EP3111668B1 - Vorrichtung zur steuerung eines lautsprechers - Google Patents

Vorrichtung zur steuerung eines lautsprechers Download PDF

Info

Publication number
EP3111668B1
EP3111668B1 EP15706419.7A EP15706419A EP3111668B1 EP 3111668 B1 EP3111668 B1 EP 3111668B1 EP 15706419 A EP15706419 A EP 15706419A EP 3111668 B1 EP3111668 B1 EP 3111668B1
Authority
EP
European Patent Office
Prior art keywords
ref
loudspeaker
controlling
coil
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15706419.7A
Other languages
English (en)
French (fr)
Other versions
EP3111668A1 (de
Inventor
Eduardo MENDES
Pierre-Emmanuel Calmel
Antoine PETROFF
Jean-Loup AFRESNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devialet SA
Original Assignee
Devialet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devialet SA filed Critical Devialet SA
Publication of EP3111668A1 publication Critical patent/EP3111668A1/de
Application granted granted Critical
Publication of EP3111668B1 publication Critical patent/EP3111668B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/003Monitoring arrangements; Testing arrangements for loudspeakers of the moving-coil type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • H04R1/2834Enclosures comprising vibrating or resonating arrangements using a passive diaphragm for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • Speakers are electromagnetic devices that convert an electrical signal into an acoustic signal. They introduce a nonlinear distortion that can significantly affect the acoustic signal obtained.
  • a first type of solution uses mechanical sensors, typically a microphone, in order to implement a servocontrol which makes it possible to linearize the operation of the loudspeaker.
  • the major disadvantage of such a technique is the mechanical size and non-standardization of the devices as well as high costs.
  • open-loop type controls have been envisaged. They do not require expensive sensors. They may only use a measurement of the voltage and / or current applied across the loudspeaker.
  • the document US 6,058,195 uses a mirror filter technique with current control. This technique makes it possible to eliminate nonlinearities in order to obtain a predetermined model.
  • the estimator E implemented produces an error signal between the measured voltage and the voltage predicted by the model. This error is used by the update circuit of the parameters U. Given the number of estimated parameters, the convergence of the parameters towards their true values is highly unlikely under normal operating conditions.
  • US 8,023,668 offers an open-loop control model that compensates for speaker unwanted behavior in relation to a desired behavior. For this, the voltage applied to the loudspeaker is corrected by an additional voltage which cancels the unwanted behaviors of the loudspeaker with respect to the desired behavior.
  • the control algorithm is realized by discretization in discrete time of the loudspeaker model. This makes it possible to predict the position that the membrane will have at the next time and to compare this position with the desired position. The algorithm thus achieves a sort of infinite gain servo between a desired model of the speaker and the model of the speaker so that the speaker follows the desired behavior.
  • the command implements a correction which is calculated at each instant and added to the input signal, even if this correction in the document US 8,023,668 does not implement closed feedback loop.
  • the mechanisms for calculating a correction added to the input signal are complex to implement and the result obtained is sometimes unsatisfactory, the correction model proving to be inappropriate or not very effective for certain operating conditions or for certain forms of the signal. input.
  • the object of the invention is to provide a satisfactory control of a loudspeaker which does not have the disadvantages of modifying the input signal by adding a correction signal calculated by comparison at each instant between a desired model. and the model of the speaker.
  • the subject of the invention is a device for controlling a loudspeaker of the aforementioned type, according to claim 1.
  • the control device comprises one or more of the features of the claims. 2 to 14.
  • the sound reproduction installation 10 illustrated on the figure 1 comprises, as known per se, a module 12 for producing an audio signal, such as a digital disk player connected to a loudspeaker 14 of an enclosure through a voltage amplifier 16. Between the source audio 12 and the amplifier 16 are arranged, successively in series, a desired model 20, corresponding to the desired model of behavior of the enclosure, and a control device 22.
  • This desired model is linear or nonlinear.
  • the desired model 20 is independent of the speaker used in the installation and its modeling.
  • the desired model 20 is, as illustrated on the figure 2 , a function expressed as a function of the frequency of the ratio of the amplitude of the desired signal denoted S audio_ref on the amplitude S audio of the input signal coming from the module 12.
  • this ratio is a function converging towards zero when the frequency tends to zero, to limit the reproduction of excessively low frequencies and thus to avoid displacements of the speaker's membrane out of the ranges. recommended by the manufacturer.
  • this desired model is not specified and the desired model is considered as unitary.
  • the control device 22 whose detailed structure is illustrated on the figure 3 , is arranged at the input of the amplifier 16. This device is able to receive as input the audio signal S audio_ref to be reproduced as defined at the output of the desired model 20 and to output a signal U ref , forming a signal of excitation of the loudspeaker which is provided for amplification to the amplifier 16.
  • This signal U ref is adapted to take into account the non-linearity of the loudspeaker 14.
  • the control device 22 comprises means for calculating different quantities as a function of the values of derivatives or integrals of other quantities defined at the same times.
  • the values of the unknown quantities at the instant n are taken equal to the corresponding values of the instant n-1.
  • the values of the instant n-1 are preferably corrected by a prediction at the order 1 or 2 of their values using the higher order derivatives known at time n-1.
  • control device 22 implements a control using in part the principle of the differential flatness which makes it possible to define a reference control signal of a differentially flat system from sufficiently smooth reference paths.
  • the control module 22 receives as input the audio signal S audio_ref to be reproduced from the desired model 20.
  • a unit 24 for applying a unit conversion gain, depending on the peak voltage of the amplifier 16 and a variable attenuation between 0 and 1 controlled by the user ensures the passage of the reference audio signal S audio_ref to a signal ⁇ 0 , image of a physical quantity to be reproduced.
  • the signal ⁇ 0 is, for example, an acceleration of the air opposite the loudspeaker or a speed of the air to be displaced by the loudspeaker 14. In the following, it is assumed that the signal ⁇ 0 is the acceleration of the air set in motion by the enclosure.
  • the control device comprises a unit 25 for structural adaptation of the signal to be reproduced as a function of the structure of the enclosure in which the loudspeaker is used.
  • This unit is able to provide a reference variable A ref desired at each instant for the speaker membrane from a corresponding quantity, here the signal ⁇ 0 , for the displacement of the air set in motion by the speaker with the speaker.
  • the reference variable A ref calculated from the acceleration of the air to be reproduced ⁇ 0 , is the acceleration to be reproduced for the speaker diaphragm so that the operation of the top -parleur imposes on the air an acceleration ⁇ 0 .
  • the desired reference acceleration for the membrane A ref is equal to the desired acceleration ⁇ 0 for the air.
  • This reference quantity A ref is introduced into a calculation unit 26 of dynamic reference quantities capable of supplying, at each instant, the value of the derivative with respect to the time of the reference variable denoted dA ref / dt as well as the values first and second integrals with respect to the time of this reference quantity respectively denoted V ref and X ref .
  • the set of reference dynamic quantities is noted in the following G ref .
  • the input A ref is connected to a branching unit 30 on the one hand and a bounded integration unit 32 on the other hand whose output is itself connected to another bounded integration unit 34.
  • the bounded integration units are formed of a first-order low-pass filter and are characterized by a cut-off frequency F OBF .
  • bounded integration units allows the quantities used in the control device 22 to be the derivatives or the integrals of each other only in the useful bandwidth, ie for the higher frequencies. to the cutoff frequency F OBF . This makes it possible to control the excursion at low frequency of the quantities considered.
  • the cut-off frequency F OBF is chosen so as not to influence the signal at the low frequencies of the useful bandwidth.
  • the cutoff frequency F OBF is taken less than one-tenth of the frequency f min of the desired model 20.
  • the control device 22 comprises, in a memory, a table and / or a set of electromechanical parameter polynomials 36 as well as a table and / or a set of polynomials of the electrical parameters 38.
  • These tables 36 and 38 are adapted to define, as a function of the dynamic reference variables G ref received at the input, the electromechanical parameters P mec and electrical P elec respectively.
  • These parameters P Meca and P élec are obtained respectively from a mechanical modeling of the loudspeaker as illustrated on the figure 5 and an electrical modeling of the loudspeaker as shown on the figure 6 .
  • the speaker is assumed to be installed on a closed housing devoid of vent, the membrane being at the interface between the outside and the inside of the housing.
  • the electromechanical parameters P doca include the magnetic flux captured by the coil noted Bl produced by the magnetic circuit of the HP, the stiffness of the speaker noted K mt , the viscous mechanical friction of the speaker noted R mt , and the moving mass of the whole speaker noted M mt .
  • the modeling of the mechanical part of the loudspeaker illustrated on the figure 5 comprises, in a single closed-loop circuit, a voltage generator 40 B1 (x, i) i corresponding to the driving force produced by the current i flowing in the coil of the loudspeaker.
  • the magnetic flux B1 (x, i) depends on the position x of the membrane as well as the intensity i flowing in the coil.
  • the circuit comprises a generator 48 representative of the force resulting from the reluctance of the magnetic circuit denoted by F r (x, i) and equal to 1 2 i 2 dL e x dx where L e is the inductance of the coil and depends on the position x of the membrane
  • Variable v represents the speed of the membrane.
  • the Pelec electrical parameters include the inductance of the coil Le, the para-inductance L2 of the coil and the equivalent loss-iron R2.
  • the modeling of the electrical part of the loudspeaker of a closed enclosure is illustrated on the figure 6 . It is formed of a closed loop circuit. It comprises a generator 50 of electromotive force ue connected in series with a resistor 52 representative of the resistor Re of the coil of the loudspeaker. This resistor 52 is connected in series with an inductance Le (x, i) representative of the inductance of the coil of the loudspeaker. This inductance depends on the intensity i flowing in the coil and the position x of the membrane.
  • a parallel circuit RL is connected in series at the output of the coil 54.
  • a resistance 56 of value R 2 (x, i) depending on the position the membrane x and the intensity i flowing in the coil is representative of the loss-iron equivalent.
  • a coil 58 of inductance L 2 (x, i) also depends on the position x of the diaphragm and the intensity i flowing in the circuit is representative of the para-inductance of the loudspeaker.
  • the flux Bl captured by the coil, the stiffness K mt and the inductance of the coil L e depend on the position x of the membrane, the inductance L e and the flux Bl also depend on the current flowing in the coil.
  • the inductance of the coil L e , the inductance L 2 and the term g depend on the intensity i, in addition to depending on the displacement x of the membrane.
  • the control module 22 further comprises a unit 70 for calculating the reference current i ref and its derivative di ref / dt.
  • This unit receives as input the quantities dynamic reference G ref and the mechanical parameters P Meca .
  • the current i ref and its derivative di ref / dt are obtained by an algebraic calculation from the values of the vectors entered by an exact analytical calculation or a numerical resolution if necessary according to the complexity of G 1 (x, i) .
  • the derivative of the current di ref / dt is thus preferably obtained by an algebraic calculation or else by digital derivation.
  • a displacement X max is imposed on the control module. This is made possible by the use of a separate dynamic reference quantity calculating unit 26 and a structural matching unit.
  • the limitation of the deflection is carried out by a device of "virtual wall" which prevents the membrane of the loudspeaker to exceed a certain limit related to X max .
  • a device of "virtual wall” which prevents the membrane of the loudspeaker to exceed a certain limit related to X max .
  • the energy required for the position approaches the virtual wall becomes larger and larger (non-linear behavior) to be infinite on the wall. with the possibility of imposing asymmetrical behavior.
  • the viscous mechanical friction R mt 42 is increased non-linearly as a function of the X ref position of the membrane.
  • the acceleration A ref is dynamically maintained within minimum and maximum limits which ensure that the X ref position of the membrane does not exceed X max .
  • control device 22 comprises a unit 80 for estimating the resistance R e of the loudspeaker.
  • This unit 80 receives as input the reference dynamic quantities G ref , the intensity of the reference currents i ref and its derivative di ref / dt and, according to the embodiment envisaged, the temperature measured on the magnetic circuit of the loudspeaker noted T m_measured or the intensity measured through the coil rated I _measured .
  • the estimation unit 80 is of the form illustrated in FIG. figure 7 . It comprises as input a module 82 for calculating the power and parameters and a thermal model 84.
  • the thermal model 84 calculates the resistance R e from the calculated parameters, the determined power P JB and the measured temperature T m_measured .
  • the figure 8 gives the general scheme used for the thermal model.
  • the reference temperature is the internal air temperature of the enclosure T e .
  • the estimate of the resistance R e is provided by a closed-loop estimator, for example of integral proportional type. This makes it possible to have a fast convergence time thanks to the use of an integral proportional corrector.
  • control device 22 comprises a unit 90 for calculating the reference output voltage U ref , based on the reference dynamic variables G ref , the reference current i ref and its derivative di ref / dt, parameters P eec electrical and resistance R e calculated by the unit 80.
  • the mechanical-acoustic modeling of the loudspeaker illustrated on FIG. figure 5 is replaced by modeling the figure 11 and the structural adaptation unit 25 is capable of determining the desired acceleration of the speaker diaphragm A ref from the desired acceleration of the air ⁇ 0 to take account of the particular structure of the enclosure .
  • the control module 22 receives as input the audio signal S audio_ref to reproduce from the desired model 20.
  • the signal ⁇ 0 is, for example, an acceleration of the air opposite the loudspeaker or a speed of the air to be displaced by the loudspeaker 14. In the following, it is assumed that the signal ⁇ 0 is the acceleration of the air set in motion by the enclosure.
  • the structural adaptation unit 25 of the signal to be reproduced as a function of the structure of the enclosure in which the loudspeaker is used is able to provide a reference variable A ref desired at each instant for the speaker diaphragm. from a corresponding quantity for the movement of the air set in motion by the device in which the loudspeaker is placed.
  • the reference variable A ref calculated from the acceleration of the air to be reproduced ⁇ 0 is the acceleration to be reproduced for the speaker diaphragm so that the operation of the loudspeaker speaker imposes on the total air an acceleration ⁇ 0 .
  • the input ⁇ 0 is connected to a bounded integration unit 127 whose output is itself connected to another bounded integration unit 128.
  • the bounded integration units are formed of a first-order low-pass filter and are characterized by a cut-off frequency F OBF .
  • bounded integration units allows the quantities used in the control device 22 to be the derivatives or the integrals of each other only in the useful bandwidth, ie for the higher frequencies. at the cutoff frequency F OBF . This makes it possible to control the excursion at low frequency of the quantities considered.
  • the cut-off frequency F OBF is chosen so as not to influence the signal at the low frequencies of the useful bandwidth.
  • the cutoff frequency F OBF is taken less than one-tenth of the frequency f min of the desired model 20.
  • the desired reference acceleration for the membrane A ref is corrected for the dynamic structural magnitudes x o , v o of the enclosure, the latter being different from the dynamic variables relating to the speaker membrane.
  • This reference quantity A ref is introduced into a calculation unit 26 of dynamic reference quantities capable of supplying, at each instant, the value of the derivative with respect to the time of the reference variable denoted dA ref / dt as well as the values first and second integrals with respect to the time of this reference quantity respectively denoted V ref and X ref .
  • the set of reference dynamic quantities is noted in the following G ref .
  • the structural adaptation unit 25 also comprises within it a calculation unit identical to 26 in order to determine the reference dynamic variables v 0 and x 0 .
  • the computing unit 26 is illustrated on the figure 4 and is that of the previous embodiment.
  • the tables 36 and 38 are adapted to define, as a function of the dynamic reference values G ref received at the input, the electromechanical parameters P mec and electrical P elec respectively.
  • These parameters P Meca and P élec are obtained respectively from a mechanical modeling of the loudspeaker as illustrated on the figure 11 , where the loudspeaker is supposed to be installed in a vented enclosure, and an electrical model of the loudspeaker as shown on the figure 6 .
  • the electromechanical parameters P mec include the magnetic flux captured by the coil noted B1 produced by the magnetic circuit of the HP, the stiffness of the speaker noted K mt (x D ), the viscous mechanical friction of the speaker noted R mt , the mobile mass of the entire loudspeaker noted M mt , the stiffness of the air in the enclosure noted K m2 , the acoustic leakage of the enclosure noted R m 2 and the mass of air in the vent noted M m 2 .
  • the modeling of the mechanico-acoustic part of the loudspeaker placed in a vent enclosure illustrated on the figure 11 comprises, in a single closed-loop circuit, a voltage generator 140 B1 (x D , i) i corresponding to the driving force produced by the current i flowing in the speaker coil.
  • the magnetic flux B1 (x D , i) depends on the position x D of the membrane as well as the intensity i flowing in the coil.
  • This modeling takes into account the viscous mechanical friction R mt of the membrane corresponding to a resistor 142 in series with a coil 144 corresponding to the overall moving mass M mt of the membrane, the stiffness of the membrane corresponding to a capacitor 146 of capacitance C mt (x D ) equals 1 / K mt (x D ). Thus, the stiffness depends on the position x D of the membrane.
  • ⁇ 0 ⁇ D - K m 2 R m 2 v 0 - K m 2 M m 2 x 0
  • the modeling of the electrical part of the loudspeaker is illustrated by the figure 6 is identical to that of the first embodiment.
  • the control module 22 further comprises a unit 70 for calculating the reference current i ref and its derivative di ref / dt. This unit receives, as input, the reference dynamic quantities G ref , the mechanical parameters P m , and the magnitudes x 0 and v 0 .
  • the current i ref and its derivative di ref / dt are obtained by an algebraic calculation from the values of the vectors entered by an exact analytical calculation or a numerical resolution if necessary according to the complexity of G 1 (x, i) .
  • the derivative of the current di ref / dt is thus preferably obtained by an algebraic calculation or else by digital derivation.
  • a displacement X max is imposed on the control module as in the previous embodiment.
  • control device 22 comprises a unit 80 for estimating the resistance R e of the loudspeaker as described with regard to the previous embodiment.
  • the units 38, 80 and 90 of the control device are suppressed and the reference output intensity i ref controlling the amplifier is taken at the exit of the unit 70.
  • the mechanical model of the figure 6 is replaced by that of the figure 12 in which the elements identical to those of the figure 6 have the same reference numbers.
  • the structural adaptation structure 25 will comprise in series two bounded integrators for obtaining v 0 and x 0 from ⁇ 0 , then the calculation of x 0 R from x 0 by high-pass filtering with additional parameters R m 3 and K m 3 which are respectively the mechanical loss resistance and the mechanical stiffness constant of the passive radiator membrane.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Claims (14)

  1. Vorrichtung zum Steuern eines Lautsprechers (14), wobei der Lautsprecher (14) eine elektromagnetische Vorrichtung ist, die eingerichtet ist, ein elektrisches Signal in ein akustisches Signal umzuwandeln, wobei der Lautsprecher (14) in einem Gehäuse verwendet wird, wobei die Vorrichtung zum Steuern aufweist:
    - einen Eingang für ein wiederzugebendes Audiosignal (Saudio_ref);
    - einen Ausgang zum Liefern eines Anregungssignals des Lautsprechers (14), genannt Anregungssignal;
    - Mittel (24, 25) zum Berechnen einer ersten dynamischen Größe (Aref), genannt erste Mittel (24, 25), wobei die erste dynamische Größe (Aref) eine gewünschte dynamische Größe (Aref) der Membran des Lautsprechers (14) ist, wobei die ersten Mittel (24, 25) die erste dynamische Größe (Aref) abhängig von dem wiederzugebenden Audiosignal (Saudio_ref) und der Struktur des Gehäuses berechnen, wobei die ersten Mittel eine Einheit zur strukturellen Anpassung (25) aufweisen, die dazu eingerichtet sind, zu jedem Zeitpunkt die erste dynamische Größe (Aref) abhängig von einer Größe (γ0), die ausgehend von dem wiederzugebenden Audiosignal (Saudio_ref) erhalten wird, und der Struktur des Gehäuses zu liefern, wobei die Struktur des Gehäuses eine Struktur ist ausgewählt aus: Einer Struktur eines geschlossenen Gehäuses, einer Gehäusestruktur mit Loch und einer Gehäusestruktur mit Passivstrahler;
    - Mittel (26) zur Berechnung einer Mehrzahl zweiter dynamischer Größen (Aref, dAref/dt, Vref, Xref), genannt zweite Mittel (26), wobei die zweiten dynamischen Größen (Aref, dAref/dt, Vref, Xref) gewünschte dynamische Größen (Aref, dAref/dt, Vref, Xref) der Membran des Lautsprechers (14) sind, wobei die zweiten Mittel (26) zu jedem Zeitpunkt die Mehrzahl von zweiten dynamischen Größen (Aref, dAref/dt, Vref, Xref) abhängig von der einzigen ersten dynamischen Größe (Aref) berechnen, wobei die zweiten Mittel (26) die zweiten dynamischen Größen (Aref, dAref/dt, Vref, Xref) durch Integration und/oder Ableiten der ersten dynamischen Größe (Aref) berechnen;
    - eine mechanische Modellierung (36) des Lautsprechers, ausgehend von der elektromagnetische Parameter (Pmecha) des Lautsprechers (14) erhalten werden; und
    - Mittel (70, 80, 90) zum Berechnen des Anregungssignals, genannt dritte Mittel (70, 80, 90), wobei die dritten Mittel (70, 80, 90) das Anregungssignal zu jedem Zeitpunkt ohne Rückkopplungsschleife ausgehend von den elektromagnetischen Parametern (Pmecha) des Lautsprechers (14), die aus der mechanischen Modellierung (36) des Lautsprechers (14) erhalten wurden, der ersten dynamischen Größe (Aref) und den zweiten dynamischen Größen (Aref, dAref/dt, Vref, Xref) berechnen.
  2. Vorrichtung zum Steuern eines Lautsprechers (14) nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerung ferner eine elektrische Modellierung (38) des Lautsprechers (14) aufweist und die dritten Mittel (70, 80, 90) geeignet sind, das Anregungssignal zusätzlich abhängig von der elektrischen Modellierung (38) des Lautsprechers (14) zu berechnen.
  3. Vorrichtung zum Steuern eines Lautsprechers (14) nach Anspruch 2, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers (14) berücksichtigt:
    - einen Widerstand (R2), der für die magnetischen Verluste des Lautsprechers (14) repräsentativ ist;
    - eine Induktivität (L2), die für eine Para-Induktivität repräsentativ ist, die sich aus der Wirkung der Wirbelströme im Lautsprecher (14) ergibt.
  4. Vorrichtung zum Steuern eines Lautsprechers (14) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers (14) die Variation der Induktivität (Le) der Spule des Lautsprechers (14) in Abhängigkeit der im Lautsprecher (14) fließenden Stromstärke (i) berücksichtigt.
  5. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers (14) die Variation der Induktivität (Le) der der Spule des Lautsprechers (14) in Abhängigkeit von der Position (x) der Membran des Lautsprechers (14) berücksichtigt.
  6. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers (14) die Variation des von der Spule des Lautsprechers (14) erfassten magnetischen Flusses (Bl) in Abhängigkeit von der im Lautsprecher fließenden Stromstärke (i) berücksichtigt.
  7. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers die Variation des von der Spule des Lautsprechers (14) erfassten magnetischen Flusses (Bl). in Abhängigkeit von der Position (x) der Membran des Lautsprechers (14) berücksichtigt.
  8. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers die Variation der zeitlichen Ableitung der Spuleninduktivität des Lautsprechers (g(x, i)) in Abhängigkeit von der im Lautsprecher fließenden Stromstärke (i) berücksichtigt.
  9. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers die Variation der zeitlichen Ableitung der Spuleninduktivität des Lautsprechers (g(x, i)) in Abhängigkeit von der Position (x) der Spulenmembran berücksichtigt.
  10. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers die Variation des Widerstands (Re) der Spule des Lautsprechers (14) in Abhängigkeit von einer gemessenen Temperatur (Tm_gemessen) des magnetischen Kreises des Lautsprechers (14) berücksichtigt.
  11. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die elektrische Modellierung (38) des Lautsprechers (14) die Variation des Widerstands (Re) der Spule des Lautsprechers in Abhängigkeit von einer in der Spule des Lautsprechers (14) gemessenen Stromstärke (I_gemessen) berücksichtigt.
  12. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Mittel (26) mindestens einen begrenzten Integrator (32) aufweisen, der durch eine Grenzfrequenz (FOBF) gekennzeichnet ist, die die Integration in dem Nutzpassband unter der Grenzfrequenz (FOBF) begrenzt.
  13. Vorrichtung zum Steuern eines Lautsprechers (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mehrzahl der zweiten dynamischen Größen (Aref, dAref/dt, Vref, Xref) der Wertesatz zu einem gegebenen Zeitpunkt von vier Funktionen ist, die die Ableitungen verschiedener Ordnungen derselben Funktion sind.
  14. Vorrichtung zur Ansteuerung eines Lautsprechers (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die dritten Mittel (70, 80, 90) eingerichtet sind, algebraische Berechnungen der Stromstärke (iref) des gewünschten Stroms in der Spule und der zeitlichen Ableitung (diref/dt) der Stromstärke des gewünschten Stroms in der Spule zu gewährleisten.
EP15706419.7A 2014-02-26 2015-02-18 Vorrichtung zur steuerung eines lautsprechers Active EP3111668B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451564A FR3018025B1 (fr) 2014-02-26 2014-02-26 Dispositif de commande d'un haut-parleur
PCT/EP2015/053431 WO2015128238A1 (fr) 2014-02-26 2015-02-18 Dispositif de commande d'un haut-parleur

Publications (2)

Publication Number Publication Date
EP3111668A1 EP3111668A1 (de) 2017-01-04
EP3111668B1 true EP3111668B1 (de) 2019-09-25

Family

ID=50473667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15706419.7A Active EP3111668B1 (de) 2014-02-26 2015-02-18 Vorrichtung zur steuerung eines lautsprechers

Country Status (8)

Country Link
US (1) US9930449B2 (de)
EP (1) EP3111668B1 (de)
JP (1) JP6522668B2 (de)
KR (1) KR102283363B1 (de)
CN (1) CN106165445B (de)
CA (1) CA2940859C (de)
FR (1) FR3018025B1 (de)
WO (1) WO2015128238A1 (de)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890347A1 (de) * 2015-09-10 2021-10-06 Yayuma Audio SP. Z.O.O. Verfahren zur audiosignalkorrektur
US9965247B2 (en) 2016-02-22 2018-05-08 Sonos, Inc. Voice controlled media playback system based on user profile
US10509626B2 (en) 2016-02-22 2019-12-17 Sonos, Inc Handling of loss of pairing between networked devices
US10142754B2 (en) * 2016-02-22 2018-11-27 Sonos, Inc. Sensor on moving component of transducer
US10095470B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Audio response playback
US10264030B2 (en) 2016-02-22 2019-04-16 Sonos, Inc. Networked microphone device control
US9772817B2 (en) 2016-02-22 2017-09-26 Sonos, Inc. Room-corrected voice detection
US9947316B2 (en) 2016-02-22 2018-04-17 Sonos, Inc. Voice control of a media playback system
US9978390B2 (en) 2016-06-09 2018-05-22 Sonos, Inc. Dynamic player selection for audio signal processing
US10152969B2 (en) 2016-07-15 2018-12-11 Sonos, Inc. Voice detection by multiple devices
US10134399B2 (en) 2016-07-15 2018-11-20 Sonos, Inc. Contextualization of voice inputs
US10115400B2 (en) 2016-08-05 2018-10-30 Sonos, Inc. Multiple voice services
US9942678B1 (en) 2016-09-27 2018-04-10 Sonos, Inc. Audio playback settings for voice interaction
US9743204B1 (en) 2016-09-30 2017-08-22 Sonos, Inc. Multi-orientation playback device microphones
US10181323B2 (en) 2016-10-19 2019-01-15 Sonos, Inc. Arbitration-based voice recognition
JP7188082B2 (ja) * 2016-12-22 2022-12-13 ソニーグループ株式会社 音響処理装置および方法、並びにプログラム
US10080082B2 (en) * 2017-02-16 2018-09-18 Akustica, Inc. Microphone system having high acoustical overload point
US11183181B2 (en) 2017-03-27 2021-11-23 Sonos, Inc. Systems and methods of multiple voice services
WO2019016881A1 (ja) * 2017-07-19 2019-01-24 公太 高橋 スピーカを駆動するための力の変化の信号を生成する信号生成装置、スピーカ、スピーカ用フィルタ
US10475449B2 (en) 2017-08-07 2019-11-12 Sonos, Inc. Wake-word detection suppression
US10048930B1 (en) 2017-09-08 2018-08-14 Sonos, Inc. Dynamic computation of system response volume
US10446165B2 (en) 2017-09-27 2019-10-15 Sonos, Inc. Robust short-time fourier transform acoustic echo cancellation during audio playback
US10482868B2 (en) 2017-09-28 2019-11-19 Sonos, Inc. Multi-channel acoustic echo cancellation
US10051366B1 (en) 2017-09-28 2018-08-14 Sonos, Inc. Three-dimensional beam forming with a microphone array
US10621981B2 (en) 2017-09-28 2020-04-14 Sonos, Inc. Tone interference cancellation
US10466962B2 (en) 2017-09-29 2019-11-05 Sonos, Inc. Media playback system with voice assistance
US10880650B2 (en) 2017-12-10 2020-12-29 Sonos, Inc. Network microphone devices with automatic do not disturb actuation capabilities
US10818290B2 (en) 2017-12-11 2020-10-27 Sonos, Inc. Home graph
US11343614B2 (en) 2018-01-31 2022-05-24 Sonos, Inc. Device designation of playback and network microphone device arrangements
US11175880B2 (en) 2018-05-10 2021-11-16 Sonos, Inc. Systems and methods for voice-assisted media content selection
US10847178B2 (en) 2018-05-18 2020-11-24 Sonos, Inc. Linear filtering for noise-suppressed speech detection
US10959029B2 (en) 2018-05-25 2021-03-23 Sonos, Inc. Determining and adapting to changes in microphone performance of playback devices
CN110913317A (zh) * 2018-06-05 2020-03-24 董耀斌 一种静电扬声器、动圈式扬声器及处理音频信号的装置
US10681460B2 (en) 2018-06-28 2020-06-09 Sonos, Inc. Systems and methods for associating playback devices with voice assistant services
US11076035B2 (en) 2018-08-28 2021-07-27 Sonos, Inc. Do not disturb feature for audio notifications
US10461710B1 (en) 2018-08-28 2019-10-29 Sonos, Inc. Media playback system with maximum volume setting
US10878811B2 (en) 2018-09-14 2020-12-29 Sonos, Inc. Networked devices, systems, and methods for intelligently deactivating wake-word engines
US10587430B1 (en) 2018-09-14 2020-03-10 Sonos, Inc. Networked devices, systems, and methods for associating playback devices based on sound codes
US11024331B2 (en) 2018-09-21 2021-06-01 Sonos, Inc. Voice detection optimization using sound metadata
US10811015B2 (en) 2018-09-25 2020-10-20 Sonos, Inc. Voice detection optimization based on selected voice assistant service
US11100923B2 (en) 2018-09-28 2021-08-24 Sonos, Inc. Systems and methods for selective wake word detection using neural network models
US10692518B2 (en) 2018-09-29 2020-06-23 Sonos, Inc. Linear filtering for noise-suppressed speech detection via multiple network microphone devices
FR3087075B1 (fr) 2018-10-08 2022-02-25 Devialet Dispositif de compensation des differences de perception des frequences d'un signal audio en fonction du niveau sonore de restitution du signal
FR3087074B1 (fr) 2018-10-08 2022-02-25 Devialet Dispositif de commande d'un haut-parleur et installation de restitution sonore associee
US11899519B2 (en) 2018-10-23 2024-02-13 Sonos, Inc. Multiple stage network microphone device with reduced power consumption and processing load
EP3654249A1 (de) 2018-11-15 2020-05-20 Snips Erweiterte konvolutionen und takt zur effizienten schlüsselwortauffindung
US11183183B2 (en) 2018-12-07 2021-11-23 Sonos, Inc. Systems and methods of operating media playback systems having multiple voice assistant services
US11132989B2 (en) 2018-12-13 2021-09-28 Sonos, Inc. Networked microphone devices, systems, and methods of localized arbitration
CN111294718B (zh) * 2018-12-20 2021-10-22 展讯通信(上海)有限公司 一种信息处理装置和方法
US10602268B1 (en) 2018-12-20 2020-03-24 Sonos, Inc. Optimization of network microphone devices using noise classification
US10867604B2 (en) 2019-02-08 2020-12-15 Sonos, Inc. Devices, systems, and methods for distributed voice processing
US11315556B2 (en) 2019-02-08 2022-04-26 Sonos, Inc. Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification
US11120794B2 (en) 2019-05-03 2021-09-14 Sonos, Inc. Voice assistant persistence across multiple network microphone devices
US11200894B2 (en) 2019-06-12 2021-12-14 Sonos, Inc. Network microphone device with command keyword eventing
US11361756B2 (en) 2019-06-12 2022-06-14 Sonos, Inc. Conditional wake word eventing based on environment
US10586540B1 (en) 2019-06-12 2020-03-10 Sonos, Inc. Network microphone device with command keyword conditioning
US10871943B1 (en) 2019-07-31 2020-12-22 Sonos, Inc. Noise classification for event detection
US11138975B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11138969B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11189286B2 (en) 2019-10-22 2021-11-30 Sonos, Inc. VAS toggle based on device orientation
US11200900B2 (en) 2019-12-20 2021-12-14 Sonos, Inc. Offline voice control
US11562740B2 (en) 2020-01-07 2023-01-24 Sonos, Inc. Voice verification for media playback
US11556307B2 (en) 2020-01-31 2023-01-17 Sonos, Inc. Local voice data processing
US11308958B2 (en) 2020-02-07 2022-04-19 Sonos, Inc. Localized wakeword verification
US11308962B2 (en) 2020-05-20 2022-04-19 Sonos, Inc. Input detection windowing
US11482224B2 (en) 2020-05-20 2022-10-25 Sonos, Inc. Command keywords with input detection windowing
US11727919B2 (en) 2020-05-20 2023-08-15 Sonos, Inc. Memory allocation for keyword spotting engines
US11698771B2 (en) 2020-08-25 2023-07-11 Sonos, Inc. Vocal guidance engines for playback devices
FR3115176B1 (fr) 2020-10-12 2023-11-24 Focal Jmlab Dispositif de traitement d’un signal analogique, systeme audio et porte sonorisee de vehicule associes
US11984123B2 (en) 2020-11-12 2024-05-14 Sonos, Inc. Network device interaction by range
US11551700B2 (en) 2021-01-25 2023-01-10 Sonos, Inc. Systems and methods for power-efficient keyword detection
CN112954549B (zh) * 2021-02-25 2022-09-09 歌尔科技有限公司 一种音效控制方法、装置、音箱设备及存储介质
JP2023013398A (ja) 2021-07-16 2023-01-26 アルプスアルパイン株式会社 スピーカの歪み補正装置及びスピーカユニット
FR3131972A1 (fr) * 2022-01-14 2023-07-21 Arkamys Procédé de gestion des basses fréquences d’un haut-parleur et dispositif pour la mise en œuvre dudit procédé

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104451A1 (en) * 2003-08-07 2006-05-18 Tymphany Corporation Audio reproduction system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517598Y2 (de) * 1975-06-17 1980-04-23
JPS5854193U (ja) * 1981-10-05 1983-04-13 三洋電機株式会社 Mfbスピ−カのブリツジ検出回路
JP2605321B2 (ja) * 1987-12-28 1997-04-30 ヤマハ株式会社 音響装置
JPH04309098A (ja) * 1991-04-05 1992-10-30 Sony Corp スピーカシステム
DE4332804C2 (de) 1993-09-27 1997-06-05 Klippel Wolfgang Adaptive Korrekturschaltung für elektroakustische Schallsender
US5680450A (en) * 1995-02-24 1997-10-21 Ericsson Inc. Apparatus and method for canceling acoustic echoes including non-linear distortions in loudspeaker telephones
JP3785629B2 (ja) * 1996-08-26 2006-06-14 オンキヨー株式会社 信号補正装置、信号補正方法、信号補正装置の係数調整装置および係数調整方法
US5771300A (en) * 1996-09-25 1998-06-23 Carrier Corporation Loudspeaker phase distortion control using velocity feedback
US6058195A (en) 1998-03-30 2000-05-02 Klippel; Wolfgang J. Adaptive controller for actuator systems
US6684204B1 (en) 2000-06-19 2004-01-27 International Business Machines Corporation Method for conducting a search on a network which includes documents having a plurality of tags
JP2003078985A (ja) * 2001-09-05 2003-03-14 Sony Corp スピーカ駆動方法およびスピーカ駆動装置
JP2003264888A (ja) 2002-03-07 2003-09-19 Pioneer Electronic Corp スピーカ制御装置及びスピーカシステム
US7372966B2 (en) * 2004-03-19 2008-05-13 Nokia Corporation System for limiting loudspeaker displacement
GB2413233B (en) * 2004-04-13 2007-08-15 B & W Loudspeakers Loudspeaker systems
US7826625B2 (en) * 2004-12-21 2010-11-02 Ntt Docomo, Inc. Method and apparatus for frame-based loudspeaker equalization
ATE458362T1 (de) 2005-12-14 2010-03-15 Harman Becker Automotive Sys Verfahren und vorrichtung zum vorhersehen des verhaltens eines wandlers
WO2008018099A1 (en) 2006-08-10 2008-02-14 Claudio Lastrucci Improvements to systems for acoustic diffusion
EP2355542B1 (de) * 2010-02-04 2012-09-12 Nxp B.V. Steuerung einer Lautsprecherausgabe
CN102004823B (zh) * 2010-11-11 2012-09-26 浙江中科电声研发中心 一种扬声器振动和声学特性的数值模拟方法
CN104170404B (zh) * 2012-03-05 2018-01-26 奥音科技(北京)有限公司 音频系统、具有电‑声换能器的设备、测量装置及方法
WO2013182901A1 (en) * 2012-06-07 2013-12-12 Actiwave Ab Non-linear control of loudspeakers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060104451A1 (en) * 2003-08-07 2006-05-18 Tymphany Corporation Audio reproduction system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Loudspeaker enclosures", 1 January 2001, FOCAL PRESS, ISBN: 978-0-24-051578-6, article GRAHAM BANK ET AL: "Loudspeaker enclosures", pages: 297 - 324, XP055114195 *
WOLFGANG KLIPPEL: "Modeling the Nonlinearities in Horn Loudspeakers", J. AUDIO. ENG. SOC., vol. 44, no. 6, 1 June 1996 (1996-06-01), pages 470 - 480, XP055452128 *

Also Published As

Publication number Publication date
CA2940859A1 (fr) 2015-09-03
CA2940859C (fr) 2024-01-09
FR3018025A1 (fr) 2015-08-28
US9930449B2 (en) 2018-03-27
EP3111668A1 (de) 2017-01-04
FR3018025B1 (fr) 2016-03-18
JP2017511091A (ja) 2017-04-13
CN106165445A (zh) 2016-11-23
JP6522668B2 (ja) 2019-05-29
KR20160124825A (ko) 2016-10-28
US20170019732A1 (en) 2017-01-19
CN106165445B (zh) 2020-10-16
KR102283363B1 (ko) 2021-07-29
WO2015128238A1 (fr) 2015-09-03

Similar Documents

Publication Publication Date Title
EP3111668B1 (de) Vorrichtung zur steuerung eines lautsprechers
EP3111669B1 (de) Vorrichtung zur steuerung eines lautsprechers
EP2717599B1 (de) Verfahren zur Audiosignalverarbeitung mit Modellierung der globalen Antwort des elektrodynamischen Lautsprechers
EP3248285B1 (de) Vorrichtung zur steuerung eines lautsprechers mit strombegrenzung
EP3248284B1 (de) Verfahren zur anpassung der laustärkeverstärkung zur leistungsbegrenzung eines verstärkers sowie verstärker
EP3637792B1 (de) Steuerungsvorrichtung eines lautsprechers und entsprechende klangwiedergabeanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180226

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015038612

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1185018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1185018

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015038612

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200626

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 10

Ref country code: GB

Payment date: 20240221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240112

Year of fee payment: 10