EP3201370A1 - Wrought product made of a magnesium-lithium-aluminum alloy - Google Patents
Wrought product made of a magnesium-lithium-aluminum alloyInfo
- Publication number
- EP3201370A1 EP3201370A1 EP15785159.3A EP15785159A EP3201370A1 EP 3201370 A1 EP3201370 A1 EP 3201370A1 EP 15785159 A EP15785159 A EP 15785159A EP 3201370 A1 EP3201370 A1 EP 3201370A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- product
- weight
- wrought
- content
- deformed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the invention relates to wrought products of aluminum-magnesium-lithium alloy, more particularly to such products with improved property compromise, in particular an improved compromise between yield strength and toughness of said products.
- the invention also relates to a manufacturing process and the use of these products intended in particular for aeronautical and aerospace construction.
- Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
- aluminum alloys containing magnesium and lithium simultaneously make it possible to reach particularly low densities and have therefore been extensively studied.
- GB 1, 172,736 teaches an alloy containing 4 to 7% by weight Mg, 1.5 - 2.6% Li, 0.2 - 1% Mn and / or 0.05 - 0.3% Zr, remains aluminum , useful for producing products with high mechanical strength, good corrosion resistance, low density and high modulus of elasticity. Said products are obtained by a process comprising an optional quenching and then an income.
- the products resulting from the process according to GB 1, 172,736 exhibit a breaking strength ranging from approximately 440 MPa to approximately 490 MPa, a tensile yield strength ranging from approximately 270 MPa to approximately 340 MPa and an elongation at break of about 5-8%.
- the international application WO 92/03583 describes a useful alloy for aeronautical structures having a low density and of general formula Mg a LibZn c AgdAlbai, in which a is between 0.5 and 10%, b is between 0.5 and 3%, c is between 0.1 and 5%, d is between 0.1 and 2% and bal indicates that the balance is aluminum.
- This document also discloses a process for obtaining said alloy comprising the steps of: a) casting an ingot of composition described above, b) removing the residual stresses of said ingot by heat treatment, c) homogenizing by heating and maintaining temperature then cool the ingot, d) hot rolling said ingot to its final thickness, e) dissolve and then soaking the product thus laminated, f) pull the product and g) achieve a revenue of said product by heating and maintaining temperature .
- No. 5,431,876 teaches a ternary alloy group of lithium aluminum and magnesium or copper, including at least one additive such as zirconium, chromium and / or manganese.
- the alloy is prepared according to methods known to those skilled in the art including, by way of example, extrusion, dissolution, quenching, traction of the product of 2 to 7% and then income.
- US Pat. No. 6,551,424 discloses a process for producing aluminum-magnesium-lithium alloy rolled products of composition (in% by weight) Mg: 3.0 - 6.0; Li: 0.4 -
- No. 6,461,566 discloses an alloy of composition (in% by weight) Li: 1.5 - 1.9; Mg:
- the patent application WO 2012/16072 describes a wrought product made of aluminum alloy of composition in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.6; Zr: 0.05-0.15; Ti: 0.01-0.15; Fe: 0.02 - 0.2; Si: 0.02 - 0.2; Mn: ⁇ 0.5; Cr ⁇ 0.5; Ag: ⁇ 0.5; Cu ⁇ 0.5; Zn ⁇ 0.5; Se ⁇ 0.01; other elements ⁇ 0.05; remains aluminum.
- Said product is in particular obtained according to a manufacturing process comprising in particular successively the casting of the alloy in raw form, its hot deformation and optionally cold, the setting solution and the quenching of the product thus deformed, optionally the cold deformation of the product thus put in solution and quenched and finally the income of the wrought product at a temperature below 150 ° C.
- the metallurgical state obtained for the rolled products is advantageously a T6 or T6X or T8 or T8X state and for the advantageously spun products a T5 or T5X state in the case of quenching on a press or a T6 or T6X or T8 or T8X state.
- Wrought products made of aluminum-magnesium-lithium alloy have a low density and are therefore particularly interesting in the extremely demanding field of aeronautics.
- their performance must be significantly improved compared to that of existing products, in particular their performance in terms of a compromise between the static mechanical strength properties (in particular tensile yield strength limit and in compression, breaking strength) and the properties of damage tolerance (toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic.
- These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual processes and have low residual stresses so that they can be machined without substantial distortion during said machining.
- a first object of the invention is a wrought product of aluminum alloy composition, in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
- the subject of the invention is also a process for manufacturing said wrought product in which:
- Mw 4.0-5.0; Li: 1.0 -1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum;
- said hot-deformed product is dissolved at a temperature of 360 ° C to 460 ° C, preferably 380 ° C to 420 ° C, for 15 minutes to 8 hours;
- the deformed and quenched product is deformed in a controlled manner to obtain a cold permanent deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5% and more preferably still 4 to 5%;
- the invention also relates to the use of said wrought product to produce an aircraft structural element.
- Figure 1 Frame for fuselage frame of Example 1
- Figure 2 Yield strength, Rp0,2, as a function of toughness, KQ * for a flat bar 10 mm thick (* all values of KQ are invalid due to criterion P max / PQ ⁇ 1, 10 of ASTM E399)
- Figure 3 Yield strength, Rp0,2, as a function of the stress intensity factor corresponding to the maximum force, K max (evaluated according to ASTM E399) for a 10 mm thick flat bar
- the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R P o, 2, and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
- Increasing the stresses on the product during the Klc toughness test according to ASTM E399 may be indicative of the propensity of the product for delamination.
- the term "delamination”("crackdelamination” and / or "crack divider” in English) means cracking in orthogonal planes at the front of the main crack. The orientation of these plans corresponds to that of non-recrystallized grain boundaries after deformation.
- a low roll-out is a sign of less fragile planes involved and minimizes the risk of crack deviation towards the longitudinal direction during a propagation in fatigue or under monotonous stress.
- EN 12258 Unless otherwise specified, the definitions of EN 12258 apply.
- structural element or “structural element” of a mechanical construction a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed.
- These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
- these structural elements include the elements that make up the fuselage (such as fuselage skin, (skin fuselage), stiffeners or fuselage stringers, bulkheads, frames circumferential frames, wings (such as upper or lower wing skin), stiffeners, ribs, floor (fioor beams) and seat rails (seat tracks)) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical vertical stabilizers), as well as the doors.
- fuselage such as fuselage skin, (skin fuselage), stiffeners or fuselage stringers, bulkheads, frames circumferential frames, wings (such as upper or lower wing skin), stiffeners, ribs, floor (fioor beams) and seat rails (seat tracks)
- empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical vertical stabilizers), as well as the doors.
- the wrought aluminum alloy product according to the invention has the following particular composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
- the aluminum alloy products having such a composition associated in particular with the particular Mn content selected have improved static mechanical properties and a low propensity for delamination.
- the Mn content, in% by weight is 0.35 to 0.45, preferably 0.35 to 0.40.
- the raw form of aluminum alloy has a silver content of less than or equal to 0.25% by weight, more preferably a silver content of 0.05% to 0.1% by weight.
- This element contributes in particular to the static mechanical properties.
- the shape Crude aluminum alloy has a total content of Ag and Cu less than 0.15% by weight, preferably less than or equal to 0.12%. The control of the maximum content of these two elements in combination makes it possible in particular to improve the resistance to intergranular corrosion of the wrought product.
- the raw form has a zinc content, in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
- a zinc content in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
- the raw form of aluminum alloy has a Fe content, in% by weight, of less than 0.08%, preferentially less than or equal to 0.07%, more preferably still less than or equal to 0.06%.
- a minimum Fe content, as well as possibly that of Si can contribute to improving the mechanical properties and in particular the fatigue properties of the alloy. Excellent results have in particular been obtained for an Fe content of 0.02 to 0.06% by weight and / or an Si content of 0.02 to 0.05% by weight.
- the lithium content of the products according to the invention is between 1.0 and 1.8% by weight.
- the raw form of aluminum alloy has a content of Li, in% by weight, of less than 1.6%, preferably less than or equal to 1.5%, preferably even less than or equal to 1 , 4%.
- a minimum lithium content of 1.1% by weight and preferably 1.2% by weight is advantageous.
- the present inventors have found that a limited lithium content, in the presence of certain addition elements, makes it possible to very significantly improve the toughness, which largely compensates for the slight increase in density and the decrease in the static mechanical properties.
- the raw form of aluminum alloy has a Zr content, in% by weight, of 0.10 to 0.15%.
- the inventors have indeed found that such a Zr content makes it possible to obtain an alloy having a favorable fiber structure for improved static mechanical properties.
- the raw form of aluminum alloy has a Mg content, in% by weight, of 4.5 to 4.9%. Excellent results have been obtained for alloys according to this embodiment in particular as regards the static mechanical properties.
- the Cr content of the products according to the invention is less than 0.05% by weight, preferably less than 0.01% by weight.
- Such a limited Cr content in combination with the other elements of the alloy according to the invention makes it possible in particular to limit the formation of primary phases during casting.
- the Ti content of the products according to the invention is less than 0.15% by weight, preferably between 0.01 and 0.05% by weight.
- the Ti content is limited in the particular alloy of the present invention in particular to prevent the formation of primary phases during casting.
- the products according to the invention have a maximum content of 10 ppm of
- the raw form of aluminum alloy is substantially free of Se, Be, Y, more preferably said The raw form comprises less than 0.01% by weight of these elements taken in combination.
- the raw form of aluminum alloy has a composition, in% by weight:
- Mg 4.0 - 5.0, preferably 4.5 - 4.9;
- Li 1, 1 -1.6, preferably 1, 2 - 1, 5;
- Zr 0.05-0.15, preferentially 0.10-0.15;
- Fe 0.02 - 0.1, preferably 0.02 - 0.06;
- Mn 0.3 - 0.5; preferably from 0.35 to 0.45, preferentially from 0.35 to 0.40; Cr: ⁇ 0.05, preferentially ⁇ 0.01; Ag: ⁇ 0.5; preferentially ⁇ 0.25; more preferably still ⁇ 0.1;
- the manufacturing process of the products according to the invention comprises the successive steps of producing a bath of liquid metal so as to obtain an Al-Mg-Li alloy of particular composition, casting said alloy in raw form, optionally the homogenization of said raw form thus cast, the hot deformation of said raw form to obtain a hot deformed product, optionally the separate solution of the product thus deformed hot, the quenching of said hot deformed product, optionally the dressing / planing of the deformed and tempered product, optionally the cold deformation in a controlled manner of the deformed product and quenched to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably 3 to 5%, the income of said product deformed and tempered.
- the tempering step is performed before the cold deformation step in a controlled manner.
- the manufacturing process therefore consists first of all in the casting of a crude form of Al-Mg-Li alloy of composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 -1, 8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
- a bath of liquid metal is made and then cast in raw form, typically a rolling plate, a spinning billet or a forging blank.
- the manufacturing method optionally comprises a homogenization step of the raw form so as to reach a temperature of between 450 ° C. and 550 ° C. and, preferably, between 480 ° C. C and 520 ° C for a period of between 5 and 60 hours.
- the homogenization treatment can be carried out in one or more stages.
- the hot deformation is carried out directly after a simple reheating without performing homogenization.
- the raw form is then hot deformed, typically by spinning, rolling and / or forging, to obtain a deformed product.
- This hot deformation is preferably carried out at an inlet temperature above 400 ° C and advantageously from 420 ° C to 450 ° C.
- the hot deformation is a spinning deformation of the raw form.
- the hot-deformed and optionally cold-deformed product is optionally subjected to separate dissolution at a temperature of 360 ° C. to 460 ° C., preferably 380 ° C. to 420 ° C., for 15 minutes to 8 hours.
- the deformed product and, optionally, dissolved solution is then quenched. Quenching is carried out with water and / or air. It is advantageous to perform quenching in the air because the intergranular corrosion properties are improved. In the case of a spun product, it is advantageous to carry out quenching on a press (or quenching on spinning heat), preferably quenching on an air press, such quenching in particular making it possible to improve the static mechanical properties . According to another embodiment, it may also be a quench on water press. In the case of quenching on a press, the product is dissolved in spinning heat.
- the hot deformed product and hardened may optionally be subjected to a dressing step or planing according to whether it is a profile or a sheet.
- dressing step or planing a cold deformation step without permanent deformation or with a permanent deformation less than 1%.
- the hot-deformed, quenched and optionally raised / flat product is also cold-deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5%. %, and more preferably still 4 to 5%.
- the permanent cold deformation is 2 to 4%.
- the cold deformation can in particular be carried out by traction, compression and / or rolling. According to a preferred embodiment, the cold deformation is performed by traction.
- the income is achieved by heating, in one or more steps, at a temperature below 150 ° C, preferably at a temperature of 70 ° C to 140 ° C for 5 to 100 hours.
- the revenue step is performed after the cold deformation step in a controlled manner.
- the metallurgical state obtained for the wrought products corresponds in particular to a T8 state according to the EN515 standard.
- the tempering step is performed before the cold deformation step in a controlled manner.
- the deformed hot and tempered product is then cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5%, and more preferably of 4 to 5%.
- the permanent cold deformation is 2 to 4%.
- the method of manufacturing a wrought product does not comprise any cold deformation step inducing a permanent deformation of at least 1% between the hot deformation step or, if this step is present, solution and the income stage.
- the combination of the chosen composition, in particular the content of Mg, Li and Mn and of the transformation parameters, in particular the order of the steps of the manufacturing process, advantageously makes it possible to obtain wrought products having an improved property compromise. quite special, especially the compromise between mechanical resistance and damage tolerance, while having a low density and a good corrosion performance.
- the wrought products according to the invention are preferably spun products such as profiles, rolled products such as sheets or thick plates and / or forged products.
- the wrought products according to the invention have particularly advantageous characteristics in comparison with identical wrought products whose only difference is their Mn content, in particular a Mn content, in% by weight, less than 0.3% or greater than 0.5%.
- identical wrought products is understood to mean aluminum alloy products of the same composition, in% by weight, with the exception of Mn, and obtained according to the same manufacturing process, in particular products wrought in the same metallurgical state. according to standard EN515 and having the same rate of deformation in tensile traction permanently obtained by traction in a controlled manner.
- the wrought products according to the invention exhibit less delamination on the fracture surfaces of the Klc test pieces obtained according to the ASTM E399 standard than identical wrought products having, for their sole difference, their Mn content, in particular Mn content, in% by weight, less than 0.3% or greater than 0.5%.
- the wrought products according to the invention have, at a thickness of between 0.5 and 15 mm, a breaking strength Rm (L) greater than that of products.
- the wrought products according to the invention have, at mid-thickness, for a thickness of between 0.5 and 15 mm, a tensile yield strength Rp0.2 (L). greater than that of wrought products identical but having only difference their Mn content, in particular a Mn content, in% by weight, less than 0.3% or greater than 0.5%.
- the products wrought in the T8 state, advantageously in the T8 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness between 0 , 5 and 15 mm, at least one property of static resistance among properties (i) to (iii) and at least one property of damage tolerance among properties (iv) to (v): (i) a breaking strength Rm (L)> 450 MPa, preferably Rm (L)> 455 MPa;
- the products wrought in the T9 state, advantageously in the T9 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness of between 0.degree. , 5 and 15 mm, at least one property of static resistance among properties (i) to (iii) and at least one property of damage tolerance among properties (iv) to (v):
- the wrought products in the T8 or T9 state previously mentioned have, for a thickness of between 0.5 and 15 mm, at mid-thickness at least two static strength properties chosen from among the properties ( i) to (iii) and at least one property of damage tolerance selected from properties (iv) to (v).
- the spun products according to the invention have particularly advantageous characteristics.
- the spun products preferably have a thickness of between 0.5 mm and 15 mm, but products with a thickness greater than 15 mm, up to 50 mm or even 100 mm or more may also have advantageous properties.
- the thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
- the wrought products according to the invention are advantageously used to produce aircraft structural elements, in particular aircraft.
- Preferred aircraft structural elements include fuselage skin, fuselage frame, stiffener or fuselage rail, or wing skin, sail stiffener, rib, or spar.
- Alloy B has a composition according to the invention.
- the density of alloys A and B calculated in accordance with the procedure of The Aluminum Association described on pages 2-12 and 2-13 of "Aluminum Standards and Data", is 2.55.
- Billet diameters of 358 mm were made in the raw forms. They were heated to 430-440 ° C and then hot deformed by spinning on a press in the form of a fuselage frame profile as shown in Figure 1. The products thus spun were quenched in the air (quenching). on press). They then suffered:
- T9 for products in final state T9: a bi-bearing income made for 30 hours at 120 ° C followed by 10 h at 100 ° C and then a controlled pull with permanent deformation of 3 or 5% (respectively T9-3% and T9 -5%).
- a Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight makes it possible to significantly improve the alloy strength (Rp0.2 and Rm), in particular the mechanical strength in the L direction, compared to that of an alloy having a Mn content of about 0.14% by weight (alloy A).
- the best results are generally obtained when the controlled traction is performed after the income ⁇ 8 ⁇ T9).
- Alloy B has a composition according to the invention.
- Billet diameters of 358 mm were made in the raw forms. They were heated to 430-440 ° C and then hot deformed by spinning on a press in the form of a flat bar (100 mm x 10 mm). The products thus spun were quenched in the air (quenching on a press). They then suffered:
- T9 for products in final state T9: a bi-bearing income made for 30 hours at 120 ° C followed by 10 h at 100 ° C and then a controlled pull with permanent deformation of 3 or 5% (respectively T9-3% and T9 -5%).
- a Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight makes it possible to significantly improve the alloy strength (Rp0.2 and Rm), in particular the mechanical strength in the L direction, compared to that of an alloy having a Mn content of about 0.14% by weight (alloy A).
- the best results are usually obtained when the controlled pull is performed after the income (T8 ⁇ T9).
- the values of KQ have always been invalid according to the ASTM E399 standard, in particular with respect to the criterion Pmax / PQ ⁇ 1, 10.
- the results are presented in K max (stress intensity factor corresponding to the maximum force P m ax).
- the results are reported in Tables 6 and 7 and illustrated in Figures 2 and 3 (LT and TL specimens respectively). These results are averages of at least two values.
- FIG. 2 illustrates the yield strength, Rp0.2, of the products of the present example as a function of toughness, KQ (all KQ values are invalid due to the P MAX / PQ 1 1, 10 criterion).
- FIG. 3 illustrates the elastic limit, Rp0.2, of the products of the present example as a function of the stress intensity factor corresponding to the maximum stress, K max .
- T9 products have an excellent compromise between their static properties, in particular Rp0.2, and their toughness, KQ, OR their stress intensity factor corresponding to the maximum force, Kma X.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Forging (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402186A FR3026411B1 (en) | 2014-09-29 | 2014-09-29 | METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS |
FR1402187A FR3026410B1 (en) | 2014-09-29 | 2014-09-29 | CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM |
PCT/FR2015/052580 WO2016051060A1 (en) | 2014-09-29 | 2015-09-29 | Wrought product made of a magnesium-lithium-aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3201370A1 true EP3201370A1 (en) | 2017-08-09 |
EP3201370B1 EP3201370B1 (en) | 2020-04-15 |
Family
ID=54356641
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15785159.3A Active EP3201370B1 (en) | 2014-09-29 | 2015-09-29 | Wrought product of an alloy of aluminium, magnesium, lithium |
EP15785160.1A Active EP3201371B1 (en) | 2014-09-29 | 2015-09-29 | Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15785160.1A Active EP3201371B1 (en) | 2014-09-29 | 2015-09-29 | Method of fabrication of a wrought product of an alloy of aluminium- magnesium-lithium, wrougt product and use of the product |
Country Status (8)
Country | Link |
---|---|
US (2) | US20170218493A1 (en) |
EP (2) | EP3201370B1 (en) |
JP (1) | JP2017532456A (en) |
KR (1) | KR20170067810A (en) |
CN (2) | CN107075623A (en) |
BR (2) | BR112017006273B1 (en) |
CA (2) | CA2960947A1 (en) |
WO (2) | WO2016051060A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018037390A2 (en) | 2016-08-26 | 2018-03-01 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
FR3057476B1 (en) * | 2016-10-17 | 2018-10-12 | Constellium Issoire | ALUMINUM-MAGNESIUM-SCANDIUM ALLOY THIN SHEET FOR AEROSPATIAL APPLICATIONS |
US11072844B2 (en) | 2016-10-24 | 2021-07-27 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
FR3080861B1 (en) * | 2018-05-02 | 2021-03-19 | Constellium Issoire | METHOD OF MANUFACTURING AN ALUMINUM COPPER LITHIUM ALLOY WITH IMPROVED COMPRESSION RESISTANCE AND TENACITY |
WO2020206161A1 (en) * | 2019-04-05 | 2020-10-08 | Arconic Technologies Llc | Methods of cold forming aluminum lithium alloys |
BR112022010392A2 (en) * | 2019-12-17 | 2022-08-23 | Novelis Inc | SUPPRESSION OF CRACK BY CORROSION UNDER TENSION IN HIGH MAGNESIUM ALLOYS THROUGH THE ADDITION OF CALCIUM |
CN112226656A (en) * | 2020-09-25 | 2021-01-15 | 西南铝业(集团)有限责任公司 | Production process of Al-Mg-Mn-Er aluminum alloy extruded product |
CN112410691B (en) * | 2020-11-10 | 2021-12-24 | 中国航发北京航空材料研究院 | Annealing process of aluminum-lithium alloy material |
CN114054531B (en) * | 2021-11-18 | 2024-09-20 | 西南铝业(集团)有限责任公司 | Extrusion method of high-uniformity 2196 aluminum-lithium alloy section bar |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1519021A (en) * | 1967-03-07 | 1968-03-29 | Iosif Naumovich Fridlyander Ni | Aluminum based alloy |
SU1367517A1 (en) * | 1986-01-16 | 1995-07-25 | И.Н. Фридляндер | Alloy based on aluminum |
CA1337747C (en) * | 1986-12-01 | 1995-12-19 | K. Sharvan Kumar | Ternary aluminium-lithium alloys |
US4790884A (en) * | 1987-03-02 | 1988-12-13 | Aluminum Company Of America | Aluminum-lithium flat rolled product and method of making |
BR8807653A (en) * | 1987-08-10 | 1990-06-12 | Martin Marietta Corp | ALUMINUM-LITHIUM ALLOYS ULTRA HIGH RESISTANCE WELDINGS |
DE68913561T2 (en) * | 1988-01-28 | 1994-10-20 | Aluminum Co Of America | Aluminum-lithium alloys. |
AU1983200A (en) * | 1998-12-18 | 2000-07-12 | Corus Aluminium Walzprodukte Gmbh | Method for the manufacturing of an aluminium-magnesium-lithium alloy product |
RU2256720C1 (en) * | 2004-04-02 | 2005-07-20 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Method of thermomechanical treatment of semi-finished products made from aluminum alloys |
US7998402B2 (en) * | 2005-08-16 | 2011-08-16 | Aleris Aluminum Koblenz, GmbH | High strength weldable Al-Mg alloy |
FR2894985B1 (en) * | 2005-12-20 | 2008-01-18 | Alcan Rhenalu Sa | HIGH-TENACITY ALUMINUM-COPPER-LITHIUM PLASTER FOR AIRCRAFT FUSELAGE |
DE112008003052T5 (en) * | 2007-11-15 | 2010-12-16 | Aleris Aluminum Koblenz Gmbh | Product of Al-Mg-Zn wrought alloy and manufacturing method therefor |
FR2975403B1 (en) * | 2011-05-20 | 2018-11-02 | Constellium Issoire | MAGNESIUM LITHIUM ALUMINUM ALLOY WITH IMPROVED TENACITY |
CN103045975A (en) * | 2012-12-29 | 2013-04-17 | 湖南工程学院 | Method for improving high probability of cracking in rolling of Al-Mg-Li system alloys |
-
2015
- 2015-09-29 CN CN201580052804.9A patent/CN107075623A/en active Pending
- 2015-09-29 CN CN201580052806.8A patent/CN106715735A/en active Pending
- 2015-09-29 US US15/514,802 patent/US20170218493A1/en not_active Abandoned
- 2015-09-29 EP EP15785159.3A patent/EP3201370B1/en active Active
- 2015-09-29 CA CA2960947A patent/CA2960947A1/en not_active Abandoned
- 2015-09-29 CA CA2960942A patent/CA2960942A1/en not_active Abandoned
- 2015-09-29 BR BR112017006273-9A patent/BR112017006273B1/en active IP Right Grant
- 2015-09-29 BR BR112017006131A patent/BR112017006131A2/en active Search and Examination
- 2015-09-29 KR KR1020177011944A patent/KR20170067810A/en unknown
- 2015-09-29 WO PCT/FR2015/052580 patent/WO2016051060A1/en active Application Filing
- 2015-09-29 EP EP15785160.1A patent/EP3201371B1/en active Active
- 2015-09-29 JP JP2017535970A patent/JP2017532456A/en active Pending
- 2015-09-29 US US15/514,398 patent/US20170292180A1/en not_active Abandoned
- 2015-09-29 WO PCT/FR2015/052581 patent/WO2016051061A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2016051061A1 (en) | 2016-04-07 |
CN106715735A (en) | 2017-05-24 |
EP3201371B1 (en) | 2021-04-28 |
CA2960942A1 (en) | 2016-04-07 |
WO2016051060A1 (en) | 2016-04-07 |
CA2960947A1 (en) | 2016-04-07 |
CN107075623A (en) | 2017-08-18 |
US20170292180A1 (en) | 2017-10-12 |
EP3201370B1 (en) | 2020-04-15 |
KR20170067810A (en) | 2017-06-16 |
BR112017006131A2 (en) | 2017-12-19 |
BR112017006273B1 (en) | 2021-06-08 |
BR112017006273A2 (en) | 2017-12-12 |
EP3201371A1 (en) | 2017-08-09 |
JP2017532456A (en) | 2017-11-02 |
US20170218493A1 (en) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3201370B1 (en) | Wrought product of an alloy of aluminium, magnesium, lithium | |
EP2710163B1 (en) | Aluminum magnesium lithium alloy having improved toughness | |
EP2449142B1 (en) | Aluminium-copper-lithium alloy with improved mechanical resistance and toughness | |
EP2655680B1 (en) | Aluminium-copper-lithium alloy with improved compressive strength and toughness | |
EP2766503B1 (en) | Improved method for processing sheet metal made of an al-cu-li alloy | |
EP2364378B1 (en) | Products in aluminium-copper-lithium alloy | |
EP3384061B1 (en) | Aluminium-copper-lithium alloy having improved mechanical strength and improved toughness | |
FR2838135A1 (en) | PRODUCTS CORROYED IN A1-Zn-Mg-Cu ALLOYS WITH VERY HIGH MECHANICAL CHARACTERISTICS, AND AIRCRAFT STRUCTURE ELEMENTS | |
FR2907796A1 (en) | ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME | |
EP2981632B1 (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
FR2853667A1 (en) | IMPROVED AL-AN-MG-CU ALLOY AS REGARDS ITS COMBINED PROPERTIES OF DAMAGE TOLERANCE AND MECHANICAL STRENGTH | |
EP2981631B1 (en) | Aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
WO2016051099A1 (en) | Isotropic aluminium-copper-lithium alloy sheets for producing aeroplane fuselages | |
EP3526358B1 (en) | Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications | |
EP3788178B1 (en) | Aluminium-copper-lithium alloy having improved compressive strength and improved toughness | |
EP3610048B1 (en) | Low-density aluminium-copper-lithium alloy products | |
FR3026410B1 (en) | CORROYE PRODUCT ALLOY ALUMINUM MAGNESIUM LITHIUM | |
FR3026411A1 (en) | METHOD FOR MANUFACTURING LITHIUM MAGNESIUM ALUMINUM ALLOY PRODUCTS | |
EP3610047B1 (en) | Aluminium-copper-lithium alloy products | |
EP3362584B1 (en) | Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170421 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190826 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191114 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015050782 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1257360 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200716 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200815 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200925 Year of fee payment: 6 Ref country code: DE Payment date: 20200929 Year of fee payment: 6 Ref country code: GB Payment date: 20200928 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1257360 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015050782 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
26N | No opposition filed |
Effective date: 20210118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200929 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015050782 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210929 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 |