EP3133238B1 - Tunnelbausystem - Google Patents

Tunnelbausystem Download PDF

Info

Publication number
EP3133238B1
EP3133238B1 EP16163987.7A EP16163987A EP3133238B1 EP 3133238 B1 EP3133238 B1 EP 3133238B1 EP 16163987 A EP16163987 A EP 16163987A EP 3133238 B1 EP3133238 B1 EP 3133238B1
Authority
EP
European Patent Office
Prior art keywords
drilling
milling
tunnel
rollers
milling rollers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16163987.7A
Other languages
English (en)
French (fr)
Other versions
EP3133238A1 (de
Inventor
Anton Zehnder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zehmei AG
Original Assignee
Zehmei AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zehmei AG filed Critical Zehmei AG
Publication of EP3133238A1 publication Critical patent/EP3133238A1/de
Application granted granted Critical
Publication of EP3133238B1 publication Critical patent/EP3133238B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/005Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by forcing prefabricated elements through the ground, e.g. by pushing lining from an access pit
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/08Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield

Definitions

  • the invention relates to a tunneling system with a milling machine for trenchless construction of a tunnel through the ground.
  • a system for building a tunnel by pulling in several tunnel elements one behind the other is a milling machine for trenchless construction of a tunnel through the ground.
  • a tunneling system for trenchless construction of a tunnel is in CH708408 disclosed.
  • There a method and a device for pulling in tunnel elements by means of threaded tension rods are described, which run outside the tunnel elements in bores from a starting portal through the ground to a destination portal.
  • a jacking part and tunnel elements are pulled into the ground using press cylinders at the start portal.
  • Milling machines for tunnel construction are known.
  • a machine for excavating soil when driving tunnels with several scraper rollers is disclosed. These are arranged offset one above the other in that the axes of rotation of one scraper drum are in a first front plane and the axes of rotation of further scraper drums are in a second rear plane.
  • the scraper rollers can be rotated in both directions and moved horizontally forwards and backwards.
  • DE 1 205 576 discloses a tunneling system with rollers for excavating soil which are arranged vertically offset from one another. In addition, the rollers can be moved horizontally forwards and backwards.
  • a system for trenchless construction of a tunnel by pulling in several tunnel elements, in particular rectangular reinforced concrete pipes is disclosed.
  • the tunneling system has a start portal and a destination portal, which are connected to tie rods, in particular threaded tie rods, which are arranged in bores through the ground.
  • the bores run through the ground outside the cross-sectional area of the tunnel elements to be pulled in.
  • Several press cylinders or electric motors with screw drives are arranged on the side of the start portal and are in operative connection with the destination portal via the clamping elements.
  • the tunnel elements are pulled into the ground by means of the press cylinder or electric motors with screw drives.
  • the target portal can be used as an anchor when building the tunnel.
  • a milling machine preferably a full-cut milling machine, is arranged on the system in operative connection with the first tunnel element in the advance direction of the system.
  • the milling machine as a whole has several individually controllable drilling milling drums, all of which are arranged in a plane at the front end of the first tunnel element.
  • Several drilling milling drums are arranged one above the other, in that the shafts of the rollers run vertically one above the other and parallel to one another.
  • Each of the drilling milling drums has a drive assigned to it.
  • the milling machine has a modular structure in that each of the drilling milling drums arranged one above the other has at least three coaxially and next to one another have arranged roller parts that can be individually removed and installed. Each of the roller parts forms a roller for itself.
  • the milling machine has a modular structure in that each of the boring milling drums arranged one above the other has at least three coaxially arranged roller parts that can be individually removed and installed, and a drive box or an empty box is arranged between the individual roller parts of each of the boring milling drums arranged one above the other and the drilling milling drums are each laterally horizontally oscillating in the direction of their shafts, wherein the drilling milling drums for removing soil can be moved laterally in a horizontally oscillating manner at least in the area of the drive box and empty box.
  • the tunnel elements consist, for example, of a reinforced concrete pipe, for example in a square shape.
  • each boring milling drum consists of several individual drum parts arranged next to one another, the milling machine as such has a modular structure, with each individual drum part representing a module.
  • a modular structure of this type enables the individual modules to be set up and, in particular, also expanded by two people using a lifting crane or the like. This allows, for example, the removal of a single boring milling drum in the event that an obstacle such as a boulder is in the ground. After removing the roller, the obstacle can be removed manually and the roller can then be reinserted to continue working in full milling mode.
  • the roller parts are each made up of two half-shells without a continuous drive shaft. This further facilitates the removal and installation of a roller.
  • the drives for the drilling milling drums are each arranged between two of the drum parts in a drive box. So in the area of the drives none can Milling function are carried out. In order to achieve milling over as large an area as possible, in particular also in the area of the drives and thus a full-cut milling function, in one embodiment of the invention the individual drilling milling drums can be moved laterally in the direction of their shafts, horizontally oscillating. This means that the soil can also be removed in the area of the drives and thus over the entire width of the milling machine and the tunneling system.
  • the laterally oscillating mobility is realized by means of a drive, a thread and a guide, which are designed to move all the drilling milling drums arranged one above the other as a whole over at least the area of a drive of the drilling milling drums laterally horizontally.
  • the plurality of drilling milling drums arranged one above the other can each be driven individually at a respective individual speed. This enables an individual adjustment of the speed of each individual roller according to the nature and density of the soil in the area of each roller.
  • the modular design enables any necessary expansion of a single roller to remove boulders, after which the roller in question is reinstalled and the full cut function can be continued. After such interruptions have ended, the individual drive of the individual drilling milling drums, together with the oscillating horizontal mobility of the drums, enables an especially continuous full-cut milling function, which can be carried out continuously by a single operator, even with irregular soil, by keeping the drives of the individual drums visually and audibly be regulated.
  • the drilling and milling drums and their drives are designed in such a way that the drilling and milling drums can be rotated downwards, in that the roller can be rotated downwards on its outermost surface facing the soil and the milled soil is rotatable downwards and then downwards is transported to the rear of the roller. This direction of rotation is particularly advantageous when the ground is hard and tight.
  • the drilling and milling drums and their drives are designed in such a way that the drilling and milling drums can be rotated upwards, in that the roller can be rotated upwards on its outermost surface facing the soil and the milled soil upwards and then backwards to the rear the roller is transported.
  • This direction of rotation is particularly advantageous when the soil is loose and soft.
  • This direction of rotation has multiple advantages.
  • most of the milled soil falls into the interior of the tunneling system, i.e. the material is moved up on the outer side of each roller and then backwards and then falls to the ground on the inner side of the respective roller. This means that no or very little material falls on the outer side of the milling cutter.
  • the removal of the milled material is therefore much easier.
  • mining material is prevented from sliding down.
  • the upward movement of the milled earth material creates an upward pressure, so that the material above the drilling milling drums, which forms the material of the cover, is compacted.
  • the tunnel construction with the system according to the invention results in fewer subsidence of the material of the covering. Should subsidence nevertheless arise, such subsidence would be discovered quickly and even while the tunnel was being built, because the thickness of the cover of the tunnel being constructed is relatively small. These subsidence can then be corrected while the tunnel is being built.
  • known tunneling systems on the other hand, a relatively large covering of the tunnel is necessary, and subsidence can only be recognized much later. These then have to be remedied by opening a new construction site, which causes additional work and a possible interruption of traffic through the tunnel.
  • the individual drilling and milling drums each have round chisels that are oriented at an angle to the radial line of the roll, so that they are directed upwards on their outermost surface facing the ground.
  • the drives for the drilling milling drums and drives for the horizontal movement of the drums are implemented by electric motors. These enable the rollers to be driven, the sensitivity of which is equal to that of a hydraulic motor.
  • the use of electric motors also has the significant advantage that contamination of the soil by leaking oil is completely prevented and risks of contamination are excluded and there is no effort to remedy the contamination.
  • a conveyor belt system is arranged in the interior of the tunnel construction system for transporting away the milled soil.
  • this conveyor belt system consists of several belts running in parallel.
  • the gaps between the individual belts are covered by a T-profile to prevent the system from clogging with falling material.
  • the tunneling system comprises rolls of flat material, e.g. in the form of sheet metal that can be pulled in between the ground and tunnel elements when driving.
  • the rolls of sheet material are located on the top or bottom of the building system, or both. In this way the pull-in resistance can be minimized, as, among other things, it prevents earth material from being pushed in when the tunnel elements are drawn in.
  • the tunneling system also has a device for injecting and distributing lubricant between the flat material and the tunnel element.
  • the tunneling system has a guide roller which is non-positively mounted on the start portal above the upper ceiling wall and below the lower floor wall of the rectangular concrete pipe of the tunnel elements. This serves to avoid deviations in escape, fallen or Avoid inclines if possible.
  • the tunnel construction system has a steel structure with steel brackets running transversely to the direction in which the tunnel elements are drawn in, which is firmly anchored to a concrete floor slab made by the customer on which the start portal stands.
  • two U-profiles adjustable in height and laterally are mounted on the steel consoles. These enable corrections of lateral deviations as well as deviations in the height of the tunnel elements.
  • Fig. 1 shows a possible embodiment of the tunnel construction system T with a pull-in device for tunnel construction elements, as it appears when prefabricated tunnel elements 5 are pulled into the ground E.
  • the tunnel to be constructed as an underpass or accessible media channel under a railway line or road is located between a start portal 1 and the destination portal 2, which each have recesses for the tunnel elements 5 made of rectangular concrete pipes and for clamping elements 3. These extend from the destination portal 2 to beyond the start portal 1 and make it possible to use the destination portal 2 as counter anchoring when the tunnel elements 5 are pulled in by pull-in drives 11.
  • the start portal 1 stands on a reinforced concrete slab.
  • the clamping elements 3 are screwed to the destination portal 2 and to the start portal 1 via steel girders 4. Suitable clamping elements include Bars, e.g. Prestressing steel bars.
  • the end of a respective clamping element 5 at the start portal 1 is in operative connection with a draw-in drive 11.
  • the draw-in drive 11 each comprises a press cylinder or electric motor with a screw drive 11, which are connected to the machine unit (not shown) and can be controlled individually.
  • the electric motors with screw drives or press cylinders act so that the end of a tensioning element 3 can be passed through, with press cylinders e.g. are hydraulic and designed as a cavity cylinder.
  • the end of the tensioning element 3 can be fixedly connected to the housing of the screw drive or press cylinder by means of a detachable connection.
  • the end has a thread which can be secured on the housing of the screw drive or press cylinder by means of a screwable retaining plate.
  • the tunnel construction system T has a milling machine 8 with an electric drive as the driving part, which is fastened to the first tunnel construction element 5 by means of support elements 7 shown schematically here.
  • the milling machine 8 is in particular a full-cut milling machine and has a plurality of drilling milling drums 20 with shafts 21 arranged one above the other.
  • the earth material milled off by the milling machine 8 is conveyed by the rollers 20 to the rear into the interior of the tunneling system, where it falls down onto a conveyor belt system 50 and is conveyed by this to the outside for removal.
  • the tunneling system T also has two sheet metal rollers 6, which are attached to the first tunnel element 5 at the top and bottom and during the moving in of the Tunnel element are unrolled so that a sheet 6 'comes to lie between the soil E and the upper ceiling wall and the bottom of the rectangular concrete pipe of the tunnel element 5 and there significantly reduces the resistance of the pull-in.
  • the system has a lubricant device with lubricant channels 9.
  • Figure 2 shows a rectangular tunnel element 5 and the tensioning elements 3 laid in the ground E.
  • the sheet metal 6 'of sheet metal rolls 6 in Figure 1 is rolled over the top wall and under the bottom of the tunnel element 5 on rollers 6a.
  • a lubricant is pressed into the space between the sheet metal and the concrete pipe of the tunnel element 5 via channels 9.
  • Figures 3a and b show the lubricant device 9 in detail with a lubricant pump, lubricant supply pipes 16, vertical lubricant supply pipes 17 through the concrete ceiling or through the concrete floor and horizontal distribution channels 17 'parallel to the surface of the horizontally lying metal sheets.
  • FIGS 4a and b , 5 and 6a , b show in detail an embodiment of a milling machine 8 of the tunneling system according to the invention from different angles.
  • it has four rollers 20 arranged one above the other, the number of rollers being arbitrary. They are mounted on shafts 21 which run parallel to one another and are arranged vertically one above the other so that they cover the entire flat, vertical surface to be milled.
  • Each of the four rollers 20 has, as in FIG Figures 4a , b , and 6a , b shown, a drive associated with it with an electric motor 22-25, which can rotate the rollers 20 in both directions.
  • the gears for rotating the rollers are each housed in gear box 26. These are in Figure 4a visible for the two middle rollers 20.
  • FIG. 5 shows the rollers 20 of the milling machine 8 in a view from the front and in particular the modular structure of the rollers 20 and the gear box 26.
  • the rollers 20 each consist of three on the side arranged roller parts 20a, b, c, which are equipped with round chisels 27.
  • the arrangement of the drives and empty boxes 26 ' is in connection with Figures 6a , b explained in more detail.
  • FIG. 5 also shows the housing 28 of the milling machine, the housing 28 being shown cut out in the area of the milling, in order to show the milling as a whole.
  • the milling machine 8 is fastened to the housing 28 of the driving part, the fastening being realized by means of the drive boxes 26 and empty boxes 26 'and to the boxes 26, 26' and the support elements 7.
  • the support elements 7 are screwed to the lateral housing wall 28 by screw connections 7a and the housing wall 28 is in turn made in the side wall of the rectangular concrete pipe of the tunnel element 5 Figure 1 anchored, which is drawn into the ground with the tunneling system.
  • the shafts 21 are each also attached to the side wall of the housing 28.
  • the electric motors for the drives 22 and 25 for the top and bottom rollers 20 are each arranged at an angle for reasons of space, as in FIG Figure 4a and 6a , b shown. Due to the inclined arrangement of the lowest and uppermost motors 22 and 25, the electric motors 23 and 24 of the drives for the two middle rollers 20 are arranged laterally offset relative to the motors 22 and 25, as in FIG Figures 6a , b shown.
  • Figure 6a shows the oblique arrangement of the motors 22 for the top and bottom rollers 20 and their gear boxes 26. Empty boxes 26 ′ are arranged between the roller parts 20 a and b of the two middle rollers 20 in the vertical between these two motors 22 and 25. The gear box 26 and empty box 23 'in a vertical line are each connected to one another.
  • Figure 6b shows the motors 23 and 24 for the two middle rollers 20, which are arranged between the roller parts 20c and b.
  • Figure 6b also shows the connection of the gear box 26 and the empty box 26 'with the support elements 7, which, as mentioned, are connected to the housing wall and the concrete wall of the tunnel element.
  • the support elements 7 also serve as a guide for the laterally horizontal oscillating movement of all drilling milling drums 20 as a whole.
  • a drive with motor 30 and thread 31 is connected to the upper support element 7.
  • FIGS. 4a , b , and 6a , b also show the chassis 40 of the drive part with milling machine. This comprises support elements 41 and 42, the support elements 42 being connected to the housing wall 28.
  • the round chisels 27 of the rollers 20 are directed upwards, ie they are oriented at an angle from the radial line of the rollers so that they are directed upwards on the outer side facing the ground.
  • These rollers are oriented to rotate upwards, ie upwards on the outer side of the roller. This pushes the milled material upwards, compacting the soil above the tunneling system. This leads to the advantages as described above.
  • the material is pushed upwards and then backwards into the interior of the machine, where it falls down and from there is transported by the conveyor belt system 50 to the outside to the start portal, as in FIG Figure 1 shown.
  • the milled material from each roller is moved downwards and onto theirs
  • the bottom is conveyed to the rear, where it falls on the inner side of the roller down onto the conveyor belts and is conveyed from there to the start portal.
  • the tunnel construction system has a conveyor belt system 50 for the removal of the milled off material, which is arranged in the lower region of the driving part, as in FIG Figures 4a , b and 6a , b shown.
  • the plant 50 as in Figure 7 shown in detail, has three longitudinally and parallel arranged horizontal conveyor belts 51, 52, which convey material to the rear. Material from the two outer belts 51 is transported laterally towards the center onto the centrally arranged conveyor belt 52 by means of two further conveyor belts 53, the conveyor belts 53 being perpendicular to the conveyor belts 51 and 52.
  • the conveyor belt system 50 is operated by an electric motor 54.
  • the milling machine 8 has deflector plates 55 which are arranged at the level of the lateral ends of the rollers 20 and serve to direct falling material onto the lateral conveyor belts 51 and to prevent material from falling outside the belts.
  • T-profiles 56 are arranged between the outer conveyor belts 51 and the central conveyor belt 52, as in FIG Figures 8a and b shown, which prevent the milling material from falling between the individual longitudinal conveyor belts 51, 52, in particular when the material is being transported laterally from the outer conveyor belts 52 onto the central conveyor belt 51, and preventing the system from clogging.
  • One side 56 'of the T-profile is arranged below the movable belt 51' of the outer conveyor belt 51 while the other side 56 "of the T-profile is arranged above the movable belt 52 'of the central conveyor belt 52.
  • the T-profile 56 is firmly mounted so that it does not move with the movable belts 51 'and 52'.
  • the sheet metal rollers 6 are shown, of which a sheet metal 6' each over a roller 6a between the concrete ceiling or the concrete floor of the square tunnel element and is drawn into the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Tunnelbausystem mit einer Fräsmaschine zur grabenlosen Erstellung eines Tunnels durch ein Erdreich. Es betrifft insbesondere ein System zum Bau eines Tunnels durch Einziehen von mehreren Tunnelelementen hintereinander.
  • Stand der Technik
  • Ein Tunnelbausystem zur grabenlosen Erstellung eines Tunnels ist in CH708408 offenbart. Dort sind ein Verfahren und eine Vorrichtung zum Einziehen von Tunnelelementen mittels Gewinde-Spannstäben beschrieben, die ausserhalb der Tunnelelemente in Bohrungen von einem Startportal durch das Erdreich zu einem Zielportal verlaufen. Mittels Presszylindern am Startportal werden ein Vortriebsteil und Tunnelelemente ins Erdreich eingezogen.
  • Fräsmaschinen für den Tunnelbau sind bekannt. In der DE 1534632 ist beispielsweise eine Maschine zum Abbau von Erdreich beim Vortrieb von Tunneln mit mehreren Schürfwalzen offenbart. Diese sind versetzt übereinander angeordnet, indem die Drehachsen der einen Schürfwalzen in einer ersten vorderen Ebene und die Drehachsen von weiteren Schürfwalzen in einer zweiten hinteren Ebene liegen. Die Schürfwalzen sind dabei in beiden Richtungen drehbar und waagerecht vor- und rückwärts verschiebbar.
  • DE 1 205 576 offenbart ein Tunnelbausystem mit Walzen zum Abbau von Erdreich die vertikal versetzt zueinander angeordnet sind. Zudem sind die Walzen waagerecht vor- und rückwärts verschiebbar.
  • Es ist Aufgabe der vorliegenden Erfindung ein Tunnelbausystem der eingangs erläuterten Art zu schaffen, das eine dafür geeignete Fräsmaschine umfasst, um einen möglichst kosten- und aufwandseffizienten Tunnelbau zu realisieren.
  • Beschreibung der Erfindung
  • Gemäss Anspruch 1 ist ein System zum grabenlosen Bau eines Tunnels mittels Einziehen von mehreren Tunnelelementen, insbesondere Rechteck-Stahlbetonrohre offenbart. Das Tunnelbausystem weist ein Startportal sowie ein Zielportal auf, die mit Spannstäben, insbesondere Gewinde-Spannstäben verbunden sind, die in Bohrungen durch das Erdreich angeordnet sind. Dabei verlaufen die Bohrungen durch das Erdreich ausserhalb des Querschnittsbereichs der einzuziehenden Tunnelelemente. Mehrere Presszylinder oder Elektromotoren mit Gewindegetriebe sind auf der Seite des Startportals angeordnet und stehen über die Spannelemente in Wirkverbindung mit dem Zielportal. Mittels der Presszylinder oder Elektromotoren mit Gewindegetriebe werden die Tunnelelemente ins Erdreich eingezogen. Das Zielportal ist bei der Errichtung des Tunnels als Verankerung einsetzbar. Dadurch werden die Tunnelelemente nicht eingepresst sondern eingezogen, wodurch u.a. Baulärm und Erschütterungen in reduziertem Masse auftreten.
    Gemäss der vorliegenden Erfindung ist eine Fräsmaschine, vorzugsweise Vollschnittfräsmaschine, in Wirkverbindung mit dem in Vortriebsrichtung des Systems ersten Tunnelelement an diesem angeordnet.
  • Die Fräsmaschine weist als Ganzes mehrere einzeln ansteuerbare Bohrfräswalzen auf, die sämtliche in einer Ebene am vorderen Ende des ersten Tunnelelements angeordnet sind. Dabei sind mehrere Bohrfräswalzen übereinander angeordnet, indem die Wellen der Walzen vertikal übereinander und parallel zueinander verlaufen. Jede der Bohrfräswalzen weist einen ihr zugeordneten Antrieb auf. Zudem ist die Fräsmaschine modular aufgebaut, indem jede der übereinander angeordneten Bohrfräswalzen mindestens drei nebeneinander und koaxial angeordnete Walzenteile aufweisen, die einzeln aus- und einbaubar sind. Dabei bildet jedes der Walzenteile eine Walze für sich.
    Die Fräsmaschine ist modular aufgebaut, indem jede der übereinander angeordneten Bohrfräswalzen mindestens drei koaxial angeordnete Walzenteile aufweisen, die einzeln aus- und einbaubar sind, und zwischen den einzelnen Walzenteilen jeder der übereinander angeordneten Bohrfräswalzen jeweils ein Antriebskasten oder ein leerer Kasten angeordnet ist
    und die Bohrfräswalzen jeweils in Richtung ihrer Wellen seitlich horizontal oszillierend bewegbar sind, wobei
    die Bohrfräswalzen zur Abtragung von Erde mindestens im Bereich der Antriebskasten und leeren Kasten seitlich horizontal oszillierend bewegbar sind.
  • Die Tunnelelemente bestehen zum Beispiel aus einem Stahlbetonrohr, zum Beispiel in viereckiger Form.
  • Indem jede Bohrfräswalze aus mehreren einzelnen nebeneinander angeordneten Walzenteilen besteht, ist die Fräsmaschine als solche modular aufgebaut, wobei jedes einzelne Walzenteil ein Modul darstellt. Ein derartiger modularer Aufbau ermöglicht einen Aufbau und insbesondere auch einen Ausbau der einzelnen Module durch zwei Personen mithilfe eines Hebekrans oder ähnlichem. Dies ermöglicht zum Beispiel den Ausbau einer einzelnen Bohrfräswalze im Fall, dass sich ein Hindernis wie ein Findling im Erdreich befindet. Nach Ausbau der Walze, kann das Hindernis manuell entfernt werden und die Walze sodann wieder eingesetzt werden, um in Vollfräsfunktion weiter zu arbeiten.
  • In einer Ausführung des Tunnelbausystems sind die Walzenteile jeweils aus zwei Halbschalen ohne durchgehende Antriebswelle aufgebaut. Dies erleichtert den Aus- und Einbau einer Walze weiter.
  • Die Antriebe der Bohrfräswalzen sind jeweils zwischen zwei der Walzenteile in einem Antriebskasten angeordnet. Im Bereich der Antriebe kann also keine Fräsfunktion ausgeführt werden. Um ein Fräsen über eine möglichst grosse Fläche, insbesondere auch im Bereich der Antriebe und somit eine Vollschnittfräsfunktion zu realisieren, sind in einer Ausführung der Erfindung die einzelnen Bohrfräswalzen seitlich jeweils in Richtung ihrer Wellen horizontal oszillierend bewegbar. Dadurch kann das Erdreich auch im Bereich der Antriebe und somit über die gesamte Breite der Fräsmaschine und des Tunnelbausystems abgetragen werden.
  • In einer Ausführung ist die seitlich oszillierende Bewegbarkeit mittels einem Antrieb, einem Gewinde und einer Führung realisiert, die dafür ausgelegt sind, alle übereinander angeordneten Bohrfräswalzen insgesamt über mindestens den Bereich eines Antriebs der Bohrfräswalzen seitlich horizontal zu bewegen.
  • In einer Ausführung des Tunnelbausystems sind die mehreren übereinander angeordneten Bohrfräswalzen jeweils einzeln bei jeweils individueller Drehzahl antreibbar. Dies ermöglicht eine individuelle Anpassung der Drehzahl jeder einzelnen Walze entsprechend der Beschaffenheit und Dichte des Erdreichs im Bereich jeder Walze.
  • Der modulare Aufbau ermöglicht den allenfalls notwendigen Ausbau einer einzelnen Walze zur Entfernung von Findlingen, wonach die betreffende Walze wieder eingebaut wird und die Vollschnittfunktion fortgesetzt werden kann. Nach Beenden von solchen Unterbrüchen, ermöglicht der individuelle Antrieb der einzelnen Bohrfräswalzen zusammen mit der oszillierenden horizontalen Bewegbarkeit der Walzen eine insbesondere kontinuierliche Vollschnittfräsfunktion, die auch bei unregelmässigem Erdreich kontinuierlich durch eine einzige Betriebsperson ausgeführt werden kann, indem die Antriebe der einzelnen Walzen auf Sicht und Gehör reguliert werden.
    In einer Ausführung des Tunnelbausystems sind die Bohrfräswalzen und ihre Antriebe derart ausgestaltet, dass die Bohrfräswalzen nach unten drehbar sind, indem die Walze an ihrer äussersten, dem Erdreich zugewandten Fläche nach unten drehbar ist und das abgefräste Erdreich dabei nach unten und dann nach hinten zur Rückseite der Walze transportiert wird. Diese Drehrichtung ist insbesondere dann vorteilhaft, wenn das Erdreich hart und dicht ist.
  • In einer Ausführung des Tunnelbausystems sind die Bohrfräswalzen und ihre Antriebe derart ausgestaltet, dass die Bohrfräswalzen nach oben drehbar sind, indem die Walze an ihrer äussersten, dem Erdreich zugewandten Fläche nach oben drehbar ist und das abgefräste Erdreich dabei nach oben und dann nach hinten zur Rückseite der Walze transportiert wird. Diese Drehrichtung ist insbesondere dann vorteilhaft, wenn das Erdreich locker und weich ist. Durch diese Drehrichtung entstehen vielfache Vorteile. Einerseits fällt das abgefräste Erdreich grösstenteils ins Innere des Tunnelbausystems, d.h. das Material wird auf der äusseren Seite jeder Walze nach oben und dann nach hinten bewegt und fällt sodann auf der inneren Seite der jeweiligen Walze zu Boden hinunter. Somit fällt kein oder sehr wenig Material auf die äussere Seite der Fräsen. Der Abtransport des abgefrästen Materials gestaltet sich dadurch sehr viel einfacher. Anderseits wird ein Nachrutschen von Abbaumaterial verhindert. Zudem entsteht durch die AufwärtsBewegung des abgefrästen Erdmaterials ein Druck nach oben, sodass das Material oberhalb der Bohrfräswalzen, welches das Material der Überdeckung bildet, verdichtet wird. Dadurch entstehen durch den Tunnelbau mit der erfindungsgemässen Anlage weniger Senkungen des Materials der Überdeckung. Sollten trotzdem Senkungen entstehen, würden solche Senkungen schnell und noch während des Tunnelbaus entdeckt werden, weil die Dicke der Überdeckung des errichteten Tunnels relativ klein ist. Diese Senkungen können dann noch während dem Bau des Tunnels behoben werden. Bei bekannten Tunnelbausystemen anderseits ist eine relativ grosse Überdeckung des Tunnels notwendig, und Senkungen können erst viel später erkannt werden. Diese müssen dann durch Eröffnung einer erneuten Baustelle behoben werden, was einen Zusatzaufwand und eine mögliche Unterbrechung des Verkehrs über den Tunnel verursacht.
  • In einer Ausführung der Erfindung weisen die einzelnen Bohrfräswalzen jeweils Rundmeissel auf, die in einem Winkel zur Radialen der Walze ausgerichtet sind, sodass sie an ihrer äussersten, dem Erdreich zugewandten Fläche nach oben gerichtet sind.
  • In einer Ausführung des erfindungsgemässen Tunnelbausystems sind die Antriebe der Bohrfräswalzen und Antriebe für die horizontale Bewegung der Walzen durch Elektromotoren realisiert. Diese ermöglichen einen Antrieb der Walzen, der in der Empfindlichkeit des Antriebs dem Antrieb durch einen Hydraulikmotor ebenbürtig ist. Der Einsatz von Elektromotoren erbringt zudem den heute gewichtigen Vorteil, dass eine Verschmutzung des Erdreichs durch auslaufendes Öl gänzlich verhindert wird und Risiken einer Verunreinigung ausgeschlossen sind und kein Aufwand einer Behebung von Verunreinigungen entsteht.
  • In einer Ausführung des erfindungsgemässen Tunnelbausystems ist im Innern des Tunnelbausystems eine Förderbandanlage zum Abtransportieren des abgefrästen Erdreichs angeordnet. In einer Ausführung besteht diese Förderbandanlage aus mehreren parallel laufenden Bändern. In einer besonderen Ausführung sind die Zwischenräume zwischen den einzelnen Bändern mittels eines T-Profils abgedeckt, um ein Verstopfen der Anlage durch herunterfallendes Material zu verhindern.
  • In einer Ausführung des Tunnelbausystems weist das Tunnelbausystem Rollen von Flachmaterial auf, z.B. in Form von Blech, das beim Vortrieb zwischen Erdreich und Tunnelelementen miteingezogen werden kann. Die Rollen von Flachmaterial sind an der Oberseite oder Unterseite des Bausystems oder beides angeordnet. Dadurch kann der Einzugswiderstand minimiert werden, da u.a. verhindert wird, dass Erdmaterial beim Einziehen der Tunnelelemente mitgestossen wird. Das Tunnelbausystem weist zudem eine Vorrichtung zum Einpressen und Verteilen von Schmiermittel zwischen dem Flachmaterial und dem Tunnelelement.
  • In einer weiteren Ausführung der Erfindung weist das Tunnelbausystem eine Führungsrolle auf, die über der oberen Deckenwand und unter der unteren Bodenwand des rechteckigen Betonrohrs der Tunnelelemente am Startportal kraftschlüssig montiert ist. Diese dient dazu, Abweichungen in Flucht, Gefällte oder Steigung möglichst zu vermeiden. Zudem weist das Tunnelbausystem eine Stahlkonstruktion mit quer zur Einzugsrichtung der Tunnelelemente verlaufenden Stahlkonsolen auf, die auf eine bauseits erstellte Betonbodenplatte auf der das Startportal steht, kraftschlüssig verankert ist. Zudem sind auf den Stahlkonsolen zwei in der Höhe und seitlich verstellbare U-Profile montiert. Diese ermöglichen Korrekturen von seitlichen Abweichungen sowie Abweichungen in der Höhe der Tunnelelemente.
  • Die Erfindung ermöglicht einen vorteilhaften Bau eines Tunnels
    • ohne die Erstellung eines Grabens und somit ohne Umleitung von Verkehr, was die Kosten massgebend vermindert,
    • bei verminderter Erschütterung und Lärm,
    • bei verminderter Minimalüberdeckung des Tunnels,
    • in relativ kurzer Zeit aufgrund des gleichzeitigen Fräsens und Einziehens der Tunnelelemente sowie Abtransportierens des abgetragenen Erdreichs.
  • Weitere Vorteile der Erfindung folgen aus den abhängigen Patentansprüchen und aus der nachfolgenden Beschreibung, in welcher die Erfindung anhand eines in den schematischen Zeichnungen dargestellten Ausführungsbeispiels näher erläutert wird. Es zeigt:
  • Kurze Beschreibung der Figuren
  • Fig. 1
    eine gesamte Seitenansicht des Tunnelbausystems gemäss der Erfindung.
    Fig. 2
    eine Querschnittsansicht eines Tunnelelements gemäss II-II in Figur 1 mit den Spannelementen ausserhalb dieses Querschnitts.
    Fig. 3
    a) und b) eine schematische Darstellung einer Schmiermitteleinrichtung zur Verminderung der Reibung zwischen Tunnelelement und horizontalem Flachmaterial bzw. Blech.
    Fig. 4a bis 6b
    die Fräsmaschine des erfindungsgemässen Tunnelbausystems als Ganzes, wovon
    Fig. 4a
    eine Seitenansicht der Fräsmaschine
    Fig. 4b
    Perspektivansicht der Fräsmaschine,
    Fig. 5
    eine Perspektivansicht der Fräsmaschine von vorne aus Sicht vom Zielportal mit Befestigung an der Seitenwand des Vortriebsteils,
    Fig. 6a, b
    je eine Perspektivansicht der Fräsmaschine von hinten aus Sicht vom Startportal,
    Fig. 7
    eine Förderbandanlage zur Beförderung des abgefrästen Materials aus dem Tunnelbausystem heraus.
    Fig. 8a
    eine Ansicht der Förderbandanlage im Querschnitt gemäss VIIIa,b-VIIIa,b aus Fig. 7, insbesondere der Übergangsbereiche zwischen den Förderbändern,
    Fig. 8b
    eine Detailansicht gemäss Vlllb-Vlllb in Figur 8a eines T-Profils zwischen den Förderbändern.
  • In den Figuren sind für dieselben Elemente jeweils dieselben Bezugszeichen verwendet worden und erstmalige Erklärungen betreffen alle Figuren, wenn nicht ausdrücklich anders erwähnt.
  • Ausführungsbeispiele der Erfindung
  • Fig. 1 zeigt eine mögliche Ausführungsform des Tunnelbausystems T mit Einzugsvorrichtung für Tunnelbauelemente, wie sie sich beim Einzug von vorgefertigten Tunnelelementen 5 im Erdreich E darstellt. Der zu errichtende Tunnel als Unterführung oder begehbarer Medienkanal unter einer Bahnlinie oder Autostrasse befindet sich zwischen einem Startportal 1 und dem Zielportal 2, welche jeweils Aussparungen für die Tunnelelemente 5 aus rechteckigen Betonrohren sowie für Spannelemente 3 aufweisen. Diese erstrecken sich vom Zielportal 2 bis über das Startportal 1 hinaus und ermöglichen es, das Zielportal 2 als Gegenverankerung beim Einzug der Tunnelelemente 5 durch Einzugsantriebe 11 einsetzen zu können. Das Startportal 1 steht auf einer armierten Betonplatte.
  • Die Spannelemente 3 sind via Stahlträger 4 am Zielportal 2 sowie am Startportal 1 verschraubt. Als Spannelemente eignen sich u.a. Stäbe, z.B. Spannstahlstäbe. Das Ende eines jeweiligen Spannelements 5 beim Startportal 1 steht mit einem Einzugsantrieb 11 in Wirkverbindung. Der Einzugsantrieb 11 umfasst jeweils einen Presszylinder oder Elektromotor mit Gewindegetriebe 11, welche mit der (nicht dargestellten) Maschineneinheit verbunden und einzeln ansteuerbar sind. Die Elektromotoren mit Gewindegetriebe oder Presszylinder wirken, so dass das Ende eines Spannelements 3 hindurchführbar ist, wobei Presszylinder z.B. hydraulisch und als Hohlraumzylinder ausgebildet sind. Das Ende des Spannelements 3 ist mittels lösbarer Verbindung fest mit dem Gehäuse des Gewindegetriebes oder Presszylinders verbindbar. Zu diesem Zweck weist z.B. das Ende ein Gewinde auf, welches am Gehäuse des Gewindegetriebes oder Presszylinders mittels schraubbarer Rückhalteplatte gesichert werden kann.
  • Das Tunnelbausystem T weist gemäss der vorliegenden Erfindung eine Fräsmaschine 8 mit Elektroantrieb als Vortriebsteil auf, die mittels hier schematisch dargestellten Tragelementen 7 am ersten Tunnelbauelement 5 befestigt ist. Die Fräsmaschine 8 ist insbesondere eine Vollschnittfräsmaschine und weist mehrere übereinander angeordnete Bohrfräswalzen 20 mit Wellen 21 auf.
    Das von der Fräsmaschine 8 abgefräste Erdmaterial wird durch die Walzen 20 nach hinten ins Innere des Tunnelbausystems befördert, wo es nach unten auf eine Förderbandanlage 50 fällt und durch diese für Abtransport nach aussen befördert wird.
  • Das Tunnelbausystem T weist zudem zwei Blechrollen 6 auf, die am ersten Tunnelelement 5 oben und unten befestigt sind und während des Einzugs des Tunnelelements abgerollt werden, sodass ein Blech 6' zwischen dem Erdreich E und der oberen Deckenwand und dem Boden des rechteckigen Betonrohrs des Tunnelelements 5 zu liegen kommt und dort den Widerstand des Einzugs massgeblich vermindert. Um den Widerstand weiter zu vermindern, weist das System eine Schmiermitteleinrichtung mit Schmiermittelkanälen 9 auf.
  • Figur 2 zeigt ein rechteckiges Tunnelelement 5 und die im Erdreich E verlegten Spannelemente 3. Das Blech 6' von Blechrollen 6 in Figur 1 wird über die Deckenwand und unter dem Boden des Tunnelelements 5 über Rollen 6a abgerollt. Ein Schmiermittel wird über Kanäle 9 in den Raum zwischen Blech und Betonrohr des Tunnelelements 5 eingepresst.
    Figuren 3a und b zeigen die Schmiermitteleinrichtung 9 im Detail mit Schmiermittelpumpe, Schmiermittelzufuhrrohren 16, vertikalen Schmiermittelzufuhrrohren 17 durch die Betondecke oder durch den Betonboden und horizontale Verteilrinnen 17' parallel zur Fläche der horizontal liegenden Bleche.
  • Figuren 4a und b, 5 und 6a, b zeigen im Detail ein Ausführungsbeispiel einer Fräsmaschine 8 des erfindungsgemässen Tunnelbausystems aus verschiedenen Winkeln. Sie weist in dem gezeigten Ausführungsbeispiel vier übereinander angeordnete Walzen 20 auf, wobei die Anzahl Walzen beliebig sein kann. Sie sind auf Wellen 21 gelagert, die parallel zueinander verlaufen und vertikal übereinander angeordnet sind, sodass sie die gesamte abzufräsende ebene, vertikale Fläche abdecken. Jede der vier Walzen 20 weist, wie in Figuren 4a, b, und 6a,b gezeigt, einen ihr zugeordneten Antrieb mit Elektromotor 22-25 auf, der jeweils die Walzen 20 in beiden Richtungen drehen kann. Die Getriebe für die Drehung der Walzen sind jeweils in Getriebekasten 26 untergebracht. Diese sind in Figur 4a für die beiden mittleren Walzen 20 sichtbar.
  • Figur 5 zeigt die Walzen 20 der Fräsmaschine 8 in einer Ansicht von vorne und insbesondere den modularen Aufbau der Walzen 20 sowie die Getriebekasten 26. In dem dortigen Ausführungsbeispiel bestehen die Walzen 20 je aus drei seitlich angeordneten Walzenteile 20a, b, c, die mit Rundmeisseln 27 ausgerüstet sind. Zwischen den Walzenteilen 20a,b,c sind die Getriebekasten 26 sowie weitere Kasten 26' angeordnet, wobei die Kasten 26 je ein Getriebe für die Drehung der betreffenden Walzenteil 20a,b,c enthalten und die Kasten 26' leer sind. Die Anordnung der Antriebe und leeren Kasten 26' wird im Zusammenhang mit Figuren 6a, b näher erläutert.
    Da im vertikalen Flächenbereich der Getriebekasten 26 und den leeren Kasten 26' keine Rundmeissel vorhanden sind, kann dort nicht gefräst werden. Die erfindungsgemässe horizontale Bewegbarkeit der Bohrfräswalzen 20 bewirkt jedoch, dass die Walzenteile 20a,b,c aller vier Walzen gesamthaft hin und her bewegt werden können und zwar über eine Distanz von mindestens der Breite eines Getriebekastens 26 oder leeren Kastens 26', sodass der Bereich der Kasten 26 und 26' ebenfalls durch die Walzenteile 20a,b,c mit den Rundmeisseln 27 bearbeitet wird und ein Vollschnitt erreicht wird.
    Figur 5 zeigt zudem das Gehäuse 28 der Fräsmaschine, wobei das Gehäuse 28 im Bereich der Fräsen ausgespart dargestellt ist, um die Fräsen gesamthaft zu zeigen. Die Fräsmaschine 8 ist an dem Gehäuse 28 des Vortriebsteils befestigt, wobei die Befestigung mittels der Antriebskasten 26 und leeren Kasten 26' und an den Kasten 26, 26' und der Tragelemente 7 realisiert ist. Die Tragelemente 7 sind mit der seitlichen Gehäusewand 28 durch Schraubverbindungen 7a verschraubt und die Gehäusewand 28 ist wiederum in der Seitenwand des rechteckigen Betonrohrs des Tunnelelements 5 aus Figur 1 verankert, das mit dem Tunnelbausystem ins Erdreich eingezogen wird. Die Wellen 21 sind jeweils ebenfalls an der Seitenwand des Gehäuses 28 befestigt.
  • Die Elektromotoren für die Antriebe 22 und 25 für die oberste und unterste Walze 20 sind aus Platzgründen jeweils schräg angeordnet, wie in Figur 4a und 6a, b gezeigt. Aufgrund der schrägen Anordnung des untersten und obersten Motors 22 und 25 sind die Elektromotoren 23 und 24 der Antriebe für die beiden mittleren Walzen 20 relativ zu den Motoren 22 und 25 seitlich versetzt angeordnet, wie in Figuren 6a, b gezeigt.
  • Figur 6a zeigt die schräge Anordnung der Motoren 22 für die oberste und unterste Walze 20 und deren Getriebekasten 26. In der Senkrechten zwischen diesen beiden Motoren 22 und 25 sind leere Kasten 26' zwischen den Walzenteilen 20a und b der beiden mittleren Walzen 20 angeordnet. Die Getriebekasten 26 und leeren Kasten 23' in einer Senkrechten sind jeweils miteinander verbunden.
    Figur 6b zeigt die die Motoren 23 und 24 für die beiden mittleren Walzen 20, die zwischen den Walzenteilen 20c und b angeordnet sind. Figur 6b zeigt auch die Verbindung der Getriebekasten 26 und der leeren Kasten 26' mit den Tragelementen 7, welche wie erwähnt mit der Gehäusewand und der Betonwand des Tunnelelements verbunden sind.
    Die Tragelemente 7 dienen zugleich auch als Führung für die seitlich horizontale oszillierende Bewegung aller Bohrfräswalzen 20 als Ganzes. Für die seitliche Bewegung ist ein Antrieb mit Motor 30 und Gewinde 31 mit dem oberen Tragelement 7 verbunden angeordnet.
  • Die Figuren 4a, b, und 6a, b zeigen zudem das Chassis 40 des Vortriebteils mit Fräsmaschine. Dieses umfasst Tragelemente 41 und 42, wobei die Tragelemente 42 mit der Gehäusewand 28 verbunden sind.
  • In dem gezeigten Ausführungsbeispiel sind die Rundmeissel 27 der Walzen 20 nach oben gerichtet, d.h. sie sind in einem Winkel von der Radialen der Walzen ausgerichtet, sodass sie an der äusseren Seite, die dem Erdreich zugewandt ist, nach oben gerichtet ist. Diese Walzen sind für eine Drehung nach oben, d.h. nach oben an der äusseren Seite der Walze, ausgerichtet. Das abgefräste Material wird dadurch nach oben gedrückt, wodurch das Erdreich über dem Tunnelbausystem verdichtet wird. Dies führt zu den Vorteilen wie eingangs beschrieben. Das Material wird nach oben gedrückt und danach nach hinten ins Innere der Maschine, wo es hinunterfällt und von dort durch die Förderbandanlage 50 nach aussen zum Startportal transportiert wird, wie in Figur 1 dargestellt.
    Werden die Walzen im Fall von dichterem und härteren Erdreich nach unten gedreht, das heisst an der äusseren dem Zielportal zugewandten Seite nach unten bewegt, so wird das abgefräste Material von jeder Walze nach unten und auf deren Unterseite nach hinten befördert, wo es an der inneren Seite der Walze nach unten auf die Förderbänder fällt und von dort zum Startportal hin befördert wird.
  • Das Tunnelbausystem gemäss der Erfindung weist für den Abtransport des abgefrästen Materials eine Förderbandanlage 50 zum Abtransport des abgefrästen Erdreichs auf, die im unteren Bereich des Vortriebteils angeordnet ist, wie in Figuren 4a, b und 6a,b gezeigt. Die Anlage 50, wie in Figur 7 im Detail gezeigt, weist drei längs und parallel angeordnete horizontale Förderbänder 51, 52, die Material nach hinten befördern. Material von den beiden äusseren Bändern 51 wird mittels zwei weiteren Förderbändern 53 seitlich zur Mitte hin auf das mittig angeordnete Förderband 52 transportiert, wobei die Förderbänder 53 senkrecht zu den Förderbändern 51 und 52 stehen. Die Förderbandanlage 50 wird durch einen Elektromotor 54 betrieben. Zudem weist die Fräsmaschine 8 Ablenkbleche 55 auf, die auf Höhe der seitlichen Enden der Walzen 20 angeordnet sind, und dazu dienen, herabfallendes Material auf die seitlichen Förderbänder 51 zu lenken und ein Herabfallen von Material ausserhalb der Bänder zu verhindern.
    Zwischen den äusseren Förderbändern 51 und dem mittigen Förderband 52 sind T-Profile 56 angeordnet, wie in Figuren 8a und b gezeigt, die ein Herabfallen des Fräsmaterials zwischen die einzelnen Längsförderbändern 51, 52, insbesondere beim seitlichen Transportieren des Materials von den äusseren Förderbändern 52 auf das mittlere Förderband 51, und ein Verstopfen der Anlage verhindern. Dabei ist die eine Seite 56' des T-Profils unter dem beweglichen Band 51' des äusseren Förderbands 51 angeordnet während die andere Seite 56" des T-Profils über dem beweglichen Band 52' des mittigen Förderbands 52 angeordnet. Das T-Profil 56 ist fest montiert, sodass es sich mit den beweglichen Bändern 51' und 52' nicht mitbewegt.
  • Unter der Förderbandanlage 50 sowie über den Tragelementen 42, 41 des Chassis' der Fräsmaschine sind jeweils die Blechrollen 6 gezeigt, von der während des Einziehens der Tunnelelemente ein Blech 6' jeweils über eine Rolle 6a zwischen der Betondecke bzw. dem Betonboden des viereckigen Tunnelelements und dem Erdreich hineingezogen wird.
  • Bezugszeichenliste
  • T
    Tunnelbausystem
    E
    Erdreich
    1
    Startportal
    2
    Zielportal
    3
    Spannelement
    4
    Stahlträger
    5
    Tunnelelement, Rechteck-Betonelement
    6
    Blechrolle
    6a
    Rolle
    6'
    Blech
    7
    Tragelement
    8
    Fräsmaschine
    9
    Schmiermitteleinrichtung
    11
    Einzugseinrichtung, Presszylinder oder Elektromotor mit Gewindegetriebe
    16
    Zufuhrleitung
    17
    vertikale Zufuhrleitung
    17'
    Verteilrinne
    20
    Fräswalze
    20a,b,c
    Teilwalze
    21
    Welle
    22-25
    Antrieb
    26
    Antriebskasten
    26'
    Leerkasten
    27
    Rundmeissel
    28
    Gehäusewand
    30
    Antrieb für Horizontalbewegung
    31
    Gewinde
    40
    Chassis
    41
    Träger
    42
    Träger
    50
    Förderbandanlage
    51,52,51',52',
    Förderband
    53
    Förderband für seitlichen Materialtransport zum mittleren Förderband 52
    54
    Antrieb Förderbandanlage
    55
    Ablenkblech
    56,56',56"
    T-Profil

Claims (10)

  1. System (T) zum grabenlosen Bau eines Tunnels mittels Einziehen von mehreren hintereinander liegenden Tunnelelementen (5) aufweisend
    ein Startportal (1) sowie ein Zielportal (2), die mit Spannelementen (3) verbunden sind, welche in Bohrungen angeordnet sind, wobei die Bohrungen durch Erdreich (E) ausserhalb des Querschnittsbereichs der einzuziehenden Tunnelelemente (5) verlaufen,
    zudem aufweisend mehrere Presszylinder oder Elektromotoren mit Gewindegetriebe (11), die auf der Seite des Startportals (1) angeordnet sind und über die Spannelemente (3) mit dem Zielportal (2) in Wirkverbindung stehen, wobei mittels der Presszylinder oder Elektromotoren mit Gewindegetriebe (11) die Tunnelelemente (5) ins Erdreich (E) eingezogen werden,
    dadurch gekennzeichnet, dass
    eine Fräsmaschine (8) in Wirkverbindung mit dem ersten der Tunnelelemente (5) an diesem angeordnet ist, wobei
    die Fräsmaschine (8) mehrere einzeln ansteuerbare Bohrfräswalzen (20) sowie mehrere Antriebe (22-25) aufweist, die jeweils einer der Bohrfräswalzen (20) zugeordnet sind,
    wobei die mehreren Bohrfräswalzen (20) übereinander angeordnet sind, indem die Wellen (21) der Walzen (20) vertikal übereinander und parallel zueinander verlaufen,
    und wobei die Fräsmaschine (8) modular aufgebaut ist, indem jede der übereinander angeordneten Bohrfräswalzen (20) mindestens drei koaxial angeordnete Walzenteile (20a,b,c) aufweisen, die einzeln aus- und einbaubar sind, und zwischen den einzelnen Walzenteilen (20a,b,c) jeder der übereinander angeordneten Bohrfräswalze (20) jeweils ein Antriebskasten (26) oder ein leerer Kasten (26') angeordnet ist
    und die Bohrfräswalzen (20) jeweils in Richtung ihrer Wellen seitlich horizontal oszillierend bewegbar sind, wobei
    die Bohrfräswalzen (20) zur Abtragung von Erde mindestens im Bereich der Antriebskasten und leeren Kasten seitlich horizontal oszillierend bewegbar sind.
  2. System nach Anspruch 1,
    dadurch gekennzeichnet, dass
    jede der Walzenteile (20a,b,c) jeweils aus zwei Halbschalen bestehen.
  3. System nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die seitlich oszillierende Bewegbarkeit mittels einem Antrieb (30), einem Gewinde (31) und einer Führung (7) realisiert ist, die dafür ausgelegt sind, alle Bohrfräswalzen (20) insgesamt über mindestens den Bereich eines Antriebs (22-25) der Bohrfräswalzen (20) oder des leeren Kastens seitlich horizontal zu bewegen.
  4. System nach einem der Ansprüche 1-3,
    dadurch gekennzeichnet, dass
    die übereinander angeordneten Bohrfräswalzen (20) jeweils bei individueller Drehzahl drehbar sind.
  5. System nach einem der Ansprüche 1-4,
    dadurch gekennzeichnet, dass
    die Bohrfräswalzen (20) in beiden Richtungen drehbar sind.
  6. System nach Anspruch 5,
    dadurch gekennzeichnet, dass
    die Bohrfräswalzen (20) in einer Richtung nach oben drehbar sind und sie Rundmeissel (27) aufweisen, die in einem Winkel zur Radialen der Bohrfräswalzen (20) ausgerichtet sind.
  7. System nach einem der Ansprüche 1-6,
    dadurch gekennzeichnet, dass
    die Antriebe (22-25) einen Elektromotor aufweisen.
  8. System nach einem der Ansprüche 1-7,
    dadurch gekennzeichnet, dass
    das Tunnelbausystem (T) eine Förderbandanlage (50) mit mehreren parallel laufenden Förderbändern (51, 52) und einem Antrieb (54) aufweist.
  9. System nach Anspruch 8,
    dadurch gekennzeichnet, dass
    die Förderbandanlage (50) mindestens ein Förderband (53), das senkrecht zu den parallel verlaufenden Förderbändern (51, 52) steht, zur seitlichen Beförderung von Material auf ein mittig angeordnetes Förderband (52) aufweist.
  10. System nach Anspruch 9,
    dadurch gekennzeichnet, dass
    zwischen den einzelnen Förderbändern (51, 52) jeweils ein T-Profil (56) angeordnet ist.
EP16163987.7A 2015-08-20 2016-04-06 Tunnelbausystem Active EP3133238B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH11982015 2015-08-20

Publications (2)

Publication Number Publication Date
EP3133238A1 EP3133238A1 (de) 2017-02-22
EP3133238B1 true EP3133238B1 (de) 2020-10-07

Family

ID=55970759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16163987.7A Active EP3133238B1 (de) 2015-08-20 2016-04-06 Tunnelbausystem

Country Status (1)

Country Link
EP (1) EP3133238B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1205576B (de) * 1963-03-30 1965-11-25 Wayss & Freytag Ag Verfahren und Vorrichtung zum mechanischen Abbau der Ortsbrust bei in Schildbauweiseoder im Rohrdurchpressverfahren aufzufahrenden Tunneln oder Stollen
DE1534632B1 (de) 1966-08-09 1970-01-29 Holzmann Philipp Ag Einrichtung zum Abbauen von Boden beim Vortrieb von Tunneln,Stollen,Graeben od.dgl.
CH708408B1 (de) 2014-05-28 2015-02-13 Anton Zehnder Verfahren und Vorrichtung zum Bau eines Tunnels.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3133238A1 (de) 2017-02-22

Similar Documents

Publication Publication Date Title
DE278881C (de)
DE202009003824U1 (de) Abbaumaschine, insbesondere Surfac Miner
DE102014011878B4 (de) Bodenfräsmaschine, Verfahren zum Ausbau und Verfahren zum Einbau einer Fräseinrichtung
DE102009013709B4 (de) Abbaumaschine, insbesondere Surface Miner, sowie Verfahren zum Aus- und Einbauen einer Transporteinrichtung bei einer Abbaumaschine
EP3133238B1 (de) Tunnelbausystem
EP2734707A2 (de) Fertigteilfahrbahn für schrägförderanlage für bergbautrucks
EP2758633B1 (de) Schildvortriebsvorrichtung
EP4053342B1 (de) Schlitzwandfräsvorrichtung und verfahren zum fräsen eines frässchlitzes im boden
EP0257652B1 (de) Verfahren und Vorrichtung zum Vortrieb einer in das Liegende eines Flözes gelegten Abbau- bzw. Flözstrecke
CH683861A5 (de) Tunnelvortriebsmaschine.
DE3729561C2 (de)
DE3726693C2 (de)
EP0630436B1 (de) Messerschild zum vortrieb von offenen gräben im boden
DE730768C (de) Verfahren und Einrichtung zum Herstellen von Beton- bzw. Eisenbeton-Grundmauern
DE102013110730B4 (de) Verfahren und Vorrichtung zum Entfernen von Bodenmaterial vor der Druckwand einer Schildvortriebsmaschine (SVM) sowie ein Schneidrad für die Vorrichtung
DE2161291A1 (de) Bewegliche Deckenstütze, insbesondere für den Bergbau
DE3718281A1 (de) Verfahren und vorrichtung zur herstellung einer fuge zwischen zwei gebaeuden
DE1002715B (de) Am Kohlenstoss entlang bewegbare Gewinnungsmaschine mit einer stirnseitig angeordneten Bohrkronengruppe
DE19619532C2 (de) Verfahren zur Herstellung einer begehbarer Tunnelverbindung zwischen zwei benachbarten, verbohrten Schachtbohrungen und Vorrichtung zur Durchführung des Verfahrens
EP2949861B1 (de) Verfahren und Vorrichtung zum Bau eines Tunnels
WO2017133987A1 (de) Verfahren und system zum bodenseitigen abtrennen eines aus einem gestein herauszuarbeitenden körpers
DE2548252A1 (de) Verfahren und vorrichtung zum abbau von kohlehaltigem material
DE2531007C3 (de) Verfahren und Vorrichtung zur Erstellung von Arbeitsschächten innerhalb im Schildvortrieb aufgefahrener Gräben
CH708408B1 (de) Verfahren und Vorrichtung zum Bau eines Tunnels.
DE2103352C (de) Verfahren und Vorrichtung zur Versatzverfestigung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170814

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200420

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200514

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1321339

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011363

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SPIERENBURG AND PARTNER AG, PATENT- UND MARKEN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011363

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

26N No opposition filed

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230428

Year of fee payment: 8

Ref country code: FR

Payment date: 20230417

Year of fee payment: 8

Ref country code: DE

Payment date: 20230418

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240422

Year of fee payment: 9