EP2364378B1 - Products in aluminium-copper-lithium alloy - Google Patents

Products in aluminium-copper-lithium alloy Download PDF

Info

Publication number
EP2364378B1
EP2364378B1 EP09764268.0A EP09764268A EP2364378B1 EP 2364378 B1 EP2364378 B1 EP 2364378B1 EP 09764268 A EP09764268 A EP 09764268A EP 2364378 B1 EP2364378 B1 EP 2364378B1
Authority
EP
European Patent Office
Prior art keywords
mpa
weight
expressed
product
fracture toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09764268.0A
Other languages
German (de)
French (fr)
Other versions
EP2364378A1 (en
Inventor
Fabrice Heymes
Frank Eberl
Gaëlle POUGET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Constellium France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium France SAS filed Critical Constellium France SAS
Priority to DE9764268T priority Critical patent/DE09764268T1/en
Publication of EP2364378A1 publication Critical patent/EP2364378A1/en
Application granted granted Critical
Publication of EP2364378B1 publication Critical patent/EP2364378B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention generally relates to wrought products of aluminum-copper-lithium alloys, and more particularly to such products in the form of profiles intended to produce stiffeners in aeronautical construction.
  • Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • their performance must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (elastic limit, breaking strength) and the properties of damage tolerance ( toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic.
  • These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined integrally.
  • the patent US 5,198,045 discloses a family of Weldalite TM alloys comprising (in% by weight) (2,4-3,5) Cu, (1,35-1,8) Li, (0,25-0,65) Mg, (0 , 25-0.65) Ag, (0.08-0.25) Zr.
  • the wrought products made with these alloys combine a density of less than 2.64 g / cm 3 and a compromise between strength and toughness of interest.
  • the patent US 7,229,509 discloses a family of Weldalite TM alloys comprising (in% by weight) (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0 , 2-0.8) Ag, (0.2-0.8) Mn, (up to 0.4) Zr or other affinants such as Cr, Ti, Hf, Sc and V.
  • the examples presented have a compromise between mechanical strength and improved toughness but their density is greater than 2.7 g / cm 3 .
  • the patent application WO2007 / 080267 discloses a non-zirconium-containing Weldalite TM alloy for fuselage plates comprising (in% by weight) (2.1-2.8) Cu, (1.1-1.7) Li, (0.2- 0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn.
  • the patent EP1891247 discloses a Weldalite TM alloy which is lightly loaded with alloying elements and is also intended for the manufacture of fuselage sheets comprising (in% by weight) (2.7-3.4) Cu, (0.8-1.4) Li (0.2-0.6) Mg, (0.1-0.8) Ag and at least one member selected from Zr, Mn, Cr, Sc, Hf, Ti.
  • the patent application WO2006 / 131627 discloses an alloy for fuselage plates comprising (in% by weight) (2.7-3.4) Cu, (0.8-1.4) Li, (0.2-0.6) Mg, ( 0.1-0.8) Ag and at least one of Zr, Mn, Cr, Sc, Hf and Ti, wherein the Cu and Li contents are Cu + 5/3 Li ⁇ 5.2 .
  • the patent US5,455,003 discloses a process for producing aluminum-copper-lithium alloys having improved mechanical strength and toughness properties at cryogenic temperature. This method applies in particular to an alloy comprising (in% by weight) (2.0-6.5) Cu, (0.2-2.7) Li, (0-4.0) Mg, (0- 4.0) Ag, (0-3.0) Zn.
  • alloy AA2196 comprising (in% by weight) (2.5-3.3) Cu, (1.4-2.1) Li, (0.25-0.8) Mg, is known , 25-0.6) Ag, (0.04-0.18) Zr and at most 0.35 Mn.
  • the invention also relates to a product spun, rolled and / or forged aluminum alloy with a density of less than 2.67 g / cm 3 obtainable by the process according to the invention.
  • Yet another object of the invention is a structural element incorporating at least one product according to the invention.
  • alloys are in accordance with the regulations of The Aluminum Association, known to those skilled in the art.
  • the density depends on the composition and is determined by calculation rather than by a method of measuring weight.
  • the values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2.13 of "Aluminum Standards and Data".
  • the definitions of the metallurgical states are given in the European standard EN 515.
  • the static mechanical characteristics in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 ("yield strength") and the elongation at break A, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
  • the stress intensity factor (K Q ) is determined according to ASTM E 399.
  • the ASTM E 399 standard provides in 9.1.3 and 9.1.4 criteria for determining whether K Q is a valid K 1C value .
  • a value K 1C is always a value K Q the reciprocal is not true.
  • the MASTMAASIS Modified ASTM Acetic Acid Salt Intermittent Spray
  • ASTM G85 ASTM G85.
  • EN 12258 the definitions of EN 12258 apply.
  • the thickness of the profiles is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
  • a "structural element” or “structural element” of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized.
  • These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • fuselage such as fuselage skin (fuselage skin in English
  • stiffeners or stringers such as fuselage skin
  • bulkheads fuselage (circumferential frames)
  • wings such as wing skin
  • stiffeners stiffeners (stiffeners), ribs (ribs) and spars
  • empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • the present inventors have found that, surprisingly, for certain low density Al-Cu-Li alloys containing at the same time an addition of silver, magnesium, zirconium and manganese, the choice of specific homogenization conditions makes it possible to significantly improve the compromise between mechanical resistance and damage tolerance.
  • the method according to the invention allows the manufacture of a product spun, rolled and / or forged.
  • a bath of liquid metal is produced so as to obtain an aluminum alloy of defined composition.
  • the copper content of the alloy for which the surprising effect related to the choice of homogenization conditions is observed is between 2.0 and 3.5% by weight, preferably between 2.45 or 2.5 and 3.3% by weight.
  • the copper content is between 2.7 and 3.1% by weight.
  • the lithium content is between 1.4 and 1.8%.
  • the lithium content is between 1.42 and 1.77% by weight.
  • the silver content is between 0.1 and 0.5% by weight.
  • the present inventors have found that a significant amount of silver is not needed to achieve the desired improvement in the trade-off between strength and damage tolerance.
  • the silver content is between 0.15 and 0.35% by weight.
  • the silver content is at most 0.25% by weight.
  • the magnesium content is between 0.1 and 1.0% by weight and preferably it is less than 0.4% by weight. The combination of specific homogenization conditions and the simultaneous addition of zirconium and manganese is an essential feature of the invention.
  • the zirconium content must be between 0.05 and 0.18% by weight and the manganese content must be between 0.2 and 0.6% by weight. Preferably, the manganese content is at most 0.35% by weight.
  • the alloy also contains at least one element that can contribute to the control of the grain size selected from Cr, Sc, Hf and Ti, the quantity of the element, if it is chosen, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti. It is preferable to limit the content of unavoidable impurities in the alloy so as to achieve the most favorable damage tolerance properties.
  • the unavoidable impurities include iron and silicon, these impurities preferably have a content of less than 0.08% by weight and 0.06% by weight for iron and silicon, respectively, the other impurities preferably have a lower content to 0.05% by weight each and 0.15% by weight in total.
  • the zinc content is preferably less than 0.04% by weight.
  • the composition is adjusted so as to obtain a density at room temperature of less than 2.67 g / cm 3 , even more preferably less than 2.66 g / cm 3, in some cases even less than 2.65 g / cm 3 or even 2.64 g / cm 3 .
  • the decrease in density is generally associated with a degradation of the properties.
  • the liquid metal bath is then cast in a raw form, such as a billet, a rolling plate or a forging blank.
  • the crude form is then homogenized at a temperature of between 515 ° C. and 525 ° C. so that the equivalent time t (eq) at 520 ° C. for homogenization is between 5 and 20 hours and preferably between 6 and 20 hours. and 15 hours.
  • T (in Kelvin) is the instantaneous treatment temperature, which changes with time t (in hours)
  • T ref is a reference temperature set at 793 K.
  • t (eq) is expressed in hours.
  • the formula giving t (eq) takes into account the heating and cooling phases.
  • the homogenization temperature is about 520 ° C and the treatment time is between 8 and 20 hours. For homogenization, the times indicated correspond to times for which the metal is actually at the desired temperature.
  • a toughness K Q (LT) of at least MPa m with a yield strength R p0.2 (L) of at least 520 MPa a copper content of between 2.65 and 2.85% by weight is associated with a lithium content of between 1.5 and 1 , 7% by weight.
  • the density of the spun products according to the invention is less than 2.66 g / cm 3 , even more preferably less than 2.65 g / cm 3, in some cases even less than 2.64 g / cm 3. 3 .
  • an income is obtained which makes it possible to obtain a conventional yield strength measured at 0.2% elongation greater than 520 MPa, for example from 30 h to 152 ° C.
  • the resistance at break in the LR m (L) direction, expressed in MPa and the K Q toughness (LT), in the LT direction expressed in MPa m are then such R m (L)> 550 and K Q (LT)> 50.
  • the process according to the invention also makes it possible to obtain advantageous rolled products.
  • the sheets whose thickness is at least 10 mm and preferably at least 15 mm and / or at most 100 mm and preferably at most 50 mm are advantageous.
  • An aluminum alloy laminated product according to the invention has a density of less than 2.67 g / cm 3 , is obtainable by the method according to the invention, and is advantageously characterized in that its tenacity K Q (LT), in the LT direction is at least 23 MPa m and preferably at least 25 MPa m , its conventional yield strength measured at 0.2% elongation in the LR p0.2 (L) direction is at least 560 MPa and preferably at least 570 MPa and / or its breaking strength in the direction LR m (L) is at least 585 MPa and preferably at least equal to 595 MPa.
  • LT tenacity K Q
  • the density of the rolled products according to the invention is less than 2.66 g / cm 3 , even more preferably less than 2.65 g / cm 3, in some cases even less than 2.64 g / cm 3. 3 .
  • the products according to the invention can advantageously be used in structural elements, in particular aircraft.
  • a structural element incorporating at least one product according to the invention or made from such a product is advantageous, in particular for aeronautical construction.
  • a structural element, formed of at least one product according to the invention, in particular a spun product according to the invention used as stiffener or frame, can be advantageously used for the manufacture of fuselage panels or airplane wing as well as any other use where the present properties could be advantageous.
  • the plates were homogenized according to the prior art for 8 h at 500 ° C. and then 24h at 527 ° C. Bills were taken from the plates. The billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain W profiles according to Figure 1 . The profiles thus obtained were dissolved at 524 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The income was made for 48 hours at 152 ° C.
  • the billets were homogenized either 8h at 500 ° C and then 24h at 527 ° C (reference A) or 8h at 520 ° C (reference B) or 8h at 500 ° C (reference C).
  • the rate of rise in temperature was 15 ° C / h for the homogenization and the equivalent time was 37.5 hours for homogenization of reference A, 9.5 hours for homogenization of reference B, and 4
  • the billets were heated to 450 ° C. +/- 40 ° C. and then hot-spun to obtain X-profiles according to FIG. Figure 2 or Y according to the Figure 3 .
  • the profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%.
  • Example 2 two of the homogenization conditions of Example 2 were compared for another type of profile, obtained from billets taken from a plate whose composition is given in Table 6 below: Table 6.
  • Table 6 Composition in% by weight of Al-Cu-Li alloys used Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 4 0.03 0.05 3.05 0.01 0.39 0.01 0.03 0.12 1.70 0.35 2,631 5 0.03 0.04 2.90 0.31 0.40 0.01 0.03 0.1 1.67 0.38 2,635
  • the alloy billets 4 were homogenized for 8 hours at 500 ° C. and then 24h at 527 ° C. (ie the reference homogenization A) while the alloy billets 5 were homogenized for 8 hours at 520 ° C. (reference B). After homogenization, the billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain Z profiles according to the Figure 7 . The profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C.
  • the alloy billets 6 were homogenized for 8 hours at 520 ° C. (ie reference homogenization B). After homogenization, the billets were heated to 450 ° C. +/- 40 ° C. and then hot-spun to obtain P profiles according to Figure 8 . The profiles thus obtained were dissolved, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break A).
  • the alloy billets 7 were homogenized for 8 hours at 520 ° C. (ie reference homogenization B). After homogenization, the billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain Q profiles according to the Figure 9 . The profiles thus obtained were dissolved, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break A).
  • Table 14 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 8 0.03 0.06 3.1 0.3 0.4 0.01 0.03 0.11 1.77 0.36 2,631
  • the plate was scalped and then homogenized at 520 +/- 5 ° C for 8 h (the reference homogenization B). After homogenization, the plate was hot rolled to obtain sheets having a thickness of 25 mm. The sheets were put in solution at 524 +/- 2 ° C, quenched with cold water and triturated with a permanent elongation between 2 and 5%. Samples with a diameter of 10 mm taken from some of these sheets were then subjected to an income of between 20 h and 50 h at 155 ° C.
  • the homogenization conditions according to the invention were used for two types of profiles, obtained from billets made of two different alloys whose composition is given in Table 17 below.
  • Table 17 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 9 0.03 0.05 2.49 0.31 0.35 0.01 0.04 0.13 1.43 0.25 2,645 10 0.03 0.06 2.62 0.30 0.35 0.01 0.04 0.14 1.42 0.25 2,648
  • the billets were homogenized for 8 hours at 520 ° C. (reference B). The temperature rise rate was 15 ° C./h for homogenization and the equivalent time was 9.5 hours.
  • the billets were reheated to 450 ° C. ° C +/- 40 ° C then hot spun to obtain X profiles according to the Figure 2 or Y according to the Figure 3 .
  • the profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. Different income conditions have been implemented.
  • the compromise between toughness and mechanical strength obtained with alloys 9 and 10 is particularly advantageous, in particular to obtain very high toughness values, with K Q (LT) greater than 50 MPa m , and even greater than 55 MPa m .

Description

Domaine de l'inventionField of the invention

L'invention concerne en général les produits corroyés en alliages aluminium-cuivre-lithium, et plus particulièrement de tels produits sous la forme de profilés destinés à réaliser des raidisseurs en construction aéronautique.The invention generally relates to wrought products of aluminum-copper-lithium alloys, and more particularly to such products in the form of profiles intended to produce stiffeners in aeronautical construction.

Etat de la techniqueState of the art

Un effort de recherche continu est réalisé afin de développer des matériaux qui puissent simultanément réduire le poids et augmenter l'efficacité des structures d'avions à hautes performances. Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. Pour que ces alliages soient sélectionnés dans les avions, leur performance doit atteindre celle des alliages couramment utilisés, en particulier en terme de compromis entre les propriétés de résistance mécanique statique (limite élastique, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques. Ces alliages doivent de plus présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés de façon intégrale.A continuous research effort is being made to develop materials that can simultaneously reduce the weight and increase the efficiency of high performance aircraft structures. Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added. For these alloys to be selected in aircraft, their performance must reach that of commonly used alloys, in particular in terms of a compromise between the static mechanical strength properties (elastic limit, breaking strength) and the properties of damage tolerance ( toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic. These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual methods and have low residual stresses so that they can be machined integrally.

Le brevet US 5,032,359 décrit une vaste famille d'alliages aluminium-cuivre-lithium dans lesquels l'addition de magnésium et d'argent, en particulier entre 0,3 et 0,5 pourcent en poids, permet d'augmenter la résistance mécanique. Ces alliages sont souvent connus sous le nom commercial « Weldalite ™ ».The patent US 5,032,359 discloses a large family of aluminum-copper-lithium alloys in which the addition of magnesium and silver, in particular between 0.3 and 0.5 percent by weight, makes it possible to increase the mechanical strength. These alloys are often known under the trade name "Weldalite ™".

Le brevet US 5,198,045 décrit une famille d'alliages Weldalite ™ comprenant (en % en poids) (2,4-3,5)Cu, (1,35-1,8)Li, (0,25-0,65)Mg, (0,25-0,65)Ag, (0,08-0,25) Zr. Les produits corroyés fabriqués avec ces alliages combinent une densité inférieure à 2,64 g/cm3 et un compromis entre la résistance mécanique et la ténacité intéressant.The patent US 5,198,045 discloses a family of Weldalite ™ alloys comprising (in% by weight) (2,4-3,5) Cu, (1,35-1,8) Li, (0,25-0,65) Mg, (0 , 25-0.65) Ag, (0.08-0.25) Zr. The wrought products made with these alloys combine a density of less than 2.64 g / cm 3 and a compromise between strength and toughness of interest.

Le brevet US 7,229,509 décrit une famille d'alliages Weldalite ™ comprenant (en % en poids) (2,5-5,5)Cu, (0,1-2,5) Li, (0,2-1,0) Mg, (0,2-0,8) Ag, (0,2-0,8) Mn, (jusque 0,4) Zr ou d'autres affinants tels que Cr, Ti, Hf, Sc et V. Les exemples présentés ont un compromis entre la résistance mécanique et la ténacité amélioré mais leur densité est supérieure à 2,7 g/cm3.The patent US 7,229,509 discloses a family of Weldalite ™ alloys comprising (in% by weight) (2.5-5.5) Cu, (0.1-2.5) Li, (0.2-1.0) Mg, (0 , 2-0.8) Ag, (0.2-0.8) Mn, (up to 0.4) Zr or other affinants such as Cr, Ti, Hf, Sc and V. The examples presented have a compromise between mechanical strength and improved toughness but their density is greater than 2.7 g / cm 3 .

La demande de brevet WO2007/080267 décrit un alliage Weldalite™ ne contenant pas de zirconium destiné à des tôles de fuselage comprenant (en % en poids) (2,1-2,8)Cu, (1,1-1,7) Li, (0,2-0,6) Mg, (0,1-0,8) Ag, (0,2-0,6) Mn.The patent application WO2007 / 080267 discloses a non-zirconium-containing Weldalite ™ alloy for fuselage plates comprising (in% by weight) (2.1-2.8) Cu, (1.1-1.7) Li, (0.2- 0.6) Mg, (0.1-0.8) Ag, (0.2-0.6) Mn.

Le brevet EP1891247 décrit un alliage Weldalite ™ peu chargé en éléments d'alliage et destiné également à la fabrication de tôles de fuselage comprenant (en % en poids) (2,7-3,4)Cu, (0,8-1,4) Li, (0,2-0,6) Mg, (0,1-0,8) Ag et au moins un élément choisi parmi Zr, Mn, Cr, Sc, Hf, Ti.The patent EP1891247 discloses a Weldalite ™ alloy which is lightly loaded with alloying elements and is also intended for the manufacture of fuselage sheets comprising (in% by weight) (2.7-3.4) Cu, (0.8-1.4) Li (0.2-0.6) Mg, (0.1-0.8) Ag and at least one member selected from Zr, Mn, Cr, Sc, Hf, Ti.

La demande de brevet WO2006/131627 décrit un alliage destiné à des tôles de fuselage comprenant (en % en poids) (2,7-3,4)Cu, (0,8-1,4) Li, (0,2-0,6) Mg, (0,1-0,8) Ag et au moins un élément parmi Zr, Mn, Cr, Sc, Hf et Ti, dans lequel les teneurs en Cu et en Li répondent à la condition Cu + 5/3 Li < 5,2.The patent application WO2006 / 131627 discloses an alloy for fuselage plates comprising (in% by weight) (2.7-3.4) Cu, (0.8-1.4) Li, (0.2-0.6) Mg, ( 0.1-0.8) Ag and at least one of Zr, Mn, Cr, Sc, Hf and Ti, wherein the Cu and Li contents are Cu + 5/3 Li <5.2 .

Le brevet US 5,455,003 décrit procédé de production d'alliages aluminium-cuivre-lithium présentant des propriétés améliorées de résistance mécanique et ténacité à température cryogénique. Ce procédé s'applique notamment à un alliage comprenant (en % en poids) (2,0-6,5)Cu, (0,2-2,7) Li, (0-4,0) Mg, (0-4,0) Ag, (0-3,0) Zn.The patent US5,455,003 discloses a process for producing aluminum-copper-lithium alloys having improved mechanical strength and toughness properties at cryogenic temperature. This method applies in particular to an alloy comprising (in% by weight) (2.0-6.5) Cu, (0.2-2.7) Li, (0-4.0) Mg, (0- 4.0) Ag, (0-3.0) Zn.

On connait par ailleurs l'alliage AA2196 comprenant (en % en poids) (2,5-3,3)Cu, (1,4-2,1) Li, (0,25-0,8) Mg, (0,25-0,6) Ag, (0,04-0,18) Zr et au plus 0,35 Mn.In addition, alloy AA2196 comprising (in% by weight) (2.5-3.3) Cu, (1.4-2.1) Li, (0.25-0.8) Mg, is known , 25-0.6) Ag, (0.04-0.18) Zr and at most 0.35 Mn.

Il a été généralement admis dans ces brevets ou demandes de brevet qu'une homogénéisation poussée, c'est-à-dire à une température d'au moins 527 °C et pour une durée d'au moins 24 h permettait d'atteindre les propriétés optimales de l'alliage. Dans certains cas d'alliages peu chargés ( EP1891247 ) ou exempts de zirconium ( WO2007/080267 ), des conditions d'homogénéisation beaucoup moins poussées, c'est-à-dire à une température inférieure à 510 °C, ont été utilisées.It has been generally accepted in these patents or patent applications that thorough homogenization, that is to say at a temperature of at least 527 ° C. and for a duration of at least 24 hours, makes it possible to reach the optimal properties of the alloy. In some cases of light alloys ( EP1891247 ) or free of zirconium ( WO2007 / 080267 ), much less thorough homogenization conditions, that is to say at a temperature below 510 ° C, were used.

Il existe cependant toujours un besoin concernant des produits en alliage en Al-Cu-Li de faible densité et de propriétés encore améliorées, particulièrement en terme de compromis entre la résistance mécanique d'une part, et la tolérance aux dommages, et en particulier de la ténacité et de la résistance à la propagation des fissures en fatigue, d'autre part, tout en ayant d'autres propriétés d'usage satisfaisantes, notamment la résistance à la corrosion.However, there is still a need for low density Al-Cu-Li alloy products and further improved properties, particularly in terms of the compromise between mechanical strength on the one hand, and damage tolerance, and in particular the toughness and resistance to the propagation of fatigue cracks, on the other hand, while having other properties of satisfactory use, including corrosion resistance.

Objet de l'inventionObject of the invention

L'invention défini selon la revendication 1 a pour objet un procédé de fabrication d'un produit filé, laminé et/ou forgé à base d'alliage d'aluminium dans lequel :

  1. a) on élabore un bain de métal liquide comprenant 2,0 à 3,5 % en poids de Cu, 1,4 à 1,8 % en poids de Li, 0,1 à 0,5 % en poids d'Ag, 0,1 à 1,0 % en poids de Mg, 0,05 à 0,18 % en poids de Zr, 0,2 à 0,6 % en poids de Mn et au moins un élément choisi parmi Cr, Sc, Hf et Ti, la quantité dudit élément, s'il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti,
    le reste étant de l'aluminium et des impuretés inévitables ;
  2. b) on coule une forme brute à partir dudit bain de métal liquide ;
  3. c) on homogénéise ladite forme brute à une température comprise entre 515 °C et 525°C de façon à ce que le temps équivalent pour l'homogénéisation t eq = exp - 26100 / T dt exp - 26100 / T ref
    Figure imgb0001
    soit compris entre 5 et 20 heures, où T (en Kelvin) est la température instantanée de traitement, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 793 K ;
  4. d) on déforme à chaud et optionnellement à froid ladite forme brute en un produit filé, laminé et/ou forgé ;
  5. e) on met en solution et on trempe ledit produit ;
  6. f) on tractionne de façon contrôlée ledit produit avec une déformation permanente de 1 à 5 % et préférentiellement d'au moins 2% ;
  7. g) on réalise un revenu dudit produit par chauffage à 140 à 170 °C pendant 5 à 70 heures de façon à ce que ledit produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement d'au moins 440 MPa et de préférence d'au moins 460 MPa.
The invention defined according to claim 1 relates to a process for manufacturing a spun, rolled and / or forged aluminum alloy product in which:
  1. a) a bath of liquid metal comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag is prepared, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the amount of said element, if selected, being from 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti,
    the rest being aluminum and unavoidable impurities;
  2. b) pouring a raw form from said bath of liquid metal;
  3. c) homogenizing said crude form at a temperature between 515 ° C and 525 ° C so that the equivalent time for homogenization t eq = exp - 26100 / T dt exp - 26100 / T ref
    Figure imgb0001
    is between 5 and 20 hours, where T (in Kelvin) is the instantaneous treatment temperature, which changes with time t (in hours), and T ref is a reference temperature set at 793 K;
  4. d) hot deformed and optionally cold deformed said raw form into a product spun, rolled and / or forged;
  5. e) the solution is dissolved and quenched;
  6. f) controlled pulling said product with a permanent deformation of 1 to 5% and preferably at least 2%;
  7. g) an income of said product is obtained by heating at 140 to 170 ° C for 5 to 70 hours so that said product has a conventional yield strength measured at 0.2% elongation of at least 440 MPa and preferably at least 460 MPa.

L'invention a également pour objet un produit filé, laminé et/ou forgé en alliage d'aluminium de densité inférieure à 2,67 g/cm3 susceptible d'être obtenu par le procédé selon l'invention.The invention also relates to a product spun, rolled and / or forged aluminum alloy with a density of less than 2.67 g / cm 3 obtainable by the process according to the invention.

Encore un autre objet de l'invention est un élément de structure incorporant au moins un produit selon l'invention.Yet another object of the invention is a structural element incorporating at least one product according to the invention.

Description des figuresDescription of figures

  • Figure 1. Forme du profilé W de l'exemple 1. Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés. L'épaisseur de la semelle est 16 mm. Figure 1 . Shape of the profile W of Example 1. The dimensions are given in mm. The samples used for the mechanical characterizations were taken from the area indicated by the dots. The thickness of the sole is 16 mm.
  • Figure 2. Forme du profilé X de l'exemple 2. Les cotes sont indiquées en mm. L'épaisseur de la semelle est 26,3 mm. Figure 2 . Shape of the profile X of Example 2. The dimensions are given in mm. The thickness of the sole is 26.3 mm.
  • Figure 3. Forme du profilé Y de l'exemple 2. Les cotes sont indiquées en mm. L'épaisseur de la semelle est 18 mm. Figure 3 . Form Y profile of Example 2. The dimensions are given in mm. The thickness of the sole is 18 mm.
  • Figure 4. Compromis entre ténacité et résistance mécanique obtenu pour les profilés X de l'exemple 2. Figure 4 . Compromise between toughness and mechanical strength obtained for the X profiles of Example 2.
  • Figure 5. Compromis entre ténacité et résistance mécanique obtenu pour les profilés Y de l'exemple 2 ; 5a : semelle et sens long ; 5b : semelle et sens travers long. Figure 5 . Compromise between toughness and mechanical strength obtained for the Y profiles of Example 2; 5a: sole and long direction; 5b: sole and long cross.
  • Figure 6. Courbe de Wohler d'initiation de fissures en fatigue pour les profilés Y de l'exemple 2. Figure 6 . Wohler curve of fatigue crack initiation for the Y profiles of Example 2.
  • Figure 7. Forme du profilé Z de l'exemple 3. Les cotes sont indiquées en mm. Les échantillons utilisés pour les caractérisations mécaniques ont été prélevés dans la zone indiquée par les pointillés. L'épaisseur de la semelle est 20 mm. Figure 7 . Shape of the profile Z of Example 3. The dimensions are given in mm. The samples used for the mechanical characterizations were taken from the area indicated by the dots. The thickness of the sole is 20 mm.
  • Figure 8. Forme du profilé P de l'exemple 4. Les cotes sont indiquées en mm. Figure 8 . Form of the profile P of Example 4. The dimensions are given in mm.
  • Figure 9. Forme du profilé Q de l'exemple 5. Les cotes sont indiquées en mm. Figure 9 . Shape of the profile Q of Example 5. The dimensions are given in mm.
Description de l'inventionDescription of the invention

Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2.13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.Unless stated otherwise, all the information concerning the chemical composition of the alloys is expressed as a percentage by weight based on the total weight of the alloy. The designation of alloys is in accordance with the regulations of The Aluminum Association, known to those skilled in the art. The density depends on the composition and is determined by calculation rather than by a method of measuring weight. The values are calculated in accordance with the procedure of The Aluminum Association, which is described on pages 2-12 and 2.13 of "Aluminum Standards and Data". The definitions of the metallurgical states are given in the European standard EN 515.

Sauf mention contraire, les caractéristiques mécaniques statiques, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement Rp0,2 (« limite d'élasticité ») et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, le prélèvement et le sens de l'essai étant définis par la norme EN 485-1.
Le facteur d'intensité de contrainte (KQ) est déterminé selon la norme ASTM E 399. Ainsi, la proportion des éprouvettes définie au paragraphe 7.2.1 de cette norme est toujours vérifiée de même que la procédure générale définie au paragraphe 8. La norme ASTM E 399 donne aux paragraphes 9.1.3 et 9.1.4 des critères qui permettent de déterminer si KQ est une valeur valide de K1C. Ainsi, une valeur K1C est toujours une valeur KQ la réciproque n'étant pas vraie. Dans le cadre de l'invention, les critères des paragraphes 9.1.3 et 9.1.4 de la norme ASTM E399 ne sont pas toujours vérifiés, cependant pour une géométrie d'éprouvette donnée, les valeurs de KQ présentées sont toujours comparables entre elles, la géométrie d'éprouvette permettant d'obtenir une valeur valide de K1C n'étant pas toujours accessible compte tenu des contraintes liées aux dimensions des tôles ou profilés.
Unless otherwise stated, the static mechanical characteristics, in other words the ultimate tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 ("yield strength") and the elongation at break A, are determined by a tensile test according to EN 10002-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
The stress intensity factor (K Q ) is determined according to ASTM E 399. Thus, the proportion of specimens defined in paragraph 7.2.1 of this standard is always and the general procedure defined in paragraph 8. The ASTM E 399 standard provides in 9.1.3 and 9.1.4 criteria for determining whether K Q is a valid K 1C value . Thus, a value K 1C is always a value K Q the reciprocal is not true. In the context of the invention, the criteria of paragraphs 9.1.3 and 9.1.4 of ASTM E399 are not always checked, however for a given specimen geometry, the K Q values presented are always comparable to each other. , the specimen geometry to obtain a valid value of K 1C is not always accessible given the constraints related to the dimensions of the sheets or profiles.

Le test MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) est effectué selon la norme ASTM G85.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent. L'épaisseur des profilés est définie selon la norme EN 2066 :2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.
The MASTMAASIS (Modified ASTM Acetic Acid Salt Intermittent Spray) test is performed according to ASTM G85.
Unless otherwise specified, the definitions of EN 12258 apply. The thickness of the profiles is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.

On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure, et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.Here, a "structural element" or "structural element" of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized. These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others. For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.

Les présents inventeurs ont constaté que de manière surprenante, pour certains alliages Al-Cu-Li de faible densité contenant à la fois une addition d'argent, de magnésium, de zirconium et de manganèse, le choix de conditions d'homogénéisation spécifiques permet d'améliorer de façon très significative le compromis entre la résistance mécanique et la tolérance aux dommages.
Le procédé selon l'invention permet la fabrication d'un produit filé, laminé et/ou forgé. Dans une première étape, on élabore un bain de métal liquide de façon à obtenir un alliage d'aluminium de composition définie.
La teneur en cuivre de l'alliage pour lequel l'effet surprenant lié au choix des conditions d'homogénéisation est observé est comprise entre 2,0 et 3,5 % en poids, de manière préférée entre 2,45 ou 2,5 et 3,3% en poids. Dans un mode de réalisation avantageux, la teneur en cuivre est comprise entre 2,7 et 3,1 % en poids.
La teneur en lithium est comprise entre 1,4 et 1,8%. Dans un mode de réalisation avantageux la teneur en lithium est comprise entre 1,42 et 1,77 % en poids.
La teneur en argent est comprise entre 0,1 et 0,5% en poids. Les présents inventeurs ont constaté qu'une quantité importante d'argent n'est pas nécessaire pour obtenir l'amélioration souhaitée dans le compromis entre la résistance mécanique et la tolérance aux dommages. Dans une réalisation avantageuse de l'invention, la teneur en argent est comprise entre 0,15 et 0,35 % en poids. Dans un mode de réalisation de l'invention, qui présente l'avantage de minimiser la densité, la teneur en argent est au plus de 0,25 % en poids.
La teneur en magnésium est comprise entre 0,1 et 1,0% en poids et de manière préférée elle est inférieure à 0,4 % en poids.
La combinaison des conditions d'homogénéisation spécifiques et de l'addition simultanée de zirconium et de manganèse est une caractéristique essentielle de l'invention. La teneur en zirconium doit être comprise entre 0,05 et 0,18 % en poids et la teneur en manganèse doit être comprise entre 0,2 et 0,6 % en poids. De manière préférée, la teneur en manganèse est au plus de 0,35% en poids.
L'alliage contient également au moins un élément pouvant contribuer au contrôle de la taille de grain choisi parmi Cr, Sc, Hf et Ti, la quantité de l'élément, s'il est choisi, étant de 0,05 à 0,3 % en poids pour Cr et pour Sc, 0,05 à 0,5 % en poids pour Hf et de 0,01 à 0,15 % en poids pour Ti.
Il est préférable de limiter la teneur des impuretés inévitables de l'alliage de façon à atteindre les propriétés de tolérance aux dommages les plus favorables. Les impuretés inévitables comprennent le fer et le silicium, ces impuretés ont de préférence une teneur inférieure à 0,08 % en poids et 0,06 % en poids pour le fer et le silicium, respectivement, les autres impuretés ont de préférence une teneur inférieure à 0,05 % en poids chacune et 0,15 % en poids au total. Par ailleurs la teneur en zinc est de préférence inférieure à 0,04 % en poids.
De préférence, la composition est ajustée de façon à obtenir une densité à température ambiante inférieure à 2,67 g/cm3, de manière encore plus préférée inférieure à 2,66 g/cm3 voire dans certains cas inférieure à 2,65 g/cm3 ou même 2,64 g/cm3. La diminution de la densité est en général associée à une dégradation des propriétés. Dans le cadre de l'invention, il est possible de manière surprenante de combiner une faible densité avec un compromis de propriétés mécaniques très avantageux.
Le bain de métal liquide est ensuite coulé sous une forme brute, telle qu'une billette, une plaque de laminage ou une ébauche de forge.
La forme brute est ensuite homogénéisée à une température comprise entre 515 °C et 525°C de façon à ce que le temps équivalent t(eq) à 520 °C pour l'homogénéisation soit compris entre 5 et 20 heures et de préférence entre 6 et 15 heures. Le temps équivalent t(eq) à 520 °C est défini par la formule : t eq = exp - 26100 / T dt exp - 26100 / T ref

Figure imgb0002
où T (en Kelvin) est la température instantanée de traitement, qui évolue avec le temps t (en heures), et Tref est une température de référence fixée à 793 K. t(eq) est exprimé en heures. La constante Q/R = 26100 K est dérivée de l'énergie d'activation pour la diffusion du Mn, Q = 217000 J/mol. La formule donnant t(eq) tient compte des phases de chauffage et de refroidissement. Dans le mode de réalisation préféré de l'invention, la température d'homogénéisation est d'environ 520 °C et la durée de traitement est comprise entre 8 et 20 heures. Pour l'homogénéisation, les temps indiqués correspondent à des durées pour lesquelles le métal est effectivement à la température souhaitée.The present inventors have found that, surprisingly, for certain low density Al-Cu-Li alloys containing at the same time an addition of silver, magnesium, zirconium and manganese, the choice of specific homogenization conditions makes it possible to significantly improve the compromise between mechanical resistance and damage tolerance.
The method according to the invention allows the manufacture of a product spun, rolled and / or forged. In a first step, a bath of liquid metal is produced so as to obtain an aluminum alloy of defined composition.
The copper content of the alloy for which the surprising effect related to the choice of homogenization conditions is observed is between 2.0 and 3.5% by weight, preferably between 2.45 or 2.5 and 3.3% by weight. In an advantageous embodiment, the copper content is between 2.7 and 3.1% by weight.
The lithium content is between 1.4 and 1.8%. In an advantageous embodiment, the lithium content is between 1.42 and 1.77% by weight.
The silver content is between 0.1 and 0.5% by weight. The present inventors have found that a significant amount of silver is not needed to achieve the desired improvement in the trade-off between strength and damage tolerance. In an advantageous embodiment of the invention, the silver content is between 0.15 and 0.35% by weight. In one embodiment of the invention, which has the advantage of minimizing the density, the silver content is at most 0.25% by weight.
The magnesium content is between 0.1 and 1.0% by weight and preferably it is less than 0.4% by weight.
The combination of specific homogenization conditions and the simultaneous addition of zirconium and manganese is an essential feature of the invention. The zirconium content must be between 0.05 and 0.18% by weight and the manganese content must be between 0.2 and 0.6% by weight. Preferably, the manganese content is at most 0.35% by weight.
The alloy also contains at least one element that can contribute to the control of the grain size selected from Cr, Sc, Hf and Ti, the quantity of the element, if it is chosen, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti.
It is preferable to limit the content of unavoidable impurities in the alloy so as to achieve the most favorable damage tolerance properties. The unavoidable impurities include iron and silicon, these impurities preferably have a content of less than 0.08% by weight and 0.06% by weight for iron and silicon, respectively, the other impurities preferably have a lower content to 0.05% by weight each and 0.15% by weight in total. Moreover, the zinc content is preferably less than 0.04% by weight.
Preferably, the composition is adjusted so as to obtain a density at room temperature of less than 2.67 g / cm 3 , even more preferably less than 2.66 g / cm 3, in some cases even less than 2.65 g / cm 3 or even 2.64 g / cm 3 . The decrease in density is generally associated with a degradation of the properties. In the context of the invention, it is possible surprisingly to combine a low density with a compromise of very advantageous mechanical properties.
The liquid metal bath is then cast in a raw form, such as a billet, a rolling plate or a forging blank.
The crude form is then homogenized at a temperature of between 515 ° C. and 525 ° C. so that the equivalent time t (eq) at 520 ° C. for homogenization is between 5 and 20 hours and preferably between 6 and 20 hours. and 15 hours. The equivalent time t (eq) at 520 ° C is defined by the formula: t eq = exp - 26100 / T dt exp - 26100 / T ref
Figure imgb0002
where T (in Kelvin) is the instantaneous treatment temperature, which changes with time t (in hours), and T ref is a reference temperature set at 793 K. t (eq) is expressed in hours. The constant Q / R = 26100 K is derived from the activation energy for the diffusion of Mn, Q = 217000 J / mol. The formula giving t (eq) takes into account the heating and cooling phases. In the preferred embodiment of the invention, the homogenization temperature is about 520 ° C and the treatment time is between 8 and 20 hours. For homogenization, the times indicated correspond to times for which the metal is actually at the desired temperature.

Dans les exemples il est montré que les conditions d'homogénéisation selon l'invention permettent d'améliorer de façon surprenante le compromis entre ténacité et résistance mécanique par rapport à des conditions dans lesquelles la combinaison de durée et température est plus faible ou plus élevée. Il est généralement admis par l'homme du métier que, en vue de minimiser la durée d'homogénéisation, il est avantageux de réaliser l'homogénéisation à la température la plus élevée possible permettant d'éviter la fusion locale de façon accélérer les processus de diffusion des éléments et de précipitation des dispersoïdes. Les présents inventeurs ont constaté au contraire pour la composition d'alliage selon l'invention, un effet favorable surprenant d'une combinaison de durée et température d'homogénéisation plus faible que celle selon l'art antérieur.
Après homogénéisation, la forme brute est en général refroidie jusqu'à température ambiante avant d'être préchauffée en vue d'être déformée à chaud. Le préchauffage a pour objectif d'atteindre une température de préférence comprise entre 400 et 500 °C et de manière préférée de l'ordre de 450 °C permettant la déformation de la forme brute. Le préchauffage est typiquement de 20 heures à 520 °C pour des plaques. Il est à noter que contrairement à l'homogénéisation, les durées et températures mentionnées pour le préchauffage correspondent à la durée passée dans le four et à la température du four et non à la température effectivement atteinte par le métal et à la durée passée à cette température. Pour les billettes destinées à être filées, le préchauffage par induction est avantageux.
La déformation à chaud et optionnellement à froid est typiquement effectuée par filage, laminage et/ou forgeage de façon à obtenir un produit filé, laminé et/ou forgé. Le produit ainsi obtenu est ensuite mis en solution de préférence par traitement thermique entre 490 et 530 °C pendant 15 min à 8 h, puis trempé typiquement avec de l'eau à température ambiante ou préférentiellement de l'eau froide.
Le produit subit ensuite une traction contrôlée de 1 à 5 % et préférentiellement d'au moins 2%. Dans un mode de réalisation de l'invention, on réalise un laminage à froid avec une réduction comprise entre 5% et 15% avant l'étape de traction contrôlée. Des étapes connues telles que le planage, le redressage, la mise en forme peuvent être optionnellement réalisées avant ou après la traction contrôlée.
Un revenu est réalisé à une température comprise entre 140 et 170°C pendant 5 à 70 h de façon à ce que le produit ait une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement d'au moins 440 MPa et de préférence d'au moins 460 MPa. Les présents inventeurs ont constaté que de manière surprenante, la combinaison des conditions d'homogénéisation selon l'invention avec un revenu préféré réalisé par chauffage à 148 à 155 °C pendant 10 à 40 heures permet d'atteindre dans certains cas un niveau de ténacité K1C(L-T) particulièrement élevé.
Les présents inventeurs pensent que les produits obtenus par le procédé selon l'invention présentent une microstructure très particulière, bien qu'ils n'aient pas encore pu la décrire de façon précise. En particulier, la taille, la répartition et la morphologie des dispersoïdes contenant du manganèse semblent être remarquables pour les produits obtenus par le procédé selon l'invention, cependant la caractérisation complète de ses dispersoïdes, dont la taille est de l'ordre de 50 à 100 nm, nécessite des observations en microscopie électronique à un grossissement de x 30 000, quantifiées et nombreuses ce qui explique la difficulté d'en obtenir une description fiable.
Les produits selon l'invention ont de préférence une structure granulaire essentiellement non-recristallisée. Par essentiellement non-recristallisée il est entendu que au moins 80% et de préférence au moins 90% des grains ne sont pas recristallisés à quart et à mi-épaisseur de produit.
Les produits filés et en particulier les profilés filés obtenus par le procédé selon l'invention sont particulièrement avantageux. Les avantages du procédé selon l'invention ont été observés pour de profilés minces dont l'épaisseur d'au moins un rectangle élémentaire est comprise entre 1 mm et 8 mm et des profilés épais, cependant les profilés épais, c'est-à-dire dont l'épaisseur d'au moins un rectangle élémentaire est supérieure à 8 mm, et de préférence supérieure à 12 mm, voire 15 mm sont les plus avantageux. Le compromis entre la résistance mécanique statique et la ténacité ou la tenue en fatigue est particulièrement avantageux pour les produits filés selon l'invention.
Un produit filé en alliage d'aluminium selon l'invention a une densité inférieure à 2,67 g/cm3, est susceptible d'être obtenu par le procédé selon l'invention, et est avantageusement caractérisé en ce que :

  1. (a) sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L Rp0,2(L) exprimée en MPa et sa ténacité K1C(L-T), dans le sens L-T exprimée en MPa m
    Figure imgb0003
    sont telles que KQ(L-T) > 129 - 0,17 Rp0,2(L), préférentiellement KQ(L-T) > 132 - 0,17 Rp0,2(L) et encore plus préférentiellement KQ(L-T) > 135 - 0,17 Rp0,2(L) ; et/ou
  2. (b) sa résistance à la rupture dans le sens L Rm(L) exprimée en MPa et sa ténacité KQ(L-T), dans le sens L-T exprimée en MPa m
    Figure imgb0004
    sont telles que KQ(L-T) > 179 - 0,25 Rm(L), préférentiellement KQ(L-T) > 182 - 0,25 Rm(L) et encore plus préférentiellement KQ(L-T) > 185 - 0,25 Rm(L) ; et/ou
  3. (c) sa résistance à la rupture dans le sens TL Rm(TL) exprimée en MPa et sa ténacité KQ(L-T), dans le sens L-T exprimée en MPa m
    Figure imgb0005
    sont telles que KQ(L-T) > 88 - 0,09 Rm(TL), préférentiellement KQ(L-T) > 90 - 0,09 Rm(TL) et encore plus préférentiellement KQ(L-T) > 92 - 0,09 Rm(TL) et/ou
  4. (d) sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L Rp0,2(L) d'au moins 490 MPa et de préférence d'au moins 500 MPa et sa contrainte maximale pour l'initiation des fissures de fatigues pour un nombre de cycles à rupture de 105 est supérieure à 210 MPa, préférentiellement supérieure à 220 MPa et encore plus préférentiellement supérieure à 230 MPa pour des éprouvettes de Kt = 2,3, avec R = 0,1.
De manière préférée, la ténacité KQ(L-T) des produits filés selon l'invention est d'au moins 43 MPa m .
Figure imgb0006
In the examples, it is shown that the homogenization conditions according to the invention make it possible to improve, surprisingly, the compromise between toughness and mechanical strength with respect to conditions in which the combination of duration and temperature is lower or higher. It is generally accepted by those skilled in the art that, in order to minimize the homogenization time, it is advantageous to carry out the homogenization at the highest possible temperature so as to avoid local melting so as to accelerate the scattering of elements and precipitation of dispersoids. The present inventors have found on the contrary for the alloy composition according to the invention, a surprising favorable effect of a combination of duration and homogenization temperature lower than that according to the prior art.
After homogenization, the raw form is generally cooled to room temperature before being preheated for hot deformation. Preheating aims to reach a temperature preferably between 400 and 500 ° C and preferably of the order of 450 ° C allowing the deformation of the raw form. Preheating is typically 20 hours at 520 ° C for plates. It should be noted that, unlike homogenization, the times and temperatures mentioned for preheating correspond to the time spent in the oven and the temperature of the oven and not to the temperature actually reached by the metal and the time spent in this oven. temperature. For billets to be spun, induction preheating is advantageous.
Hot deformation and optionally cold deformation is typically performed by spinning, rolling and / or forging to obtain a spun, rolled and / or forged product. The product thus obtained is then put in solution preferably by heat treatment between 490 and 530 ° C for 15 min to 8 h, then typically quenched with water at room temperature or preferably cold water.
The product then undergoes a controlled pull of 1 to 5% and preferably of at least 2%. In one embodiment of the invention, cold rolling is carried out with a reduction of between 5% and 15% before the controlled pulling step. Known steps such as planing, straightening, shaping may optionally be performed before or after the controlled pull.
An income is made at a temperature between 140 and 170 ° C for 5 to 70 hours so that the product has a conventional yield strength measured at 0.2% an elongation of at least 440 MPa and preferably at least 460 MPa. The present inventors have found that, surprisingly, the combination of the homogenization conditions according to the invention with a preferred income achieved by heating at 148 to 155 ° C. for 10 to 40 hours makes it possible in certain cases to reach a level of toughness. K 1C (LT) particularly high.
The present inventors believe that the products obtained by the process according to the invention have a very particular microstructure, although they have not yet been able to describe it precisely. In particular, the size, the distribution and the morphology of the dispersoids containing manganese seem to be remarkable for the products obtained by the process according to the invention, however the complete characterization of its dispersoids, whose size is of the order of 50 to 100 nm, requires observations in electron microscopy at a magnification of x 30 000, quantified and numerous which explains the difficulty of obtaining a reliable description.
The products according to the invention preferably have a substantially non-recrystallized granular structure. By essentially non-recrystallized it is understood that at least 80% and preferably at least 90% of the grains are not recrystallized at quarter and mid-product thickness.
The spun products and in particular the extruded profiles obtained by the process according to the invention are particularly advantageous. The advantages of the method according to the invention have been observed for thin sections whose thickness of at least one elementary rectangle is between 1 mm and 8 mm and thick sections, however the thick sections, that is to say ie whose thickness of at least one elementary rectangle is greater than 8 mm, and preferably greater than 12 mm, or even 15 mm are the most advantageous. The compromise between the static mechanical strength and the toughness or the fatigue strength is particularly advantageous for the spun products according to the invention.
An aluminum alloy spun product according to the invention has a density of less than 2.67 g / cm 3 , is obtainable by the process according to the invention, and is advantageously characterized in that:
  1. (a) its conventional yield strength measured at 0.2% LR elongation p0.2 (L) expressed in MPa and its toughness K 1C (LT), in the LT direction expressed in MPa m
    Figure imgb0003
    are such that K Q (LT)> 129 - 0.17 R p0.2 (L), preferentially K Q (LT)> 132 - 0.17 R p0.2 (L) and even more preferably K Q (LT) > 135 - 0.17 R p0.2 (L); and or
  2. (b) its breaking strength in the LR m (L) direction expressed in MPa and its tenacity K Q (LT), in the LT direction expressed in MPa m
    Figure imgb0004
    are such that K Q (LT)> 179 - 0.25 R m (L), preferably K Q (LT)> 182 - 0.25 R m (L) and even more preferably K Q (LT)> 185 - 0 R m (L); and or
  3. (c) its tensile strength in the TL R m (TL) direction expressed in MPa and its tenacity K Q (LT), in the LT direction expressed in MPa m
    Figure imgb0005
    are such that K Q (LT)> 88 - 0.09 R m (TL), preferably K Q (LT)> 90 - 0.09 R m (TL) and even more preferably K Q (LT)> 92 - 0 , 09 R m (TL) and / or
  4. (d) its conventional yield strength measured at 0.2% LR elongation p0.2 (L) of at least 490 MPa and preferably at least 500 MPa and its maximum stress for the initiation of fatigue cracks for a number of rupture cycles of 10 5 is greater than 210 MPa, preferably greater than 220 MPa and even more preferably greater than 230 MPa for specimens of Kt = 2.3, with R = 0.1 .
Preferably, toughness K Q (LT) of the extruded products according to the invention is at least 43 MPa m .
Figure imgb0006

Dans le mode de réalisation de l'invention, permettant d'atteindre pour des produits filés une ténacité KQ(L-T) d'au moins 52 MPa m

Figure imgb0007
avec une limite d'élasticité Rp0,2(L) d'au moins 490 MPa, ou préférentiellement une ténacité KQ(L-T) d'au moins 56 MPa m
Figure imgb0008
avec une résistance à rupture Rm(L) d'au moins 515 MPa, une teneur en cuivre comprise entre 2,45 et 2,65 % en poids est associée à une teneur en lithium comprise entre 1,4 et 1,5 % en poids.In the embodiment of the invention, achieving for spun products a toughness K Q (LT) of at least 52 MPa m
Figure imgb0007
with a yield strength R p0.2 (L) of at least 490 MPa, or preferably a K Q (LT) toughness of at least 56 MPa m
Figure imgb0008
with a breaking strength R m (L) of at least 515 MPa, a copper content of between 2.45 and 2.65% by weight is associated with a lithium content of between 1.4 and 1.5% in weight.

Dans un autre mode de réalisation de l'invention, permettant d'atteindre pour des produits filés une ténacité KQ(L-T) d'au moins MPa m

Figure imgb0009
avec une limite d'élasticité Rp0,2(L) d'au moins 520 MPa, une teneur en cuivre comprise entre 2,65 et 2,85 % en poids est associée à une teneur en lithium comprise entre 1,5 et 1,7 % en poids.
De manière préférée, la densité des produits filés selon l'invention est inférieure à 2,66 g/cm3, de manière encore plus préférée inférieure à 2,65 g/cm3 voire dans certains cas inférieure à 2,64 g/cm3.In another embodiment of the invention, it is possible to achieve, for spun products, a toughness K Q (LT) of at least MPa m
Figure imgb0009
with a yield strength R p0.2 (L) of at least 520 MPa, a copper content of between 2.65 and 2.85% by weight is associated with a lithium content of between 1.5 and 1 , 7% by weight.
Preferably, the density of the spun products according to the invention is less than 2.66 g / cm 3 , even more preferably less than 2.65 g / cm 3, in some cases even less than 2.64 g / cm 3. 3 .

Dans un mode de réalisation avantageux de l'invention, on réalise un revenu permettant d'obtenir une limite d'élasticité conventionnelle mesurée à 0,2% d'allongement supérieure à 520 MPa, par exemple de 30h à 152 °C, la résistance à la rupture dans le sens L Rm(L), exprimées en MPa et la ténacité KQ(L-T), dans le sens L-T exprimée en MPa m

Figure imgb0010
sont alors telles Rm(L) > 550 et KQ(L-T) > 50.
Le procédé selon l'invention permet également d'obtenir des produits laminés avantageux. Parmi les produits laminés, les tôles dont l'épaisseur est au moins de 10 mm et de préférences d'au moins 15 mm et/ou au plus 100 mm et de préférence au plus 50 mm sont avantageuses.
Un produit laminé en alliage d'aluminium selon l'invention a une densité inférieure à 2,67 g/cm3, est susceptible d'être obtenu par le procédé selon l'invention, et est avantageusement caractérisé en ce que sa ténacité KQ(L-T), dans le sens L-T est au moins de 23 MPa m
Figure imgb0011
et de préférence d'au moins 25 MPa m ,
Figure imgb0012
sa limite d'élasticité conventionnelle mesurée à 0,2% d'allongement dans le sens L Rp0,2(L) est au moins égale à 560 MPa et de préférence au moins égale à 570 MPa et/ou sa résistance à la rupture dans le sens L Rm(L) est au moins égale à 585 MPa et de préférence au moins égale à 595 MPa.
De manière préférée, la densité des produits laminés selon l'invention est inférieure à 2,66 g/cm3, de manière encore plus préférée inférieure à 2,65 g/cm3 voire dans certains cas inférieure à 2,64 g/cm3.
Les produits selon l'invention peuvent de manière avantageuse être utilisés dans des éléments de structure, en particulier d'avion. Un élément de structure incorporant au moins un produit selon l'invention ou fabriqué à partir d'un tel produit est avantageux, en particulier pour la construction aéronautique. Un élément de structure, formé d'au moins un produit selon l'invention, en particulier d'un produit filé selon l'invention utilisé en tant que raidisseur ou de cadre, peut être utilisé avantageusement pour la fabrication de panneaux de fuselage ou de voilure d'avions de même que toute autre utilisation où les présentes propriétés pourraient être avantageuses.
Dans l'assemblage de pièces structurales, toutes les techniques connues et possibles de rivetage et de soudage appropriées pour des alliages en aluminium peuvent être utilisées, si souhaité. Les inventeurs ont trouvé que si le soudage est choisi, il peut être préférable d'utiliser des techniques de soudage au laser ou de soudage par friction-malaxage.
Les produits de l'invention n'induisent généralement aucun problème particulier pendant des opérations ultérieures de traitement de surface classiquement utilisées en construction aéronautique.
La résistance à la corrosion des produits de l'invention est généralement élevée ; à titre d'exemple, le résultat au test MASTMAASIS est au moins EA et de préférence P pour les produits selon l'invention.
Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détail à l'aide des exemples illustratifs et non limitant suivants.In an advantageous embodiment of the invention, an income is obtained which makes it possible to obtain a conventional yield strength measured at 0.2% elongation greater than 520 MPa, for example from 30 h to 152 ° C., the resistance at break in the LR m (L) direction, expressed in MPa and the K Q toughness (LT), in the LT direction expressed in MPa m
Figure imgb0010
are then such R m (L)> 550 and K Q (LT)> 50.
The process according to the invention also makes it possible to obtain advantageous rolled products. Among the rolled products, the sheets whose thickness is at least 10 mm and preferably at least 15 mm and / or at most 100 mm and preferably at most 50 mm are advantageous.
An aluminum alloy laminated product according to the invention has a density of less than 2.67 g / cm 3 , is obtainable by the method according to the invention, and is advantageously characterized in that its tenacity K Q (LT), in the LT direction is at least 23 MPa m
Figure imgb0011
and preferably at least 25 MPa m ,
Figure imgb0012
its conventional yield strength measured at 0.2% elongation in the LR p0.2 (L) direction is at least 560 MPa and preferably at least 570 MPa and / or its breaking strength in the direction LR m (L) is at least 585 MPa and preferably at least equal to 595 MPa.
Preferably, the density of the rolled products according to the invention is less than 2.66 g / cm 3 , even more preferably less than 2.65 g / cm 3, in some cases even less than 2.64 g / cm 3. 3 .
The products according to the invention can advantageously be used in structural elements, in particular aircraft. A structural element incorporating at least one product according to the invention or made from such a product is advantageous, in particular for aeronautical construction. A structural element, formed of at least one product according to the invention, in particular a spun product according to the invention used as stiffener or frame, can be advantageously used for the manufacture of fuselage panels or airplane wing as well as any other use where the present properties could be advantageous.
In the assembly of structural parts, all known and possible riveting and welding techniques suitable for aluminum alloys can be used, if desired. The inventors have found that if welding is chosen, it may be preferable to use laser welding or friction stir welding techniques.
The products of the invention generally do not induce any particular problem during subsequent surface treatment operations conventionally used in aeronautical construction.
The corrosion resistance of the products of the invention is generally high; for example, the MASTMAASIS test result is at least EA and preferably P for the products according to the invention.
These and other aspects of the invention are explained in more detail with the aid of the following illustrative and non-limiting examples.

ExemplesExamples Exemple 1.Example 1

Dans cet exemple, plusieurs plaques en alliage Al-Cu-Li dont la composition est donnée dans le tableau 1 ont été coulées. Tableau 1. Composition en % en poids et densité des alliages Al-Cu-Li utilisés Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 1 0,06 0,04 2,94 0,01 0,36 0,01 0,02 0,12 1,62 0,34 2,635 2 0,04 0,05 2,83 0,33 0,36 0,02 0,02 0,11 1,59 0,38 2,641 In this example, several plates Al-Cu-Li alloy whose composition is given in Table 1 were cast. Table 1. Composition in% by weight and density of Al-Cu-Li alloys used Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 1 0.06 0.04 2.94 0.01 0.36 0.01 0.02 0.12 1.62 0.34 2,635 2 0.04 0.05 2.83 0.33 0.36 0.02 0.02 0.11 1.59 0.38 2,641

Les plaques ont été homogénéisées selon l'art antérieur 8h à 500 °C puis 24h à 527 °C. Des billettes ont été prélevées dans les plaques. Les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés W selon la Figure 1. Les profilés ainsi obtenus ont été mis en solution à 524 °C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Le revenu a été effectué pendant 48h à 152 °C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture (A), diamètre des échantillons : 10 mm) de même que leur ténacité (KQ). La localisation des prélèvements est indiquée en pointillés sur la Figure 1. Les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=15 mm et W = 30 mm.The plates were homogenized according to the prior art for 8 h at 500 ° C. and then 24h at 527 ° C. Bills were taken from the plates. The billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain W profiles according to Figure 1 . The profiles thus obtained were dissolved at 524 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The income was made for 48 hours at 152 ° C. Samples taken at the end of the profile were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break (A), diameter of the samples: 10 mm) as well as their toughness (K Q ). The location of the samples is indicated in dotted lines on the Figure 1 . The specimens used for the tenacity measurements had B = 15 mm and W = 30 mm.

Une vitesse de montée en température de 15 °C/h et de 50 °C/h ont été utilisées pour l'homogénéisation et la mise en solution, respectivement. Le temps équivalent pour l'homogénéisation était de 37,5 heures.
Les résultats obtenus sont donnés dans le tableau 2 ci-dessous. Tableau 2. Propriétés mécaniques des profilés obtenus à partir des alliages 1 et 2. Alliage Sens L Sens LT KQ (K1C) M P a m

Figure imgb0013
Rm (MPa) Rp0,2 (MPa) A (%) Rm (MPa) Rp0,2 (MPa) A (%) L-T T-L 1 571 533 8,7 560 508 10,4 28,5 29,0 2 556 522 7,9 550 515 8,4 37,6 35,5 A temperature rise rate of 15 ° C / h and 50 ° C / h were used for homogenization and dissolution, respectively. The equivalent time for homogenization was 37.5 hours.
The results obtained are given in Table 2 below. Table 2. Mechanical properties of the profiles obtained from alloys 1 and 2. Alloy Meaning L Meaning of LT K Q (K 1C ) M P at m
Figure imgb0013
R m (MPa) R p0.2 (MPa) AT (%) R m (MPa) R p0.2 (MPa) AT (%) LT TL
1 571 533 8.7 560 508 10.4 28.5 29.0 2 556 522 7.9 550 515 8.4 37.6 35.5

Exemple 2Example 2

Dans cet exemple, on a comparé trois conditions d'homogénéisation pour deux types de profilés, obtenus à partir de billettes prélevées dans une plaque dont la composition est donnée dans le tableau 3 ci-dessous. Tableau 3 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé. Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 3 0,03 0,04 2,72 0,31 0,31 0,02 0,03 0,10 1,61 0,34 2,637 In this example, three homogenization conditions were compared for two types of profiles, obtained from billets taken from a plate whose composition is given in Table 3 below. Table 3 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 3 0.03 0.04 2.72 0.31 0.31 0.02 0.03 0.10 1.61 0.34 2,637

Les billettes ont été homogénéisées soit 8h à 500 °C puis 24h à 527 °C (référence A) soit 8h à 520 °C (référence B) soit 8h à 500 °C (référence C). La vitesse de montée en température était de 15 °C/h pour l'homogénéisation et le temps équivalent était de 37,5 heures pour l'homogénéisation de référence A, 9,5 heures pour l'homogénéisation de référence B, et de 4 heures l'homogénéisation de référence C. Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés X selon la Figure 2 ou Y selon la Figure 3. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 °C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%.The billets were homogenized either 8h at 500 ° C and then 24h at 527 ° C (reference A) or 8h at 520 ° C (reference B) or 8h at 500 ° C (reference C). The rate of rise in temperature was 15 ° C / h for the homogenization and the equivalent time was 37.5 hours for homogenization of reference A, 9.5 hours for homogenization of reference B, and 4 After homogenization, the billets were heated to 450 ° C. +/- 40 ° C. and then hot-spun to obtain X-profiles according to FIG. Figure 2 or Y according to the Figure 3 . The profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%.

Différentes conditions de revenu ont été mises en oeuvre. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture (A) de même que leur ténacité (KQ). Les zones de prélèvement pour le profilé Y sont indiquées sur la Figure 3 : renfort (1), Renfort/semelle (2) semelle (3), les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=15 mm et W = 60 mm. Pour le profilé X, les prélèvements sont effectués sur la semelle, les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=20 mm et W = 76 mm. Les échantillons prélevés avaient un diamètre de 10 mm sauf pour le sens T-L pour lequel les échantillons avaient un diamètre de 6 mm.
Les résultats obtenus sur les profilés X sont donnés dans le tableau 4 ci-dessous. Tableau 4. Propriétés mécaniques des profilés X en alliage 3. Revenu Homogénéisation Sens L Sens TL KQ M P a m

Figure imgb0014
Rm (MPa) Rp0,2 (MPa) A (%) Rm (MPa) Rp0,2 (MPa) A (%) L-T T-L 48H152°C A 563 533 8,4 512 484 5,4 39,1 30,9 B 569 541 9,8 528 500 6,6 40,7 34,2 C 565 537 7,7 507 477 6,7 37,7 28,9 30h152°C A 554 522 8,8 500 470 5,2 42,5 34,1 B 557 524 10,1 519 486 7,4 53,3 42,9 C 553 520 8,0 494 457 7,4 40,7 32,9 23h145°C A 512 452 9,3 448 390 6,7 47,2 43,8 B 515 455 10,0 479 414 12,6 47,1 58,9 C 513 454 8,3 445 377 9,0 45,6 43,2 Different income conditions have been implemented. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break (A) as well as their toughness ( K Q ) The sampling zones for the Y profile are indicated on the Figure 3 : reinforcement (1), reinforcement / sole (2) sole (3), the specimens used for the tenacity measurements had characteristics B = 15 mm and W = 60 mm. For the X profile, the samples are taken on the sole, the specimens used for the tenacity measurements had characteristics B = 20 mm and W = 76 mm. Samples taken had a diameter of 10 mm except for the TL direction for which the samples had a diameter of 6 mm.
The results obtained on the X profiles are given in Table 4 below. Table 4. Mechanical properties of alloy X sections 3. Returned homogenization Meaning L TL direction K Q M P at m
Figure imgb0014
R m (MPa) R p0.2 (MPa) AT (%) R m (MPa) R p0.2 (MPa) AT (%) LT TL
48H152 ° C AT 563 533 8.4 512 484 5.4 39.1 30.9 B 569 541 9.8 528 500 6.6 40.7 34.2 VS 565 537 7.7 507 477 6.7 37.7 28.9 30h152 ° C AT 554 522 8.8 500 470 5.2 42.5 34.1 B 557 524 10.1 519 486 7.4 53.3 42.9 VS 553 520 8.0 494 457 7.4 40.7 32.9 23h145 ° C AT 512 452 9.3 448 390 6.7 47.2 43.8 B 515 455 10.0 479 414 12.6 47.1 58.9 VS 513 454 8.3 445 377 9.0 45.6 43.2

Ces résultats sont illustrés par les Figures 4a (sens L) et 4b (sens TL). Pour les profilés provenant de billettes ayant été homogénéisées à 520 °C, le compromis entre résistance mécanique et ténacité est très nettement amélioré. Dans le sens long, l'amélioration est particulièrement nette pour un revenu de 30 heures à 152 °C.These results are illustrated by the Figures 4a (L direction) and 4b (TL direction). For the profiles from billet having been homogenized at 520 ° C, the compromise between strength and toughness is very much improved. In the long sense, the improvement is particularly clear for a 30 hour income at 152 ° C.

Les résultats obtenus avec le profilé Y sont donnés dans le tableau 5 ci-dessous. Tableau 5. Propriétés mécaniques des profilés Y en alliage 3. Revenu 30h 152°C 48h 152 °C Homogénéisation A B A B sens L - Renfort Rm (MPa) 527 563 538 573 Rp0,2 (MPa) 500 537 516 551 A (%) 7,5 9,9 8,1 9,6 sens L-Renfort/semelle Rm (MPa) 534 580 551 590 Rp0,2 (MPa) 510 559 534 572 A (%) 6,6 8,6 7 7,8 sens L - Semelle Rm (MPa) 543 536 557 549 Rp0,2 (M Pa) 505 494 529 517 A (%) 7,3 9,2 7,2 9,5 Sens T-L (semelle) Rm (MPa) 501 488 513 503 Rp0,2 (MPa) 456 441 472 462 A (%) 8,8 12,3 8,6 11,4 KQ (CT15-W60) M P a m

Figure imgb0015
L-T 34,3 45,2 30,5 42,8 T-L 29,3 42,5 26,4* 37,3 * K1C The results obtained with the Y profile are given in Table 5 below. Table 5. Mechanical properties of alloy Y sections 3. Returned 30h 152 ° C 48h 152 ° C homogenization AT B AT B sense L - Reinforcement R m (MPa) 527 563 538 573 R p0.2 (MPa) 500 537 516 551 AT (%) 7.5 9.9 8.1 9.6 L-reinforcement / sole R m (MPa) 534 580 551 590 R p0.2 (MPa) 510 559 534 572 AT (%) 6.6 8.6 7 7.8 sense L - Sole R m (MPa) 543 536 557 549 R p0.2 (M Pa) 505 494 529 517 AT (%) 7.3 9.2 7.2 9.5 TL direction (sole) R m (MPa) 501 488 513 503 R p0.2 (MPa) 456 441 472 462 AT (%) 8.8 12.3 8.6 11.4 K Q (CT15-W60) M P at m
Figure imgb0015
LT 34.3 45.2 30.5 42.8
TL 29.3 42.5 26.4 * 37.3
* K 1C

Ces résultats sont illustrés par les Figures 5a (sens L) et 5b (sens TL). Pour les profilés provenant de billettes ayant été homogénéisées à 520 °C, le compromis entre résistance mécanique et ténacité est à nouveau très nettement amélioré et ce pour les deux conditions de revenu testées.These results are illustrated by the Figures 5a (L direction) and 5b (TL direction). For profiles from billets that have been homogenized at 520 ° C, the compromise between strength and toughness is again very much improved for the two tested income conditions.

Des essais de fatigue ont été réalisés dans le cas du revenu de 30 h à 152 °C, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0,1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Ces essais sont présentés sur le Figure 6. Pour un nombre de cycles donné, l'augmentation de la contrainte maximale est comprise entre 10 et 25%. La contrainte maximale pour l'initiation des fissures de fatigues pour un nombre de cycles à rupture de 105 est de l'ordre de 230 MPa pour des éprouvettes de Kt = 2,3, avec R = 0,1.Fatigue tests were carried out in the case of the 30 hr income at 152 ° C, on test tubes with hole (Kt = 2,3) with a ratio (minimum load / maximum load) R = 0,1 at a frequency of 80 Hz. The tests were carried out in the ambient air of the laboratory. These tests are presented on the Figure 6 . For a given number of cycles, the increase in the maximum stress is between 10 and 25%. The maximum stress for the initiation of fatigue cracks for a number of failure cycles of 10 5 is of the order of 230 MPa for specimens of Kt = 2.3, with R = 0.1.

Exemple 3Example 3

Dans cet exemple, on a comparé deux des conditions d'homogénéisation de l'exemple 2 pour un autre type de profilés, obtenus à partir de billettes prélevées dans une plaque dont la composition est donnée dans le tableau 6 ci-dessous : Tableau 6. Composition en % en poids des alliages Al-Cu-Li utilisés Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 4 0.03 0.05 3,05 0,01 0.39 0,01 0.03 0,12 1,70 0.35 2,631 5 0.03 0.04 2,90 0.31 0.40 0.01 0.03 0.1 1,67 0,38 2,635 In this example, two of the homogenization conditions of Example 2 were compared for another type of profile, obtained from billets taken from a plate whose composition is given in Table 6 below: Table 6. Composition in% by weight of Al-Cu-Li alloys used Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 4 0.03 0.05 3.05 0.01 0.39 0.01 0.03 0.12 1.70 0.35 2,631 5 0.03 0.04 2.90 0.31 0.40 0.01 0.03 0.1 1.67 0.38 2,635

Les billettes en alliage 4 ont été homogénéisées 8h à 500 °C puis 24h à 527 °C (soit l'homogénéisation de référence A) tandis que les billettes en alliage 5 ont été homogénéisées 8h à 520 °C (référence B). Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés Z selon la Figure 7. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 °C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 °C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture (A), diamètre des échantillons : 10 mm) de même que leur ténacité (KQ), les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=15 mm et W = 60 mm. Les mesures effectuées en fin de profilé permettent manière générale d'obtenir les caractéristiques mécaniques les plus défavorables du profilé. La localisation des prélèvements est indiquée en pointillés sur la Figure 7.The alloy billets 4 were homogenized for 8 hours at 500 ° C. and then 24h at 527 ° C. (ie the reference homogenization A) while the alloy billets 5 were homogenized for 8 hours at 520 ° C. (reference B). After homogenization, the billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain Z profiles according to the Figure 7 . The profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C. Samples taken at the end of the profile were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break (A), diameter of the samples: 10 mm), as well as their toughness (K Q ), the specimens used for the toughness measurements had B = 15 mm and W = 60 mm. The measurements made at the end of the profile generally make it possible to obtain the most unfavorable mechanical characteristics of the profile. The location of the samples is indicated in dotted lines on the Figure 7 .

Les résultats obtenus sont donnés dans le tableau 7 ci-dessous. Les produits selon l'invention présentent des caractéristiques mécaniques légèrement supérieures et une ténacité améliorée de plus de 20%. Tableau 7. Propriétés mécaniques des profilés Z en alliage 4 et 5. Sens L KQ M P a m

Figure imgb0016
Alliage Rm (MPa) Rp0,2 (MPa) A (%) L-T T-L 4 576 527 8,4 31,0 31,4 5 574 536 9,8 38,2 37,8 The results obtained are given in Table 7 below. The products according to the invention have slightly higher mechanical characteristics and an improved toughness of more than 20%. Table 7. Mechanical properties of alloy Z profiles 4 and 5. Meaning L K Q M P at m
Figure imgb0016
Alloy R m (MPa) R p0.2 (MPa) AT (%) LT TL
4 576 527 8.4 31.0 31.4 5 574 536 9.8 38.2 37.8

Exemple 4Example 4

Dans cet exemple, une billette dont la composition est donnée dans le tableau 8 a été coulée. Tableau 8 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé. Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 6 0,03 0,05 3,1 0,3 0,4 0,01 0,03 0,11 1,65 0,34 2,639 In this example, a billet whose composition is given in Table 8 was cast. Table 8 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 6 0.03 0.05 3.1 0.3 0.4 0.01 0.03 0.11 1.65 0.34 2,639

Les billettes en alliage 6 ont été homogénéisées 8h à 520 °C (soit l'homogénéisation de référence B). Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés P selon la Figure 8. Les profilés ainsi obtenus ont été mis en solution, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 °C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture A).The alloy billets 6 were homogenized for 8 hours at 520 ° C. (ie reference homogenization B). After homogenization, the billets were heated to 450 ° C. +/- 40 ° C. and then hot-spun to obtain P profiles according to Figure 8 . The profiles thus obtained were dissolved, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break A).

Les résultats obtenus sont donnés dans le tableau 9 ci-dessous. Tableau 9. Propriétés mécaniques des profilés P en alliage 6. Sens L Alliage Rm (MPa) Rp0,2 (MPa) A (%) 6 562 525 10,1 The results obtained are given in Table 9 below. Table 9. Mechanical properties of alloy P profiles 6. Meaning L Alloy R m (MPa) R p0.2 (MPa) AT (%) 6 562 525 10.1

Des essais de fatigue ont été réalisés dans, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0,1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Les résultats de ces essais sont donnés dans le Tableau 10. Tableau 10. Résultats des essais de fatigue S/N pour les profilés en alliage 6 Charge maximale [MPa] Cycles MPa N 300 22 120 280 31 287 260 46 696 240 53 462 220 87 648 200 113 583 180 132 003 170 203 112 160 232 743 150 177 733 140 5 113 237 130 9 338 654 Fatigue tests were carried out in, on test pieces with a hole (Kt = 2.3) with a ratio (minimum load / maximum load) R = 0.1 at a frequency of 80 Hz. The tests were carried out at ambient air of the laboratory. The results of these tests are given in Table 10. Table 10. S / N fatigue test results for alloy profiles 6 Maximum load [MPa] cycles MPa NOT 300 22,120 280 31,287 260 46,696 240 53,462 220 87,648 200 113,583 180 132,003 170 203,112 160 232,743 150 177 733 140 5,113,237 130 9,338,654

Exemple 5Example 5

Dans cet exemple, une billette dont la composition est donnée dans le tableau 11 a été coulée. Tableau 11 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé. Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 7 0,03 0,05 3,1 0,3 0,4 0,01 0,04 0,10 1,71 0,36 2,636 In this example, a billet whose composition is given in Table 11 was cast. Table 11 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 7 0.03 0.05 3.1 0.3 0.4 0.01 0.04 0.10 1.71 0.36 2,636

Les billettes en alliage 7 ont été homogénéisées 8h à 520 °C (soit l'homogénéisation de référence B). Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés Q selon la Figure 9. Les profilés ainsi obtenus ont été mis en solution, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Les profilés ont enfin subi un revenu de 48h à 152 °C. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture A).The alloy billets 7 were homogenized for 8 hours at 520 ° C. (ie reference homogenization B). After homogenization, the billets were heated to 450 ° C +/- 40 ° C and then hot spun to obtain Q profiles according to the Figure 9 . The profiles thus obtained were dissolved, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. The profiles finally had an income of 48h at 152 ° C. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break A).

Les résultats obtenus sont donnés dans le tableau 12 ci-dessous. Tableau 12. Propriétés mécaniques des profilés Q en alliage 7. Alliage Sens L Rm (MPa) Rp0,2 (MPa) A (%) 7 561 521 8,5 The results obtained are given in Table 12 below. Table 12. Mechanical properties of alloy Q sections 7. Alloy Meaning L R m (MPa) R p0.2 (MPa) AT (%) 7 561 521 8.5

Des essais de fatigue ont été réalisés dans, sur des éprouvettes à trou (Kt = 2,3) avec un rapport (charge minimale / charge maximale) R = 0,1 à une fréquence de 80 Hz. Les essais ont été réalisés à l'air ambiant du laboratoire. Les résultats de ces essais sont donnés dans le Tableau 13. Tableau 13. Résultats des essais de fatigue S/N pour les profilés en alliage 7. Charge maximale [MPa] Cycles MPa N 300 22 165 280 32 214 260 47 536 240 59 094 220 103 407 200 251 771 190 254 842 180 6 508 197 160 6 130 947 130 9 383 980 Fatigue tests were carried out in, on test pieces with a hole (Kt = 2.3) with a ratio (minimum load / maximum load) R = 0.1 at a frequency of 80 Hz. The tests were carried out at ambient air of the laboratory. The results of these tests are given in Table 13. Table 13. S / N fatigue test results for alloy profiles 7. Maximum load [MPa] cycles MPa NOT 300 22,165 280 32,214 260 47,536 240 59,094 220 103,407 200 251,771 190 254,842 180 6,508,197 160 6,130,947 130 9,383,980

Exemple 6Example 6

Dans cet exemple, une plaque dont la composition est donnée dans le tableau 14 a été coulée. Tableau 14 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé. Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 8 0,03 0,06 3,1 0,3 0,4 0,01 0,03 0,11 1,77 0,36 2,631 In this example, a plate whose composition is given in Table 14 was cast. Table 14 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 8 0.03 0.06 3.1 0.3 0.4 0.01 0.03 0.11 1.77 0.36 2,631

La plaque a été scalpée puis homogénéisée à 520 +/- 5 °C pendant 8 h (soit l'homogénéisation de référence B). Après homogénéisation, la plaque a été laminée à chaud pour obtenir des tôles ayant une épaisseur de 25 mm. Les tôles ont été mises en solution à 524 +/- 2 °C, trempées à l'eau froide et tractionnées avec un allongement permanent compris entre 2 et 5%. Des échantillons de diamètre 10 mm prélevés dans certaines de ces tôles ont ensuite subi un revenu d'une durée comprise entre 20h et 50h à 155 °C. Ces échantillons ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture (A)) de même que leur ténacité (KQ), avec des éprouvettes de géométrie B = 15 mm, W = 30 mm. Les résultats obtenus sont donnés dans le tableau 15 ci-dessous. Tableau 15 Propriétés mécaniques des tôles en alliage 8 ayant subi un revenu en laboratoire. Alliage Traction Durée du revenu à 155 °C Rm L (MPa) Rp0,2 L (MPa) KQ L-T M P a m

Figure imgb0017
8 2,5 % 20 557 504 33,9 30 579 538 28,6 40 586 550 25,4 50 589 555 25,8* 8 4,4 % 20 577 543 30,5 30 589 562 27,2 40 594 566 23,8* 50 597 571 23,7 *K1C The plate was scalped and then homogenized at 520 +/- 5 ° C for 8 h (the reference homogenization B). After homogenization, the plate was hot rolled to obtain sheets having a thickness of 25 mm. The sheets were put in solution at 524 +/- 2 ° C, quenched with cold water and triturated with a permanent elongation between 2 and 5%. Samples with a diameter of 10 mm taken from some of these sheets were then subjected to an income of between 20 h and 50 h at 155 ° C. These samples were tested to determine their static mechanical properties (yield strength R p0,2 , breaking strength Rm, and elongation at break (A)) as well as their toughness (K Q ), with specimens of geometry B = 15 mm, W = 30 mm. The results obtained are given in Table 15 below. Table 15 Mechanical properties of alloy plates 8 having undergone a laboratory income. Alloy Traction Duration of income at 155 ° C R m L (MPa) R p0.2 L (MPa) K Q LT M P at m
Figure imgb0017
8 2.5% 20 557 504 33.9 30 579 538 28.6 40 586 550 25.4 50 589 555 25.8 * 8 4.4% 20 577 543 30.5 30 589 562 27.2 40 594 566 23.8 * 50 597 571 23.7
* K 1C

Les tôles ont subi un revenu industriel de 48 h à 152 °C. Les résultats des essais mécaniques (prélèvement à mi-épaisseur) effectués sur les tôles ainsi obtenues sont donnés dans le Tableau 16. Tableau 16 Propriétés mécaniques des tôles en alliage 8 ayant subi un revenu industriel Traction Rm L (MPa) Rp0,2 L (MPa) A% L Rm TL (MPa) Rp0,2 TL (MPa) A% TL Rm 45° (MPa) Rp0,2 45° (MPa) A% 45° KQ L-T M P a m

Figure imgb0018
KQ T-L M P a m
Figure imgb0019
2,5 594 559 6 568 523 6 522 466 9 26,2 25,1 4 600 571 6 575 537 6 526 476 10 25,3 24,7 The sheets received an industrial income of 48 h at 152 ° C. The results of the mechanical tests (sampling at mid-thickness) carried out on the sheets thus obtained are given in Table 16. Table 16 Mechanical Properties of Alloyed 8 Industrial Plate Traction R m L (MPa) R p0.2 L (MPa) A% L R m TL (MPa) R p0.2 TL (MPa) A% TL R m 45 ° (MPa) R p0.2 45 ° (MPa) At% 45 ° K Q LT M P at m
Figure imgb0018
K Q TL M P at m
Figure imgb0019
2.5 594 559 6 568 523 6 522 466 9 26.2 25.1 4 600 571 6 575 537 6 526 476 10 25.3 24.7

Exemple 7Example 7

Dans cet exemple, on a utilisé les conditions d'homogénéisation selon l'invention pour deux types de profilés, obtenus à partir de billettes en deux alliages différents dont la composition est donnée dans le tableau 17 ci-dessous. Tableau 17 Composition en % en poids et densité de l'alliage Al-Cu-Li utilisé. Alliage Si Fe Cu Mn Mg Zn Ti Zr Li Ag Densité (g/cm3) 9 0,03 0,05 2,49 0,31 0,35 0,01 0,04 0,13 1,43 0,25 2,645 10 0,03 0,06 2,62 0,30 0,35 0,01 0,04 0,14 1,42 0,25 2,648 Les billettes ont été homogénéisées 8h à 520 °C (référence B) La vitesse de montée en température était de 15 °C/h pour l'homogénéisation et le temps équivalent était 9,5 heures Après homogénéisation, les billettes ont été réchauffées à 450 °C +/- 40 °C puis filées à chaud pour obtenir des profilés X selon la Figure 2 ou Y selon la Figure 3. Les profilés ainsi obtenus ont été mis en solution à 524 +/- 2 °C, trempés avec de l'eau de température inférieure à 40 °C, et tractionnés avec un allongement permanent compris entre 2 et 5%. Différentes conditions de revenu ont été mises en oeuvre. Des échantillons prélevés en fin de profilé ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rp0,2, la résistance à la rupture Rm, et l'allongement à la rupture (A) de même que leur ténacité (KQ). Les prélèvements ont effectués sur la semelle pour les profilés X et Y. Les échantillons prélevés avaient un diamètre de 10 mm sauf pour le sens T-L pour lequel les échantillons avaient un diamètre de 6 mm. Les éprouvettes utilisées pour les mesures de ténacité avaient pour caractéristiques B=15 mm et W = 60 mm (profilés Y) et B=20 mm et W = 76 mm (profilés X).
Les résultats obtenus sur les profilés X et Y sont donnés dans les tableaux 18 et 19 ci-dessous. Tableau 18. Propriétés mécaniques des profilés X en alliage 8 et 9. Alliage Revenu Sens L Sens TL KQ M P a m

Figure imgb0020
Rm (MPa) Rp0,2 (MPa) A (%) Rm (MPa) Rp0,2 (MPa) A (%) L-T T-L 9 20H 152 °C 468 405 12,6 444 388 15,1 60,8 60,2 30H 152 °C 497 450 12,8 465 417 14,1 63,7 52,1 48H 152 °C 517 478 11,0 486 447 12,5 60,3 47,9* 60H 152 °C 526 493 10,9 494 458 12,7 56,5 45,6* 10 20H 152 °C 488 433 10,9 457 397 13,1 61,4 54,1 30H 152 °C 513 470 11,3 486 441 13,2 59,8 47,7 48H 152 °C 532 498 10,1 501 463 12,4 55,2 42,5* 60H 152 °C 536 503 9,9 503 468 9,5 53,6 40,0* *K1C Tableau 19. Propriétés mécaniques des profilés Y en alliage 8 et 9. Alliage Revenu Sens L Sens TL KQ M P a m
Figure imgb0021
Rm (MPa) Rp0,2 (MPa) A (%) Rm (MPa) Rp0,2 (MPa) A (%) L-T T-L
9 20H 152 °C 489 432 12 451 392 15 53,6 53,6 30H 152 °C 517 477 11 478 435 13 57,9 50,8 48H 152 °C 535 501 10 494 457 12 56,9 47,2 60H 152 °C 539 506 10 497 462 12 53,0 45,4* 10 20H 152 °C 496 440 11,9 458 402 14 54,2 50,3 30H 152 °C 523 483 11,1 485 442 13 52,7 46,3 48H 152 °C 539 506 10,5 500 465 11 52,2 39,5 60H 152 °C 546 515 10,3 504 470 11 49,1 38,4*
*K1C
In this example, the homogenization conditions according to the invention were used for two types of profiles, obtained from billets made of two different alloys whose composition is given in Table 17 below. Table 17 Composition in% by weight and density of the Al-Cu-Li alloy used. Alloy Yes Fe Cu mn mg Zn Ti Zr Li Ag Density (g / cm 3 ) 9 0.03 0.05 2.49 0.31 0.35 0.01 0.04 0.13 1.43 0.25 2,645 10 0.03 0.06 2.62 0.30 0.35 0.01 0.04 0.14 1.42 0.25 2,648 The billets were homogenized for 8 hours at 520 ° C. (reference B). The temperature rise rate was 15 ° C./h for homogenization and the equivalent time was 9.5 hours. After homogenization, the billets were reheated to 450 ° C. ° C +/- 40 ° C then hot spun to obtain X profiles according to the Figure 2 or Y according to the Figure 3 . The profiles thus obtained were dissolved at 524 +/- 2 ° C, quenched with water of temperature below 40 ° C, and tractionned with a permanent elongation of between 2 and 5%. Different income conditions have been implemented. Samples taken at the end of the section were tested for their static mechanical properties (elastic limit R p0,2 , the tensile strength R m , and the elongation at break (A) as well as their toughness ( K Q ) Samples were taken from the soleplate for the X and Y sections.The samples taken had a diameter of 10 mm except for the TL direction for which the samples had a diameter of 6 mm. tenacity had characteristics B = 15 mm and W = 60 mm (Y profiles) and B = 20 mm and W = 76 mm (X profiles).
The results obtained on the X and Y sections are given in Tables 18 and 19 below. Alloy Returned Meaning L TL direction K Q M P at m
Figure imgb0020
R m (MPa) R p0.2 (MPa) AT (%) R m (MPa) R p0.2 (MPa) AT (%) LT TL
9 20H 152 ° C 468 405 12.6 444 388 15.1 60.8 60.2 30H 152 ° C four hundred ninety seven 450 12.8 465 417 14.1 63.7 52.1 48H 152 ° C 517 478 11.0 486 447 12.5 60.3 47.9 * 60H 152 ° C 526 493 10.9 494 458 12.7 56.5 45.6 * 10 20H 152 ° C 488 433 10.9 457 397 13.1 61.4 54.1 30H 152 ° C 513 470 11.3 486 441 13.2 59.8 47.7 48H 152 ° C 532 498 10.1 501 463 12.4 55.2 42.5 * 60H 152 ° C 536 503 9.9 503 468 9.5 53.6 40.0 *
* K 1C
Alloy Returned Meaning L TL direction K Q M P at m
Figure imgb0021
R m (MPa) R p0.2 (MPa) AT (%) R m (MPa) R p0.2 (MPa) AT (%) LT TL
9 20H 152 ° C 489 432 12 451 392 15 53.6 53.6 30H 152 ° C 517 477 11 478 435 13 57.9 50.8 48H 152 ° C 535 501 10 494 457 12 56.9 47.2 60H 152 ° C 539 506 10 four hundred ninety seven 462 12 53.0 45.4 * 10 20H 152 ° C 496 440 11.9 458 402 14 54.2 50.3 30H 152 ° C 523 483 11.1 485 442 13 52.7 46.3 48H 152 ° C 539 506 10.5 500 465 11 52.2 39.5 60H 152 ° C 546 515 10.3 504 470 11 49.1 38.4 *
* K 1C

Le compromis entre ténacité et résistance mécanique obtenu avec les alliages 9 et 10 est particulièrement avantageux, notamment pour obtenir des valeurs de ténacité très élevées, avec KQ(L-T) supérieur à 50 MPa m ,

Figure imgb0022
et même supérieur à 55 MPa m .
Figure imgb0023
The compromise between toughness and mechanical strength obtained with alloys 9 and 10 is particularly advantageous, in particular to obtain very high toughness values, with K Q (LT) greater than 50 MPa m ,
Figure imgb0022
and even greater than 55 MPa m .
Figure imgb0023

Claims (15)

  1. A method for manufacturing an extruded, laminated and / or forged product based on aluminum alloy, in which:
    a) a molten metal bath is prepared, comprising 2.0 to 3.1% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6 % by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element, if chosen being 0.05 to 0.3% by weight for Cr and Sc, 0.05 to 0.5 % by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities, the composition being adjusted to obtain a density at room temperature of less than 2.67 g/cm3
    b) a rough shape is cast from said molten metal bath;
    c) said rough shape is homogenized at a temperature between 515 ° C and 525 ° C so that the equivalent time for homogenization t eq = exp - 26100 / T dt exp - 26100 / T ref
    Figure imgb0046
    is between 5 and 20 hours, where T (in Kelvin) is the instantaneous treatment temperature, which changes with time t (in hours), and Tref is a reference temperature fixed at 793 K;
    d) said rough shape is hot and optionally cold worked to give an extruded, laminated and / or forged product
    e) said product undergoes solution heat treatment;
    f) said product undergoes controlled stretching with a permanent set of 1 to 5% and preferably at least 2%;
    g) said product is artificially aged by heating to 140-170° C for 5 to 70 hours so that said product has a conventional yield strength measured at 0.2% elongation of at least 440 MPa and preferably at least 460 MPa.
  2. Process according to claim 1 in which the copper content of said molten metal bath is at least 2.5% by weight and preferably at least 2.7% in weight.
  3. Process according to either of claims 1 to 2 in which the lithium content of said molten metal bath ranges between 1.42 and 1.77% by weight.
  4. Process according to any of claims 1 to 3 in which said inevitable impurities include iron and silicon, these impurities having a content less than 0.08% by weight and 0.06% by weight for iron and silicon respectively, other impurities having a content less than 0.05% by weight each and 0.15% by weight in total.
  5. Process according to any of claims 1 to 4 in which said equivalent time for homogenization ranges between 6 and 15 hours.
  6. Process according to any of claims 1 to 5 in which the homogenization temperature is approximately 520°C and the treatment time is between 8 and 20 hours.
  7. Process according to any of claims 1 to 6 in which said artificial aging is performed by heating to 148 to 155 °C for 10 to 40 hours.
  8. Extruded product made of aluminum alloy of density less than 2.67 g/cm3 obtained by the process according to any of claims 1 to 7 characterized in that its fracture toughness KQ(L-T) is at least 52 M P A √m
    Figure imgb0047
    its yield strength Rp0,2(L) is at least 490 MPa, and in that its copper content is comprised between 2,45 and 2,65 weight % and its lithium content is comprised between 1,4 and 1,5 weight % and characterized in that:
    (a) its conventional yield strength measured at 0.2% elongation in direction L Rp0,2(L) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that KQ(L-T) > 129 - 0,17 Rp0,2(L); and / or
    (b) its ultimate tensile strength in direction L Rm(L) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that K Q L - T > 179 - 0 , 25 R m L ,
    Figure imgb0048
    and / or
    (c) its ultimate tensile strength in direction LT Rm(LT) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that KQ(L-T) > 88 - 0,09 Rm(LT), and / or
    (d) its conventional yield strength measured at 0.2% elongation in direction L Rp0,2(L) is at least 490 MPa and preferably at least 500 MPa and its maximum stress for the initiation of fatigue cracks for a number of cycles to break of 105 is greater than 210 MPa for specimens with Kt = 2.3, with R = 0.1.
  9. Extruded product according to claim 8 characterized in that its fracture toughness KQ(L-T) is at least 56 MPa√m and its ultimate tensile strength Rm (L) is at least 515 MPa.
  10. Extruded product made of aluminum alloy of density less than 2.67 g/cm3 obtained by the process according to any of claims 1 to 7 characterized in that its fracture toughness KQ(L-T) is at least 45 MPa√m its yield strength Rp0,2(L) is at least 520 MPa, and in that its copper content is comprised between 2,65 and 2,85 weight % and its lithium content is comprised between 1,5 and 1,7 weight % and characterized in that:
    (a) its conventional yield strength measured at 0.2% elongation in direction L Rp0,2(L) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that KQ(L-T) > 129 - 0,17 Rp0,2(L); and / or
    (b) its ultimate tensile strength in direction L Rm(L) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that K Q L - T > 179 - 0 , 25 R m L ,
    Figure imgb0049
    and / or
    (c) its ultimate tensile strength in direction LT Rm(LT) expressed in MPa and its fracture toughness KQ(L-T), in direction L-T expressed in MPa √m are such that KQ(L-T) > 88 - 0,09 Rm(LT), and / or
    (d) its maximum stress for the initiation of fatigue cracks for a number of cycles to break of 105 is greater than 210 MPa for specimens with Kt = 2.3, with R = 0.1.
  11. Extruded product according to any of claims 8 to 10 of which the thickness of at least one elementary rectangle is greater than 8 mm and preferably greater than 12 mm.
  12. Flat-rolled aluminum alloy product with a density lower than 2.67 g/cm3 obtained by the process according to any of claims 1 to 7 characterized in that its fracture toughness KQ(L-T), in direction L-T is at least 23 MPa√m and its conventional limit elastic measured at 0.2% elongation in direction L Rp0,2(L) is at least equal to 560 MPa and/or its ultimate tensile strength in direction L Rm(L) is at least equal to 585 MPa.
  13. Flat-rolled product according to claim 12 whose thickness is at least 10 mm and preferably at least 15 mm.
  14. Structural element incorporating at least one product according to any of claims 8 to 13 or manufactured using such a product.
  15. Structural element according to claim 14 including at least one extruded product according to any of claims 8 to 11 used as a stiffener or framework, characterized in that it is used for the manufacture of aircraft fuselage panels or wing skins.
EP09764268.0A 2008-11-14 2009-11-10 Products in aluminium-copper-lithium alloy Active EP2364378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE9764268T DE09764268T1 (en) 2008-11-14 2009-11-10 PRODUCTS FROM ALUMINUM COPPER LITHIUM ALLOY

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11449308P 2008-11-14 2008-11-14
FR0806339A FR2938553B1 (en) 2008-11-14 2008-11-14 ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
PCT/FR2009/001299 WO2010055225A1 (en) 2008-11-14 2009-11-10 Products made of an aluminium-copper-lithium alloy

Publications (2)

Publication Number Publication Date
EP2364378A1 EP2364378A1 (en) 2011-09-14
EP2364378B1 true EP2364378B1 (en) 2014-01-08

Family

ID=40351782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764268.0A Active EP2364378B1 (en) 2008-11-14 2009-11-10 Products in aluminium-copper-lithium alloy

Country Status (9)

Country Link
US (3) US8366839B2 (en)
EP (1) EP2364378B1 (en)
CN (1) CN102224267B (en)
BR (1) BRPI0921819B1 (en)
CA (1) CA2743353C (en)
DE (1) DE09764268T1 (en)
ES (1) ES2457221T3 (en)
FR (1) FR2938553B1 (en)
WO (1) WO2010055225A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404123A1 (en) 2010-04-12 2018-11-21 Arconic Inc. 2xxx series aluminum lithium alloys having low strength differential
FR2960002B1 (en) * 2010-05-12 2013-12-20 Alcan Rhenalu ALUMINUM-COPPER-LITHIUM ALLOY FOR INTRADOS ELEMENT.
US20120247623A1 (en) * 2011-04-04 2012-10-04 Matuska Robert A Optimization and Control of Metallurgical Properties During Homogenization of an Alloy
FR3007423B1 (en) * 2013-06-21 2015-06-05 Constellium France EXTRADOS STRUCTURE ELEMENT IN ALUMINUM COPPER LITHIUM ALUMINUM
FR3014448B1 (en) 2013-12-05 2016-04-15 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY PRODUCT FOR INTRADOS ELEMENT WITH IMPROVED PROPERTIES
FR3014904B1 (en) * 2013-12-13 2016-05-06 Constellium France PRODUCTS FILES FOR PLASTER FLOORS IN LITHIUM COPPER ALLOY
FR3014905B1 (en) * 2013-12-13 2015-12-11 Constellium France ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS WITH IMPROVED FATIGUE PROPERTIES
JP2017534501A (en) * 2014-07-30 2017-11-24 サン−ゴバン パフォーマンス プラスティックス コーポレイション Steering support yoke
US10724127B2 (en) 2017-01-31 2020-07-28 Universal Alloy Corporation Low density aluminum-copper-lithium alloy extrusions
FR3065012B1 (en) * 2017-04-10 2022-03-18 Constellium Issoire LOW DENSITY ALUMINIUM-COPPER-LITHIUM ALLOY PRODUCTS
FR3065011B1 (en) * 2017-04-10 2019-04-12 Constellium Issoire ALUMINUM-COPPER-LITHIUM ALLOY PRODUCTS
FR3075078B1 (en) 2017-12-20 2020-11-13 Constellium Issoire IMPROVED MANUFACTURING PROCESS OF ALUMINUM-COPPER-LITHIUM ALLOY SHEETS FOR THE MANUFACTURE OF AIRCRAFT FUSELAGE
CN109182807B (en) * 2018-09-20 2020-06-30 北京新立机械有限责任公司 High-strength aluminum-lithium alloy and preparation method thereof
ES2878315T3 (en) * 2019-01-17 2021-11-18 Aleris Rolled Prod Germany Gmbh Manufacturing procedure for an AlMgSc series alloy product
CN114540679B (en) * 2022-04-26 2022-08-02 北京理工大学 Trace element composite reinforced high-strength aluminum-lithium alloy and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032359A (en) 1987-08-10 1991-07-16 Martin Marietta Corporation Ultra high strength weldable aluminum-lithium alloys
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US5211910A (en) * 1990-01-26 1993-05-18 Martin Marietta Corporation Ultra high strength aluminum-base alloys
US5151136A (en) * 1990-12-27 1992-09-29 Aluminum Company Of America Low aspect ratio lithium-containing aluminum extrusions
US5198045A (en) 1991-05-14 1993-03-30 Reynolds Metals Company Low density high strength al-li alloy
EP1641953A4 (en) 2003-05-28 2007-08-01 Alcan Rolled Products Ravenswood Llc New al-cu-li-mg-ag-mn-zr alloy for use as stractural members requiring high strength and high fracture toughness
RU2237098C1 (en) * 2003-07-24 2004-09-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Aluminium-based alloy and product made from the same
ATE414183T1 (en) * 2005-06-06 2008-11-15 Alcan Rhenalu HIGH-STRENGTH ALUMINUM-COPPER-LITHIUM SHEET FOR AIRCRAFT FUSES
CN101189353A (en) * 2005-06-06 2008-05-28 爱尔康何纳吕公司 High-strength aluminum-copper-lithium sheet metal for aircraft fuselages
FR2894985B1 (en) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE
FR2900160B1 (en) * 2006-04-21 2008-05-30 Alcan Rhenalu Sa METHOD FOR MANUFACTURING A STRUCTURAL ELEMENT FOR AERONAUTICAL CONSTRUCTION COMPRISING A DIFFERENTIAL NUT
FR2925523B1 (en) * 2007-12-21 2010-05-21 Alcan Rhenalu ALUMINUM-LITHIUM ALLOY IMPROVED LAMINATED PRODUCT FOR AERONAUTICAL APPLICATIONS

Also Published As

Publication number Publication date
DE09764268T1 (en) 2011-12-01
CA2743353A1 (en) 2010-05-20
US20130255839A1 (en) 2013-10-03
US8366839B2 (en) 2013-02-05
BRPI0921819A2 (en) 2018-02-14
BRPI0921819B1 (en) 2022-05-17
FR2938553A1 (en) 2010-05-21
EP2364378A1 (en) 2011-09-14
US20190136356A1 (en) 2019-05-09
US10190200B2 (en) 2019-01-29
CN102224267B (en) 2013-09-25
CA2743353C (en) 2017-04-11
ES2457221T3 (en) 2014-04-25
FR2938553B1 (en) 2010-12-31
WO2010055225A1 (en) 2010-05-20
US20100126637A1 (en) 2010-05-27
CN102224267A (en) 2011-10-19

Similar Documents

Publication Publication Date Title
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP2766503B1 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP1966402B1 (en) Sheet made of high-toughness aluminium alloy containing copper and lithium for an aircraft fuselage
EP3077559B1 (en) Aluminum/copper/lithium alloy material for underwing element having enhanced properties and process for its manufacture
EP2569456B1 (en) Aluminum-copper-lithium alloy for lower surface element
FR2838135A1 (en) PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS
FR2907467A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
FR2855834A1 (en) High strength aluminum alloy products with high fatigue resistance for use as the sheets and panels of aircraft structural components for the fuselage and wings
EP3201372B1 (en) Isotropic sheets of aluminium-copper-lithium alloys for the fabrication of fuselages of aircrafts and method of manuacturing same
EP3201371B1 (en) Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
EP3384061B1 (en) Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness
EP2981631B1 (en) Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages
WO2005098072A2 (en) Structural element for aircraft engineering exhibiting a variation of performance characteristics
WO2014072593A2 (en) Method for manufacturing a structural element having a variable thickness for aircraft production
EP3788178B1 (en) Aluminium-copper-lithium alloy having improved compressive strength and improved toughness
EP3610047B1 (en) Aluminium-copper-lithium alloy products
CA3001519C (en) Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GBC Gb: translation of claims filed (gb section 78(7)/1977)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: EBERL, FRANK

Inventor name: HEYMES, FABRICE

Inventor name: POUGET, GAELLE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEYMES, FABRICE

Inventor name: EBERL, FRANK

Inventor name: POUGET, GAELLE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R210

Ref document number: 602009021347

Country of ref document: DE

Effective date: 20111201

Ref country code: DE

Ref legal event code: R210

Effective date: 20111201

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONSTELLIUM FRANCE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009021347

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, COURBEVOIE, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009021347

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 648820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009021347

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2457221

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 648820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140108

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021347

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

26N No opposition filed

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009021347

Country of ref document: DE

Effective date: 20141009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009021347

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231122

Year of fee payment: 15

Ref country code: FR

Payment date: 20231127

Year of fee payment: 15

Ref country code: DE

Payment date: 20231129

Year of fee payment: 15

Ref country code: CH

Payment date: 20231202

Year of fee payment: 15