EP3201372B1 - Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon - Google Patents
Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon Download PDFInfo
- Publication number
- EP3201372B1 EP3201372B1 EP15784082.8A EP15784082A EP3201372B1 EP 3201372 B1 EP3201372 B1 EP 3201372B1 EP 15784082 A EP15784082 A EP 15784082A EP 3201372 B1 EP3201372 B1 EP 3201372B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- less
- mpa
- accordance
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000001989 lithium alloy Substances 0.000 title description 7
- 229910000733 Li alloy Inorganic materials 0.000 title description 5
- -1 aluminium-copper-lithium Chemical compound 0.000 title description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 19
- 239000011777 magnesium Substances 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000001953 recrystallisation Methods 0.000 claims description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 7
- 238000000265 homogenisation Methods 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 238000010791 quenching Methods 0.000 claims description 6
- 230000000171 quenching effect Effects 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 238000005097 cold rolling Methods 0.000 claims description 5
- 239000010455 vermiculite Substances 0.000 claims description 5
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 3
- 230000035882 stress Effects 0.000 claims 3
- 230000032683 aging Effects 0.000 claims 2
- 238000007792 addition Methods 0.000 description 10
- 238000005496 tempering Methods 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910017539 Cu-Li Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Definitions
- the invention relates to aluminum-copper-lithium alloy rolled products, more particularly such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
- Rolled aluminum alloy products are developed to produce fuselage elements intended in particular for the aeronautical industry and the aerospace industry.
- Aluminum - copper - lithium alloys are particularly promising for manufacturing this type of product.
- the patent US 5,455,003 describes a process for the manufacture of Al-Cu-Li alloys which exhibit improved mechanical strength and toughness at cryogenic temperature, in particular by means of suitable hardening and tempering.
- the patent US 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.
- the patent application US 2009/142222 A1 describes alloys comprising (in weight%), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2-0.8% Zn, 0.1-0.6% Mn and 0.01-0.6% of at least one element for control of granular structure. This application also describes a process for manufacturing spun products.
- the patent application US 2011/0247730 describes alloys comprising (in wt%), 2.75 to 5.0% Cu, 0.1 to 1.1% Li, 0.3 to 2.0% Ag, 0.2 to 0.8% Mg, 0 , 50 to 1.5% Zn, up to 1.0% Mn, with a Cu / Mg ratio of between 6.1 and 17, this alloy being not very sensitive to wringing.
- the patent application CN101967588 describes alloys of composition (wt%) Cu 2.8 - 4.0; Li 0.8 - 1.9; Mn 0.2-0.6; Zn 0.20 - 0.80, Zr 0.04 - 0.20, Mg 0.20 - 0.80, Ag 0.1 - 0.7, Si ⁇ 0.10, Fe ⁇ 0.10, Ti ⁇ 0.12, she teaches the combined addition of zirconium and manganese.
- the characteristics required for aluminum sheets intended for fuselage applications are described for example in the patent EP 1,891,247 . It is particularly desirable that the sheet has a high elastic limit (to resist buckling) as well as a tenacity under high plane stress, characterized in particular by a high value of intensity factor of apparent stress at break (K app ) high and a long curve R.
- K app intensity factor of apparent stress at break
- the patent EP 1 966 402 describes an alloy comprising 2.1 to 2.8 wt% Cu, 1.1 to 1.7 wt% Li, 01 to 0.8 wt% Ag, 0.2 to 0.6 wt% weight of Mg, 0.2 to 0.6% by weight of Mn, an amount of Fe and Si less than or equal to 0.1% by weight each, and inevitable impurities at a content of less than or equal to 0.05 % by weight each and 0.15% by weight in total, the alloy being substantially free of zirconium, particularly suitable for obtaining recrystallized thin sheets.
- WO2006131627 discloses a low density aluminum-based alloy useful in an aircraft structure for fuselage sheet applications exhibiting high mechanical strength, high toughness and high corrosion resistance, containing in% by weight, 2, 7 to 3.4 Cu, 0.8 to 1.4 Li, 0.1 to 0.8 Ag, 0.2 to 0.6 Mg and an element such as Zr, Mn, Cr, Sc , Hf, Ti or a combination thereof, the amount of which, in% by weight, is 0.05 to 0.13 for Zr, 0.05 to 0.8 for Mn, 0.05 to 0.3 for Cr and Sc, 0.05 to 0.5 for Hf and 0.05 to 0.15 for Ti.
- the amount of Cu and Li is determined according to the formula Cu (% by weight) + 5/3 Li (% by weight) ⁇ 5.2.
- thin sheets obtained with certain alloys exhibiting high properties at certain thicknesses may in certain cases have lower or anisotropic properties at another thickness, for example 2.5 mm. It is not it is often not industrially advantageous to use different alloys for different thicknesses and an alloy making it possible to achieve high and isotropic properties whatever the thickness would be particularly advantageous.
- thin sheets in particular 0.5 to 9 mm thick, made of an aluminum-copper-lithium alloy having improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and in tenacity for the LT and TL directions, and this over the whole of this thickness range.
- the object of the invention is a sheet of thickness 0.5 to 9 mm with an essentially recrystallized granular structure according to claim 1.
- Another object of the invention is the method of manufacturing a sheet according to the invention of thickness 0.5 to 9 mm in aluminum-based alloy according to claim 10.
- Yet another object of the invention is the use of a sheet according to the invention in a fuselage panel for an aircraft.
- an essentially non-recrystallized granular structure is called a granular structure such that the rate of recrystallization at 1 ⁇ 2 thickness is less than 30% and preferably less than 10% and an essentially recrystallized granular structure is called a structure.
- granular such that the rate of recrystallization at 1 ⁇ 2 thickness is greater than 70% and preferably greater than 90%.
- the recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains. Grain sizes are measured according to ASTM E112.
- the critical stress intensity factor K C in d ' other terms the intensity factor which makes the crack unstable, is calculated from the curve R.
- the stress intensity factor K CO is also calculated by attributing the initial crack length to the onset of the monotonic load, to the critical load. These two values are calculated for a specimen of the required shape.
- K app represents the factor Kco corresponding to the test piece which was used to carry out the curve test R.
- K eff represents the factor K C corresponding to the test piece which was used to carry out the curve test R.
- Kr60 represents the factor of effective stress intensity for an effective crack extension ⁇ aeff of 60 mm.
- the crack size at the end of the fatigue pre-cracking stage is W / 3 for type M (T) specimens, where W is the width of the specimen as defined in the ASTM standard E561.
- the copper content of the products according to the invention is between 2.8 and 3.2% by weight. In an advantageous embodiment of the invention, the copper content is between 2.9 and 3.1% by weight.
- the lithium content of the products according to the invention is between 0.5 and 0.8% by weight and preferably between 0.55% and 0.75% by weight.
- the lithium content is at least 0.6% by weight.
- the lithium content is between 0.64% and 0.73% by weight.
- the addition of lithium can contribute to the increase in mechanical strength and toughness, too high or too low a content does not make it possible to obtain a high value of toughness and / or a sufficient elastic limit.
- the magnesium content of the products according to the invention is between 0.2 and 0.7% by weight, preferably between 0.3 and 0.5% by weight and preferably between 0.35 and 0.45%. in weight.
- the manganese content is between 0.2 and 0.35% by weight and preferably between 0.25 and 0.35% by weight.
- the addition of manganese in the claimed amount makes it possible to control the granular structure while avoiding the detrimental effect on the toughness that would generate too high a content.
- the silver content is between 0.1 and 0.3% by weight. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.28% by weight.
- the titanium content is between 0.01 and 0.15% by weight.
- the titanium content is at least 0.02% by weight and preferably at least 0.03% by weight.
- the titanium content is at most 0.1 % by weight and preferably not more than 0.05% by weight.
- the iron and silicon contents are each at most 0.1% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.08% and preferably at most 0.04% by weight.
- a controlled and limited iron and silicon content contributes to improving the trade-off between mechanical resistance and tolerance to damage.
- the zinc content is less than 0.2% by weight and preferably less than 0.1% by weight.
- the zinc content is advantageously less than 0.04% by weight.
- Unavoidable impurities are kept at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
- the zirconium content is less than or equal to 0.05% by weight, preferably less than or equal to 0.04% by weight and preferably less than or equal to 0.03% by weight.
- the process for manufacturing sheets according to the invention comprises stages of production, casting, rolling, dissolving, quenching, controlled traction and tempering.
- a liquid metal bath is produced so as to obtain an aluminum alloy of composition according to the invention.
- the liquid metal bath is then cast in a rolling plate form.
- the rolling plate is then homogenized at a temperature between 480 ° C and 535 ° and preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C.
- the homogenization time is preferably between 5 and 60 hours.
- a homogenization temperature that is too low or the absence of homogenization does not make it possible to achieve improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and toughness for the LT and TL directions, over the whole of this thickness range.
- the rolling plate is generally cooled to room temperature before being preheated with a view to being hot-deformed.
- Preheating has for objective of reaching a temperature preferably between 400 and 500 ° C allowing deformation by hot rolling.
- Hot rolling and optionally cold rolling is carried out so as to obtain a sheet thickness 0.5 to 9 mm.
- a temperature above 400 ° C. is maintained up to the thickness of 20 mm and preferably a temperature above 450 ° C. up to the thickness of 20 mm.
- Intermediate heat treatments during rolling and / or after rolling can be carried out in some cases.
- the process does not include an intermediate heat treatment during rolling and / or after rolling.
- the sheet thus obtained is then placed in solution by heat treatment between 450 and 535 ° C, preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C, preferably for 5 min to 2 hours , then soaked.
- the duration of the solution is at most 1 hour so as to minimize the surface oxidation. It is known to those skilled in the art that the precise conditions for dissolving must be chosen as a function of the thickness and of the composition so as to place the hardening elements in solid solution.
- the sheet then undergoes cold deformation by controlled traction with a permanent deformation of 0.5 to 5% and preferably of 1 to 3%.
- steps such as rolling, leveling, smoothing, straightening and shaping can optionally be carried out after dissolving and quenching and before or after controlled traction, however total cold deformation after dissolving and quenching should remain below 15% and preferably below 10%. High cold deformations after dissolving and quenching in fact cause the appearance of numerous shear bands crossing several grains, these shear bands not being desirable.
- the hardened sheet may be subjected to a smoothing or leveling step, before or after the controlled traction.
- smoothing / leveling is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation less than or equal to 1%, making it possible to improve the flatness.
- Tempering is carried out comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably 10 to 40 hours.
- the final metallurgical state is a T8 state.
- a short heat treatment is carried out after controlled traction and before tempering so as to improve the formability of the sheets.
- the sheets can thus be shaped by a process such as stretch-forming before being returned.
- the granular structure of the sheets according to the invention is essentially recrystallized.
- the combination of the composition according to the invention and the transformation parameters makes it possible to control the anisotropy index of the recrystallized grains.
- the sheets according to the invention are such that the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L / TC plane is less than 20, preferably less than 15 and preferably less than 10.
- the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L plane / TC is less than or equal to 8, preferably less than or equal to 6 and preferably less than or equal to 4.
- the present inventors believe that the combination between the composition, in particular the limited content of zirconium, the addition of manganese and the selected amount of magnesium and the transformation process, in particular the homogenization temperature and hot rolling, allows to obtain the claimed advantageous properties.
- the resistance to corrosion, in particular to intergranular corrosion, to leaf corrosion and to stress corrosion, of the sheets according to the invention is high.
- the sheet of the invention can be used without plating.
- sheets according to the invention are advantageous.
- the sheets according to the invention are also advantageous in aerospace applications such as the manufacture of rockets.
- Al-Cu-Li alloy sheets were prepared. 7 plates whose composition is given in Table 1 were cast. Table 1. Composition in% by weight of the plates Alloy Cu Li Mg Zr Mn Ag Fe Yes Ti AT 3.2 0.73 0.68 0.14 ⁇ 0.01 0.26 0.03 0.04 0.03 B 3.0 0.70 0.64 0.17 ⁇ 0.01 0.27 0.02 0.03 0.03 VS 3.0 0.73 0.35 0.15 ⁇ 0.01 0.27 0.02 0.03 0.03 D 2.7 0.75 0.58 0.14 ⁇ 0.01 0.28 0.03 0.02 0.03 E 2.9 0.73 0.45 0.14 ⁇ 0.01 0.29 0.04 0.02 0.03 F 2.9 0.68 0.42 0.03 0.28 0.28 0.03 0.02 0.03 G 2.9 0.75 0.44 0.05 0.28 0.26 0.03 0.02 0.03
- the plates were homogenized for 12 hours at 505 ° C.
- the plates were hot rolled to obtain sheets with a thickness between 4.2 to 6.3 mm. Some sheets were then cold rolled to a thickness between 1.5 and 2.5 mm. Details of the sheets obtained and the tempering conditions are given in Table 2.
- Table 2 detail of the sheets obtained and the tempering conditions Sheet metal Thickness after hot rolling (mm) Thickness after cold rolling (mm) Tempering time at 155 ° C (h) A # 1 4.2 - 36 A # 2 4.4 1.5 36 B # 1 4.6 - 36 B # 2 4.4 1.5 36 C # 1 4.3 - 24 C # 2 4.4 1.5 24 D # 1 4.3 - 40 D # 2 6.3 2.5 40 E # 1 4.3 - 36 E # 2 6.3 2.5 36 F # 1 4.2 - 28 F # 2 4.2 2.5 28 G # 1 4.2 - 28 G # 2 4.2 2.5 28
- the sheets were put into solution at 505 ° C. then smoothed, pulled with a permanent elongation of 2% and tempered.
- the tempering conditions are not all the same because the increase in the yield strength with the tempering time differs from one alloy to another. An attempt has been made to obtain a “peak” elasticity limit while limiting the period of tempering.
- the income conditions are given in Table 2.
- the granular structure of the samples was characterized from the microscopic observation of the cross sections after anodic oxidation under polarized light.
- the grain structure of the plates was essentially non-recrystallized for all plates except for the D # 2 E # 2 F # 1, F # 2, G # 1 and G # 2 plates where the grain structure was essentially recrystallized.
- the grain size was determined in the L / TC plane at mid-thickness according to the standard ASTM E112 by the method of intercepts from the microscopic observation of the cross sections after oxidation. anodic under polarized light.
- the anisotropy index is the ratio of the grain size measured in the L direction divided by the grain size measured in the TC direction.
- Table 3 Grain sizes measured for samples whose granular structure was essentially recrystallized Sheet metal Direction L ( ⁇ m) Direction TC ( ⁇ m) Anisotropy index D # 2 1260 21 60 E # 2 1100 23 48 F # 1 540 59 9 F # 2 135 37 4 G # 1 678 56 12 G # 2 317 46 7
- the samples were mechanically tested to determine their static mechanical properties as well as their toughness.
- the mechanical characteristics were measured at full thickness.
- Table 4 Mechanical characteristics expressed in MPa (R ⁇ sub> p0,2 ⁇ /sub>, R ⁇ sub> m ⁇ /sub>) or in percentage (A%) Sheet metal R p0.2 (L) R m (L) A% (L) R p0.2 (TL) R m (TL) A% (TL) R m (L) / R m (TL) A # 1 469 513 12.2 439 481 15.8 1.07 A # 2 475 522 11.7 441 489 14.0 1.07 B # 1 431 483 13.5 419 462 16.1 1.05 B # 2 431 486 12.9 414 460 17.1 1.06 C # 1 430 471 13.6 411 455 15.5 1.04 C # 2 423 472 12.2 399 451 15.9 1.05 D # 1 420 462 13.0 384 428 16.3 1.08 D # 2 403 437 11.6 371 428 13.9 1.02
- Table 5 summarizes the results of the toughness tests on 760 mm wide CCT specimens for these samples. Table 5 results of the R curves for the CCT specimens with a width of 760 mm.
- FIGS. 1 and 2 illustrate the remarkable tenacity of Examples F and G according to the invention, in particular in the LT direction.
- Examples F and G demonstrate that it is possible to obtain thin sheets according to the invention which exhibit improved and isotropic properties compared to those obtained from the other Examples A to E, and in particular compared to Example C , and this over a wide range of typical thickness of said thin sheets.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
Claims (13)
- Blech von 0,5 bis 9 mm Dicke mit einem solchen Korngefüge, dass der Rekristallisationsgrad in halber Dicke mehr als 70% beträgt, wobei der Rekristallisationsgrad der Flächenanteil eines metallografischen Schliffs ist, der von rekristallisierten Körnern eingenommen wird, aus einer Legierung auf Aluminiumbasis aufweisend2,8 bis 3,2 Gewichtsprozent Cu,0,5 bis 0,8 Gewichtsprozent Li,0,1 bis 0,3 Gewichtsprozent Ag,0,2 bis 0,7 Gewichtsprozent Mg,0,2 bis 0,35 Gewichtsprozent Mn,0,01 bis 0,15 Gewichtsprozent Ti,eine Menge Zn von weniger als 0,2 Gew.-%, eine Menge Fe und Si von jeweils höchstens 0,1 Gew.-% und unvermeidbare Verunreinigungen, darunter Zirconium, in einer Menge von jeweils höchstens 0,05 Gew.-% und insgesamt 0,15 Gew.-%, Rest Aluminium,
wobei das Blech mit einem Verfahren erhalten wird, das Gießen, Homogenisieren, Warm- und gegebenenfalls Kaltwalzen, Lösungsglühen, Abschrecken und Auslagern umfasst. - Blech nach Anspruch 1 mit einem Kupfergehalt zwischen 2,9 und 3,1 Gew.-%.
- Blech nach Anspruch 1 oder Anspruch 2 mit einem Lithiumgehalt zwischen 0,55 und 0,75 Gew.-% und vorzugsweise zwischen 0,64 und 0,73 Gew.-%.
- Blech nach irgendeinem der Ansprüche 1 bis 3 mit einem Silbergehalt zwischen 0,15 bis 0,28 Gew.-%.
- Blech nach irgendeinem der Ansprüche 1 bis 4 mit einem Magnesiumgehalt zwischen 0,3 und 0,5 Gew.-% und vorzugsweise zwischen 0,35 bis 0,45 Gew.-%.
- Blech nach irgendeinem der Ansprüche 1 bis 5 mit einem Zirconiumgehalt von 0,03 Gew.-% oder weniger.
- Blech nach irgendeinem der Ansprüche 1 bis 6 mit einem Mangangehalt zwischen 0,25 und 0,35 Gew.-%.
- Blech nach irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Anisotropieindex der Körner, gemessen in halber Dicke nach ASTM E112 mit dem Intercept-Verfahren in der L/TC-Ebene, weniger als 20, vorzugsweise weniger als 15 und vorzugsweise weniger als 10 beträgt.
- Blech nach irgendeinem der Ansprüche 1 bis 8 mit einer Dicke zwischen 0,5 und 9 mm und insbesondere zwischen 1,5 und 6 mm, das im Zustand T8 mindestens eines der folgenden Eigenschaftspaare aufweist:- eine Zähigkeit bei flächiger Belastung Kapp, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in L-T-Richtung und in T-L-Richtung, von mindestens 140 MPa√m und vorzugsweise mindestens 150 MPa√m, und einen Grenzwert Rp0,2, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, von mindestens 360 MPa und vorzugsweise mindestens 365 MPa,- eine Zähigkeit bei flächiger Belastung Kr60, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in L-T-Richtung und in T-L-Richtung, von mehr als 190 MPa√m und vorzugsweise mehr als 200 MPa√m, und eine Bruchfestigkeit Rm, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, von mindestens 410 MPa und vorzugsweise mindestens 415 MPa, und mindestens eine der folgenden Eigenschaften aufweist:- ein Verhältnis zwischen der Zähigkeit bei flächiger Beanspruchung Kapp, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in T-L- und L-T-Richtung, mit Kapp(T-L)/Kapp (L-T) zwischen 0,85 und 1,15 und vorzugsweise zwischen 0,90 und 1,10,- ein Verhältnis zwischen der Bruchfestigkeit Rm, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, mit Rm(L)/Rm(TL) kleiner als 1,06 und vorzugsweise kleiner als 1,05.
- Verfahren zur Herstellung eines Blechs von 0,5 bis 9 mm Dicke nach irgendeinem der Ansprüche 1 bis 8, wobei nacheinandera) ein Flüssigmetallbad hergestellt wird, um eine Aluminiumlegierung zu erhalten, die aufweist2,8 bis 3,2 Gewichtsprozent Cu,0,5 bis 0,8 Gewichtsprozent Li,0,1 bis 0,3 Gewichtsprozent Ag,0,2 bis 0,7 Gewichtsprozent Mg,0,2 bis 0,35 Gewichtsprozent Mn,0,01 bis 0,15 Gewichtsprozent Ti,eine Menge Zn von weniger als 0,2 Gew.-%, eine Menge Fe und Si von jeweils höchstens 0,1 Gew.-% und unvermeidbare Verunreinigungen, darunter Zirconium, von jeweils höchstens 0,05 Gew.-% und insgesamt 0,15 Gew.-%, Rest Aluminium;b) aus dem Flüssigmetallbad eine Platte gegossen wird;c) die Platte bei einer Temperatur zwischen 480°C und 535°C homogenisiert wird;d) die Platte durch Warm- und optional Kaltwalzen zu einem Blech mit einer Dicke zwischen 0,5 mm und 9 mm gewalzt wird;e) das Blech bei einer Temperatur zwischen 450°C und 535°C lösungsgeglüht und abgeschreckt wird;h) das Blech mit einer bleibenden Verformung von 0,5 bis 5% kontrolliert gezogen wird, wobei die gesamte Kaltumformung nach Lösungsglühen und Abschrecken weniger als 15% beträgt;i) eine Auslagerungsbehandlung durchgeführt wird, umfassend ein Erhitzen auf eine Temperatur zwischen 130 und 170°C und vorzugsweise zwischen 150 und 160°C für 5 bis 100 Stunden und vorzugsweise 10 bis 40 Stunden.
- Verfahren nach Anspruch 10, wobei die Homogenisierungstemperatur zwischen 490°C und 530°C und in bevorzugter Weise zwischen 500°C und 520°C liegt.
- Verfahren nach Anspruch 10 oder nach Anspruch 11, wobei beim Warmwalzen eine Temperatur über 400°C bis 20 mm Dicke und vorzugsweise eine Temperatur über 450°C bis 20 mm Dicke aufrechterhalten wird.
- Verwendung eines Blechs nach irgendeinem der Ansprüche 1 bis 9 in einer Rumpfplatte für Luftfahrzeuge.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402237A FR3026747B1 (fr) | 2014-10-03 | 2014-10-03 | Toles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion |
PCT/FR2015/052634 WO2016051099A1 (fr) | 2014-10-03 | 2015-10-01 | Tôles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3201372A1 EP3201372A1 (de) | 2017-08-09 |
EP3201372B1 true EP3201372B1 (de) | 2021-01-27 |
Family
ID=52423759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15784082.8A Active EP3201372B1 (de) | 2014-10-03 | 2015-10-01 | Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon |
Country Status (8)
Country | Link |
---|---|
US (1) | US11174535B2 (de) |
EP (1) | EP3201372B1 (de) |
JP (1) | JP6692803B2 (de) |
CN (1) | CN106795595A (de) |
BR (1) | BR112017006071B1 (de) |
CA (1) | CA2961712C (de) |
FR (1) | FR3026747B1 (de) |
WO (1) | WO2016051099A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3032261A1 (en) | 2016-08-26 | 2018-03-01 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
FR3067044B1 (fr) * | 2017-06-06 | 2019-06-28 | Constellium Issoire | Alliage d'aluminium comprenant du lithium a proprietes en fatigue ameliorees |
FR3080861B1 (fr) * | 2018-05-02 | 2021-03-19 | Constellium Issoire | Procede de fabrication d'un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees |
CN114007860B (zh) * | 2019-05-28 | 2024-05-03 | 诺贝丽斯科布伦茨有限责任公司 | 包覆的2xxx系列航空航天产品 |
CN110423927A (zh) * | 2019-07-17 | 2019-11-08 | 中南大学 | 一种超高强铝锂合金及其制备方法 |
FR3104172B1 (fr) * | 2019-12-06 | 2022-04-29 | Constellium Issoire | Tôles minces en alliage d’aluminium-cuivre-lithium à ténacité améliorée et procédé de fabrication |
CN112195376A (zh) * | 2020-09-11 | 2021-01-08 | 中铝材料应用研究院有限公司 | 一种高强度汽车车身用6xxx系铝合金板材及其制备方法 |
FR3132306B1 (fr) * | 2022-01-28 | 2024-05-03 | Constellium Issoire | Tôle mince améliorée en alliage d’aluminium-cuivre-lithium |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032359A (en) | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5455003A (en) * | 1988-08-18 | 1995-10-03 | Martin Marietta Corporation | Al-Cu-Li alloys with improved cryogenic fracture toughness |
US7438772B2 (en) | 1998-06-24 | 2008-10-21 | Alcoa Inc. | Aluminum-copper-magnesium alloys having ancillary additions of lithium |
DE04753337T1 (de) | 2003-05-28 | 2007-11-08 | Alcan Rolled Products Ravenswood LLC, Ravenswood | Neue al-cu-li-mg-ag-mn-zr-legierung für bauanwendungen, die hohe festigkeit und hohe bruchzähigkeit erfordern |
FR2889542B1 (fr) * | 2005-08-05 | 2007-10-12 | Pechiney Rhenalu Sa | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion |
CN101189353A (zh) * | 2005-06-06 | 2008-05-28 | 爱尔康何纳吕公司 | 用于飞机机身的高韧度的铝-铜-锂合金板材 |
ES2314929T3 (es) * | 2005-06-06 | 2009-03-16 | Alcan Rhenalu | Chapa de aluminio-cobre-litio con alta tenacidad para fuselaje de avion. |
FR2894985B1 (fr) | 2005-12-20 | 2008-01-18 | Alcan Rhenalu Sa | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion |
CN101855376B (zh) * | 2007-09-21 | 2013-06-05 | 阿勒里斯铝业科布伦茨有限公司 | 适于航空应用的Al-Cu-Li合金产品 |
EP2231888B1 (de) | 2007-12-04 | 2014-08-06 | Alcoa Inc. | Verbesserte aluminium-kupfer-lithium-legierungen |
FR2947282B1 (fr) * | 2009-06-25 | 2011-08-05 | Alcan Rhenalu | Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees |
CA2793885C (en) | 2010-04-12 | 2016-03-15 | Cagatay Yanar | 2xxx series aluminum lithium alloys having low strength differential |
FR2960002B1 (fr) * | 2010-05-12 | 2013-12-20 | Alcan Rhenalu | Alliage aluminium-cuivre-lithium pour element d'intrados. |
CN102021457B (zh) * | 2010-10-27 | 2012-06-27 | 中国航空工业集团公司北京航空材料研究院 | 一种高强韧铝锂合金及其制备方法 |
CN101967588B (zh) | 2010-10-27 | 2012-08-29 | 中国航空工业集团公司北京航空材料研究院 | 一种耐损伤铝锂合金及其制备方法 |
FR2981365B1 (fr) * | 2011-10-14 | 2018-01-12 | Constellium Issoire | Procede de transformation ameliore de toles en alliage al-cu-li |
CN103173700B (zh) * | 2013-03-15 | 2016-01-06 | 中国航空工业集团公司北京航空材料研究院 | Al-Cu-Li-X铝锂合金表面脱锂层的制备方法 |
-
2014
- 2014-10-03 FR FR1402237A patent/FR3026747B1/fr active Active
-
2015
- 2015-10-01 US US15/515,891 patent/US11174535B2/en active Active
- 2015-10-01 BR BR112017006071-0A patent/BR112017006071B1/pt active IP Right Grant
- 2015-10-01 JP JP2017518117A patent/JP6692803B2/ja active Active
- 2015-10-01 EP EP15784082.8A patent/EP3201372B1/de active Active
- 2015-10-01 CN CN201580053855.3A patent/CN106795595A/zh active Pending
- 2015-10-01 WO PCT/FR2015/052634 patent/WO2016051099A1/fr active Application Filing
- 2015-10-01 CA CA2961712A patent/CA2961712C/fr active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
BR112017006071B1 (pt) | 2021-05-04 |
EP3201372A1 (de) | 2017-08-09 |
CA2961712A1 (fr) | 2016-04-07 |
WO2016051099A1 (fr) | 2016-04-07 |
FR3026747A1 (fr) | 2016-04-08 |
JP2017534757A (ja) | 2017-11-24 |
US20170306454A1 (en) | 2017-10-26 |
US11174535B2 (en) | 2021-11-16 |
CN106795595A (zh) | 2017-05-31 |
FR3026747B1 (fr) | 2016-11-04 |
CA2961712C (fr) | 2022-11-01 |
JP6692803B2 (ja) | 2020-05-13 |
BR112017006071A2 (pt) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3201372B1 (de) | Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon | |
EP1966402B1 (de) | Blech aus einer hochfesten aluminiumlegierung mit kupfer und lithium für einen flugzeugrumpf | |
EP2766503B1 (de) | Verbessertes verfahren zum bearbeiten von metallblechen aus einer al-cu-li-legierung | |
EP2449142B1 (de) | Aluminium-kupfer-lithium-legierung mit verbesserten mechanische beständigkeit und zähigkeit | |
EP1766102B1 (de) | Verfahren zur herstellung hochfester und ermüdungsfester aluminiumlegierungsprodukte | |
EP2655680B1 (de) | Aluminium-kupfer-lithium-legierung mit verbesserter druckfestigkeit und beständigkeit | |
EP2697406B1 (de) | Aluminium-kupfer-magnesium-legierungen mit guter leistung bei hohen temperaturen | |
EP2984195B1 (de) | Verfahren zur umformung von blechen aus al-cu-li-legierung für verbesserte formbarkeit und korrosionsbeständigkeit | |
EP2981632B1 (de) | Dünne bleche aus einer aluminium-kupfer-lithium-legierung zur herstellung von flugzeugrümpfen | |
EP2364378B1 (de) | Produkte aus aluminium-kupfer-lithium-legierung | |
FR2838135A1 (fr) | PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF | |
EP3384061B1 (de) | Aluminium-kupfer-lithium-legierung mit verbesserter mechanischer festigkeit und erhöhter zähigkeit | |
EP2981631B1 (de) | Bleche aus aluminium-kupfer-lithium-legierung zur herstellung von flugzeugrümpfen | |
FR3007423A1 (fr) | Element de structure extrados en alliage aluminium cuivre lithium | |
EP3526358B1 (de) | Dünne bleche aus aluminium-magnesium-scandium-legierung für anwendungen in der luft- und raumfahrt | |
EP3728667B1 (de) | Verbessertes verfahren zur herstellung von blechen aus einer aluminium-kupfer-lithium-legierung für die herstellung von flugzeugrümpfen und entsprechendem blech | |
FR3111143A1 (fr) | Produits en alliage aluminium cuivre magnésium performants à haute température | |
EP3788178B1 (de) | Aluminium-kupfer-lithium-legierung mit verbesserter kompressionsfestigkeit und erhöhter beständigkeit | |
EP3802897B1 (de) | Dünnschichten aus aluminium-kupfer-lithium-legierung für die herstellung eines flugzeugrumpfes | |
FR3132306A1 (fr) | Tôle mince améliorée en alliage d’aluminium-cuivre-lithium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170420 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190618 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200909 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1358409 Country of ref document: AT Kind code of ref document: T Effective date: 20210215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015065262 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210428 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210427 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015065262 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20211028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210527 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1358409 Country of ref document: AT Kind code of ref document: T Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151001 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231027 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231025 Year of fee payment: 9 Ref country code: DE Payment date: 20231027 Year of fee payment: 9 Ref country code: AT Payment date: 20230920 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210127 |