0.6 Mg and an element such as Zr, Mn, Cr, Sc , Hf, Ti or a combination thereof, the amount of which, in% by weight, is 0.05 to 0.13 for Zr, 0.05 to 0.8 for Mn, 0.05 to 0.3 for Cr and Sc, 0.05 to 0.5 for Hf and 0.05 to 0.15 for Ti.
  • the amount of Cu and Li is determined according to the formula Cu (% by weight) + 5/3 Li (% by weight) ⁇ 5.2.
  • thin sheets obtained with certain alloys exhibiting high properties at certain thicknesses may in certain cases have lower or anisotropic properties at another thickness, for example 2.5 mm. It is not it is often not industrially advantageous to use different alloys for different thicknesses and an alloy making it possible to achieve high and isotropic properties whatever the thickness would be particularly advantageous.
  • thin sheets in particular 0.5 to 9 mm thick, made of an aluminum-copper-lithium alloy having improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and in tenacity for the LT and TL directions, and this over the whole of this thickness range.
  • the object of the invention is a sheet of thickness 0.5 to 9 mm with an essentially recrystallized granular structure according to claim 1.
  • Another object of the invention is the method of manufacturing a sheet according to the invention of thickness 0.5 to 9 mm in aluminum-based alloy according to claim 10.
  • Yet another object of the invention is the use of a sheet according to the invention in a fuselage panel for an aircraft.
  • an essentially non-recrystallized granular structure is called a granular structure such that the rate of recrystallization at 1 ⁇ 2 thickness is less than 30% and preferably less than 10% and an essentially recrystallized granular structure is called a structure.
  • granular such that the rate of recrystallization at 1 ⁇ 2 thickness is greater than 70% and preferably greater than 90%.
  • the recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains. Grain sizes are measured according to ASTM E112.
  • the critical stress intensity factor K C in d ' other terms the intensity factor which makes the crack unstable, is calculated from the curve R.
  • the stress intensity factor K CO is also calculated by attributing the initial crack length to the onset of the monotonic load, to the critical load. These two values are calculated for a specimen of the required shape.
  • K app represents the factor Kco corresponding to the test piece which was used to carry out the curve test R.
  • K eff represents the factor K C corresponding to the test piece which was used to carry out the curve test R.
  • Kr60 represents the factor of effective stress intensity for an effective crack extension ⁇ aeff of 60 mm.
  • the crack size at the end of the fatigue pre-cracking stage is W / 3 for type M (T) specimens, where W is the width of the specimen as defined in the ASTM standard E561.
  • the copper content of the products according to the invention is between 2.8 and 3.2% by weight. In an advantageous embodiment of the invention, the copper content is between 2.9 and 3.1% by weight.
  • the lithium content of the products according to the invention is between 0.5 and 0.8% by weight and preferably between 0.55% and 0.75% by weight.
  • the lithium content is at least 0.6% by weight.
  • the lithium content is between 0.64% and 0.73% by weight.
  • the addition of lithium can contribute to the increase in mechanical strength and toughness, too high or too low a content does not make it possible to obtain a high value of toughness and / or a sufficient elastic limit.
  • the magnesium content of the products according to the invention is between 0.2 and 0.7% by weight, preferably between 0.3 and 0.5% by weight and preferably between 0.35 and 0.45%. in weight.
  • the manganese content is between 0.2 and 0.35% by weight and preferably between 0.25 and 0.35% by weight.
  • the addition of manganese in the claimed amount makes it possible to control the granular structure while avoiding the detrimental effect on the toughness that would generate too high a content.
  • the silver content is between 0.1 and 0.3% by weight. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.28% by weight.
  • the titanium content is between 0.01 and 0.15% by weight.
  • the titanium content is at least 0.02% by weight and preferably at least 0.03% by weight.
  • the titanium content is at most 0.1 % by weight and preferably not more than 0.05% by weight.
  • the iron and silicon contents are each at most 0.1% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.08% and preferably at most 0.04% by weight.
  • a controlled and limited iron and silicon content contributes to improving the trade-off between mechanical resistance and tolerance to damage.
  • the zinc content is less than 0.2% by weight and preferably less than 0.1% by weight.
  • the zinc content is advantageously less than 0.04% by weight.
  • Unavoidable impurities are kept at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
  • the zirconium content is less than or equal to 0.05% by weight, preferably less than or equal to 0.04% by weight and preferably less than or equal to 0.03% by weight.
  • the process for manufacturing sheets according to the invention comprises stages of production, casting, rolling, dissolving, quenching, controlled traction and tempering.
  • a liquid metal bath is produced so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then cast in a rolling plate form.
  • the rolling plate is then homogenized at a temperature between 480 ° C and 535 ° and preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C.
  • the homogenization time is preferably between 5 and 60 hours.
  • a homogenization temperature that is too low or the absence of homogenization does not make it possible to achieve improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and toughness for the LT and TL directions, over the whole of this thickness range.
  • the rolling plate is generally cooled to room temperature before being preheated with a view to being hot-deformed.
  • Preheating has for objective of reaching a temperature preferably between 400 and 500 ° C allowing deformation by hot rolling.
  • Hot rolling and optionally cold rolling is carried out so as to obtain a sheet thickness 0.5 to 9 mm.
  • a temperature above 400 ° C. is maintained up to the thickness of 20 mm and preferably a temperature above 450 ° C. up to the thickness of 20 mm.
  • Intermediate heat treatments during rolling and / or after rolling can be carried out in some cases.
  • the process does not include an intermediate heat treatment during rolling and / or after rolling.
  • the sheet thus obtained is then placed in solution by heat treatment between 450 and 535 ° C, preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C, preferably for 5 min to 2 hours , then soaked.
  • the duration of the solution is at most 1 hour so as to minimize the surface oxidation. It is known to those skilled in the art that the precise conditions for dissolving must be chosen as a function of the thickness and of the composition so as to place the hardening elements in solid solution.
  • the sheet then undergoes cold deformation by controlled traction with a permanent deformation of 0.5 to 5% and preferably of 1 to 3%.
  • steps such as rolling, leveling, smoothing, straightening and shaping can optionally be carried out after dissolving and quenching and before or after controlled traction, however total cold deformation after dissolving and quenching should remain below 15% and preferably below 10%. High cold deformations after dissolving and quenching in fact cause the appearance of numerous shear bands crossing several grains, these shear bands not being desirable.
  • the hardened sheet may be subjected to a smoothing or leveling step, before or after the controlled traction.
  • smoothing / leveling is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation less than or equal to 1%, making it possible to improve the flatness.
  • Tempering is carried out comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably 10 to 40 hours.
  • the final metallurgical state is a T8 state.
  • a short heat treatment is carried out after controlled traction and before tempering so as to improve the formability of the sheets.
  • the sheets can thus be shaped by a process such as stretch-forming before being returned.
  • the granular structure of the sheets according to the invention is essentially recrystallized.
  • the combination of the composition according to the invention and the transformation parameters makes it possible to control the anisotropy index of the recrystallized grains.
  • the sheets according to the invention are such that the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L / TC plane is less than 20, preferably less than 15 and preferably less than 10.
  • the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L plane / TC is less than or equal to 8, preferably less than or equal to 6 and preferably less than or equal to 4.
  • the present inventors believe that the combination between the composition, in particular the limited content of zirconium, the addition of manganese and the selected amount of magnesium and the transformation process, in particular the homogenization temperature and hot rolling, allows to obtain the claimed advantageous properties.
  • the resistance to corrosion, in particular to intergranular corrosion, to leaf corrosion and to stress corrosion, of the sheets according to the invention is high.
  • the sheet of the invention can be used without plating.
  • sheets according to the invention are advantageous.
  • the sheets according to the invention are also advantageous in aerospace applications such as the manufacture of rockets.
  • Al-Cu-Li alloy sheets were prepared. 7 plates whose composition is given in Table 1 were cast. Table 1. Composition in% by weight of the plates Alloy Cu Li Mg Zr Mn Ag Fe Yes Ti AT 3.2 0.73 0.68 0.14 ⁇ 0.01 0.26 0.03 0.04 0.03 B 3.0 0.70 0.64 0.17 ⁇ 0.01 0.27 0.02 0.03 0.03 VS 3.0 0.73 0.35 0.15 ⁇ 0.01 0.27 0.02 0.03 0.03 D 2.7 0.75 0.58 0.14 ⁇ 0.01 0.28 0.03 0.02 0.03 E 2.9 0.73 0.45 0.14 ⁇ 0.01 0.29 0.04 0.02 0.03 F 2.9 0.68 0.42 0.03 0.28 0.28 0.03 0.02 0.03 G 2.9 0.75 0.44 0.05 0.28 0.26 0.03 0.02 0.03
  • the plates were homogenized for 12 hours at 505 ° C.
  • the plates were hot rolled to obtain sheets with a thickness between 4.2 to 6.3 mm. Some sheets were then cold rolled to a thickness between 1.5 and 2.5 mm. Details of the sheets obtained and the tempering conditions are given in Table 2.
  • Table 2 detail of the sheets obtained and the tempering conditions Sheet metal Thickness after hot rolling (mm) Thickness after cold rolling (mm) Tempering time at 155 ° C (h) A # 1 4.2 - 36 A # 2 4.4 1.5 36 B # 1 4.6 - 36 B # 2 4.4 1.5 36 C # 1 4.3 - 24 C # 2 4.4 1.5 24 D # 1 4.3 - 40 D # 2 6.3 2.5 40 E # 1 4.3 - 36 E # 2 6.3 2.5 36 F # 1 4.2 - 28 F # 2 4.2 2.5 28 G # 1 4.2 - 28 G # 2 4.2 2.5 28
  • the sheets were put into solution at 505 ° C. then smoothed, pulled with a permanent elongation of 2% and tempered.
  • the tempering conditions are not all the same because the increase in the yield strength with the tempering time differs from one alloy to another. An attempt has been made to obtain a “peak” elasticity limit while limiting the period of tempering.
  • the income conditions are given in Table 2.
  • the granular structure of the samples was characterized from the microscopic observation of the cross sections after anodic oxidation under polarized light.
  • the grain structure of the plates was essentially non-recrystallized for all plates except for the D # 2 E # 2 F # 1, F # 2, G # 1 and G # 2 plates where the grain structure was essentially recrystallized.
  • the grain size was determined in the L / TC plane at mid-thickness according to the standard ASTM E112 by the method of intercepts from the microscopic observation of the cross sections after oxidation. anodic under polarized light.
  • the anisotropy index is the ratio of the grain size measured in the L direction divided by the grain size measured in the TC direction.
  • Table 3 Grain sizes measured for samples whose granular structure was essentially recrystallized Sheet metal Direction L ( ⁇ m) Direction TC ( ⁇ m) Anisotropy index D # 2 1260 21 60 E # 2 1100 23 48 F # 1 540 59 9 F # 2 135 37 4 G # 1 678 56 12 G # 2 317 46 7
  • the samples were mechanically tested to determine their static mechanical properties as well as their toughness.
  • the mechanical characteristics were measured at full thickness.
  • Table 4 Mechanical characteristics expressed in MPa (R ⁇ sub> p0,2 ⁇ /sub>, R ⁇ sub> m ⁇ /sub>) or in percentage (A%) Sheet metal R p0.2 (L) R m (L) A% (L) R p0.2 (TL) R m (TL) A% (TL) R m (L) / R m (TL) A # 1 469 513 12.2 439 481 15.8 1.07 A # 2 475 522 11.7 441 489 14.0 1.07 B # 1 431 483 13.5 419 462 16.1 1.05 B # 2 431 486 12.9 414 460 17.1 1.06 C # 1 430 471 13.6 411 455 15.5 1.04 C # 2 423 472 12.2 399 451 15.9 1.05 D # 1 420 462 13.0 384 428 16.3 1.08 D # 2 403 437 11.6 371 428 13.9 1.02
  • Table 5 summarizes the results of the toughness tests on 760 mm wide CCT specimens for these samples. Table 5 results of the R curves for the CCT specimens with a width of 760 mm.
  • FIGS. 1 and 2 illustrate the remarkable tenacity of Examples F and G according to the invention, in particular in the LT direction.
  • Examples F and G demonstrate that it is possible to obtain thin sheets according to the invention which exhibit improved and isotropic properties compared to those obtained from the other Examples A to E, and in particular compared to Example C , and this over a wide range of typical thickness of said thin sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne les produits laminés alliages aluminium-cuivre-lithium, plus particulièrement, de tels produits, leurs procédés de fabrication et d'utilisation, destinés notamment à la construction aéronautique et aérospatiale.The invention relates to aluminum-copper-lithium alloy rolled products, more particularly such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.

Etat de la techniqueState of the art

Des produits laminés en alliage d'aluminium sont développés pour produire des éléments de fuselage destinés notamment à l'industrie aéronautique et à l'industrie aérospatiale.Rolled aluminum alloy products are developed to produce fuselage elements intended in particular for the aeronautical industry and the aerospace industry.

Les alliages aluminium - cuivre - lithium sont particulièrement prometteurs pour fabriquer ce type de produit.Aluminum - copper - lithium alloys are particularly promising for manufacturing this type of product.

Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pour cent en poids, permet d'augmenter la résistance mécanique.The patent US 5,032,359 describes a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, increases the mechanical strength.

Le brevet US 5,455,003 décrit un procédé de fabrication d'alliages Al-Cu-Li qui présentent une résistance mécanique et une ténacité améliorées à température cryogénique, en particulier grâce à un écrouissage et un revenu appropriés. Ce brevet recommande en particulier la composition, en pourcentage en poids, Cu = 3,0 - 4,5, Li = 0,7 - 1,1, Ag = 0 - 0,6, Mg = 0,3-0,6 et Zn = 0 - 0,75.The patent US 5,455,003 describes a process for the manufacture of Al-Cu-Li alloys which exhibit improved mechanical strength and toughness at cryogenic temperature, in particular by means of suitable hardening and tempering. This patent recommends in particular the composition, in percentage by weight, Cu = 3.0 - 4.5, Li = 0.7 - 1.1, Ag = 0 - 0.6, Mg = 0.3-0.6 and Zn = 0 - 0.75.

Le brevet US 7,438,772 décrit des alliages comprenant, en pourcentage en poids, Cu : 3-5, Mg : 0,5-2, Li : 0,01-0,9 et décourage l'utilisation de teneurs en lithium plus élevées en raison d'une dégradation du compromis entre ténacité et résistance mécanique.The patent US 7,438,772 describes alloys comprising, in weight percent, Cu: 3-5, Mg: 0.5-2, Li: 0.01-0.9 and discourages the use of higher lithium contents due to degradation a compromise between toughness and mechanical resistance.

Le brevet US 7,229,509 décrit un alliage comprenant (% en poids) : (2,5-5,5) Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, 0,4 max Zr ou d'autres agents affinant le grain tels que Cr, Ti, Hf, Sc, V.The patent US 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.

La demande de brevet US 2009/142222 A1 décrit des alliages comprenant (en % en poids), 3,4 à 4,2% de Cu, 0,9 à 1,4 % de Li, 0,3 à 0,7 % de Ag, 0,1 à 0,6% de Mg, 0,2 à 0,8 % de Zn, 0,1 à 0,6 % de Mn et 0,01 à 0,6 % d'au moins un élément pour le contrôle de la structure granulaire. Cette demande décrit également un procédé de fabrication de produits filés.
La demande de brevet US 2011/0247730 décrit des alliages comprenant (en % en poids), 2.75 à 5.0% de Cu, 0,1 à 1,1 % de Li, 0,3 à 2.0 % de Ag, 0,2 à 0,8% de Mg, 0,50 à 1.5 % de Zn, jusque 1.0% de Mn, avec un rapport Cu/Mg compris entre 6,1 et 17, cet alliage étant peu sensible au corroyage.
La demande de brevet CN101967588 décrit des alliages de composition (en % en poids) Cu 2,8 - 4,0 ; Li 0,8 - 1,9 ; Mn 0,2-0,6 ; Zn 0,20 - 0,80, Zr 0,04 - 0,20, Mg 0,20 - 0,80, Ag 0,1 - 0,7, Si ≤ 0.10, Fe ≤ 0.10, Ti ≤ 0.12, elle enseigne l'addition combinée de zirconium et de manganèse.
La demande de brevet US 2011/209801 concerne des produits corroyé tels que des produits filés , laminés et/ou forgés, en alliage à base d'aluminium comprenant, en % en poids, Cu : 3,0-3,9 ;Li: 0,8-1,3 ; Mg : 0,6 - 1,0 ; Zr: 0,05-0,18 ; Ag : 0,0 - 0,5 ; Mn: 0,0 - 0,5; Fe + Si <= 0,20 ; au moins un élément parmi Ti : 0,01-0,15 ; Sc : 0,05 - 0,3 ; Cr : 0,05 - 0,3 ; Hf : 0,05 - 0, 5 ; autres éléments <= 0,05 chacun et <= 0,15 au total, reste aluminium, les produits étant particulièrement utiles pour réaliser des produits épais en aluminium destinés à réaliser des éléments de structure pour l'industrie aéronautique.
The patent application US 2009/142222 A1 describes alloys comprising (in weight%), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2-0.8% Zn, 0.1-0.6% Mn and 0.01-0.6% of at least one element for control of granular structure. This application also describes a process for manufacturing spun products.
The patent application US 2011/0247730 describes alloys comprising (in wt%), 2.75 to 5.0% Cu, 0.1 to 1.1% Li, 0.3 to 2.0% Ag, 0.2 to 0.8% Mg, 0 , 50 to 1.5% Zn, up to 1.0% Mn, with a Cu / Mg ratio of between 6.1 and 17, this alloy being not very sensitive to wringing.
The patent application CN101967588 describes alloys of composition (wt%) Cu 2.8 - 4.0; Li 0.8 - 1.9; Mn 0.2-0.6; Zn 0.20 - 0.80, Zr 0.04 - 0.20, Mg 0.20 - 0.80, Ag 0.1 - 0.7, Si ≤ 0.10, Fe ≤ 0.10, Ti ≤ 0.12, she teaches the combined addition of zirconium and manganese.
The patent application US 2011/209801 relates to wrought products such as extruded, rolled and / or forged products, made of an aluminum-based alloy comprising, in% by weight, Cu: 3.0-3.9; Li: 0.8-1.3; Mg: 0.6 - 1.0; Zr: 0.05-0.18; Ag: 0.0 - 0.5; Mn: 0.0 - 0.5; Fe + Si <= 0.20; at least one of Ti: 0.01-0.15; Sc: 0.05 - 0.3; Cr: 0.05 - 0.3; Hf: 0.05 - 0.5; other elements <= 0.05 each and <= 0.15 in total, remainder of aluminum, the products being particularly useful for producing thick aluminum products intended to produce structural elements for the aeronautical industry.

Les caractéristiques nécessaires pour les tôles d'aluminium destinées aux applications de fuselage sont décrites par exemple dans le brevet EP 1 891 247 . Il est souhaitable notamment que la tôle ait une limite d'élasticité élevée (pour résister au flambage) ainsi qu'une ténacité sous contrainte plane élevée, caractérisée notamment par une valeur élevée de facteur d'intensité de contrainte apparent à la rupture (Kapp) élevée et une longue courbe R.The characteristics required for aluminum sheets intended for fuselage applications are described for example in the patent EP 1,891,247 . It is particularly desirable that the sheet has a high elastic limit (to resist buckling) as well as a tenacity under high plane stress, characterized in particular by a high value of intensity factor of apparent stress at break (K app ) high and a long curve R.

Le brevet EP 1 966 402 décrit un alliage comprenant 2,1 à 2,8 % en poids de Cu, 1,1 à 1,7 % en poids de Li, 01 à 0,8 % en poids de Ag, 0,2 à 0,6 % en poids de Mg, 0,2 à 0,6 % en poids de Mn, une quantité de Fe et de Si inférieure ou égale à 0,1 % en poids chacun, et des impuretés inévitables à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total, l'alliage étant sensiblement exempt de zirconium, particulièrement adapté pour l'obtention de tôles minces recristallisées.The patent EP 1 966 402 describes an alloy comprising 2.1 to 2.8 wt% Cu, 1.1 to 1.7 wt% Li, 01 to 0.8 wt% Ag, 0.2 to 0.6 wt% weight of Mg, 0.2 to 0.6% by weight of Mn, an amount of Fe and Si less than or equal to 0.1% by weight each, and inevitable impurities at a content of less than or equal to 0.05 % by weight each and 0.15% by weight in total, the alloy being substantially free of zirconium, particularly suitable for obtaining recrystallized thin sheets.

WO2006131627 divulgue un alliage à base d'aluminium de faible densité utile dans une structure d'aéronef pour des applications de tôles de fuselage présentant une résistance mécanique élevée, une haute ténacité et une résistance élevée à la corrosion, contenant en% en poids, 2,7 à 3,4 de Cu, 0,8 à 1,4 de Li, 0,1 à 0,8 d'Ag, 0,2 à 0,6 de Mg et un élément tel que Zr, Mn, Cr, Sc, Hf, Ti ou une combinaison de ceux-ci, dont la quantité, en % en poids, est de 0,05 à 0,13 pour Zr, 0,05 à 0,8 pour Mn, 0,05 à 0,3 pour Cr et Sc, 0,05 à 0,5 pour Hf et 0,05 à 0,15 pour Ti. La quantité de Cu et de Li est déterminée selon la formule Cu (% en poids) + 5/3 Li (% en poids) <5,2. WO2006131627 discloses a low density aluminum-based alloy useful in an aircraft structure for fuselage sheet applications exhibiting high mechanical strength, high toughness and high corrosion resistance, containing in% by weight, 2, 7 to 3.4 Cu, 0.8 to 1.4 Li, 0.1 to 0.8 Ag, 0.2 to 0.6 Mg and an element such as Zr, Mn, Cr, Sc , Hf, Ti or a combination thereof, the amount of which, in% by weight, is 0.05 to 0.13 for Zr, 0.05 to 0.8 for Mn, 0.05 to 0.3 for Cr and Sc, 0.05 to 0.5 for Hf and 0.05 to 0.15 for Ti. The amount of Cu and Li is determined according to the formula Cu (% by weight) + 5/3 Li (% by weight) <5.2.

Tsivoulas D. et al. « Effects of combined Zr and Mn additions on dispersoid formation and recrystallization behaviour of 2198 » dans le journal "Advanced Materials Research" (Vol. 89-91, 2010, pp568-573 ) ont montré que l'addition de Mn à une tôle en alliage d'aluminium AA2198 contenant du Zr augmente la propension à la recristallisation.
Tsivoulas D. et al. "The effect of Mn and Zr dispersoid forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet" dans le journal "Acta Materialia" (77 (2014), pp1-16 ) ont mentionné que le pouvoir anti-recristallisant du Zr diminue avec l'addition de Mn et que cet effet augmente si la teneur en Zr diminue et la teneur en Mn augmente.
Les tôles de fuselage peuvent être sollicitées dans plusieurs directions et des tôles minces isotropes ayant des propriétés élevées et équilibrées en résistance mécanique dans les directions L et TL et en ténacité pour les directions L-T et T-L sont très recherchées. De plus on a constaté que des tôles minces obtenues avec certains alliages présentant des propriétés élevées à certaines épaisseurs, par exemple 4 mm peuvent dans certains cas avoir des propriétés moins élevées ou anisotropes à une autre épaisseur, par exemple 2,5 mm. Il n'est souvent pas avantageux industriellement d'utiliser des alliages différents pour différentes épaisseurs et un alliage permettant d'atteindre des propriétés élevées et isotropes quelle que soit l'épaisseur serait particulièrement avantageux.
Tsivoulas D. et al. “Effects of combined Zr and Mn additions on dispersoid formation and recrystallization behavior of 2198” in the journal “Advanced Materials Research” (Vol. 89-91, 2010, pp568-573 ) have shown that the addition of Mn to an AA2198 aluminum alloy sheet containing Zr increases the propensity for recrystallization.
Tsivoulas D. et al. "The effect of Mn and Zr dispersoid forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet" in the journal "Acta Materialia" (77 (2014), pp1-16 ) mentioned that the anti-recrystallizing power of Zr decreases with the addition of Mn and that this effect increases if the content of Zr decreases and the content of Mn increases.
The fuselage sheets can be stressed in several directions, and isotropic thin sheets having high and balanced properties in mechanical strength in the L and TL directions and in toughness for the LT and TL directions are in great demand. In addition, it has been observed that thin sheets obtained with certain alloys exhibiting high properties at certain thicknesses, for example 4 mm, may in certain cases have lower or anisotropic properties at another thickness, for example 2.5 mm. It is not it is often not industrially advantageous to use different alloys for different thicknesses and an alloy making it possible to achieve high and isotropic properties whatever the thickness would be particularly advantageous.

Il existe un besoin pour des tôles minces, notamment d'épaisseur 0,5 à 9 mm, en alliage aluminium-cuivre-lithium présentant des propriétés améliorées et isotropes par rapport à celles des produits connus, en particulier en termes en résistance mécanique dans les directions L et TL et en ténacité pour les directions L-T et T-L, et ce sur l'ensemble de cette gamme d'épaisseur.There is a need for thin sheets, in particular 0.5 to 9 mm thick, made of an aluminum-copper-lithium alloy having improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and in tenacity for the LT and TL directions, and this over the whole of this thickness range.

Objet de l'inventionObject of the invention

L'objet de l'invention est une tôle d'épaisseur 0,5 à 9 mm de structure granulaire essentiellement recristallisée selon la revendication 1.The object of the invention is a sheet of thickness 0.5 to 9 mm with an essentially recrystallized granular structure according to claim 1.

Un autre objet de l'invention est le procédé de fabrication d'une tôle selon l'invention d'épaisseur 0,5 à 9 mm en alliage à base d'aluminium selon la revendication 10.Another object of the invention is the method of manufacturing a sheet according to the invention of thickness 0.5 to 9 mm in aluminum-based alloy according to claim 10.

Encore un autre objet de l'invention est l'utilisation d'une tôle selon l'invention dans un panneau de fuselage pour aéronef.Yet another object of the invention is the use of a sheet according to the invention in a fuselage panel for an aircraft.

Description des figuresDescription of figures

  • Figure 1 - Courbes R obtenues dans la direction L-T sur des tôles d'épaisseur 4 à 5 mm pour des éprouvettes de largeur 760 mm. Figure 1 - R curves obtained in the LT direction on sheets 4 to 5 mm thick for specimens of 760 mm width.
  • Figure 2 - Courbes R obtenues dans la direction L-T sur des tôles d'épaisseur 1,5 à 2,5 mm pour des éprouvettes de largeur 760 mm. Figure 2 - R curves obtained in the LT direction on 1.5 to 2.5 mm thick sheets for 760 mm wide specimens.
Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. L'expression 1,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. Sauf mention contraire les définitions des états métallurgiques indiquées dans la norme européenne EN 515 s'appliquent.
Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. Dans le cadre de la présente invention, on appelle structure granulaire essentiellement non- -recristallisée une structure granulaire telle que le taux de recristallisation à ½ épaisseur est inférieur à 30% et de préférence inférieur à 10% et on appelle structure granulaire essentiellement recristallisée une structure granulaire telle que le taux de recristallisation à ½ épaisseur est supérieur à 70% et de préférence supérieur à 90%. Le taux de recristallisation est défini comme la fraction de surface sur une coupe métallographique occupée par des grains recristallisés.
Les tailles de grain sont mesurées selon la norme ASTM E112.
Unless otherwise indicated, all indications concerning the chemical composition of alloys are expressed as a percentage by weight based on the total weight of the alloy. The expression 1.4 Cu means that the copper content expressed in% by weight is multiplied by 1.4. The designation of the alloys is made in accordance with the regulations of The Aluminum Association, known to those skilled in the art. Unless stated otherwise, the definitions of metallurgical states given in European standard EN 515 apply.
The static mechanical properties in tension, in other words the tensile strength R m , the conventional yield strength at 0.2% elongation R p0.2 , and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and direction of the test being defined by standard EN 485-1. In the context of the present invention, an essentially non-recrystallized granular structure is called a granular structure such that the rate of recrystallization at ½ thickness is less than 30% and preferably less than 10% and an essentially recrystallized granular structure is called a structure. granular such that the rate of recrystallization at ½ thickness is greater than 70% and preferably greater than 90%. The recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains.
Grain sizes are measured according to ASTM E112.

Une courbe donnant le facteur d'intensité de contrainte effectif en fonction de l'extension de fissure effective, connue comme la courbe R, est déterminée selon la norme ASTM E 561. Le facteur d'intensité de contrainte critique KC, en d'autres termes le facteur d'intensité qui rend la fissure instable, est calculé à partir de la courbe R. Le facteur d'intensité de contrainte KCO est également calculé en attribuant la longueur de fissure initiale au commencement de la charge monotone, à la charge critique. Ces deux valeurs sont calculées pour une éprouvette de la forme requise. Kapp représente le facteur Kco correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. Keff représente le facteur KC correspondant à l'éprouvette qui a été utilisée pour effectuer l'essai de courbe R. Kr60 représente le facteur d'intensité de contrainte effectif pour une extension de fissure effective Δaeff de 60 mm. Sauf mention contraire, la taille de fissure à la fin du stade de pré-fissurage par fatigue est W/3 pour des éprouvettes du type M(T), dans laquelle W est la largeur de l'éprouvette telle que définie dans la norme ASTM E561.A curve giving the effective stress intensity factor as a function of the effective crack extension, known as the R curve, is determined according to ASTM E 561. The critical stress intensity factor K C , in d ' other terms the intensity factor which makes the crack unstable, is calculated from the curve R. The stress intensity factor K CO is also calculated by attributing the initial crack length to the onset of the monotonic load, to the critical load. These two values are calculated for a specimen of the required shape. K app represents the factor Kco corresponding to the test piece which was used to carry out the curve test R. K eff represents the factor K C corresponding to the test piece which was used to carry out the curve test R. Kr60 represents the factor of effective stress intensity for an effective crack extension Δaeff of 60 mm. Unless stated otherwise, the crack size at the end of the fatigue pre-cracking stage is W / 3 for type M (T) specimens, where W is the width of the specimen as defined in the ASTM standard E561.

Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.Unless stated otherwise, the definitions of standard EN 12258 apply.

La teneur en cuivre des produits selon l'invention est comprise entre 2,8 et 3,2 % en poids. Dans une réalisation avantageuse de l'invention, la teneur en cuivre est comprise entre 2,9 et 3,1 % en poids.The copper content of the products according to the invention is between 2.8 and 3.2% by weight. In an advantageous embodiment of the invention, the copper content is between 2.9 and 3.1% by weight.

La teneur en lithium des produits selon l'invention est comprise entre 0,5 et 0,8 % en poids et de préférence comprise entre 0,55 % et 0,75 % en poids. Avantageusement la teneur en lithium est au moins 0,6 % en poids. Dans un mode de réalisation de l'invention, la teneur en lithium est comprise entre 0,64 % et 0,73 % en poids. L'addition de lithium peut contribuer à l'augmentation de la résistance mécanique et de la ténacité, une teneur trop élevée ou trop faible ne permet pas d'obtenir une valeur élevée de ténacité et/ou une limite d'élasticité suffisante.The lithium content of the products according to the invention is between 0.5 and 0.8% by weight and preferably between 0.55% and 0.75% by weight. Advantageously, the lithium content is at least 0.6% by weight. In one embodiment of the invention, the lithium content is between 0.64% and 0.73% by weight. The addition of lithium can contribute to the increase in mechanical strength and toughness, too high or too low a content does not make it possible to obtain a high value of toughness and / or a sufficient elastic limit.

La teneur en magnésium des produits selon l'invention est comprise entre 0,2 et 0,7 % en poids, de préférence entre 0,3 et 0,5 % en poids et de manière préférée entre 0,35 et 0,45 % en poids.The magnesium content of the products according to the invention is between 0.2 and 0.7% by weight, preferably between 0.3 and 0.5% by weight and preferably between 0.35 and 0.45%. in weight.

La teneur en manganèse est comprise entre 0,2 et 0,35 % en poids et de préférence entre 0,25 et 0,35% en poids. L'addition de manganèse dans la quantité revendiquée permet de contrôler la structure granulaire tout en évitant l'effet néfaste sur la ténacité que génèrerait une teneur trop élevée.The manganese content is between 0.2 and 0.35% by weight and preferably between 0.25 and 0.35% by weight. The addition of manganese in the claimed amount makes it possible to control the granular structure while avoiding the detrimental effect on the toughness that would generate too high a content.

La teneur en argent est comprise entre 0,1 et 0,3 % en poids. Dans un mode de réalisation avantageux de l'invention la teneur en argent est comprise entre 0,15 et 0,28 % en poids.The silver content is between 0.1 and 0.3% by weight. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.28% by weight.

La teneur en titane est comprise entre 0,01 et 0,15 % en poids. Avantageusement la teneur en titane est au moins 0,02 % en poids et de manière préférée au moins 0,03 % en poids. Dans un mode de réalisation avantageux de l'invention la teneur en titane est au plus de 0,1 % en poids et de préférence au plus de 0,05 % en poids. L'addition de titane contribue à contrôler la structure granulaire, notamment lors de la coulée.The titanium content is between 0.01 and 0.15% by weight. Advantageously, the titanium content is at least 0.02% by weight and preferably at least 0.03% by weight. In an advantageous embodiment of the invention, the titanium content is at most 0.1 % by weight and preferably not more than 0.05% by weight. The addition of titanium helps to control the granular structure, especially during casting.

Les teneurs en fer et en silicium sont chacune au plus de 0,1 % en poids. Dans une réalisation avantageuse de l'invention les teneurs en fer et en silicium sont au plus de 0,08 % et préférentiellement au plus de 0,04 % en poids. Une teneur en fer et en silicium contrôlée et limitée contribue à l'amélioration du compromis entre résistance mécanique et tolérance aux dommages.The iron and silicon contents are each at most 0.1% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.08% and preferably at most 0.04% by weight. A controlled and limited iron and silicon content contributes to improving the trade-off between mechanical resistance and tolerance to damage.

La teneur en zinc est inférieure à 0,2 % en poids et de préférence inférieure à 0,1 % en poids. La teneur en zinc est avantageusement inférieure à 0,04 % en poids.
Les impuretés inévitables sont maintenues à une teneur inférieure ou égale à 0,05% en poids chacune et 0,15% en poids au total.
En particulier la teneur en zirconium est inférieure ou égale à 0,05 % en poids préférentiellement inférieure ou égale à 0,04 % en poids et de manière préférée inférieure ou égale à 0,03 % en poids.
Le procédé de fabrication des tôles selon l'invention comprend des étapes d'élaboration, coulée, laminage, mise en solution, trempe, traction contrôlée et revenu.
Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition selon l'invention.
Le bain de métal liquide est ensuite coulé sous une forme de plaque de laminage.
La plaque de laminage est ensuite homogénéisée à une température comprise entre 480°C et 535° et de préférence entre 490 °C et 530°C et de manière préférée entre 500 °C et 520 °C. La durée d'homogénéisation est de préférence comprise entre 5 et 60 heures.
Dans le cadre de l'invention, une température d'homogénéisation trop basse ou l'absence d'homogénéisation ne permet pas d'atteindre des propriétés améliorées et isotropes par rapport à celles des produits connus, en particulier en termes de résistance mécanique dans les directions L et TL et de ténacité pour les directions L-T et T-L, et ce sur l'ensemble de cette gamme d'épaisseur.
Après homogénéisation, la plaque de laminage est en général refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. Le préchauffage a pour objectif d'atteindre une température de préférence comprise entre 400 et 500 °C permettant la déformation par laminage à chaud.
Le laminage à chaud et optionnellement à froid est effectué de manière à obtenir une tôle d'épaisseur 0,5 à 9 mm.
Avantageusement, lors du laminage à chaud, on maintient une température supérieure à 400°C jusqu'à l'épaisseur 20 mm et de préférence une température supérieure à 450 °C jusqu'à l'épaisseur 20 mm. Des traitements thermiques intermédiaires pendant le laminage et/ou après le laminage peuvent être effectués dans certains cas. Cependant de manière préférée, le procédé ne comprend pas de traitement thermique intermédiaire pendant le laminage et/ou après le laminage. La tôle ainsi obtenue est ensuite mise en solution par traitement thermique entre 450 et 535 °C, de préférence entre 490 °C et 530°C et de manière préférée entre 500 °C et 520 °C, de préférence pendant 5 min à 2 heures, puis trempée. Avantageusement la durée de mise en solution est au plus de 1 heure de façon à minimiser l'oxydation de surface.
Il est connu de l'homme du métier que les conditions précises de mise en solution doivent être choisies en fonction de l'épaisseur et de la composition de façon à mettre en solution solide les éléments durcissants.
La tôle subit ensuite une déformation à froid par traction contrôlée avec une déformation permanente de 0,5 à 5 % et préférentiellement de 1 à 3 %. Des étapes connues telles que le laminage, le planage, le défripage, le redressage la mise en forme peuvent être optionnellement réalisées après mise en solution et trempe et avant ou après la traction contrôlée, cependant la déformation à froid totale après mise en solution et trempe doit rester inférieure à 15% et de préférence inférieure à 10%. Des déformations à froid élevées après mise en solution et trempe causent en effet l'apparition de nombreuses bandes de cisaillement traversant plusieurs grains, ces bandes de cisaillement n'étant pas souhaitables.
Typiquement, la tôle trempée peut est soumise à une étape de défripage ou de planage, avant ou après la traction contrôlée. On entend ici par « défripage/planage » une étape de déformation à froid sans déformation permanente ou avec une déformation permanente inférieure ou égale à 1%, permettant d'améliorer la planéité.
The zinc content is less than 0.2% by weight and preferably less than 0.1% by weight. The zinc content is advantageously less than 0.04% by weight.
Unavoidable impurities are kept at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
In particular, the zirconium content is less than or equal to 0.05% by weight, preferably less than or equal to 0.04% by weight and preferably less than or equal to 0.03% by weight.
The process for manufacturing sheets according to the invention comprises stages of production, casting, rolling, dissolving, quenching, controlled traction and tempering.
In a first step, a liquid metal bath is produced so as to obtain an aluminum alloy of composition according to the invention.
The liquid metal bath is then cast in a rolling plate form.
The rolling plate is then homogenized at a temperature between 480 ° C and 535 ° and preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C. The homogenization time is preferably between 5 and 60 hours.
In the context of the invention, a homogenization temperature that is too low or the absence of homogenization does not make it possible to achieve improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and toughness for the LT and TL directions, over the whole of this thickness range.
After homogenization, the rolling plate is generally cooled to room temperature before being preheated with a view to being hot-deformed. Preheating has for objective of reaching a temperature preferably between 400 and 500 ° C allowing deformation by hot rolling.
Hot rolling and optionally cold rolling is carried out so as to obtain a sheet thickness 0.5 to 9 mm.
Advantageously, during hot rolling, a temperature above 400 ° C. is maintained up to the thickness of 20 mm and preferably a temperature above 450 ° C. up to the thickness of 20 mm. Intermediate heat treatments during rolling and / or after rolling can be carried out in some cases. Preferably, however, the process does not include an intermediate heat treatment during rolling and / or after rolling. The sheet thus obtained is then placed in solution by heat treatment between 450 and 535 ° C, preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C, preferably for 5 min to 2 hours , then soaked. Advantageously, the duration of the solution is at most 1 hour so as to minimize the surface oxidation.
It is known to those skilled in the art that the precise conditions for dissolving must be chosen as a function of the thickness and of the composition so as to place the hardening elements in solid solution.
The sheet then undergoes cold deformation by controlled traction with a permanent deformation of 0.5 to 5% and preferably of 1 to 3%. Known steps such as rolling, leveling, smoothing, straightening and shaping can optionally be carried out after dissolving and quenching and before or after controlled traction, however total cold deformation after dissolving and quenching should remain below 15% and preferably below 10%. High cold deformations after dissolving and quenching in fact cause the appearance of numerous shear bands crossing several grains, these shear bands not being desirable.
Typically, the hardened sheet may be subjected to a smoothing or leveling step, before or after the controlled traction. The term “smoothing / leveling” is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation less than or equal to 1%, making it possible to improve the flatness.

Un revenu est réalisé comprenant un chauffage à une température comprise entre 130 et 170°C et de préférence entre 150 et 160°C pendant 5 à 100 heures et de préférence de 10 à 40 heures. De manière préférée, l'état métallurgique final est un état T8.Tempering is carried out comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably 10 to 40 hours. Preferably, the final metallurgical state is a T8 state.

Dans un mode de réalisation de l'invention, un traitement thermique court est réalisé après traction contrôlée et avant revenu de façon à améliorer la formabilité des tôles. Les tôles peuvent ainsi être mises en forme par un procédé tel que l'étirage-formage avant d'être revenues.In one embodiment of the invention, a short heat treatment is carried out after controlled traction and before tempering so as to improve the formability of the sheets. The sheets can thus be shaped by a process such as stretch-forming before being returned.

La structure granulaire des tôles selon l'invention est essentiellement recristallisée. La combinaison de la composition selon l'invention et des paramètres de transformation permet de contrôler l'indice d'anisotropie des grains recristallisés. Ainsi les tôles selon l'invention sont telles que l'indice d'anisotropie des grains mesuré à mi-épaisseur selon la norme ASTM E112 par la méthode des intercepts dans le plan L/TC est inférieur à 20, de préférence inférieur à 15 et de manière préférée inférieur à 10. Avantageusement pour les tôles dont l'épaisseur est inférieure ou égale à 3 mm, l'indice d'anisotropie des grains mesuré à mi-épaisseur selon la norme ASTM E112 par la méthode des intercepts dans le plan L/TC est inférieur ou égale à 8, de préférence inférieur ou égal à 6 et de manière préférée inférieur ou égal à 4.The granular structure of the sheets according to the invention is essentially recrystallized. The combination of the composition according to the invention and the transformation parameters makes it possible to control the anisotropy index of the recrystallized grains. Thus the sheets according to the invention are such that the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L / TC plane is less than 20, preferably less than 15 and preferably less than 10. Advantageously for sheets whose thickness is less than or equal to 3 mm, the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L plane / TC is less than or equal to 8, preferably less than or equal to 6 and preferably less than or equal to 4.

Les tôles selon l'invention ont des propriétés avantageuses quelle que soit l'épaisseur des produits.
Les tôles selon l'invention dont l'épaisseur est comprise entre 0,5 et 9 mm et particulièrement entre 1,5 et 6 mm présentent avantageusement à l'état T8 au moins un des couples de propriétés suivantes

  • une ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T et dans la direction T-L d'au moins 140 MPa√m et préférentiellement d'au moins 150 MPa√m et une limite RP0,2 dans les directions L et TL d'au moins 360 MPa et de préférence d'au moins 365 MPa,
  • une ténacité en contrainte plane Kr60, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans la direction L-T et dans la direction T-L supérieur à 190 MPa√m et préférentiellement supérieur à 200 MPa√m et une résistance à rupture Rm dans les directions L et TL d'au moins 410 MPa et de préférence d'au moins 415 MPa,
    et au moins une des propriétés suivantes :
    • un rapport entre la ténacité en contrainte plane Kapp, mesurée sur des éprouvettes de type CCT760 (2ao = 253 mm), dans les direction T-L et L-T, Kapp(T-L) / Kapp (L-T), compris entre 0,85 et 1,15 et de préférence entre 0,90 et 1,10
    • un rapport entre la résistance à rupture Rm dans les directions L et TL, Rm(L) / Rm(TL), inférieur à 1,06 et de préférence inférieur à 1,05.
The sheets according to the invention have advantageous properties whatever the thickness of the products.
The sheets according to the invention, the thickness of which is between 0.5 and 9 mm and particularly between 1.5 and 6 mm, advantageously exhibit in the T8 state at least one of the following pairs of properties
  • a plane stress tenacity Kapp, measured on specimens of the CCT760 type (2ao = 253 mm), in the LT direction and in the TL direction of at least 140 MPa√m and preferably at least 150 MPa√m and a limit R P0.2 in the L and TL directions of at least 360 MPa and preferably at least 365 MPa,
  • a plane stress tenacity Kr60, measured on specimens of the CCT760 type (2ao = 253 mm), in the LT direction and in the TL direction greater than 190 MPa√m and preferably greater than 200 MPa√m and a tensile strength Rm in the L and TL directions of at least 410 MPa and preferably at least 415 MPa,
    and at least one of the following properties:
    • a ratio between the tenacity in plane stress Kapp, measured on specimens of type CCT760 (2ao = 253 mm), in the direction TL and LT, Kapp (TL) / Kapp (LT), between 0.85 and 1.15 and preferably between 0.90 and 1.10
    • a ratio between the breaking strength Rm in the L and TL directions, Rm (L) / Rm (TL), less than 1.06 and preferably less than 1.05.

Sans être liés à une théorie particulière, les présents inventeurs pensent que la combinaison entre la composition, notamment la teneur limitée de zirconium, l'addition de manganèse et la quantité choisie de magnésium et le procédé de transformation, notamment la température d'homogénéisation et de laminage à chaud, permet d'obtenir les propriétés avantageuses revendiquées.Without being bound by a particular theory, the present inventors believe that the combination between the composition, in particular the limited content of zirconium, the addition of manganese and the selected amount of magnesium and the transformation process, in particular the homogenization temperature and hot rolling, allows to obtain the claimed advantageous properties.

La résistance à la corrosion, en particulier à la corrosion intergranulaire, à la corrosion feuillante ainsi qu'à la corrosion sous contrainte, des tôles selon l'invention est élevée. Dans un mode de réalisation préféré de l'invention, la tôle de l'invention peut être utilisée sans placage.The resistance to corrosion, in particular to intergranular corrosion, to leaf corrosion and to stress corrosion, of the sheets according to the invention is high. In a preferred embodiment of the invention, the sheet of the invention can be used without plating.

L'utilisation de tôles selon l'invention dans un panneau de fuselage pour aéronef est avantageuse. Les tôles selon l'invention sont également avantageuses dans les applications aérospatiales telles que la fabrication de fusées.The use of sheets according to the invention in a fuselage panel for an aircraft is advantageous. The sheets according to the invention are also advantageous in aerospace applications such as the manufacture of rockets.

ExempleExample

Dans cet exemple, des tôles en alliage Al-Cu-Li ont été préparées. 7 plaques dont la composition est donnée dans le tableau 1 ont été coulées. Tableau 1. Composition en % en poids des plaques Alliage Cu Li Mg Zr Mn Ag Fe Si Ti A 3,2 0,73 0,68 0,14 < 0,01 0,26 0,03 0,04 0,03 B 3,0 0,70 0,64 0,17 < 0,01 0,27 0,02 0,03 0,03 C 3,0 0,73 0,35 0,15 < 0,01 0,27 0,02 0,03 0,03 D 2,7 0,75 0,58 0,14 < 0,01 0,28 0,03 0,02 0,03 E 2,9 0,73 0,45 0,14 < 0,01 0,29 0,04 0,02 0,03 F 2,9 0,68 0,42 0,03 0,28 0,28 0,03 0,02 0,03 G 2,9 0,75 0,44 0,05 0,28 0,26 0,03 0,02 0,03 In this example, Al-Cu-Li alloy sheets were prepared. 7 plates whose composition is given in Table 1 were cast. Table 1. Composition in% by weight of the plates Alloy Cu Li Mg Zr Mn Ag Fe Yes Ti AT 3.2 0.73 0.68 0.14 <0.01 0.26 0.03 0.04 0.03 B 3.0 0.70 0.64 0.17 <0.01 0.27 0.02 0.03 0.03 VS 3.0 0.73 0.35 0.15 <0.01 0.27 0.02 0.03 0.03 D 2.7 0.75 0.58 0.14 <0.01 0.28 0.03 0.02 0.03 E 2.9 0.73 0.45 0.14 <0.01 0.29 0.04 0.02 0.03 F 2.9 0.68 0.42 0.03 0.28 0.28 0.03 0.02 0.03 G 2.9 0.75 0.44 0.05 0.28 0.26 0.03 0.02 0.03

Les plaques ont été homogénéisées 12 heures à 505 °C. Les plaques ont été laminées à chaud pour obtenir des tôles d'épaisseur comprise entre 4,2 à 6,3 mm. Certaines tôles ont ensuite été laminées à froid jusqu'à une épaisseur comprise entre 1,5 et 2,5 mm. Le détail des tôles obtenues et des conditions de revenu est donné dans le tableau 2. Tableau 2 : détail des tôles obtenues et des conditions de revenu Tôle Epaisseur après laminage à chaud (mm) Epaisseur après laminage à froid (mm) Durée de revenu à 155 °C (h) A#1 4,2 - 36 A#2 4,4 1,5 36 B#1 4,6 - 36 B#2 4,4 1,5 36 C#1 4,3 - 24 C#2 4,4 1,5 24 D#1 4,3 - 40 D#2 6,3 2,5 40 E#1 4,3 - 36 E#2 6,3 2,5 36 F#1 4,2 - 28 F#2 4,2 2,5 28 G#1 4,2 - 28 G#2 4,2 2,5 28 The plates were homogenized for 12 hours at 505 ° C. The plates were hot rolled to obtain sheets with a thickness between 4.2 to 6.3 mm. Some sheets were then cold rolled to a thickness between 1.5 and 2.5 mm. Details of the sheets obtained and the tempering conditions are given in Table 2. Table 2: detail of the sheets obtained and the tempering conditions Sheet metal Thickness after hot rolling (mm) Thickness after cold rolling (mm) Tempering time at 155 ° C (h) A # 1 4.2 - 36 A # 2 4.4 1.5 36 B # 1 4.6 - 36 B # 2 4.4 1.5 36 C # 1 4.3 - 24 C # 2 4.4 1.5 24 D # 1 4.3 - 40 D # 2 6.3 2.5 40 E # 1 4.3 - 36 E # 2 6.3 2.5 36 F # 1 4.2 - 28 F # 2 4.2 2.5 28 G # 1 4.2 - 28 G # 2 4.2 2.5 28

Après laminage à chaud et éventuellement à froid, les tôles ont été mises en solution à 505 °C puis défripées, tractionnées avec un allongement permanent de 2% et revenues. Les conditions de revenu ne sont pas toutes identiques car l'augmentation de la limite d'élasticité avec la durée de revenu diffère d'un alliage à l'autre. On a cherché à obtenir une limite d'élasticité « au pic » tout en limitant la durée de revenu. Les conditions de revenu sont données dans le Tableau 2.After hot and optionally cold rolling, the sheets were put into solution at 505 ° C. then smoothed, pulled with a permanent elongation of 2% and tempered. The tempering conditions are not all the same because the increase in the yield strength with the tempering time differs from one alloy to another. An attempt has been made to obtain a “peak” elasticity limit while limiting the period of tempering. The income conditions are given in Table 2.

La structure granulaire des échantillons a été caractérisée à partir de l'observation microscopique des sections transversales après oxydation anodique sous lumière polarisée. La structure granulaire des tôles était essentiellement non-recristallisée pour toutes les tôles à l'exception des tôles D#2 E#2 F#1, F#2, G#1 et G#2 pour lesquelles la structure granulaire était essentiellement recristallisée.
Pour les tôles dont la structure granulaire était essentiellement recristallisée, la taille des grains a été déterminée dans le plan L/TC à mi-épaisseur selon la norme ASTM E112 par la méthode des intercepts à partir de l'observation microscopique des sections transversales après oxydation anodique sous lumière polarisée. L'indice d'anisotropie est le rapport de la taille de grain mesurée dans la direction L divisé par la taille de grain mesurée dans la direction TC. Les résultats sont présentés dans le Tableau 3. Tableau 3 : Tailles de grains mesurées pour les échantillons dont la structure granulaire était essentiellement recristallisée Tôle Direction L (µm) Direction TC (µm) Indice d'anisotropie D#2 1260 21 60 E#2 1100 23 48 F#1 540 59 9 F#2 135 37 4 G#1 678 56 12 G#2 317 46 7
The granular structure of the samples was characterized from the microscopic observation of the cross sections after anodic oxidation under polarized light. The grain structure of the plates was essentially non-recrystallized for all plates except for the D # 2 E # 2 F # 1, F # 2, G # 1 and G # 2 plates where the grain structure was essentially recrystallized.
For sheets whose granular structure was essentially recrystallized, the grain size was determined in the L / TC plane at mid-thickness according to the standard ASTM E112 by the method of intercepts from the microscopic observation of the cross sections after oxidation. anodic under polarized light. The anisotropy index is the ratio of the grain size measured in the L direction divided by the grain size measured in the TC direction. The results are shown in Table 3. Table 3: Grain sizes measured for samples whose granular structure was essentially recrystallized Sheet metal Direction L (µm) Direction TC (µm) Anisotropy index D # 2 1260 21 60 E # 2 1100 23 48 F # 1 540 59 9 F # 2 135 37 4 G # 1 678 56 12 G # 2 317 46 7

Les échantillons ont été testés mécaniquement afin de déterminer leurs propriétés mécaniques statiques ainsi que leur ténacité. Les caractéristiques mécaniques ont été mesurées en pleine épaisseur.The samples were mechanically tested to determine their static mechanical properties as well as their toughness. The mechanical characteristics were measured at full thickness.

La limite d'élasticité en traction, la résistance ultime et l'allongement à la rupture sont fournis dans le tableau 4. Tableau 4 : Caractéristiques mécaniques exprimées en MPa (Rp0,2, Rm) ou en pourcentage (A%) Tôle Rp0,2 (L) Rm(L) A%(L) Rp0,2 (TL) Rm(TL) A%(TL) Rm(L)/ Rm(TL) A#1 469 513 12,2 439 481 15,8 1,07 A#2 475 522 11,7 441 489 14,0 1,07 B#1 431 483 13,5 419 462 16,1 1,05 B#2 431 486 12,9 414 460 17,1 1,06 C#1 430 471 13,6 411 455 15,5 1,04 C#2 423 472 12,2 399 451 15,9 1,05 D#1 420 462 13,0 384 428 16,3 1,08 D#2 403 437 11,6 371 428 13,9 1,02 E#1 453 487 12,5 428 464 15,9 1,05 E#2 433 464 11,4 395 458 11,4 1,01 F#1 392 430 12.5 369 420 12.4 1,02 F#2 400 437 11.9 368 419 13.4 1,04 G#1 402 432 13.4 372 424 12.7 1,02 G#2 412 440 12.9 378 426 13.1 1,03 The tensile yield strength, ultimate strength and elongation at break are provided in Table 4. Table 4: Mechanical characteristics expressed in MPa (R <sub> p0,2 </sub>, R <sub> m </sub>) or in percentage (A%) Sheet metal R p0.2 (L) R m (L) A% (L) R p0.2 (TL) R m (TL) A% (TL) R m (L) / R m (TL) A # 1 469 513 12.2 439 481 15.8 1.07 A # 2 475 522 11.7 441 489 14.0 1.07 B # 1 431 483 13.5 419 462 16.1 1.05 B # 2 431 486 12.9 414 460 17.1 1.06 C # 1 430 471 13.6 411 455 15.5 1.04 C # 2 423 472 12.2 399 451 15.9 1.05 D # 1 420 462 13.0 384 428 16.3 1.08 D # 2 403 437 11.6 371 428 13.9 1.02 E # 1 453 487 12.5 428 464 15.9 1.05 E # 2 433 464 11.4 395 458 11.4 1.01 F # 1 392 430 12.5 369 420 12.4 1.02 F # 2 400 437 11.9 368 419 13.4 1.04 G # 1 402 432 13.4 372 424 12.7 1.02 G # 2 412 440 12.9 378 426 13.1 1.03

Le tableau 5 résume les résultats des essais de ténacité sur des éprouvettes CCT de largeur 760 mm pour ces échantillons. Tableau 5 résultats des courbes R pour les éprouvettes CCT de largeur 760 mm. Tôle Kapp Kr60 Kapp(T-L) / Kapp (L-T) [MPa√m] [MPa√m] T-L L-T T-L L-T A#1 187 161 247 213 1,16 A#2 160 114 210 151 1,40 B#1 180 178 238 238 1,01 B#2 167 124 223 166 1,35 C#1 182 165 242 219 1,10 C#2 154 127 203 162 1,21 D#1 174 150 230 200 1,16 D#2 147 151 196 201 0,97 E#1 181 159 240 213 1,14 E#2 137 164 181 219 0,84 F#1 154 169 203 223 0,91 F#2 158 168 208 224 0,94 G#1 153 172 202 228 0,89 G#2 158 172 208 229 0,92 Table 5 summarizes the results of the toughness tests on 760 mm wide CCT specimens for these samples. Table 5 results of the R curves for the CCT specimens with a width of 760 mm. Sheet metal Kapp Kr60 Kapp (TL) / Kapp (LT) [MPa√m] [MPa√m] TL LT TL LT A # 1 187 161 247 213 1.16 A # 2 160 114 210 151 1.40 B # 1 180 178 238 238 1.01 B # 2 167 124 223 166 1.35 C # 1 182 165 242 219 1.10 C # 2 154 127 203 162 1.21 D # 1 174 150 230 200 1.16 D # 2 147 151 196 201 0.97 E # 1 181 159 240 213 1.14 E # 2 137 164 181 219 0.84 F # 1 154 169 203 223 0.91 F # 2 158 168 208 224 0.94 G # 1 153 172 202 228 0.89 G # 2 158 172 208 229 0.92

Les Figures 1 et 2 illustrent la remarquable ténacité des exemples F et G selon l'invention notamment dans la direction L-T.
Les exemples F et G démontrent que l'on peut obtenir des tôles minces selon l'invention qui présentent des propriétés améliorées et isotropes par rapport à celles obtenues à partir des autres exemples A à E, et en particulier par rapport à l'exemple C, et ce sur une large gamme d'épaisseur typique desdites tôles minces.
The Figures 1 and 2 illustrate the remarkable tenacity of Examples F and G according to the invention, in particular in the LT direction.
Examples F and G demonstrate that it is possible to obtain thin sheets according to the invention which exhibit improved and isotropic properties compared to those obtained from the other Examples A to E, and in particular compared to Example C , and this over a wide range of typical thickness of said thin sheets.

Claims (13)

  1. Plate having a thickness from 0.5 to 9 mm and a granular structure such that the degree of recrystallisation at half thickness is greater than 70% where the degree of recrystallisation is the proportion of surface on a metallographic section occupied by recrystallised grains, made from an aluminium-based alloy comprising
    2.8 to 3.2% by weight Cu,
    0.5 to 0.8% by weight Li,
    0.1 to 0.3% by weight Ag,
    0.2 to 0.7% by weight Mg,
    0.2 to 0.35% by weight Mn,
    0.01 to 0.15% by weight Ti,
    a quantity of Zn of less than 0.2% by weight, a quantity of Fe and Si of less than or equal to 0.1% by weight each, and unavoidable impurities, including zirconium, to a proportion of less than or equal to 0.05% by weight each and 0.15% by weight in total, the remainder aluminium,
    said plate being obtained by a method comprising casting, homogenisation, hot rolling and optionally cold rolling, solution heat treatment, quenching and aging.
  2. Plate according to claim 1, the copper content of which is between 2.9 and 3.1% by weight.
  3. Plate according to claim 1 or claim 2, the lithium content of which is between 0.55 and 0.75% by weight and preferably between 0.64 and 0.73% by weight.
  4. Plate according to any of claims 1 to 3, the silver content of which is between 0.15 and 0.28% by weight.
  5. Plate according to any of claims 1 to 4, the magnesium content of which is between 0.3 and 0.5% by weight and preferably between 0.35 and 0.45% by weight.
  6. Plate according to any of claims 1 to 5, the zirconium content of which is less than or equal to 0.03% by weight.
  7. Plate according to any of claims 1 to 6, the manganese content of which is between 0.25 and 0.35% by weight.
  8. Plate according to any of claims 1 to 7, characterised in that the anisotropy index of the grains measured at half thickness in accordance with ASTM E112 by the intercept method in the L/TC plane is less than 20, and preferably less than 15 and preferably less than 10.
  9. Plate according to any of claims 1 to 8, the thickness of which is between 0.5 and 9 mm and particularly between 1.5 and 6 mm have in the T8 temper at least one of the following pairs of properties:
    - a toughness under plane strain stress Kapp, measured in accordance with ASTM E 561 on test pieces of the CCT760 2ao = 253 mm type, in the L-T direction and in the T-L direction, of at least 140 MPa√m and preferentially at least 150 MPa√m and a tensile yield strength RP0.2 measured in accordance with NF EN ISO 6892-1 in the L and TL directions in accordance with EN 485-1 of at least 360 MPa and preferably at least 365 MPa,
    - a toughness under plane strain stress Kr60, measured in accordance with ASTM E 561 on test pieces of the CCT760 2ao = 253 mm type, in the L-T direction and in the T-L direction, greater than 190 MPa√m and preferentially greater than 200 MPa√m and an ultimate tensile strength Rm measured in accordance with NF EN ISO 6892-1 in the L and TL directions in accordance with EN 485-1 of at least 410 MPa and preferably at least 415 MPa,
    and at least one of the following properties:
    - a ratio between the toughness under plane strain stress Kapp, measured in accordance with ASTM E 561 on test pieces of the CCT760 2ao = 253 mm type, in the T-L and L-T directions, Kapp (T-L) /Kapp (L-T), of between 0.85 and 1.15 and preferably between 0.90 and 1.10
    - a ratio between the ultimate tensile strength Rm measured in accordance with NF EN ISO 6892-1 in the L and TL directions in accordance with EN485-1, Rm(L)/Rm(TL), of less than 1.06 and preferably less than 1.05.
  10. Method for manufacturing a plate with a thickness of 0.5 to 9 mm according to any of claims 1 to 8, in which, successively
    a) a liquid metal bath is produced so as to obtain an aluminium alloy comprising
    2.8 to 3.2% by weight Cu,
    0.5 to 0.8% by weight Li,
    0.1 to 0.3% by weight Ag,
    0.2 to 0.7% by weight Mg,
    0.2 to 0.35% by weight Mn,
    0.01 to 0.15% by weight Ti,
    a quantity of Zn of less than 0.2% by weight, a quantity of Fe and Si of less than or equal to 0.1% by weight each, and unavoidable impurities, including zirconium, to a proportion of less than or equal to 0.05% by weight each and 0.15% by weight in total, the remainder aluminium;
    b) an ingot is cast from said bath of liquid metal;
    c) said ingot is homogenised at a temperature of between 480°C and 535°C;
    d) said ingot is rolled by hot rolling and optionally cold rolling into a plate having a thickness of between 0.5 mm and 9 mm;
    e) solution heat treatment is carried out at a temperature of between 450°C and 535°C and said plate is quenched;
    h) said plate is stretched in a controlled manner with a permanent deformation set of 0.5 to 5%, the total cold deformation set after solution heat treatment and quenching being less than 15%;
    i) aging is carried out, comprising heating to a temperature of between 130° and 170°C and preferably between 150° and 160°C for 5 to 100 hours and preferably 10 to 40 hours.
  11. Method according to claim 10, in which the homogenisation temperature is between 490° and 530°C and preferably between 500° and 520°C.
  12. Method according to claim 10 or claim 11, in which, during the hot rolling, a temperature above 400° is maintained up to the thickness of 20 mm and preferably a temperature of 450° up to the thickness of 20 mm.
  13. Use of a plate according to any of claims 1 to 9 in an aircraft fuselage panel.
EP15784082.8A 2014-10-03 2015-10-01 Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same Active EP3201372B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402237A FR3026747B1 (en) 2014-10-03 2014-10-03 ALUMINUM-COPPER-LITHIUM ALLOY ISOTROPES FOR THE MANUFACTURE OF AIRCRAFT FUSELAGES
PCT/FR2015/052634 WO2016051099A1 (en) 2014-10-03 2015-10-01 Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages

Publications (2)

Publication Number Publication Date
EP3201372A1 EP3201372A1 (en) 2017-08-09
EP3201372B1 true EP3201372B1 (en) 2021-01-27

Family

ID=52423759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15784082.8A Active EP3201372B1 (en) 2014-10-03 2015-10-01 Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same

Country Status (8)

Country Link
US (1) US11174535B2 (en)
EP (1) EP3201372B1 (en)
JP (1) JP6692803B2 (en)
CN (1) CN106795595A (en)
BR (1) BR112017006071B1 (en)
CA (1) CA2961712C (en)
FR (1) FR3026747B1 (en)
WO (1) WO2016051099A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
MX2019004494A (en) 2016-10-24 2019-12-18 Shape Corp Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components.
FR3067044B1 (en) * 2017-06-06 2019-06-28 Constellium Issoire ALUMINUM ALLOY COMPRISING LITHIUM WITH IMPROVED FATIGUE PROPERTIES
FR3080861B1 (en) * 2018-05-02 2021-03-19 Constellium Issoire METHOD OF MANUFACTURING AN ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY
BR112021017270A2 (en) * 2019-05-28 2021-11-09 Aleris Rolled Prod Germany Gmbh 2xxx series coating aerospace product
CN110423927A (en) * 2019-07-17 2019-11-08 中南大学 A kind of Ultrahigh strength aluminum lithium alloy and preparation method thereof
FR3104172B1 (en) * 2019-12-06 2022-04-29 Constellium Issoire Aluminum-copper-lithium alloy thin sheets with improved toughness and manufacturing method
CN112195376A (en) * 2020-09-11 2021-01-08 中铝材料应用研究院有限公司 6xxx series aluminum alloy plate for high-strength automobile body and preparation method thereof
FR3132306B1 (en) * 2022-01-28 2024-05-03 Constellium Issoire Improved aluminum-copper-lithium alloy thin sheet metal

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US7438772B2 (en) 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
DE04753337T1 (en) 2003-05-28 2007-11-08 Alcan Rolled Products Ravenswood LLC, Ravenswood NEW AL-CU-LI-MG-AG-MN-ZR ALLOY FOR CONSTRUCTION APPLICATIONS REQUIRING HIGH STRENGTH AND HIGH BROKENNESS
CN101189353A (en) * 2005-06-06 2008-05-28 爱尔康何纳吕公司 High-strength aluminum-copper-lithium sheet metal for aircraft fuselages
FR2889542B1 (en) * 2005-08-05 2007-10-12 Pechiney Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
RU2415960C2 (en) * 2005-06-06 2011-04-10 Алкан Реналю Aluminium-copper-lithium sheet with high crack resistance for aircraft fuselage
FR2894985B1 (en) 2005-12-20 2008-01-18 Alcan Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
CA2700250C (en) * 2007-09-21 2016-06-28 Aleris Aluminum Koblenz Gmbh Al-cu-li alloy product suitable for aerospace application
CN104674090A (en) 2007-12-04 2015-06-03 美铝公司 Improved aluminum-copper-lithium alloys
FR2947282B1 (en) * 2009-06-25 2011-08-05 Alcan Rhenalu LITHIUM COPPER ALUMINUM ALLOY WITH IMPROVED MECHANICAL RESISTANCE AND TENACITY
CA2793885C (en) 2010-04-12 2016-03-15 Cagatay Yanar 2xxx series aluminum lithium alloys having low strength differential
FR2960002B1 (en) * 2010-05-12 2013-12-20 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY FOR INTRADOS ELEMENT.
CN102021457B (en) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 High-toughness aluminum lithium alloy and preparation method thereof
CN101967588B (en) 2010-10-27 2012-08-29 中国航空工业集团公司北京航空材料研究院 Damage-resistant aluminum-lithium alloy and preparation method thereof
FR2981365B1 (en) * 2011-10-14 2018-01-12 Constellium Issoire PROCESS FOR THE IMPROVED TRANSFORMATION OF AL-CU-LI ALLOY SHEET
CN103173700B (en) * 2013-03-15 2016-01-06 中国航空工业集团公司北京航空材料研究院 The preparation method of surface deintercalation layer of Al-Cu-Li-X aluminium-lithium alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112017006071B1 (en) 2021-05-04
US11174535B2 (en) 2021-11-16
JP6692803B2 (en) 2020-05-13
CA2961712A1 (en) 2016-04-07
CA2961712C (en) 2022-11-01
FR3026747A1 (en) 2016-04-08
BR112017006071A2 (en) 2017-12-12
EP3201372A1 (en) 2017-08-09
US20170306454A1 (en) 2017-10-26
FR3026747B1 (en) 2016-11-04
JP2017534757A (en) 2017-11-24
WO2016051099A1 (en) 2016-04-07
CN106795595A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
EP2766503B1 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP1766102B1 (en) Method for making high-tenacity and high-fatigue strength aluminium alloy products
EP2697406B1 (en) Aluminium-copper-magnesium alloys that perform well at high temperature
EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP2981632B1 (en) Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
FR3007423A1 (en) EXTRADOS STRUCTURE ELEMENT IN ALUMINUM COPPER LITHIUM ALUMINUM
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP3728667B1 (en) Improved process for manufacturing sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture and corresponding sheet
FR3111143A1 (en) High temperature performance aluminum copper magnesium alloy products
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
EP3802897B1 (en) Thin sheets made of aluminium-copper-lithium alloy for aircraft fuselage manufacture
FR3132306A1 (en) Aluminum-Copper-Lithium Alloy Enhanced Thin Sheet

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190618

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200909

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015065262

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015065262

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1358409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151001

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 9

Ref country code: DE

Payment date: 20231027

Year of fee payment: 9

Ref country code: AT

Payment date: 20230920

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127