EP3201372B1 - Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon - Google Patents

Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon Download PDF

Info

Publication number
EP3201372B1
EP3201372B1 EP15784082.8A EP15784082A EP3201372B1 EP 3201372 B1 EP3201372 B1 EP 3201372B1 EP 15784082 A EP15784082 A EP 15784082A EP 3201372 B1 EP3201372 B1 EP 3201372B1
Authority
EP
European Patent Office
Prior art keywords
weight
less
mpa
accordance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15784082.8A
Other languages
English (en)
French (fr)
Other versions
EP3201372A1 (de
Inventor
Juliette CHEVY
Bernard Bes
Jean-Christophe Ehrstrom
Frank Eberl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium Issoire SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Issoire SAS filed Critical Constellium Issoire SAS
Publication of EP3201372A1 publication Critical patent/EP3201372A1/de
Application granted granted Critical
Publication of EP3201372B1 publication Critical patent/EP3201372B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the invention relates to aluminum-copper-lithium alloy rolled products, more particularly such products, their manufacturing and use processes, intended in particular for aeronautical and aerospace construction.
  • Rolled aluminum alloy products are developed to produce fuselage elements intended in particular for the aeronautical industry and the aerospace industry.
  • Aluminum - copper - lithium alloys are particularly promising for manufacturing this type of product.
  • the patent US 5,455,003 describes a process for the manufacture of Al-Cu-Li alloys which exhibit improved mechanical strength and toughness at cryogenic temperature, in particular by means of suitable hardening and tempering.
  • the patent US 7,229,509 describes an alloy comprising (% by weight): (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0.2-0, 8) Ag, (0.2-0.8) Mn, 0.4 max Zr or other grain refining agents such as Cr, Ti, Hf, Sc, V.
  • the patent application US 2009/142222 A1 describes alloys comprising (in weight%), 3.4 to 4.2% Cu, 0.9 to 1.4% Li, 0.3 to 0.7% Ag, 0.1 to 0, 6% Mg, 0.2-0.8% Zn, 0.1-0.6% Mn and 0.01-0.6% of at least one element for control of granular structure. This application also describes a process for manufacturing spun products.
  • the patent application US 2011/0247730 describes alloys comprising (in wt%), 2.75 to 5.0% Cu, 0.1 to 1.1% Li, 0.3 to 2.0% Ag, 0.2 to 0.8% Mg, 0 , 50 to 1.5% Zn, up to 1.0% Mn, with a Cu / Mg ratio of between 6.1 and 17, this alloy being not very sensitive to wringing.
  • the patent application CN101967588 describes alloys of composition (wt%) Cu 2.8 - 4.0; Li 0.8 - 1.9; Mn 0.2-0.6; Zn 0.20 - 0.80, Zr 0.04 - 0.20, Mg 0.20 - 0.80, Ag 0.1 - 0.7, Si ⁇ 0.10, Fe ⁇ 0.10, Ti ⁇ 0.12, she teaches the combined addition of zirconium and manganese.
  • the characteristics required for aluminum sheets intended for fuselage applications are described for example in the patent EP 1,891,247 . It is particularly desirable that the sheet has a high elastic limit (to resist buckling) as well as a tenacity under high plane stress, characterized in particular by a high value of intensity factor of apparent stress at break (K app ) high and a long curve R.
  • K app intensity factor of apparent stress at break
  • the patent EP 1 966 402 describes an alloy comprising 2.1 to 2.8 wt% Cu, 1.1 to 1.7 wt% Li, 01 to 0.8 wt% Ag, 0.2 to 0.6 wt% weight of Mg, 0.2 to 0.6% by weight of Mn, an amount of Fe and Si less than or equal to 0.1% by weight each, and inevitable impurities at a content of less than or equal to 0.05 % by weight each and 0.15% by weight in total, the alloy being substantially free of zirconium, particularly suitable for obtaining recrystallized thin sheets.
  • WO2006131627 discloses a low density aluminum-based alloy useful in an aircraft structure for fuselage sheet applications exhibiting high mechanical strength, high toughness and high corrosion resistance, containing in% by weight, 2, 7 to 3.4 Cu, 0.8 to 1.4 Li, 0.1 to 0.8 Ag, 0.2 to 0.6 Mg and an element such as Zr, Mn, Cr, Sc , Hf, Ti or a combination thereof, the amount of which, in% by weight, is 0.05 to 0.13 for Zr, 0.05 to 0.8 for Mn, 0.05 to 0.3 for Cr and Sc, 0.05 to 0.5 for Hf and 0.05 to 0.15 for Ti.
  • the amount of Cu and Li is determined according to the formula Cu (% by weight) + 5/3 Li (% by weight) ⁇ 5.2.
  • thin sheets obtained with certain alloys exhibiting high properties at certain thicknesses may in certain cases have lower or anisotropic properties at another thickness, for example 2.5 mm. It is not it is often not industrially advantageous to use different alloys for different thicknesses and an alloy making it possible to achieve high and isotropic properties whatever the thickness would be particularly advantageous.
  • thin sheets in particular 0.5 to 9 mm thick, made of an aluminum-copper-lithium alloy having improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and in tenacity for the LT and TL directions, and this over the whole of this thickness range.
  • the object of the invention is a sheet of thickness 0.5 to 9 mm with an essentially recrystallized granular structure according to claim 1.
  • Another object of the invention is the method of manufacturing a sheet according to the invention of thickness 0.5 to 9 mm in aluminum-based alloy according to claim 10.
  • Yet another object of the invention is the use of a sheet according to the invention in a fuselage panel for an aircraft.
  • an essentially non-recrystallized granular structure is called a granular structure such that the rate of recrystallization at 1 ⁇ 2 thickness is less than 30% and preferably less than 10% and an essentially recrystallized granular structure is called a structure.
  • granular such that the rate of recrystallization at 1 ⁇ 2 thickness is greater than 70% and preferably greater than 90%.
  • the recrystallization rate is defined as the surface fraction on a metallographic section occupied by recrystallized grains. Grain sizes are measured according to ASTM E112.
  • the critical stress intensity factor K C in d ' other terms the intensity factor which makes the crack unstable, is calculated from the curve R.
  • the stress intensity factor K CO is also calculated by attributing the initial crack length to the onset of the monotonic load, to the critical load. These two values are calculated for a specimen of the required shape.
  • K app represents the factor Kco corresponding to the test piece which was used to carry out the curve test R.
  • K eff represents the factor K C corresponding to the test piece which was used to carry out the curve test R.
  • Kr60 represents the factor of effective stress intensity for an effective crack extension ⁇ aeff of 60 mm.
  • the crack size at the end of the fatigue pre-cracking stage is W / 3 for type M (T) specimens, where W is the width of the specimen as defined in the ASTM standard E561.
  • the copper content of the products according to the invention is between 2.8 and 3.2% by weight. In an advantageous embodiment of the invention, the copper content is between 2.9 and 3.1% by weight.
  • the lithium content of the products according to the invention is between 0.5 and 0.8% by weight and preferably between 0.55% and 0.75% by weight.
  • the lithium content is at least 0.6% by weight.
  • the lithium content is between 0.64% and 0.73% by weight.
  • the addition of lithium can contribute to the increase in mechanical strength and toughness, too high or too low a content does not make it possible to obtain a high value of toughness and / or a sufficient elastic limit.
  • the magnesium content of the products according to the invention is between 0.2 and 0.7% by weight, preferably between 0.3 and 0.5% by weight and preferably between 0.35 and 0.45%. in weight.
  • the manganese content is between 0.2 and 0.35% by weight and preferably between 0.25 and 0.35% by weight.
  • the addition of manganese in the claimed amount makes it possible to control the granular structure while avoiding the detrimental effect on the toughness that would generate too high a content.
  • the silver content is between 0.1 and 0.3% by weight. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.28% by weight.
  • the titanium content is between 0.01 and 0.15% by weight.
  • the titanium content is at least 0.02% by weight and preferably at least 0.03% by weight.
  • the titanium content is at most 0.1 % by weight and preferably not more than 0.05% by weight.
  • the iron and silicon contents are each at most 0.1% by weight. In an advantageous embodiment of the invention, the iron and silicon contents are at most 0.08% and preferably at most 0.04% by weight.
  • a controlled and limited iron and silicon content contributes to improving the trade-off between mechanical resistance and tolerance to damage.
  • the zinc content is less than 0.2% by weight and preferably less than 0.1% by weight.
  • the zinc content is advantageously less than 0.04% by weight.
  • Unavoidable impurities are kept at a content of less than or equal to 0.05% by weight each and 0.15% by weight in total.
  • the zirconium content is less than or equal to 0.05% by weight, preferably less than or equal to 0.04% by weight and preferably less than or equal to 0.03% by weight.
  • the process for manufacturing sheets according to the invention comprises stages of production, casting, rolling, dissolving, quenching, controlled traction and tempering.
  • a liquid metal bath is produced so as to obtain an aluminum alloy of composition according to the invention.
  • the liquid metal bath is then cast in a rolling plate form.
  • the rolling plate is then homogenized at a temperature between 480 ° C and 535 ° and preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C.
  • the homogenization time is preferably between 5 and 60 hours.
  • a homogenization temperature that is too low or the absence of homogenization does not make it possible to achieve improved and isotropic properties compared to those of known products, in particular in terms of mechanical resistance in L and TL directions and toughness for the LT and TL directions, over the whole of this thickness range.
  • the rolling plate is generally cooled to room temperature before being preheated with a view to being hot-deformed.
  • Preheating has for objective of reaching a temperature preferably between 400 and 500 ° C allowing deformation by hot rolling.
  • Hot rolling and optionally cold rolling is carried out so as to obtain a sheet thickness 0.5 to 9 mm.
  • a temperature above 400 ° C. is maintained up to the thickness of 20 mm and preferably a temperature above 450 ° C. up to the thickness of 20 mm.
  • Intermediate heat treatments during rolling and / or after rolling can be carried out in some cases.
  • the process does not include an intermediate heat treatment during rolling and / or after rolling.
  • the sheet thus obtained is then placed in solution by heat treatment between 450 and 535 ° C, preferably between 490 ° C and 530 ° C and preferably between 500 ° C and 520 ° C, preferably for 5 min to 2 hours , then soaked.
  • the duration of the solution is at most 1 hour so as to minimize the surface oxidation. It is known to those skilled in the art that the precise conditions for dissolving must be chosen as a function of the thickness and of the composition so as to place the hardening elements in solid solution.
  • the sheet then undergoes cold deformation by controlled traction with a permanent deformation of 0.5 to 5% and preferably of 1 to 3%.
  • steps such as rolling, leveling, smoothing, straightening and shaping can optionally be carried out after dissolving and quenching and before or after controlled traction, however total cold deformation after dissolving and quenching should remain below 15% and preferably below 10%. High cold deformations after dissolving and quenching in fact cause the appearance of numerous shear bands crossing several grains, these shear bands not being desirable.
  • the hardened sheet may be subjected to a smoothing or leveling step, before or after the controlled traction.
  • smoothing / leveling is understood here to mean a cold deformation step without permanent deformation or with a permanent deformation less than or equal to 1%, making it possible to improve the flatness.
  • Tempering is carried out comprising heating at a temperature between 130 and 170 ° C and preferably between 150 and 160 ° C for 5 to 100 hours and preferably 10 to 40 hours.
  • the final metallurgical state is a T8 state.
  • a short heat treatment is carried out after controlled traction and before tempering so as to improve the formability of the sheets.
  • the sheets can thus be shaped by a process such as stretch-forming before being returned.
  • the granular structure of the sheets according to the invention is essentially recrystallized.
  • the combination of the composition according to the invention and the transformation parameters makes it possible to control the anisotropy index of the recrystallized grains.
  • the sheets according to the invention are such that the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L / TC plane is less than 20, preferably less than 15 and preferably less than 10.
  • the anisotropy index of the grains measured at mid-thickness according to standard ASTM E112 by the method of intercepts in the L plane / TC is less than or equal to 8, preferably less than or equal to 6 and preferably less than or equal to 4.
  • the present inventors believe that the combination between the composition, in particular the limited content of zirconium, the addition of manganese and the selected amount of magnesium and the transformation process, in particular the homogenization temperature and hot rolling, allows to obtain the claimed advantageous properties.
  • the resistance to corrosion, in particular to intergranular corrosion, to leaf corrosion and to stress corrosion, of the sheets according to the invention is high.
  • the sheet of the invention can be used without plating.
  • sheets according to the invention are advantageous.
  • the sheets according to the invention are also advantageous in aerospace applications such as the manufacture of rockets.
  • Al-Cu-Li alloy sheets were prepared. 7 plates whose composition is given in Table 1 were cast. Table 1. Composition in% by weight of the plates Alloy Cu Li Mg Zr Mn Ag Fe Yes Ti AT 3.2 0.73 0.68 0.14 ⁇ 0.01 0.26 0.03 0.04 0.03 B 3.0 0.70 0.64 0.17 ⁇ 0.01 0.27 0.02 0.03 0.03 VS 3.0 0.73 0.35 0.15 ⁇ 0.01 0.27 0.02 0.03 0.03 D 2.7 0.75 0.58 0.14 ⁇ 0.01 0.28 0.03 0.02 0.03 E 2.9 0.73 0.45 0.14 ⁇ 0.01 0.29 0.04 0.02 0.03 F 2.9 0.68 0.42 0.03 0.28 0.28 0.03 0.02 0.03 G 2.9 0.75 0.44 0.05 0.28 0.26 0.03 0.02 0.03
  • the plates were homogenized for 12 hours at 505 ° C.
  • the plates were hot rolled to obtain sheets with a thickness between 4.2 to 6.3 mm. Some sheets were then cold rolled to a thickness between 1.5 and 2.5 mm. Details of the sheets obtained and the tempering conditions are given in Table 2.
  • Table 2 detail of the sheets obtained and the tempering conditions Sheet metal Thickness after hot rolling (mm) Thickness after cold rolling (mm) Tempering time at 155 ° C (h) A # 1 4.2 - 36 A # 2 4.4 1.5 36 B # 1 4.6 - 36 B # 2 4.4 1.5 36 C # 1 4.3 - 24 C # 2 4.4 1.5 24 D # 1 4.3 - 40 D # 2 6.3 2.5 40 E # 1 4.3 - 36 E # 2 6.3 2.5 36 F # 1 4.2 - 28 F # 2 4.2 2.5 28 G # 1 4.2 - 28 G # 2 4.2 2.5 28
  • the sheets were put into solution at 505 ° C. then smoothed, pulled with a permanent elongation of 2% and tempered.
  • the tempering conditions are not all the same because the increase in the yield strength with the tempering time differs from one alloy to another. An attempt has been made to obtain a “peak” elasticity limit while limiting the period of tempering.
  • the income conditions are given in Table 2.
  • the granular structure of the samples was characterized from the microscopic observation of the cross sections after anodic oxidation under polarized light.
  • the grain structure of the plates was essentially non-recrystallized for all plates except for the D # 2 E # 2 F # 1, F # 2, G # 1 and G # 2 plates where the grain structure was essentially recrystallized.
  • the grain size was determined in the L / TC plane at mid-thickness according to the standard ASTM E112 by the method of intercepts from the microscopic observation of the cross sections after oxidation. anodic under polarized light.
  • the anisotropy index is the ratio of the grain size measured in the L direction divided by the grain size measured in the TC direction.
  • Table 3 Grain sizes measured for samples whose granular structure was essentially recrystallized Sheet metal Direction L ( ⁇ m) Direction TC ( ⁇ m) Anisotropy index D # 2 1260 21 60 E # 2 1100 23 48 F # 1 540 59 9 F # 2 135 37 4 G # 1 678 56 12 G # 2 317 46 7
  • the samples were mechanically tested to determine their static mechanical properties as well as their toughness.
  • the mechanical characteristics were measured at full thickness.
  • Table 4 Mechanical characteristics expressed in MPa (R ⁇ sub> p0,2 ⁇ /sub>, R ⁇ sub> m ⁇ /sub>) or in percentage (A%) Sheet metal R p0.2 (L) R m (L) A% (L) R p0.2 (TL) R m (TL) A% (TL) R m (L) / R m (TL) A # 1 469 513 12.2 439 481 15.8 1.07 A # 2 475 522 11.7 441 489 14.0 1.07 B # 1 431 483 13.5 419 462 16.1 1.05 B # 2 431 486 12.9 414 460 17.1 1.06 C # 1 430 471 13.6 411 455 15.5 1.04 C # 2 423 472 12.2 399 451 15.9 1.05 D # 1 420 462 13.0 384 428 16.3 1.08 D # 2 403 437 11.6 371 428 13.9 1.02
  • Table 5 summarizes the results of the toughness tests on 760 mm wide CCT specimens for these samples. Table 5 results of the R curves for the CCT specimens with a width of 760 mm.
  • FIGS. 1 and 2 illustrate the remarkable tenacity of Examples F and G according to the invention, in particular in the LT direction.
  • Examples F and G demonstrate that it is possible to obtain thin sheets according to the invention which exhibit improved and isotropic properties compared to those obtained from the other Examples A to E, and in particular compared to Example C , and this over a wide range of typical thickness of said thin sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)

Claims (13)

  1. Blech von 0,5 bis 9 mm Dicke mit einem solchen Korngefüge, dass der Rekristallisationsgrad in halber Dicke mehr als 70% beträgt, wobei der Rekristallisationsgrad der Flächenanteil eines metallografischen Schliffs ist, der von rekristallisierten Körnern eingenommen wird, aus einer Legierung auf Aluminiumbasis aufweisend
    2,8 bis 3,2 Gewichtsprozent Cu,
    0,5 bis 0,8 Gewichtsprozent Li,
    0,1 bis 0,3 Gewichtsprozent Ag,
    0,2 bis 0,7 Gewichtsprozent Mg,
    0,2 bis 0,35 Gewichtsprozent Mn,
    0,01 bis 0,15 Gewichtsprozent Ti,
    eine Menge Zn von weniger als 0,2 Gew.-%, eine Menge Fe und Si von jeweils höchstens 0,1 Gew.-% und unvermeidbare Verunreinigungen, darunter Zirconium, in einer Menge von jeweils höchstens 0,05 Gew.-% und insgesamt 0,15 Gew.-%, Rest Aluminium,
    wobei das Blech mit einem Verfahren erhalten wird, das Gießen, Homogenisieren, Warm- und gegebenenfalls Kaltwalzen, Lösungsglühen, Abschrecken und Auslagern umfasst.
  2. Blech nach Anspruch 1 mit einem Kupfergehalt zwischen 2,9 und 3,1 Gew.-%.
  3. Blech nach Anspruch 1 oder Anspruch 2 mit einem Lithiumgehalt zwischen 0,55 und 0,75 Gew.-% und vorzugsweise zwischen 0,64 und 0,73 Gew.-%.
  4. Blech nach irgendeinem der Ansprüche 1 bis 3 mit einem Silbergehalt zwischen 0,15 bis 0,28 Gew.-%.
  5. Blech nach irgendeinem der Ansprüche 1 bis 4 mit einem Magnesiumgehalt zwischen 0,3 und 0,5 Gew.-% und vorzugsweise zwischen 0,35 bis 0,45 Gew.-%.
  6. Blech nach irgendeinem der Ansprüche 1 bis 5 mit einem Zirconiumgehalt von 0,03 Gew.-% oder weniger.
  7. Blech nach irgendeinem der Ansprüche 1 bis 6 mit einem Mangangehalt zwischen 0,25 und 0,35 Gew.-%.
  8. Blech nach irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Anisotropieindex der Körner, gemessen in halber Dicke nach ASTM E112 mit dem Intercept-Verfahren in der L/TC-Ebene, weniger als 20, vorzugsweise weniger als 15 und vorzugsweise weniger als 10 beträgt.
  9. Blech nach irgendeinem der Ansprüche 1 bis 8 mit einer Dicke zwischen 0,5 und 9 mm und insbesondere zwischen 1,5 und 6 mm, das im Zustand T8 mindestens eines der folgenden Eigenschaftspaare aufweist:
    - eine Zähigkeit bei flächiger Belastung Kapp, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in L-T-Richtung und in T-L-Richtung, von mindestens 140 MPa√m und vorzugsweise mindestens 150 MPa√m, und einen Grenzwert Rp0,2, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, von mindestens 360 MPa und vorzugsweise mindestens 365 MPa,
    - eine Zähigkeit bei flächiger Belastung Kr60, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in L-T-Richtung und in T-L-Richtung, von mehr als 190 MPa√m und vorzugsweise mehr als 200 MPa√m, und eine Bruchfestigkeit Rm, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, von mindestens 410 MPa und vorzugsweise mindestens 415 MPa, und mindestens eine der folgenden Eigenschaften aufweist:
    - ein Verhältnis zwischen der Zähigkeit bei flächiger Beanspruchung Kapp, gemessen nach ASTM E 561 an Proben vom Typ CCT760, 2ao = 253 mm, in T-L- und L-T-Richtung, mit Kapp(T-L)/Kapp (L-T) zwischen 0,85 und 1,15 und vorzugsweise zwischen 0,90 und 1,10,
    - ein Verhältnis zwischen der Bruchfestigkeit Rm, gemessen nach NF EN ISO 6892-1 in L- und TL-Richtung gemäß EN 485-1, mit Rm(L)/Rm(TL) kleiner als 1,06 und vorzugsweise kleiner als 1,05.
  10. Verfahren zur Herstellung eines Blechs von 0,5 bis 9 mm Dicke nach irgendeinem der Ansprüche 1 bis 8, wobei nacheinander
    a) ein Flüssigmetallbad hergestellt wird, um eine Aluminiumlegierung zu erhalten, die aufweist
    2,8 bis 3,2 Gewichtsprozent Cu,
    0,5 bis 0,8 Gewichtsprozent Li,
    0,1 bis 0,3 Gewichtsprozent Ag,
    0,2 bis 0,7 Gewichtsprozent Mg,
    0,2 bis 0,35 Gewichtsprozent Mn,
    0,01 bis 0,15 Gewichtsprozent Ti,
    eine Menge Zn von weniger als 0,2 Gew.-%, eine Menge Fe und Si von jeweils höchstens 0,1 Gew.-% und unvermeidbare Verunreinigungen, darunter Zirconium, von jeweils höchstens 0,05 Gew.-% und insgesamt 0,15 Gew.-%, Rest Aluminium;
    b) aus dem Flüssigmetallbad eine Platte gegossen wird;
    c) die Platte bei einer Temperatur zwischen 480°C und 535°C homogenisiert wird;
    d) die Platte durch Warm- und optional Kaltwalzen zu einem Blech mit einer Dicke zwischen 0,5 mm und 9 mm gewalzt wird;
    e) das Blech bei einer Temperatur zwischen 450°C und 535°C lösungsgeglüht und abgeschreckt wird;
    h) das Blech mit einer bleibenden Verformung von 0,5 bis 5% kontrolliert gezogen wird, wobei die gesamte Kaltumformung nach Lösungsglühen und Abschrecken weniger als 15% beträgt;
    i) eine Auslagerungsbehandlung durchgeführt wird, umfassend ein Erhitzen auf eine Temperatur zwischen 130 und 170°C und vorzugsweise zwischen 150 und 160°C für 5 bis 100 Stunden und vorzugsweise 10 bis 40 Stunden.
  11. Verfahren nach Anspruch 10, wobei die Homogenisierungstemperatur zwischen 490°C und 530°C und in bevorzugter Weise zwischen 500°C und 520°C liegt.
  12. Verfahren nach Anspruch 10 oder nach Anspruch 11, wobei beim Warmwalzen eine Temperatur über 400°C bis 20 mm Dicke und vorzugsweise eine Temperatur über 450°C bis 20 mm Dicke aufrechterhalten wird.
  13. Verwendung eines Blechs nach irgendeinem der Ansprüche 1 bis 9 in einer Rumpfplatte für Luftfahrzeuge.
EP15784082.8A 2014-10-03 2015-10-01 Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon Active EP3201372B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402237A FR3026747B1 (fr) 2014-10-03 2014-10-03 Toles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion
PCT/FR2015/052634 WO2016051099A1 (fr) 2014-10-03 2015-10-01 Tôles isotropes en alliage d'aluminium-cuivre-lithium pour la fabrication de fuselages d'avion

Publications (2)

Publication Number Publication Date
EP3201372A1 EP3201372A1 (de) 2017-08-09
EP3201372B1 true EP3201372B1 (de) 2021-01-27

Family

ID=52423759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15784082.8A Active EP3201372B1 (de) 2014-10-03 2015-10-01 Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon

Country Status (8)

Country Link
US (1) US11174535B2 (de)
EP (1) EP3201372B1 (de)
JP (1) JP6692803B2 (de)
CN (1) CN106795595A (de)
BR (1) BR112017006071B1 (de)
CA (1) CA2961712C (de)
FR (1) FR3026747B1 (de)
WO (1) WO2016051099A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037390A2 (en) 2016-08-26 2018-03-01 Shape Corp. Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component
US11072844B2 (en) 2016-10-24 2021-07-27 Shape Corp. Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components
FR3067044B1 (fr) * 2017-06-06 2019-06-28 Constellium Issoire Alliage d'aluminium comprenant du lithium a proprietes en fatigue ameliorees
FR3080861B1 (fr) * 2018-05-02 2021-03-19 Constellium Issoire Procede de fabrication d'un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
JP7313484B2 (ja) * 2019-05-28 2023-07-24 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング クラッド2xxxシリーズ航空宇宙用製品
CN110423927A (zh) * 2019-07-17 2019-11-08 中南大学 一种超高强铝锂合金及其制备方法
FR3104172B1 (fr) * 2019-12-06 2022-04-29 Constellium Issoire Tôles minces en alliage d’aluminium-cuivre-lithium à ténacité améliorée et procédé de fabrication
CN112195376A (zh) * 2020-09-11 2021-01-08 中铝材料应用研究院有限公司 一种高强度汽车车身用6xxx系铝合金板材及其制备方法
FR3132306B1 (fr) 2022-01-28 2024-05-03 Constellium Issoire Tôle mince améliorée en alliage d’aluminium-cuivre-lithium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US7438772B2 (en) 1998-06-24 2008-10-21 Alcoa Inc. Aluminum-copper-magnesium alloys having ancillary additions of lithium
WO2004106570A1 (en) 2003-05-28 2004-12-09 Pechiney Rolled Products New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness
CN101189353A (zh) * 2005-06-06 2008-05-28 爱尔康何纳吕公司 用于飞机机身的高韧度的铝-铜-锂合金板材
ES2314929T3 (es) 2005-06-06 2009-03-16 Alcan Rhenalu Chapa de aluminio-cobre-litio con alta tenacidad para fuselaje de avion.
FR2889542B1 (fr) * 2005-08-05 2007-10-12 Pechiney Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
FR2894985B1 (fr) 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
CA2700250C (en) * 2007-09-21 2016-06-28 Aleris Aluminum Koblenz Gmbh Al-cu-li alloy product suitable for aerospace application
CN104674090A (zh) 2007-12-04 2015-06-03 美铝公司 改进的铝-铜-锂合金
FR2947282B1 (fr) * 2009-06-25 2011-08-05 Alcan Rhenalu Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
WO2011130180A1 (en) 2010-04-12 2011-10-20 Alcoa Inc. 2xxx series aluminum lithium alloys having low strength differential
FR2960002B1 (fr) * 2010-05-12 2013-12-20 Alcan Rhenalu Alliage aluminium-cuivre-lithium pour element d'intrados.
CN102021457B (zh) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 一种高强韧铝锂合金及其制备方法
CN101967588B (zh) 2010-10-27 2012-08-29 中国航空工业集团公司北京航空材料研究院 一种耐损伤铝锂合金及其制备方法
FR2981365B1 (fr) * 2011-10-14 2018-01-12 Constellium Issoire Procede de transformation ameliore de toles en alliage al-cu-li
CN103173700B (zh) * 2013-03-15 2016-01-06 中国航空工业集团公司北京航空材料研究院 Al-Cu-Li-X铝锂合金表面脱锂层的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170306454A1 (en) 2017-10-26
CN106795595A (zh) 2017-05-31
BR112017006071B1 (pt) 2021-05-04
FR3026747A1 (fr) 2016-04-08
FR3026747B1 (fr) 2016-11-04
CA2961712C (fr) 2022-11-01
CA2961712A1 (fr) 2016-04-07
JP2017534757A (ja) 2017-11-24
BR112017006071A2 (pt) 2017-12-12
EP3201372A1 (de) 2017-08-09
WO2016051099A1 (fr) 2016-04-07
US11174535B2 (en) 2021-11-16
JP6692803B2 (ja) 2020-05-13

Similar Documents

Publication Publication Date Title
EP3201372B1 (de) Isotropische bleche aus aluminium-lithium-kupfer legierung für die herstellung von flugzeugrümpfen und herstellungsverfahren davon
EP1966402B1 (de) Blech aus einer hochfesten aluminiumlegierung mit kupfer und lithium für einen flugzeugrumpf
EP2766503B1 (de) Verbessertes verfahren zum bearbeiten von metallblechen aus einer al-cu-li-legierung
EP2449142B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserten mechanische beständigkeit und zähigkeit
EP1766102B1 (de) Verfahren zur herstellung hochfester und ermüdungsfester aluminiumlegierungsprodukte
EP2655680B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter druckfestigkeit und beständigkeit
EP2697406B1 (de) Aluminium-kupfer-magnesium-legierungen mit guter leistung bei hohen temperaturen
EP2984195B1 (de) Verfahren zur umformung von blechen aus al-cu-li-legierung für verbesserte formbarkeit und korrosionsbeständigkeit
EP2364378B1 (de) Produkte aus aluminium-kupfer-lithium-legierung
FR2838135A1 (fr) PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D'AERONEF
EP2981632B1 (de) Dünne bleche aus einer aluminium-kupfer-lithium-legierung zur herstellung von flugzeugrümpfen
EP2981631B1 (de) Bleche aus aluminium-kupfer-lithium-legierung zur herstellung von flugzeugrümpfen
EP3384061B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter mechanischer festigkeit und erhöhter zähigkeit
FR3007423A1 (fr) Element de structure extrados en alliage aluminium cuivre lithium
EP3526358B1 (de) Dünne bleche aus aluminium-magnesium-scandium-legierung für anwendungen in der luft- und raumfahrt
EP3728667B1 (de) Verbessertes verfahren zur herstellung von blechen aus einer aluminium-kupfer-lithium-legierung für die herstellung von flugzeugrümpfen und entsprechendem blech
FR3111143A1 (fr) Produits en alliage aluminium cuivre magnésium performants à haute température
EP3788178B1 (de) Aluminium-kupfer-lithium-legierung mit verbesserter kompressionsfestigkeit und erhöhter beständigkeit
EP3802897B1 (de) Dünnschichten aus aluminium-kupfer-lithium-legierung für die herstellung eines flugzeugrumpfes
FR3132306A1 (fr) Tôle mince améliorée en alliage d’aluminium-cuivre-lithium

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190618

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200909

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015065262

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015065262

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1358409

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151001

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231025

Year of fee payment: 9

Ref country code: DE

Payment date: 20231027

Year of fee payment: 9

Ref country code: AT

Payment date: 20230920

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127