EP3091085B1 - Procédé de conception d'une thérapie pour la métastase du cancer du sein - Google Patents

Procédé de conception d'une thérapie pour la métastase du cancer du sein Download PDF

Info

Publication number
EP3091085B1
EP3091085B1 EP15180897.9A EP15180897A EP3091085B1 EP 3091085 B1 EP3091085 B1 EP 3091085B1 EP 15180897 A EP15180897 A EP 15180897A EP 3091085 B1 EP3091085 B1 EP 3091085B1
Authority
EP
European Patent Office
Prior art keywords
maf
gene
metastasis
breast cancer
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15180897.9A
Other languages
German (de)
English (en)
Other versions
EP3091085A1 (fr
Inventor
Roger GOMIS CABRÉ
Anna ARNAL ESTAPÉ
Milica Pavlovic
Maria Tarragona Sunyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institucio Catalana de Recerca i Estudis Avancats ICREA
Fundacio Privada Institut de Recerca Biomedica IRB
Original Assignee
Institucio Catalana de Recerca i Estudis Avancats ICREA
Fundacio Privada Institut de Recerca Biomedica IRB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201031478A external-priority patent/ES2379918B1/es
Application filed by Institucio Catalana de Recerca i Estudis Avancats ICREA, Fundacio Privada Institut de Recerca Biomedica IRB filed Critical Institucio Catalana de Recerca i Estudis Avancats ICREA
Priority to EP19159414.2A priority Critical patent/EP3517630B1/fr
Publication of EP3091085A1 publication Critical patent/EP3091085A1/fr
Application granted granted Critical
Publication of EP3091085B1 publication Critical patent/EP3091085B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast

Definitions

  • the present invention relates to the diagnosis or the prognosis of metastasis in breast cancer based on determining if the c-MAF gene is amplified in a primary tumor sample. Likewise, the invention also relates to a method for the diagnosis or the prognosis of metastasis in breast cancer, as well as to a method for designing a customized therapy in a subject with breast cancer, which comprise determining the c-MAF gene expression level. Finally, the invention relates to the use of a c-MAF inhibitor as therapeutic target for the treatment of breast cancer metastasis.
  • breast cancer is the second most common type of cancer worldwide (10.4%; after lung cancer) and the fifth most common cause of death by cancer (after lung cancer, stomach cancer, liver cancer, and colon cancer).
  • breast cancer is the most common cause of death by cancer.
  • breast cancer caused 502,000 deaths worldwide (7% of the deaths by cancer; almost 1% of all deaths).
  • the number of cases worldwide has increased significantly from the 1970s, a phenomenon which is partly due to the modern lifestyle in the western world.
  • ER estrogen receptor
  • PR progesterone receptor
  • HER2/neu HER2/neu
  • the receptor state has become a critical assessment for all breast cancers since it determines the suitability of using specific treatments, for example, tamoxifen or trastuzumab.
  • the alpha isoform of the estrogen receptor (ER) is over-expressed in about 65% of the diagnosed cases of breast cancer. This type of breast cancer is referred to as "ER-positive" (ER+).
  • ER-positive ER+
  • the binding of the estrogen to the ER stimulates the tumor mammary cell proliferation.
  • the ER+ tumor cells are highly dependent on this stimulus to proliferate, therefore ER is currently used as a therapeutic target.
  • the keystone for treating breast cancer is surgery when the tumor is localized with possible adjuvant hormone therapy (with tamoxifen or an aromatase inhibitor), chemotherapy, and/or radiotherapy.
  • adjuvant hormone therapy with tamoxifen or an aromatase inhibitor
  • chemotherapy and/or radiotherapy.
  • adjuvant therapy the suggestions for treatment after the surgery (adjuvant therapy) follow a pattern. This pattern is subject to change because every two years, a world conference takes place in St. Gallen, Switzerland to discuss the actual results of the worldwide multi-center studies. Likewise, said pattern is also reviewed according to the consensus criterion of the National Institute of Health (NIH). Based on in these criteria, more than 85-90% of the patients not having metastasis in lymph nodes would be candidates to receive adjuvant systemic therapy.
  • NASH National Institute of Health
  • PCR assays such as Oncotype DX or microarray assays such as MammaPrint can predict the risk of breast cancer relapse based on the expression of specific genes.
  • the MammaPrint assay became the first breast cancer indicator in achieving official authorization from the Food and Drug Administration.
  • Patent application EP1961825-A1 describes a method for predicting the occurrence of breast cancer metastasis to bone, lung, liver or brain, which comprises determining in a tumor tissue sample the expression level of one or more markers with respect to their corresponding expression level in a control sample, among which include c-MAF.
  • a tumor tissue sample the expression level of one or more markers with respect to their corresponding expression level in a control sample, among which include c-MAF.
  • this document requires determining several genes simultaneously to enable determining the survival of breast cancer patients and the correlation between the capacity of the gene signature for predicting the survivability free from bone metastasis was not statistically significant.
  • Bos, P.D., et al. [Nature, 2009, 459:1005-1009 ] describes genes involved in the breast cancer metastasis to the brain.
  • Patent application US2005/0181375 describes methods for the detecting metastatic breast cancer based on detecting the expression levels of a series of genes which are randomly regulated or downregulated in metastatic tumors and particularly in tumors metastasizing to the brain.
  • c-MAF as marker associated to a greater tendency of the ER+ breast cancer to cause metastasis and, particularly, bone metastasis. This over-expression is partly due to an amplification of the locus 16q22-q24 in which the c-MAF gene is located.
  • ER estrogen receptor
  • the role of the c-MAF gene in ER+ breast cancer metastasis has been characterized by the inventors by means of inoculating the MCF7 cell line (human ER+ breast cancer cell line) into immunodeficient mice, to then obtain the expression profile associated to cell lines obtained from bone metastasis of said MCF7 cells. From said expression profile and by applying various criteria, the c-MAF gene was selected, variations in the expression levels predicting the recurrence of primary breast cancer tumors to bone being demonstrated.
  • the c-MAF expression levels were studied in two different databases containing the expression profiles and the clinical notes of primary tumors from patients with breast cancer and of metastasis from breast cancer patients, the c-MAF gene expression correlates positively with different clinical parameters, included the recurrence and metastasis being observed. Additionally, the c-MAF expression levels in bone metastasis from breast cancer were determined, high c-MAF levels being observed in metastasis originating from ER+ and ER-tumors.
  • c-MAF gene was validated individually by means of in vivo metastasis colonization assay followed by gain-of-function experiments by means of lentiviral vectors and loss-of-function experiments by means of using interference RNA (siRNA).
  • siRNA interference RNA
  • the inventors have associated the amplification of the locus 16q22-q24, including the c-MAF gene, with the presence of metastasis in subjects with breast cancer and the amplification of the c-MAF gene in breast cancer cell lines with tendency to form bone metastasis.
  • an in vitro method for the diagnosis of metastasis in a subject with ER+ breast cancer and/or the prognosis of the tendency to develop metastasis in a subject with ER+ breast cancer which comprises
  • an in vitro method for designing a customized therapy for a subject with ER+ breast cancer which comprises
  • an in vitro method for designing a customized therapy for a subject with breast cancer with bone metastasis which comprises
  • an in vitro method for the diagnosis of metastasis in a subject with breast cancer and/or for the prognosis of the tendency to develop metastasis in a subject with breast cancer which comprises determining if the c-MAF gene is amplified in a tumor tissue sample of said subject; wherein if said gene is amplified with respect to a control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.
  • a c-MAF inhibitory agent in the preparation of a medicinal product for treating and/or preventing breast cancer metastasis.
  • c-MAF gene is overexpressed in breast cancer metastasis particularly in ER+ tumors, and that the c-MAF expression levels in primary tumors are correlated to different clinical parameters of breast cancer, particularly with recurrence and metastasis probability.
  • c-MAF overexpression is correlated with the onset of ER+ breast tumor metastasis in bone (see Figure 1 ). Therefore, c-MAF can be used as a marker for the diagnosis and/or prognosis of metastasis in a subject with ER+ breast cancer.
  • first method of the invention which comprises
  • the c-MAF gene (v-maf musculoaponeurotic fibrosarcoma oncogene homologue (avian) also known as MAF or MGC71685) is a transcription factor containing a leucine zipper which acts like a homodimer or a heterodimer. Depending on the DNA binding site, the encoded protein can be a transcriptional activator or repressor.
  • the DNA sequence encoding c-MAF is described in the NCBI database under accession number NG 016440 (SEQ ID NO: 1). Two messenger RNA are transcribed from said DNA sequence, each of the which will give rise to one of the two c-MAF protein isoforms, the ⁇ isoform and the ⁇ isoform.
  • the complementary DNA sequences for each of said isoforms are described, respectively, in the NCBI database under accession numbers NM_005360.4 (SEQ ID NO: 2) and NM_001031804.2 (SEQ ID NO: 3).
  • metastasis is understood as the propagation of a cancer from the organ where it started to a different organ. It generally occurs through the blood or lymphatic system.
  • the cancer cells spread and form a new tumor, the latter is called a secondary or metastatic tumor.
  • the cancer cells forming the secondary tumor are like those of the original tumor.
  • a breast cancer for example, spreads (metastasizes) to the lung
  • the secondary tumor is formed of malignant breast cancer cells.
  • the disease in the lung is metastatic breast cancer and not lung cancer.
  • the metastasis is ER+ breast cancer which has spread (metastasized) to the bone.
  • ER+ breast cancer is understood as breast cancer the tumor cells of which express the estrogen receptor (ER). This makes said tumors sensitive to estrogens, meaning that the estrogen makes the cancerous breast tumor grow.
  • ER- breast cancer is understood as breast cancer the tumor cells of which do not express the estrogen receptor (ER) .
  • diagnosis of metastasis in a subject with breast cancer is understood as identifying a disease (metastasis) by means of studying its signs, i.e., in the context of the present disclosure by means of increased c-MAF gene expression levels (i.e., overexpression) in the breast cancer tumor tissue with respect to a control sample.
  • prognosis of the tendency to develop metastasis in a subject with ER+ breast cancer is understood as knowing based on the signs if the ER+ breast cancer that said subject has will metastasize in the future.
  • the sign is c-MAF gene overexpression in tumor tissue.
  • the disclosed method comprises in a first step quantifying the c-MAF gene expression level in a tumor tissue sample from a subject.
  • the first method disclosed herein comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.
  • the term "subject” or “patient” refers to all animals classified as mammals and includes but is not limited to domestic and farm animals, primates and humans, for example, human beings, non-human primates, cows, horses, pigs, sheep, goats, dogs, cats, or rodents.
  • the subject is a human man or woman of any age or race.
  • tissue sample is understood as the tissue sample originating from the primary ER+ breast cancer tumor.
  • Said sample can be obtained by conventional methods, for example biopsy, using methods well known by the persons skilled in related medical techniques.
  • the methods for obtaining a biopsy sample include splitting a tumor into large pieces, or microdissection, or other cell separating methods known in the art.
  • the tumor cells can additionally be obtained by means of cytology through aspiration with a small gauge needle.
  • samples can be fixed in formalin and soaked in paraffin or first frozen and then soaked in a tissue freezing medium such as OCT compound by means of immersion in a highly cryogenic medium which allows rapid freezing.
  • the gene expression levels can be quantified by measuring the messenger RNA levels of said gene or of the protein encoded by said gene.
  • the biological sample can be treated to physically or mechanically break up the tissue or cell structure, releasing the intracellular components into an aqueous or organic solution for preparing nucleic acids.
  • the nucleic acids are extracted by means of commercially available methods known by the person skilled in the art ( Sambroock, J., et al., "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3 .)
  • the c-MAF gene expression level can be quantified from the RNA resulting from the transcription of said gene (messenger RNA or mRNA) or, alternatively, from the complementary DNA (cDNA) of said gene. Therefore, in a particular embodiment the quantification of the c-MAF gene expression levels comprises the quantification of the messenger RNA of the c-MAF gene or a fragment of said mRNA, complementary DNA of the c-MAF gene or a fragment of said cDNA or the mixtures thereof.
  • any conventional method can be used for detecting and quantifying the mRNA levels encoded by the c-MAF gene or of the corresponding cDNA thereof.
  • the mRNA levels encoded by said gene can be quantified using conventional methods, for example, methods comprising mRNA amplification and the quantification of said mRNA amplification product, such as electrophoresis and staining, or alternatively, by Southern blot and using suitable probes, Northern blot and using specific probes of the mRNA of the gene of interest (c-MAF) or of the corresponding cDNA thereof, mapping with S1 nuclease, RT-PCR, hybridization, microarrays, etc., preferably by means of real time quantitative PCR using a suitable marker.
  • the cDNA levels corresponding to said mRNA encoded by the c-MAF gene can also be quantified by means of using conventional techniques; in this case, the method includes a step for synthesizing the corresponding cDNA by means of reverse transcription (RT) of the corresponding mRNA followed by the amplification and quantification of said cDNA amplification product.
  • RT reverse transcription
  • Conventional methods for quantifying expression levels can be found, for example, in Sambrook et al., 2001. (cited ad supra ).
  • the c-MAF gene expression levels are quantified by means of quantitative polymerase chain reaction (PCR) or a DNA or RNA array.
  • PCR quantitative polymerase chain reaction
  • the c-MAF gene expression level can also be quantified by means of quantifying the expression levels of the protein encoded by said gene, i.e., the c-MAF protein (c-MAF) [NCBI, accession number O75444], or any functionally equivalent variant of the c-MAF protein.
  • c-MAF protein [NCBI, accession number O75444]
  • c-MAF protein [NCBI, accession number O75444]
  • the c-MAF gene expression level can be quantified by means of quantifying the expression levels of any of the c-MAF protein isoforms.
  • the quantification of the levels of the protein encoded by the c-MAF gene comprises the quantification of the c-MAF protein.
  • “functionally equivalent variant of the c-MAF protein” is understood as (i) variants of the c-MAF protein (SEQ ID NO: 4 or SEQ ID NO: 5) in which one or more of the amino acid residues are substituted by a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue), wherein such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) variants comprising an insertion or a deletion of one or more amino acids and having the same function as the c-MAF protein, i.e., to act as a DNA binding transcription factor.
  • Variants of the c-MAF protein can be identified using methods based on the capacity of c-MAF for promoting in vitro cell proliferation as shown in international patent application WO2005/046731 , based on the capacity of the so-called inhibitor for blocking the transcription capacity of a reporter gene under the control of cyclin D2 promoter or of a promoter containing the c-MAF responsive region (MARE or c-MAF responsive element) in cells expressing c-MAF as described in WO2008098351 , or based on the capacity of the so-called inhibitor for blocking reporter gene expression under the control of the IL-4 promoter in response to the stimulation with PMA/ionomycin in cells expressing NFATc2 and c-MAF as described in US2009048117A .
  • the variants according to the disclosure preferably have sequences similarity with the amino acid sequence of any of the c-MAF protein isoforms (SEQ ID NO: 4 or SEQ ID NO: 5) of at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99%.
  • the degree of similarity between the variants and the specific c-MAF protein sequences defined previously is determined using algorithms and computer processes which are widely known by the persons skilled in the art.
  • the similarity between two amino acid sequences is preferably determined using the BLASTP algorithm [ BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894 , Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990 )].
  • the c-MAF protein expression level can be quantified by any conventional method which allows detecting and quantifying said protein in a sample from a subject.
  • said protein levels can be quantified, for example, by using antibodies with c-MAF binding capacity (or a fragment thereof containing an antigenic determinant) and the subsequent quantification of the complexes formed.
  • the antibodies used in these assays may or may not be labeled.
  • markers that can be used include radioactive isotopes, enzymes, fluorophores, chemiluminescence reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes, etc.
  • any antibody or reagent that is known to bind to the c-MAF protein with a high affinity can be used for detecting the amount thereof.
  • an antibody for example, polyclonal sera, supernatants of hybridomas or monoclonal antibodies, antibody fragments, Fv, Fab, Fab' and F(ab')2, scFv, humanized diabodies, triabodies, tetrabodies and antibodies.
  • anti-c-MAF protein antibodies on the market which can be used, such as for example antibodies ab427, ab55502, ab55502, ab72584, ab76817, ab77071 (Abcam plc, 330 Science Park, Cambridge CB4 0FL, United Kingdom), the 075444 monoclonal antibody (Mouse Anti-Human MAF Azide free Monoclonal antibody, Unconjugated, Clone 6b8) of AbD Serotec, etc.
  • anti-c-MAF antibodies such as Abnova Corporation, Bethyl Laboratories, Bioworld Technology, GeneTex, etc.
  • the c-MAF protein levels are quantified means of western blot, ELISA or a protein array.
  • the disclosed method comprises in a second step comparing the c-MAF gene expression level obtained in the tumor sample from the subject with the expression level of said gene in a control sample.
  • c-MAF gene expression levels in a tumor tissue sample from a subject with ER+ breast cancer have been measured and compared with the control sample, if the expression levels of said gene are increased with respect to its expression levels in the control sample, then it can be concluded that said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.
  • the determination of the c-MAF gene expression levels must be correlated with values of a control sample or reference sample. Depending on the type of tumor to be analyzed, the exact nature of the control sample may vary. Thus, in the event that a diagnosis is to be evaluated, then the reference sample is a tumor tissue sample from a subject with ER+ breast cancer that has not metastasized or that corresponds to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples from subjects with ER+ breast cancer which have not metastasized.
  • Said reference sample is typically obtained by combining equal amounts of samples from a subject population.
  • the typical reference samples will be obtained from subjects who are clinically well documented and in whom the absence of metastasis is well characterized.
  • the normal concentrations (reference concentration) of the biomarker (c-MAF gene) can be determined, for example by providing the mean concentration over the reference population.
  • Various considerations are taken into account when determining the reference concentration of the marker. Among such considerations are the age, weight, sex, general physical condition of the patient and the like. For example, equal amounts of a group of at least 2, at least 10, at least 100 to preferably more than 1000 subjects, preferably classified according to the foregoing considerations, for example according to various age categories, are taken as the reference group.
  • the sample collection from which the reference level is derived will preferably be formed by subjects suffering from the same type of cancer as the patient object of the study.
  • the level of this marker expressed in tumor tissues from patients with this median value can be compared and thus be assigned to the "increased” expression level. Due to the variability among subjects (for example, aspects referring to age, race, etc.) it is very difficult (if not virtually impossible) to established absolute reference values of c-MAF expression. Thus, in particular embodiment the reference values for "increased” or “reduced” expression of the c-MAF expression are determined by calculating the percentiles by conventional means which involves performing assays in one or several samples isolated from subjects whose disease is well documented by any of the methods mentioned above the c-MAF expression levels.
  • the "reduced" levels of c-MAF can then preferably be assigned to samples wherein the c-MAF expression levels are equal to or lower than 50 th percentile in the normal population including, for example, expression levels equal to or lower than the 60 th percentile in the normal population, equal to or lower than the 70 th percentile in the normal population, equal to or lower than the 80 th percentile in the normal population, equal to or lower than the 90 th percentile in the normal population, and equal to or lower than the 95 th percentile in the normal population.
  • the "increased" c-MAF gene expression levels can then preferably be assigned to samples wherein the c-MAF gene expression levels are equal to or greater than the 50 th percentile in the normal population including, for example, expression levels equal to or greater than the 60 th percentile in the normal population, equal to or greater than the 70 th percentile in the normal population, equal to or greater than the 80 th percentile in the normal population, equal to or greater than the 90 th percentile in the normal population, and equal to or greater than the 95 th percentile in the normal population.
  • “increased expression levels” is understood as the expression level when it refers to the levels of the c-MAF gene greater than those in a reference sample or control sample.
  • a sample can be considered to have high c-MAF expression levels when the expression levels in the reference sample are at least 1.1 times, 1.5 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the sample isolated from the patient.
  • a subject has a positive diagnosis for metastasis when the ER+ breast cancer suffered by said subject has metastasized to other organs of the body, in a particular embodiment, to the bone.
  • the metastasis to bone is an osteolytic bone metastasis.
  • osteolytic bone metastasis refers to a type of metastasis in which bone resorption (progressive loss of the bone density) is produced in the proximity of the metastasis resulting from the stimulation of the osteoclast activity by the tumor cells and is characterized by severe pain, pathological fractures, hypercalcaemia, spinal cord compression and other syndromes resulting from nerve compression.
  • the prediction of the tendency for a primary breast tumor to metastasize is not intended to be correct for all the subjects to be identified (i.e., for 100% of the subjects). Nevertheless, the term requires enabling the identification of a statistically significant part of the subjects (for example, a cohort in a cohort study). Whether a part is statistically significant can be determined in a simple manner by the person skilled in the art using various well known statistical evaluation tools, for example, the determination of confidence intervals, determination of p values, Student's T test, Mann-Whitney test, etc. Details are provided in Dowdy and Wearden, Statistics for Research, John Wiley and Sons, New York 1983 .
  • the preferred confidence intervals are at least 90%, at least 95%, at least 97%, at least 98% or at least 99%.
  • the p values are preferably 0.1, 0.05, 0.01, 0.005 or 0.0001. More preferably, at least 60%, at least 70%, at least 80% or at least 90% of the subjects of a population can be suitably identified by the method of the present disclosure.
  • the treatment to be administered to a subject suffering from cancer depends on whether the latter is a malignant tumor, i.e., whether it has high probabilities of undergoing metastasis, or whether the latter is a benign tumor.
  • the treatment of choice is a systemic treatment such as chemotherapy and in the second assumption, the treatment of choice is a localized treatment such as radiotherapy.
  • the c-MAF gene overexpression in breast cancer cells is related to the presence of metastasis
  • the c-MAF gene expression levels allow making decisions in terms of the most suitable therapy for the subject suffering said cancer.
  • an in vitro method for designing a customized therapy for a subject with ER+ breast cancer which comprises
  • the metastasis is a bone metastasis.
  • the bone metastasis is osteolytic metastasis.
  • the second disclosed method comprises in a first step quantifying the c-MAF gene expression level in a tumor tissue sample in a subject suffering from ER+ breast cancer.
  • the second method comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.
  • the sample is a primary tumor tissue sample of the subject.
  • the c-MAF gene expression level obtained in the tumor sample of the subject is compared with the expression level of said gene in a control sample.
  • the determination of the c-MAF gene expression levels must be related to values of a control sample or reference sample. Depending on the type of tumor to be analyzed, the exact nature of the control sample may vary.
  • the reference sample is a tumor tissue sample of subject with ER+ breast cancer that has not metastasized or that correspond to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples of subjects with ER+ breast cancer which has not metastasized.
  • c-MAF gene expression levels in the sample have been measured and compared with the control sample, if the expression levels of said gene are increased with respect to their expression levels in the control sample, then it can be concluded that said subject is susceptible to receiving therapy aiming to prevent (if the subject has yet to undergo metastasis) and/or treat metastasis (if the subject has already experienced metastasis).
  • systemic treatments including but not limited to chemotherapy, hormone treatment, immunotherapy, or a combination thereof are used. Additionally, radiotherapy and/or surgery can be used.
  • the choice of treatment generally depends on the type of primary cancer, the size, the location of the metastasis, the age, the general health of the patient and the types of treatments used previously.
  • the systemic treatments are those that reach the entire body:
  • the authors of the present invention have clearly shown that the conditioned medium of cell lines derived from primary breast tumors which have high bone metastasis causing capacity and which over-express c-MAF are capable of inducing the osteoclast formation in a greater extent than the cells that do not over-express c-MAF.
  • those patients suffering ER-breast cancer which has already metastasized to the bone and in which there are elevated c-MAF levels may particularly benefit from therapies aimed at preventing the bone degradation caused by the increased osteoclastic activity.
  • an in vitro method for designing a customized therapy for a subject with ER- breast cancer with bone metastasis which comprises
  • the bone metastasis is osteolytic metastasis.
  • the third method disclosed herein comprises in a first step, quantifying the c-MAF gene expression level in a tumor tissue sample in a subject suffering breast cancer.
  • the sample is a tissue sample from bone metastasis.
  • the third method comprises quantifying only the c-MAF gene expression level as a single marker, i.e., the method does not involve determining the expression level of any additional marker.
  • the c-MAF gene expression level obtained in the tumor sample of the subject is compared with the expression level of said gene in a control sample.
  • the determination of the c-MAF gene expression levels must be correlated to values of a control sample or reference sample. Depending on the type of tumor to be analyzed, the exact nature of the control sample may vary.
  • the reference sample is a tumor tissue sample of subject with breast cancer who has not suffered metastasis or that correspond to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples of subjects with breast cancer who has not suffered metastasis.
  • c-MAF gene expression levels in the sample is measured and compared with the control sample, if the expression levels of said gene are increased with respect to its expression levels in the control sample, then it can be concluded that said subject is susceptible to receive a therapy aiming to avoid or prevent bone degradation.
  • an "agent for avoiding or preventing bone degradation” refers to any molecule capable of treating or stopping bone degradation either by stimulating the osteoblast proliferation or inhibiting the osteoclast proliferation.
  • agents used for avoiding and/or preventing bone degradation include, although not limited to:
  • the anti-RANKL antibody is a monoclonal antibody.
  • the anti-RANKL antibody is Denosumab ( Pageau, Steven C. (2009). mAbs 1 (3): 210-215 , CAS number 615258-40-7 ).
  • Denosumab is a monoclonal antibody which binds to RANKL and prevents its activation (it does not bind to the RANK receptor).
  • the agent preventing the bone degradation is a bisphosphonate.
  • the bisphosphonate is the zoledronic acid.
  • a combined treatment can be carried out in which more than one agent from those mentioned above are combined to treat and/or prevent the metastasis or said agents can be combined with other supplements, such as calcium or vitamin D or with a hormone treatment.
  • the authors of the invention have identified which cell lines derived from ER+ breast tumors having a high metastatic capacity show an amplification of the locus 16q22-q24, which includes the locus corresponding to the c-MAF gene and an amplification of the c-MAF gene.
  • an in vitro method for the diagnosis of metastasis in a subject with breast cancer and/or for the prognosis of the tendency to develop metastasis in a subject with breast cancer which comprises determining if the c-MAF gene is amplified in a tumor tissue sample of said subject; wherein if said gene is amplified with respect to a control sample, then said subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.
  • the breast cancer diagnosed in the fourth method is ER+ or ER- breast cancer.
  • c-MAF gene "metastasis”, “tumor tissue sample”, “ER+ breast cancer”, “diagnosis of metastasis in a subject with ER+ breast cancer”, “prognosis of the tendency to develop metastasis in a subject with ER+ breast cancer”, "subject”, “patient”, “subject having a positive diagnosis of metastasis”, “subject having a greater tendency to develop metastasis” have been described in detail in the context of the first method and are equally applicable to the fourth method.
  • the degree of amplification of the c-MAF gene can be determined by means of determining the amplification of a chromosome region containing said gene.
  • the chromosome region the amplification of which is indicative of the existence of amplification of the c-MAF gene is the locus 16q22-q24 which includes the c-MAF gene.
  • the locus 16q22-q24 is located in chromosome 16, in the long arm of said chromosome and in a range between band 22 and band 24. This region corresponds in the NCBI database with the contigs NT_010498.15 and NT_010542.15.
  • the degree of amplification of the c-MAF gene can be determined by means of using a probe specific for said gene.
  • the fourth diagnosis/prognosis method comprises, in a first step, determining if the c-MAF gene is amplified in a tumor tissue sample of a subject. To that end, the amplification of the c-MAF gene in the tumor sample is compared with respect to a control sample.
  • amplification of a gene refers to a process through which various copies of a gene or of a gene fragment are formed in an individual cell or a cell line.
  • the copies of the gene are not necessarily located in the same chromosome.
  • the duplicated region is often called an "amplicon”. Normally, the amount of mRNA produced, i.e., the gene expression level also increases in proportion to the copy number of a particular gene.
  • the fourth method for the diagnoses of metastasis in a subject with breast cancer and/or for the prognosis of the tendency to develop metastasis in a subject with breast cancer comprises determining the c-MAF gene copy number in a tumor tissue sample of said subject and comparing said copy number with the copy number of a control or reference sample, wherein if the c-MAF copy number is greater with respect to the c-MAF copy number of a control sample, then the subject has a positive diagnosis of metastasis or a greater tendency to develop metastasis.
  • the control sample refers to a tumor tissue sample of a subject with ER+ or ER- breast cancer (according to the type of cancer that the subject suffers from) who has not suffered metastasis or that correspond to the median value of the c-MAF gene copy number measured in a tumor tissue collection in biopsy samples of subjects with ER+ or ER- breast cancer who have not suffered metastasis.
  • Said reference sample is typically obtained by combining equal amounts of samples from a subject population. If the c-MAF gene copy number is increased with respect to the copy number of said gene in the control sample, then subject has a positive diagnosis for metastasis or a greater tendency to develop metastasis.
  • the term "gene copy number” refers to the copy number of a nucleic acid molecule in a cell.
  • the gene copy number includes the gene copy number in the genomic (chromosomal) DNA of a cell. In a normal cell (non-tumoral cell), the gene copy number is normally two copies (one copy in each member of the chromosome pair). The gene copy number sometimes includes half of the gene copy number taken from samples of a cell population.
  • “increased gene copy number” is understood as when the c-MAF gene copy number is more than the copy number that a reference sample or control sample has. In particular, it can be considered that a sample has an increased c-MAF copy number when the copy number is more than 2 copies, for example, 3, 4, 5, 6, 7, 8, 9 or 10 copies, and even more than 10 copies of the c-MAF gene.
  • the amplification or the copy number is determined by means of in situ hybridization or PCR.
  • ISH in situ hybridization
  • FISH fluorescence in situ hybridization
  • CISH chromogenic in situ hybridization
  • SISH silver in situ hybridization
  • genomic comparative hybridization or polymerase chain reaction such as real time quantitative PCR
  • FISH fluorescence in situ hybridization
  • a fluorescent molecule or a hapten typically in the form of fluor-dUTP, digoxigenin-dUTP, biotin-dUTP or hapten-dUTP which is incorporated in the DNA using enzymatic reactions, such as nick translation or PCR.
  • the sample containing the genetic material (the chromosomes) is placed on glass slides and is denatured by a formamide treatment.
  • the labeled probe is then hybridized with the sample containing the genetic material under suitable conditions which will be determined by the person skilled in the art. After the hybridization, the sample is viewed either directly (in the case of a probe labeled with fluorine) or indirectly (using fluorescently labeled antibodies to detect the hapten).
  • the probe is labeled with digoxigenin, biotin or fluorescein and is hybridized with the sample containing the genetic material in suitable conditions.
  • any marking or labeling molecule which can bind to a DNA can be used to label the probes used in the fourth method, thus allowing the detection of nucleic acid molecules.
  • labels for the labeling include, although not limited to, radioactive isotopes, enzyme substrates, cofactors, ligands, chemiluminescence agents, fluorophores, haptens, enzymes and combinations thereof. Methods for labeling and guideline for selecting suitable labels for different purposes can be found, for example, in Sambrook et al. (Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989 ) and Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley and Sons, New York, 1998 ).
  • the determination of the amplification of the c-MAF gene needs to be correlated with values of a control sample or reference sample that correspond to the level of amplification of the c-MAF gene measured in a tumor tissue sample of a subject with breast cancer who has not suffered metastasis or that correspond to the median value of the amplification of the c-MAF gene measured in a tumor tissue collection in biopsy samples of subjects with breast cancer who have not suffered metastasis.
  • Said reference sample is typically obtained by combining equal amounts of samples from a subject population. In general, the typical reference samples will be obtained from subjects who are clinically well documented and in whom the absence of metastasis is well characterized.
  • the sample collection from which the reference level is derived will preferably be made up of subjects suffering the same type of cancer as the patient object of the study. Once this median value has been established, the level of amplification of c-MAF in tumor tissues of patients can be compared with this median value, and thus, if there is amplification, the subject has a positive diagnosis of metastasis or a greater tendency to develop metastasis.
  • the metastasis is bone metastasis.
  • the bone metastasis is osteolytic bone metastasis.
  • osteolytic bone metastasis refers to a type of metastasis in which bone resorption (progressive loss of bone density) is produced in the proximity of the metastasis resulting from the stimulation of the osteoclast activity by the tumor cells and is characterized by severe pain, pathological fractures, hypercalcaemia, spinal cord compression and other syndromes resulting from nerve compression.
  • a c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene can be used in the treatment and/or the prevention of breast cancer metastasis.
  • a c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene in the preparation of a medicinal product for treating and/or preventing breast cancer metastasis.
  • the disclosure relates to a c-MAF gene expression inhibitory agent or an inhibitory agent of the protein encoded by said gene for use in the treatment and/or the prevention of breast cancer metastasis.
  • the disclosure relates to a method for treating the breast cancer metastasis in a subject which comprises administering a c-MAF inhibitor to said subject.
  • a "c-MAF inhibitory agent” refers to any molecule capable of completely or partially inhibiting the c-MAF gene expression, both by preventing the expression product of said gene from being produced (interrupting the c-MAF gene transcription and/or blocking the translation of the mRNA coming from the c-MAF gene expression) and by directly inhibiting the c-MAF protein activity.
  • C-MAF gene expression inhibitors can be identified using methods based on the capacity of the so-called inhibitor to block the capacity of c-MAF to promote the in vitro cell proliferation, such as shown in the international patent application WO2005/046731 , based on the capacity of the so-called inhibitor to block the transcription capacity of a reporter gene under the control of the cyclin D2 promoter or of a promoter containing the c-MAF response region (MARE or c-MAF responsive element) in cells which express c-MAF such as described in WO2008098351 or based on the capacity of the so-called inhibitor to block the expression of a reporter gene under the control of the IL-4 promoter in response to the stimulation with PMA/ionomycin in cells which express NFATc2 and c-MAF such as described in US2009048117A .
  • MARE c-MAF response region
  • c-MAF inhibitory agents suitable for use as disclosed herein include antisense oligonucleotides, interference RNAs (siRNAs), catalytic RNAs or specific ribozymes and inhibitory antibodies.
  • An additional aspect of the disclosure relates to the use of isolated "antisense" nucleic acids to inhibit expression, for example, for inhibiting transcription and/or translation of a nucleic acid which encodes c-MAF the activity of which is to be inhibited.
  • the antisense nucleic acids can be bound to the target potential of the drug by means of conventional base complementarity or, for example, in the case of biding to Double stranded DNA through specific interaction in the large groove of the double helix.
  • these methods refer to a range of techniques generally used in the art and they include any method which is based on the specific binding to oligonucleotide sequences.
  • an antisense construct can be distributed, for example, as an expression plasmid which, when is transcribed in cell, produces RNA complementary to at least one unique part of the cellular mRNA encoding c-MAF.
  • the antisense construct is a oligonucleotide probe generated ex vivo which, when introduced into the cell, produces inhibition of gene expression hybridizing with the mRNA and/or gene sequences of a target nucleic acid.
  • oligonucleotide probes are preferably modified oligonucleotides which are resistant to endogenous nucleases, for example, exonucleases and/or endonucleases and are therefore stable in vivo.
  • nucleic acids molecules for use thereof as an antisense oligonucleotides are DNA analogs of phosphoramidate, phosphothionate and methylphosphonate (see also US patent Nos. 5176996 ; 5264564 ; and 5256775 ). Additionally, the general approximations for constructing oligomers useful in the antisense therapy have been reviewed, for example, in Van der Krol et al., BioTechniques 6: 958-976, 1988 ; and Stein et al., Cancer Res 48: 2659-2668, 1988 .
  • the oligodeoxyribonucleotide regions derived from the starting site of the translation for example, between -10 and +10 of the target gene are preferred.
  • the antisense approximations involve the oligonucleotide design (either DNA or RNA) that are complementary to the mRNA encoding the target polypeptide.
  • the antisense oligonucleotide will be bound to the transcribed mRNA and translation will be prevented.
  • the oligonucleotides which are complementary to the 5' end of the mRNA, for example the non translated 5' sequence up to and including the start codon AUG must function in the most efficient manner to inhibit translation. Nevertheless, it has been shown recently that the sequences complementary to the non translated 3' sequences of the mRNA are also efficient for inhibiting mRNA translation ( Wagner, Nature 372: 333, 1994 ). Therefore, complementary oligonucleotides could be used at the non translated 5' or 3' regions, non coding regions of a gene in an antisense approximation to inhibit the translation of that mRNA.
  • the oligonucleotides complementary to the non translated 5' region of the mRNA must include the complement of the start codon AUG.
  • the oligonucleotides complementary to the coding region of the mRNA are less efficient translation inhibitors but they could also be used. If they are designed to hybridize with the 5' region, 3' region or the coding region of the mRNA, the antisense nucleic acids must have at least six nucleotides long and preferably have less than approximately 100 and more preferably less than approximately 50, 25, 17 or 10 nucleotides long.
  • in vitro studies are performed first to quantify the capacity of the antisense oligonucleotides for inhibiting gene expression.
  • these studies use controls which distinguish between antisense gene inhibition and non specific biological effects of the oligonucleotides.
  • these studies compared the levels of target RNA or protein with that of an internal control of RNA or protein. The results obtained using the antisense oligonucleotides can be compared with those obtained using a control oligonucleotide.
  • control oligonucleotide is approximately of the same length as the oligonucleotide to be assayed and that the oligonucleotide sequence does not differ from the antisense sequence more than it is deemed necessary to prevent the specific hybridization to the target sequence.
  • the antisense oligonucleotide can be a single or double stranded DNA or RNA or chimeric mixtures or derivatives or modified versions thereof.
  • the oligonucleotide can be modified in the base group, the sugar group or the phosphate backbone, for example, to improve the stability of the molecule, its hybridization capacity etc.
  • the oligonucleotide may include other bound groups, such as peptides (for example, for directing them to the receptors of the host cells) or agents for facilitating transport through the cell membrane (see, for example, Letsinger et al., Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556, 1989 ; Lemaitre et al., Proc.
  • the oligonucleotide can be conjugated to another molecule, for example, a peptide, a transporting agent, hybridization triggered cleaving agent, etc.
  • the antisense oligonucleotides may comprise at least one group of modified base.
  • the antisense oligonucleotide may also comprise at least a modified sugar group selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
  • the antisense oligonucleotide may also contain a backbone similar to a neutral peptide.
  • PNA peptide nucleic acid
  • the antisense oligonucleotide comprises at least one modified phosphate backbone. In yet another embodiment, the antisense oligonucleotide is an alpha-anomeric oligonucleotide.
  • antisense oligonucleotides complementary to the coding region of the target mRNA sequence can be used, those complementary to the transcribed non translated region can also be used.
  • a preferred approximation uses a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter.
  • the target gene expression can be reduced by directing deoxyribonucleotide sequences complementary to the gene regulating region (i.e., the promoter and/or enhancers) to form triple helix structures preventing gene transcription in the target cells in the body (see in general, Helene, Anticancer Drug Des. 6(6): 569-84, 1991 ).
  • the antisense oligonucleotides are antisense morpholines.
  • siRNA small interference RNA or siRNA are agents which are capable of inhibiting the expression of a target gene by means of RNA interference.
  • a siRNA can be chemically synthesized, can be obtained by means of in vitro transcription or can be synthesized in vivo in the target cell.
  • the siRNA consist of a double stranded RNA between 15 and 40 nucleotide long and may contain a 3' and/or 5' protruding region of 1 to 6 nucleotides. The length of the protruding region is independent of the total length of the siRNA molecule.
  • the siRNA act by means of degrading or silencing the target messenger after transcription.
  • siRNA used herein are substantially homologous to the mRNA of the c-MAF encoding gene or to the gene sequence which encodes said protein. "Substantially homologous” is understood as having a sequence which is sufficiently complementary or similar to the target mRNA such that the siRNA is capable of degrading the latter through RNA interference.
  • the siRNA suitable for causing said interference include siRNA formed by RNA, as well as siRNA containing different chemical modifications such as:
  • the siRNA can be used as is, i.e., in the form of a double stranded RNA with the aforementioned characteristics.
  • the use of vectors containing the sense and antisense strand sequence of the siRNA is possible under the control of suitable promoters for the expression thereof in the cell of interest.
  • Vectors suitable for expressing siRNA are those in which the two DNA regions encoding the two strands of siRNA are arranged in tandem in one and the same DNA strand separated by a spacer region which, upon transcription, forms a loop and wherein a single promoter directs the transcription of the DNA molecule giving rise to shRNA.
  • each of the strands forming the siRNA is formed from the transcription of a different transcriptional unit.
  • These vectors are in turn divided into divergent and convergent transcription vectors.
  • divergent transcription vectors the transcriptional units encoding each of the DNA strands forming the siRNA are located in tandem in a vector such that the transcription of each DNA strand depends on its own promoter which may be the same or different ( Wang, J. et al., 2003, Proc. Natl. Acad. Sci. USA., 100:5103-5106 and Lee, N.S., et al., 2002, Nat. Biotechnol., 20:500-505 ).
  • the DNA regions giving rise to the siRNA form the sense and antisense strands of a DNA region which are flanked by two reverse promoters. After the transcription of the sense and antisense RNA strands, the latter will form the hybrid for forming a functional siRNA.
  • Vectors with reverse promoter systems in which 2 U6 promoters ( Tran, N. et al., 2003, BMC Biotechnol., 3:21 ), a mouse U6 promoter and a human H1 promoter ( Zheng, L., et al., 2004, Proc. Natl. Acad. Sci.
  • Promoters suitable for use thereof in the expression of siRNA from convergent or divergent expression vectors include any promoter or pair of promoters compatible with the cells in which the siRNA is to be expressed.
  • promoters suitable for the present disclosure include but are not necessarily limited to constitutive promoters such as those derived from the genomes of eukaryotic viruses such as the polyoma virus, adenovirus, SV40, CMV, avian sarcoma virus, hepatitis B virus, the metallothionein gene promoter, the thymidine kinase gene promoter of the herpes simplex virus, retrovirus LTR regions, the immunoglobulin gene promoter, the actin gene promoter, the EF-1alpha gene promoter as well as inducible promoters in which the protein expression depends on the addition of a molecule or an exogenous signal such as the tetracycline system, the NFkappaB/UV light system, the Cre/Lox system and the heat shock gene
  • the promoters are RNA polymerase III promoters which act constitutively.
  • the RNA polymerase III promoters are found in a limited number of genes such as 5S RNA, tRNA, 7SL RNA and U6 snRNA.
  • type III promoters do not require any intragenic sequence but rather need sequences in 5' direction comprising a TATA box in positions -34 and -24, a proximal sequence element or PSE between -66 and -47 and, in some cases, a distal sequence element or DSE between positions -265 and -149.
  • the type III RNA polymerase III promoters are the human or murine H1 and U6 gene promoters.
  • the promoters are 2 human or murine U6 promoters, a mouse U6 promoter and a human H1 promoter or a human U6 promoter and a mouse H1 promoter.
  • the ER alpha gene promoters or cyclin D1 gene promoters are especially suitable and therefore they are especially preferred to specifically express the genes of interest in breast tumors, preferably in ER+ breast tumors.
  • the siRNA can be generated intracellularly from the so called shRNA (short hairpin RNA) characterized in that the antiparallel strands forming the siRNA are connected by a loop or hairpin region.
  • shRNAs can be encoded by plasmids or viruses, particularly retroviruses, and are under the control of a promoter. Promoters suitable for expressing shRNA are those indicated in the paragraph above for expressing siRNA.
  • Vectors suitable for expressing siRNA and shRNA include prokaryotic expression vectors such as pUC18, pUC19, Bluescript and the derivatives thereof, mp18, mp19, pBR322, pMB9, CoIEl, pCRl, RP4, phages and shuttle vectors such as pSA3 and pAT28, yeast expression vectors such as 2-micron plasmid type vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series vectors and pVL series vectors, plant expression vectors such as pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE series vectors and the like and viral vector-based (adenovirus, viruses associated with adenoviruses as well as retroviruses and particularly lentiviruses) higher eukary
  • the siRNA and shRNA can be obtained using a series of techniques known by the person skilled in the art.
  • the region of the nucleotide sequence taken as a basis for designing the siRNA is not limiting and it may contain a region of the coding sequence (between the start codon and the end codon) or it may alternatively contain sequences of the non-translated 5' or 3' region preferably between 25 and 50 nucleotides long and in any position in 3' direction position with respect to the start codon.
  • One way of designing an siRNA involves the identification of the AA(N19)TT motifs wherein N can be any nucleotide in the c-MAF gene sequence, and the selection of those having a high G/C content. If said motif is not found, it is possible to identify the NA(N21) motif wherein N can be any nucleotide.
  • c-MAF specific siRNAs include the siRNA described in WO2005046731 , one of the strands of which is ACGGCUCGAGCAGCGACAA (SEQ ID NO: 6).
  • Other c-MAF specific siRNA sequences include but are not limited to CUUACCAGUGUGUUCACAA (SEQ ID NO: 7), UGGAAGACUACUACUGGAUG (SEQ ID NO: 8), AUUUGCAGUCAUGGAGAACC (SEQ ID NO: 9), CAAGGAGAAAUACGAGAAGU (SEQ ID NO: 10), ACAAGGAGAAAUACGAGAAG (SEQ ID NO: 11) and ACCUGGAAGACUACUACUGG (SEQ ID NO: 12).
  • DNA enzymes to inhibit the expression of the c-MAF gene.
  • DNA enzymes incorporate some of the mechanistic features of both antisense and ribozyme technologies. DNA enzymes are designed such that they recognize a particular target nucleic acid sequence similar to the antisense oligonucleotide, nevertheless like the ribozyme they are catalytic and specifically cleave the target nucleic acid.
  • Ribozyme molecules designed for catalytically cleaving transcription products of a target mRNA to prevent the translation of the mRNA which encodes c-MAF the activity of which is to be inhibited, can also be used. Ribozymes are enzymatic RNA molecules capable of catalyzing specific RNA cleaving (for a review, see, Rossi, Current Biology 4: 469-471, 1994 ). The mechanism of ribozyme action involves a specific hybridization of a ribozyme molecule sequence to a complementary target RNA followed by an endonucleolytic cleavage event.
  • the composition of the ribozyme molecules preferably includes one or more sequences complementary to the target mRNA and the well known sequence responsible for cleaving the mRNA or a functionally equivalent sequence (see, for example, US patent No. 5093246 ).
  • the ribozymes used herein include hammer-head ribozymes, endoribonuclease RNA (hereinafter "Cech type ribozymes") ( Zaug et al., Science 224:574-578, 1984 .
  • the ribozymes can be formed by modified oligonucleotides (for example to improve the stability, targeting, etc.) and they should be distributed to cells expressing the target gene in vivo.
  • a preferred distribution method involves using a DNA construct which "encodes" the ribozyme under the control of a strong constitutive pol III or pol II promoter such that the transfected cells will produce sufficient amounts of the ribozyme to destroy the endogenous target messengers and to inhibit translation. Since the ribozymes are catalytic, unlike other antisense molecules, a low intracellular concentration is required for its efficiency.
  • inhibitory antibody is understood as any antibody capable of binding specifically to the c-MAF protein and inhibiting one or more of the functions of said protein, preferably those related to transcription.
  • the antibodies can be prepared using any of the methods which are known by the person skilled in the art, some of which have been mentioned above.
  • the polyclonal antibodies are prepared by means of immunizing an animal with the protein to be inhibited.
  • the monoclonal antibodies are prepared using the method described by Kohler, Milstein et al. (Nature, 1975, 256: 495 ).
  • suitable antibodies include intact antibodies comprising a variable antigen binding region and a constant region, "Fab”, “F(ab')2” and “Fab'”, Fv, scFv fragments, diabodies and bispecific antibodies. Once antibodies with c-MAF protein binding capacity are identified, those capable of inhibiting the activity of this protein will be selected using an inhibitory agent identification assay.
  • inhibitory peptide refers to those peptides capable of binding to the c-MAF protein and inhibiting its activity as has been explained above, i.e., preventing the c-MAF from being able to activate gene transcription.
  • the proteins from the maf family are capable of homodimerizing and heterodimerizing with other members of the AP-1 family such as Fos and Jun, one way of inhibiting c-MAF activity is by means of using negative dominants capable of dimerizing with c-MAF but lacking the capacity for activating transcription.
  • the negative c-MAF dominants can be any of the small maf proteins existing in the cell and lacking two-thirds of the amino terminal end containing the transactivation domain (for example, mafK, mafF, mafg and pi 8) ( Fujiwara et al (1993) Oncogene 8, 2371-2380 ; Igarashi et al. (1995) J. Biol.Chem.
  • negative c-MAF dominants include c-MAF variants which maintain the capacity for dimerizing with other proteins but lack the capacity for activating transcription. These variants are, for example, those lacking the c-MAF transactivation domain located at the N-terminal end of the protein.
  • negative c-MAF dominant variants include in an illustrative manner the variants in which at least amino acids 1 to 122, at least amino acids 1-187 or at least amino acids 1 to 257 (by considering the numbering of human c-MAF as described in US6274338 ) have been removed.
  • the disclosure contemplates the use of both the negative c-MAF dominant variants and of polynucleotides encoding c-MAF under the operative control of a promoter suitable for expression in target cell.
  • the promoters that can be used for regulating the polynucleotide transcription can be constitutive promoters, i.e., promoters directing the transcription at a basal level, or inducible promoters in which the transcriptional activity requires an external signal.
  • Constitutive promoters suitable for regulating transcription are, among others, the CMV promoter, the SV40 promoter, the DHFR promoter, the mouse mammary tumor virus (MMTV) promoter, the 1a elongation factor (EFla) promoter, the albumin promoter, the ApoA1 promoter, the keratin promoter, the CD3 promoter, the immunoglobulin heavy or light chain promoter, the neurofilament promoter, the neuron specific enolase promoter, the L7 promoter, the CD2 promoter, the myosin light chain kinase promoter, the HOX gene promoter, the thymidine kinase promoter, the RNA polymerase II promoter, the MyoD gene promoter, the phosphoglyceratekinase (PGK) gene promoter, the low density lipoprotein (LDL) promoter, the actin gene promoter.
  • the CMV promoter the SV40 promoter, the DHFR promoter, the mouse mamm
  • the promoter regulating the expression of the transactivator is the PGK gene promoter.
  • the promoter regulating the polynucleotide transcription is the RNA polymerase promoter of the T7 phage.
  • the inducible promoters that can be used in the context of the present disclosure are those responding to an inducer agent showing zero or negligible basal expression in the absence of an inducer agent and are capable of promoting the activation of gene located in the 3' position.
  • the inducible promoters are classified as Tet on/off promoters ( Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA, 89:5547-5551 ; Gossen, M. et al., 1995, Science 268:1766-1769 ; Rossi, F.M.V. and H.M. Blau, 1998, Curr. Opin. Biotechnol.
  • Vectors suitable for expressing the polynucleotide encoding the negative c-MAF dominant variant include vectors derived from prokaryotic expression vectors such as pUC18, pUC19, Bluescript and derivatives thereof, mp18, mp19, pBR322, pMB9, ColEl, pCRl, RP4, phages and shuttle vectors such as pSA3 and pAT28, yeast expression vectors such as 2-micron type plasmid vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series vectors and pVL series vectors, plant expression vectors such as pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE series vectors and the like and viral vector-based (adenoviruses, viruses associated with adenoviruses as
  • c-MAF inhibitors Antagonist Reference for cdk2 inhibitory activity
  • Purine Analogs Purvalanols such as 2-(1R-Isopropyl-2-hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine having a molecular formula C 19 H 25 ClN 6 O available from Sigma-Aldrich under the trade name Purvalanol A (#P4484, Sigma-Aldrich, St. Louis, MO), Gray, N.S.
  • Purvalanol B aminopurvalanol, compound 52 (where isopropyl of purvalanol A is replaced with H) 2-(Hydroxyethylamino)-6-benzylamino-9-methylpurine having a molecular formula C 15 H 18 N 6 O available from Sigma-Aldrich under the trade name Olomoucine (#O0886), 2-(2' -Hydroxyethylamino)-6-benzylamino-9-isopropylpurine having a molecular formula C 17 H 22 N 6 O available from Sigma-Aldrich under the trade name N 9 -isopropylolomoucine (#I0763); CVT-313 Vesely, J., et al., (1994) Eur.
  • Nonpurine based agents Indirubins such as indirubin-3'-monoxime having a molecular formula of C 16 H 11 N 3 O 2 available from Sigma-Aldrich under the trade name (#I0404), indirubin 5-sulfonate, 5-chloro indirubin Davies, T.G. et al., Structure, 9, 389-397 (2001 ); Marko, D. et al., Br. J. Cancer, 84, 283-289 (2001 ); Hoessel, R., et al., (1999) Nat. Cell Biol., 1, 60-7 ; PCT/US02/30059 to Hellberg et al. , published as WO 03/027275 .
  • Thiazoles such as fused thiazole, 4- ⁇ [(7-Oxo-6,7-dihydro-8H-[1,3]thiazolo[5,4-e]indol-8-ylidene)methyl]amino ⁇ -N-(2-pyridyl)benzenesulfonamide having a molecular formula of C 21 H 15 N 5 O 3 S 2 available from Sigma-Aldrich under the trade name GW8510 (#G7791) Davis, S.T. et al., Science, 291, 134-137 (2001 ); PCT/US02/30059 to Hellberg et al. , published as WO 03/027275 .
  • Flavopiridols such as flavopiridol (L86 8275; NCS 649890, National Cancer Institute, Bethesda, MD) and a dechloro derivative Carlson, B.A., et al., (1996) Cancer Res., 56, 2973-8 Alkaloids such as Staurosporine (#S1016, A.G.
  • Hymenialdisines such as 10z-hymenialdisine having a molecular formula of C 11 H 10 BrN 5 O 2 available from Biochemicals.net, a division of A.G. Scientific, Inc. (San Diego, CA) (H-1150) Meijer, L., et al., (1999) Chemistry & Biology, 7, 51-63 ; PCT/US02/30059 to Hellberg et al ., published as WO 03/027275 . CGP60474, a phenylaminopyrimidine 21; WO95/09853, Zimmermann et al., September 21, 1994 Thiazolopyrimidine 2 Attaby et al., Z.
  • the c-MAF inhibitory agents are used for the treatment and/or prevention of bone metastasis.
  • the bone metastasis is osteolytic metastasis.
  • the c-MAF inhibitory agents are typically administered in combination with a pharmaceutically acceptable carrier.
  • carrier refers to a diluent or an excipient whereby the active ingredient is administered.
  • Such pharmaceutical carriers can be sterile liquids such as water and oil, including those of a petroleum, animal, plant or synthetic origin such peanut oil, soy oil, mineral oil, sesame oil and the like.
  • Water or aqueous saline solutions and aqueous dextrose and glycerol solutions, particularly for injectable solutions, are preferably used as carriers.
  • Suitable pharmaceutical carriers are described in " Remington's Pharmaceutical Sciences” by E.W. Martin, 1995 .
  • the carriers are approved by the state or federal government regulatory agency or are listed in the United States Pharmacopeia or other pharmacopeia generally recognized for use thereof in animals and more particularly in human beings.
  • the carriers and auxiliary substances necessary for manufacturing the desired pharmaceutical dosage form of the pharmaceutical composition disclosed herein will depend, among other factors, on the pharmaceutical dosage form chosen.
  • Said pharmaceutical dosage forms of the pharmaceutical composition will be manufactured according to the conventional methods known by the person skilled in the art. A review of the different methods for administering active ingredients, excipients to be used and processes for producing them can be found in " Tratado de Farmacia Galénica", C. Faul ⁇ i Trillo, Luzán 5, S.A. 1993 Editi on.
  • Examples of pharmaceutical compositions include any solid composition (tablets, pills, capsules, granules, etc.) or liquid composition (solutions, suspensions or emulsions) for oral, topical or parenteral administration.
  • the pharmaceutical composition may contain, as deemed necessary, stabilizers, suspensions, preservatives, surfactants and the like.
  • the c-MAF inhibitory agents can be found in the form of a prodrug, salt, solvate or clathrate, either isolated or in combination with additional active agents and can be formulated together with a pharmaceutically acceptable excipient.
  • Excipients preferred for use thereof in the present disclosure include sugars, starches, celluloses, rubbers and proteins.
  • the pharmaceutical composition will be formulated in a solid pharmaceutical dosage form (for example tablets, capsules, pills, granules, suppositories, sterile crystal or amorphous solids that can be reconstituted to provide liquid forms etc.), liquid pharmaceutical dosage form (for example solutions, suspensions, emulsions, elixirs, lotions, ointments etc.) or semisolid pharmaceutical dosage form (gels, ointments, creams and the like) .
  • a solid pharmaceutical dosage form for example tablets, capsules, pills, granules, suppositories, sterile crystal or amorphous solids that can be reconstituted to provide liquid forms etc.
  • liquid pharmaceutical dosage form for example solutions, suspensions, emulsions, elixirs, lotions, ointments etc.
  • semisolid pharmaceutical dosage form gels, ointments, creams and the like
  • compositions can be administered by any route, including but not limited to the oral route, intravenous route , intramuscular route, intraarterial route, intramedularry route, intrathecal route, intraventricular router, transdermal route, subcutaneous route, intraperitoneal route, intranasal route, enteric route, topical route, sublingual route or rectal route.
  • routes including but not limited to the oral route, intravenous route , intramuscular route, intraarterial route, intramedularry route, intrathecal route, intraventricular router, transdermal route, subcutaneous route, intraperitoneal route, intranasal route, enteric route, topical route, sublingual route or rectal route.
  • compositions comprising said carriers can be formulated by conventional processes known in the state of the art.
  • nucleic acids siRNA, polynucleotides encoding siRNA or shRNA or polynucleotides encoding negative c-MAF dominants
  • pharmaceutical compositions particularly prepared for administering said nucleic acids.
  • the pharmaceutical compositions can comprise said naked nucleic acids, i.e., in the absence of compounds protecting the nucleic acids from degradation by the nucleases of the body, which entails the advantage that the toxicity associated with the reagents used for transfection is eliminated.
  • Administration routes suitable for naked compounds include the intravascular route, intratumor route, intracranial route, intraperitoneal route, intrasplenic route, intramuscular route, subretinal route, subcutaneous route, mucosal route, topical route and oral route ( Templeton, 2002, DNA Cell Biol., 21:857-867 ).
  • the nucleic acids can be administered forming part of liposomes conjugated to cholesterol or conjugated to compounds capable of promoting the translocation through cell membranes such as the Tat peptide derived from the HIV-1 TAT protein, the third helix of the homeodomain of the D.
  • melanogaster antennapedia protein the herpes simplex virus VP22 protein, arginine oligomers and peptides as described in WO07069090 ( Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21:99-103 , Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21:45-48 , Lundberg, M et al., 2003, Mol Therapy 8:143-150 and Snyder, E.L. and Dowdy, S.F., 2004, Pharm. Res. 21:389-393 ).
  • the polynucleotide can be administered forming part of a plasmid vector or viral vector, preferably adenovirus-based vectors, in adeno-associated viruses or in retroviruses such as viruses based on murine leukemia virus (MLV) or on lentivirus (HIV, FIV, EIAV).
  • adenovirus-based vectors in adeno-associated viruses or in retroviruses such as viruses based on murine leukemia virus (MLV) or on lentivirus (HIV, FIV, EIAV).
  • the c-MAF inhibitory agents or the pharmaceutical compositions containing them can be administered at a dose of less than 10 mg per kilogram of body weight, preferably less than 5, 2, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of body weight.
  • the unit dose can be administered by injection, inhalation or topical administration.
  • the dose depends on the severity and the response of the condition to be treated and it may vary between several days and months or until the condition subsides.
  • the optimal dosage can be determined by periodically measuring the concentrations of the agent in the body of the patient.
  • the optimal dose can be determined from the EC50 values obtained by means of previous in vitro or in vivo assays in animal models.
  • the unit dose can be administered once a day or less than once a day, preferably less than once every 2, 4, 8 or 30 days. Alternatively, it is possible to administer a starting dose followed by one or several maintenance doses, generally of a lesser amount than the starting dose.
  • the maintenance regimen may involve treating the patient with a dose ranging between 0.01 ⁇ g and 1.4 mg/kg of body weight per day, for example 10, 1, 0.1, 0.01, 0.001, or 0.00001 mg per kg of body weight per day.
  • the maintenance doses are preferably administered at the most once every 5, 10 or 30 days.
  • the treatment must be continued for a time that will vary according to the type of disorder the patient suffers, the severity thereof and the condition of the patient. After treatment, the progress of the patient must be monitored to determine if the dose should be increased in the event that the disease does not respond to the treatment or the dose is reduced if an improvement of the disease is observed or if unwanted side effects are observed.
  • the authors of the present invention have demonstrated that the c-MAF levels are elevated in the bone metastasis from breast tumors. Likewise, the authors of the present invention have clearly shown that the conditioning medium of cell lines derived from primary breast tumors which have high capacity for causing a bone metastasis and which over-express c-MAF are capable of inducing the formation osteoclasts in a greater extent than the cells which do not over-express c-MAF. Thus, those patients suffering breast cancer which has metastasized in bone and in which there are elevated c-MAF levels in said metastasis may benefit particularly from therapies aimed at preventing the bone degradation caused by the increased osteoclastic activity.
  • the disclosure relates to an agent for avoiding or preventing bone degradation for use in the prevention and/or the treatment of the bone metastasis in a subject suffering breast cancer and has elevated c-MAF levels in a metastatic tumor tissue sample with respect to a control sample.
  • the disclosure relates to a method of prevention and/or treatment of the degradation in a subject suffering breast cancer and has elevated c-MAF levels in a metastatic tumor tissue sample with respect to a control sample, which comprises administering an agent for avoiding or preventing bone degradation to said subject.
  • the bone metastasis is osteolytic metastasis.
  • the breast cancer is ER+ or ER- breast cancer.
  • the reference or control sample is a tumor tissue sample of a subject with ER+ or ER- breast cancer who has not suffered metastasis or that correspond to the median value of the c-MAF gene expression levels measured in a tumor tissue collection in biopsy samples of subjects with ER+ breast cancer who have not suffered metastasis.
  • a combined treatment can be carried out, in which more than one agent for avoiding or preventing bone degradation from those mentioned above are combined to treat and/or prevent the metastasis or said agents can be combined with other supplements, such as calcium or vitamin D or with a hormone.
  • the agents for avoiding or preventing bone degradation are typically administered in combination with a pharmaceutically acceptable carrier.
  • carrier and the types of carriers have been defined above for the c-MAF inhibitory agent, as well as the form and the dose in which they can be administered and are equally applicable to the agent for avoiding or preventing bone degradation.
  • New experimental models have been developed for the study of metastasis in ER+ breast cancer.
  • a human ER+ breast cancer cell line called MCF7 which was transfected in a stable manner with a vector allowing the GFP/Luciferase expression has been used.
  • This cell line was inoculated in immunodeficient mice (Balb-c/nude) by intraventricular or caudal vein injection to enable selecting cells with metastatic capacity in different organs.
  • the mice had subcutaneous estrogen implants assuring the presence of this hormone throughout the experiment.
  • the metastatic populations at different tissues were selected by means of identifying and isolating the cells of the metastatic lesions.
  • bioluminescence imaging technique using the technology which allows detecting the planting and growth of tumor cells in organs of interest at different times and quantifying the number of tumor cells present, were used.
  • the cells have been translated for expressing the luciferase and the GFP gene and the in vivo non-invasive real time tracking methods are therefore allowed.
  • the luminescence image (luciferase activity) is captured with the animal under anesthesia, using Xenogen IVIS equipment and the software Livingimage as preferred methodology due to their sensitivity and speed.
  • the tumor lesion is dissected and, subsequently, by means of laser scanning cytometry techniques by fluorescence (GFP) the metastatic cells are isolated from the cells of host organism. Once these cells are isolated the process to enrich their tropism for the different tissues was repeated. By means of these methods, different metastatic populations with tissue specificity including bone metastasis were isolated.
  • the group of genes enriched for bone metastasis in ER+ breast cancer includes cytokines, cell adhesion molecules, membrane proteases, signaling mediators and transcription factors.
  • the group of genes selected as candidates to regulate the bone metastasis capacity in ER+ breast cancer was then subjected to clinical validation in humans. To that end, the changes of the candidate gene expression with those occurring in the gene expression profiles of two cohorts, one from primary breast tumors and the other from metastasis which include 560 and 58 breast tumors and metastasis, respectively, were compared.
  • the role of the genes enriched in bone metastasis in ER+ breast cancer in the ER- subtype was then evaluated.
  • the group of genes enriched for bone metastasis in ER+ breast cancer includes the c-MAF transcription factor.
  • the genes enriched in the bone metastasis by means of the experimental system for selecting metastatic cell populations implemented herein were evaluated against two different databases containing the expression profiles and the clinical notes of 560 primary breast cancer tumors and 58 metastasis of breast cancer patients. These tumors are representative of all the subtypes of breast cancer and metastasis location. Both databases and their clinical notes are publicly accessible (GSE 2603, 2034, 12276 and 14020).
  • c-MAF gene expression levels in metastatic tissue in a cohort of 58 metastasis of breast cancer patients were evaluated. These metastases were isolated from lung, liver, bone and brain. The enrichment of the c-MAF gene specifically in bone metastasis regardless of the subtype of breast cancer, ER+ or ER-, to which the tumor or metastatic lesion ( Figure 2A ) belongs to, was verified.
  • the c-MAF metastatic gene which was positive in the analysis was functionally validated in a bone metastatic colonization assay in an experimental graft model of breast cancer metastasis in mice.
  • the selection of ER- breast cancer cells with high ability for growing in bone is accompanied by the selection of high levels of the c-MAF metastatic gene ( Figure 2B ).
  • the approximations performed to validate the candidate gene to direct the metastasis process were gain-of-function assays.
  • the c-MAF gene was expressed in the parent MDA-MB-231 cells and subsequently its capacity for inducing the expression of genes contributing to the metastasis (CTGF) ( Figure 2C ), was evaluated.
  • the c-MAF metastatic gene which was positive in the analysis was functionally validated in a bone metastatic colonization assay in an experimental graft model of breast cancer metastasis in mice.
  • the approximations performed to validate the candidate gene to direct the metastasis process were loss-of-function and gain-of-function assays.
  • the c-MAF gene was expressed or silenced in the parent cells or in the highly bone metastatic cell derivatives and subsequently its bone metastatic capacity was evaluated in vivo.
  • lentiviral systems were used to induce the heterologous expression of the candidate gene in the parent tumor cells and those selected with low metastatic capacity.
  • the metastasis-inducing capacity of the c-MAF gene was determined by means of techniques for tracking by bioluminescence the metastatic cells inoculated in the mouse through intracardiac route (as described in section "experimental study models").
  • the corresponding control cells infected with lentiviral vectors which did not express the protein c-MAF were injected in a parallel manner in a parallel cohort of animals as negative control ( Figure 3B ).
  • the c-MAF gene expression was suppressed in the highly bone metastatic BoM2 cell line which have high endogenous c-MAF gene expression levels ( Figure 3A and 3C ).
  • a lentiviral vector was used allowing the expression of an interference RNA (siRNA) with capacity for reducing the c-MAF gene expression by 80% in relation to the levels present in the BoM2 cell line.
  • This cell population with the silenced c-MAF gene expression was inoculated through intracardiac route (as described in section "experimental study models") in immunosuppressed mice these animals being monitored to detect metastatic activity by means of bioluminescence imaging technique.
  • M-CSF macrophage-colony stimulating factor
  • the medium was changed every three days and, on the seventh day, the specific staining of osteoclasts consisting of detecting the tartrate-resistant acid phosphatase enzyme (TRAP) was preformed. Images were obtained by means of inverted beam optical microscopy. The number of TRAP positive cells was determined and was divided between the total number of cells per field. Finally, all the values were normalized with those of the control group, MCF7. As can be observed in Figure 4 , the number of osteoclasts increased when osteoclast precursors were contacted with medium from MCF7 ER+ breast cancer cells over-expressing the short isoform or the long isoform of c-MAF.
  • TRIP tartrate-resistant acid phosphatase enzyme
  • This assay allows determining the interaction of the metastatic cells with the components from the metastatic environment or niche of the bone.
  • the osteoclasts are responsible for the degradation of the bone and the degradation is shown in the osteolytic metastatic lesions.
  • CNA copy number alterations
  • BoM2 derived from the MCF7 breast cancer cell line which are generated in the laboratory of the researches itself and which are characterized by the expression of high c-MAF gene levels. This analysis has been based on the comparison of the gene expression profiles of the parent cells and BoM2 derived from MCF7. The differences of gene expression observed in the BoM2 cells in comparison with the parent cells in the position thereof, in the 23 types of chromosomes present in human cells were aligned and located.
  • genomic regions have been identified wherein genes the expression of which is over-expressed or under-expressed are depicted in the BoM2 cells in comparison with the parent cells, which is an indicator of amplification or deletion of genomic DNA ( Hu et al. 2009, Cancer Cell, 15:9-20 ).
  • the software "Partek Genomic Suite 6.5" has been used. This software has allowed identifying those genes the expression of which is increased or reduced in the BoM2 cells in comparison with the parent cells. Once these genes are identified, the expression differences observed for each gene were depicted in the corresponding chromosomal location of said gene.
  • the "log HR" have been obtained for each gene through the generalization of additive models, choosing parameters through crossed validation and the statistical significance has been evaluated by permuting (1000 permutations) the "log HR” through the entire genome, and adjusting the P-values via Benjamini-Hochberg to control the false discovery rate (FDR) at a level of 0.05. Only those regions with at least 15 consecutive and significant genes have been identified ( Figure 5B ). The region 16q12-q24 including the c-MAF gene is among these regions.
  • the c-MAF gene copy number was subsequently characterized by means of fluorescence in situ hybridization (FISH) in MCF7 parent cells and in the cell line BoM2 characterized by having high tendency to form metastasis in bone tissue.
  • the IGH gene copy number was determined simultaneously as the control of the experiment.
  • the results showed that most of the MCF7 cells studied have a ratio between the c-MAF gene copy number and the IGF gene copy number equal to or less than 1.5, i.e., that the copy number of both genes is similar ( Figure 6 ), whereas most of the BoM2 cells studied showed a ratio between the c-MAF gene copy number and the IGF gene copy number greater than 2 ( Figure 6 ).
  • c-MAF is a marker for the diagnosis and prognosis of and a causal target gene in metastasis process in breast cancer, particularly, in bone metastasis from ER+ breast cancer. This conclusion is supported by the clinical validation data and the gain-of-function and loss-of-function experiments forming part of the present disclosure.
  • the c-MAF expression in primary tumors predicts a high risk of suffering bone metastasis in breast cancer patients
  • the patients whose tumors contain cells having a amplification in the genomic region chr16q22-q24 or an amplification of the c-MAF gene will also be susceptible to suffer a high risk of bone metastasis. Therefore, the determination of the amplification of the c-MAF gene or of the locus 16q22-q24 is useful as a method of diagnosis and a method of predicting bone metastasis from primary breast cancer tumors.
  • c-MAF is a suitable target for the treatment and/or prevention of the metastasis (both from ER+ and ER- tumors) .
  • c-MAF inhibitors would be useful for the treatment of the metastasis in subjects with breast cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Endocrinology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Reproductive Health (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Biomedical Technology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Hematology (AREA)

Claims (7)

  1. Un procédé in vitro pour concevoir une thérapie personnalisée pour un sujet atteint d'un cancer du sein ER+ qui comprend
    (i) le fait de quantifier le niveau d'expression du gène c-MAF dans un échantillon de tissu tumoral dudit sujet et
    (ii) le fait de comparer le niveau d'expression précédemment obtenu avec le niveau d'expression dudit gène dans un échantillon témoin ; si le niveau d'expression est augmenté par rapport au niveau d'expression dudit gène dans l'échantillon témoin, alors ledit sujet est sensible pour recevoir une thérapie destinée à empêcher et/ou traiter la métastase osseuse, ledit traitement étant un agent inhibitoire c-MAF.
  2. Le procédé selon la revendication 1, dans lequel la métastase osseuse est une métastase ostéolytique.
  3. Le procédé selon l'une quelconque des revendications 1 ou 2, dans lequel la quantification des niveaux d'expression du gène c-MAF comprend le fait de quantifier l'ARN messager (ARNm) dudit gène, ou un fragment dudit ARNm, l'ADN complémentaire (ADNc) dudit gène ou un fragment dudit ADNc.
  4. Le procédé selon la revendication 3, dans lequel les niveaux d'expression sont quantifiés au moyen d'une réaction quantitative en chaîne de polymérase (PCR) ou d'un réseau d'ADN ou d'ARN, ou par hybridation.
  5. Le procédé selon l'une quelconque des revendications 1 ou 2, dans lequel la quantification des niveaux d'expression du gène c-MAF comprend le fait de quantifier les niveaux de protéine codée par ledit gène ou un variant de celle-ci.
  6. Le procédé selon la revendication 5, dans lequel les niveaux de protéines sont quantifiés au moyen d'un western blot, de techniques immunohistochimiques, d'ELISA ou d'un réseau de protéines.
  7. Le procédé selon la revendication 1, dans lequel l'agent inhibiteur c-MAF est choisi dans le groupe constitué d'un siRNA spécifique au cMAF, d'un oligonucléotide antisens spécifique au c-MAF, d'un ribozyme spécifique au c-MAF, d'un anticorps inhibiteur du c-MAF, d'un variant de c-MAF négatif dominant, d'ARN catalytiques, d'enzymes d'ADN, de peptides inhibiteurs et d'un composé figurant au tableau 1 ou au tableau 2.
EP15180897.9A 2010-10-06 2011-10-05 Procédé de conception d'une thérapie pour la métastase du cancer du sein Active EP3091085B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19159414.2A EP3517630B1 (fr) 2010-10-06 2011-10-05 Procédé pour le diagnostic, le pronostic et le traitement des métastases du cancer du sein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201031478A ES2379918B1 (es) 2010-10-06 2010-10-06 Método para el diagnóstico, pronóstico y tratamiento de la metástasis de cáncer de mama.
ES201131073 2011-06-27
EP11791605.6A EP2626431B1 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein
PCT/ES2011/070693 WO2012045905A2 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP11791605.6A Division-Into EP2626431B1 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein
EP11791605.6A Division EP2626431B1 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP19159414.2A Division EP3517630B1 (fr) 2010-10-06 2011-10-05 Procédé pour le diagnostic, le pronostic et le traitement des métastases du cancer du sein

Publications (2)

Publication Number Publication Date
EP3091085A1 EP3091085A1 (fr) 2016-11-09
EP3091085B1 true EP3091085B1 (fr) 2019-02-27

Family

ID=45099129

Family Applications (3)

Application Number Title Priority Date Filing Date
EP15180897.9A Active EP3091085B1 (fr) 2010-10-06 2011-10-05 Procédé de conception d'une thérapie pour la métastase du cancer du sein
EP19159414.2A Active EP3517630B1 (fr) 2010-10-06 2011-10-05 Procédé pour le diagnostic, le pronostic et le traitement des métastases du cancer du sein
EP11791605.6A Active EP2626431B1 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP19159414.2A Active EP3517630B1 (fr) 2010-10-06 2011-10-05 Procédé pour le diagnostic, le pronostic et le traitement des métastases du cancer du sein
EP11791605.6A Active EP2626431B1 (fr) 2010-10-06 2011-10-05 Méthode de diagnostic, pronostic et traitement de la métastase du cancer du sein

Country Status (14)

Country Link
US (3) US10047398B2 (fr)
EP (3) EP3091085B1 (fr)
JP (5) JP6159254B2 (fr)
KR (2) KR101944555B1 (fr)
CN (2) CN103339265B (fr)
AR (1) AR083357A1 (fr)
AU (4) AU2011311452B2 (fr)
BR (1) BR112013008505B1 (fr)
CA (1) CA2813674C (fr)
DK (2) DK2626431T3 (fr)
ES (3) ES2562274T3 (fr)
HK (1) HK1187377A1 (fr)
MX (1) MX344315B (fr)
WO (1) WO2012045905A2 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047398B2 (en) 2010-10-06 2018-08-14 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
EP2650682A1 (fr) * 2012-04-09 2013-10-16 Fundació Privada Institut de Recerca Biomèdica Esters asymétriques d'acides gras utiles en tant que lubrifiants
JP6386450B2 (ja) 2012-06-06 2018-09-05 フンダシオ、インスティトゥト、デ、レセルカ、ビオメディカ(イエレベ、バルセロナ)Fundacio Institut De Recerca Biomedica (Irb Barcelona) 肺がん転移の診断、予後診断および処置のための方法
US10119171B2 (en) 2012-10-12 2018-11-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
DK2906718T3 (da) 2012-10-12 2019-07-01 Inbiomotion Sl Fremgangsmåde til diagnose, prognose og behandling af prostatakræftmetastase under anvendelse af c-maf
EP3272880B1 (fr) * 2013-03-15 2020-11-25 Fundació Institut de Recerca Biomèdica (IRB Barcelona) Procédé pour le diagnostic, le pronostic et le traitement de cancer métastatique
US20160032399A1 (en) * 2013-03-15 2016-02-04 Inbiomotion S.L. Method for the Prognosis and Treatment of Renal Cell Carcinoma Metastasis
JP6577873B2 (ja) * 2013-03-15 2019-09-18 フンダシオ、インスティトゥト、デ、レセルカ、ビオメディカ(イエレベ、バルセロナ)Fundacio Institut De Recerca Biomedica (Irb Barcelona) がんの転移の予後診断および処置のための方法
CA2926894A1 (fr) * 2013-10-09 2015-04-16 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Methode de pronostic et de traitement d'une metastase cancereuse
EP2933639A1 (fr) * 2014-04-16 2015-10-21 Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts S100p et acide Hyaluronique comme biomarqueurs pour le cancer du sein métastatique
CN104398506A (zh) * 2014-12-09 2015-03-11 厦门大学 雷奈酸锶在制备预防和治疗腺癌药物中的新用途
KR20170093182A (ko) 2014-12-11 2017-08-14 인바이오모션 에스.엘. 인간 c-maf에 대한 결합 구성원
KR102571924B1 (ko) * 2016-05-25 2023-08-28 인바이오모션 에스.엘. c-MAF 상태에 기초한 유방암의 치료
KR101896558B1 (ko) 2016-11-21 2018-09-07 주식회사 젠큐릭스 유방암 환자의 예후 예측 방법
CN107699619B (zh) * 2017-11-17 2019-02-22 柳超 lncRNA组合物及制备诊断预示Luminal B型乳腺癌骨转移基因诊断试剂盒的用途
EP3713581A1 (fr) 2017-11-22 2020-09-30 Inbiomotion S.L. Traitement thérapeutique du cancer du sein basé sur le c-maf
JP2023079997A (ja) 2021-11-29 2023-06-08 東洋インキScホールディングス株式会社 活性エネルギー線硬化型インクジェットインキ及び印刷物
CN114574577A (zh) * 2022-01-04 2022-06-03 中山大学孙逸仙纪念医院 Mettl16基因及其用途

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0217822B1 (fr) 1985-02-13 1993-05-12 Scios Nova Inc. Promoteur de la metallothioneine-ii humaine dans un systeme mammifere d'expression
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
DE4013632A1 (de) * 1990-04-27 1991-10-31 Max Planck Gesellschaft Liposomen mit positiver ueberschussladung
IL126418A0 (en) 1996-04-05 1999-05-09 Salk Inst For Biological Studi Hormone-mediated methods for modulating expression of exogenous genes and pharmaceutical compositions for modulating the same
DE69740107D1 (de) 1996-12-23 2011-03-10 Immunex Corp Rezeptor aktivator von nf-kappa b, rezeptor is mitglied der tnf rezeptor superfamilie
US6316408B1 (en) 1997-04-16 2001-11-13 Amgen Inc. Methods of use for osetoprotegerin binding protein receptors
US6274338B1 (en) 1998-02-24 2001-08-14 President And Fellows Of Harvard College Human c-Maf compositions and methods of use thereof
JP2002539192A (ja) 1999-03-15 2002-11-19 アクシス・ファーマシューティカルズ・インコーポレイテッド プロテアーゼ阻害剤としての新規な化合物及び組成物
US6287813B1 (en) 1999-04-23 2001-09-11 Cistronics Cell Technology Gmbh Antibiotic-based gene regulation system
AU779855B2 (en) 2000-01-06 2005-02-17 Axys Pharmaceuticals, Inc. Novel compounds and compositions as protease inhibitors
US6750015B2 (en) 2000-06-28 2004-06-15 Kathryn B. Horwitz Progesterone receptor-regulated gene expression and methods related thereto
YU103003A (sh) 2001-06-26 2006-05-25 Abgenix Inc. Antitela za opgl
GB0121033D0 (en) 2001-08-30 2001-10-24 Novartis Ag Organic compounds
AR036375A1 (es) 2001-08-30 2004-09-01 Novartis Ag Compuestos pirrolo [2,3-d] pirimidina -2- carbonitrilo, un proceso para su preparacion, una composicion farmaceutica y el uso de dichos compuestos para la preparacion de medicamentos
KR100485271B1 (ko) 2002-01-16 2005-04-27 메타볼랩(주) 전사인자 c-maf의 전사 활성 억제제로서의 니발레놀및 그를 포함하는 약제학적 조성물
SE0201980D0 (sv) 2002-06-24 2002-06-24 Astrazeneca Ab Novel compounds
DE10235624A1 (de) 2002-08-02 2004-02-19 Aventis Pharma Deutschland Gmbh Endiandric acid H und ihre Derivate, Verfahren zu ihrer Herstellung und Verwendung derselben
US20050181375A1 (en) * 2003-01-10 2005-08-18 Natasha Aziz Novel methods of diagnosis of metastatic cancer, compositions and methods of screening for modulators of metastatic cancer
US20050060771A1 (en) 2003-09-11 2005-03-17 Farmer Andrew Alan siRNA encoding constructs and methods for using the same
WO2005029067A2 (fr) 2003-09-24 2005-03-31 Oncotherapy Science, Inc. Methode de diagnostic du cancer du sein
WO2005046731A1 (fr) 2003-10-17 2005-05-26 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Entrave de la fonction c-maf dans le myelome multiple
WO2005060722A2 (fr) 2003-12-18 2005-07-07 President And Fellows Of Hardvard College Modulation de la fonction du systeme immunitaire par la modulation des polypeptides arginine-methyltransferases
TW200526224A (en) 2003-12-22 2005-08-16 Alcon Inc Short form c-Maf transcription factor antagonists for treatment of glaucoma
CA2558808A1 (fr) 2004-03-05 2005-09-22 Rosetta Inpharmatics Llc Classification de patients du cancer du sein utilisant une combinaison de criteres cliniques et d'ensembles genetiques informatifs
WO2006012221A2 (fr) 2004-06-25 2006-02-02 The Regents Of The University Of California Arnsi specifique de cellules cibles et ses procedes d'utilisation
WO2006135436A2 (fr) 2004-10-22 2006-12-21 University Of Florida Research Foundation, Inc. Inhibition de l'expression genique et ses usages therapeutiques
US9134237B2 (en) 2005-09-20 2015-09-15 Janssen Diagnotics, LLC High sensitivity multiparameter method for rare event analysis in a biological sample
JP5457673B2 (ja) 2005-09-20 2014-04-02 ベリデックス・リミテッド・ライアビリティ・カンパニー ユニーク配列のdnaプローブを作製するための方法および組成物、dnaプローブの標識、ならびにこれらプローブの使用
WO2007038397A2 (fr) 2005-09-26 2007-04-05 Novartis Ag Marqueurs moleculaires associes a la metastase osseuse
WO2007069090A2 (fr) 2005-12-06 2007-06-21 Centre National De La Recherche Scientifique Peptides de pénétration cellulaire pour la délivrance intracellulaire de molécules
WO2008098351A1 (fr) 2007-02-14 2008-08-21 University Health Network Traitement de maladies prolifératives médiées par la d-cycline et de malignités hématologiques
EP1961825A1 (fr) 2007-02-26 2008-08-27 INSERM (Institut National de la Santé et de la Recherche Medicale) Procédé pour prévoir l'apparition de métastase dans les patients souffrant d'un cancer du sein
KR20120125601A (ko) 2007-05-24 2012-11-16 아블린쓰 엔.브이. Rank-l에 대한 아미노산 서열, 및 이를 포함하는 골 질환 및 장애 치료용 폴리펩티드
WO2008145125A1 (fr) 2007-05-31 2008-12-04 Dako Denmark A/S Procédés d'utilisation des changements du nombre de copies d'esr dans les traitements et les pronostics du cancer du sein
NZ562237A (en) * 2007-10-05 2011-02-25 Pacific Edge Biotechnology Ltd Proliferation signature and prognosis for gastrointestinal cancer
US20110123617A1 (en) 2007-10-18 2011-05-26 University Health Network Clioquinol for the treatment of hematological malignancies
WO2009114534A1 (fr) 2008-03-14 2009-09-17 The Regents Of The University Of California Classificateurs multigènes et indicateurs de pronostic pour cancers
CA2726537A1 (fr) 2008-06-06 2009-12-10 University Health Network Derives de 8-hydroxyquinoline pour le traitement d'hemopathies malignes
ES2338843B1 (es) 2008-07-02 2011-01-24 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas Huella genomica de cancer de mama.
US8642270B2 (en) 2009-02-09 2014-02-04 Vm Institute Of Research Prognostic biomarkers to predict overall survival and metastatic disease in patients with triple negative breast cancer
WO2010136569A1 (fr) 2009-05-29 2010-12-02 F. Hoffmann-La Roche Ag Modulateurs de la signalisation her2 chez des patients exprimant her2 souffrant d'un cancer de l'estomac
WO2011017687A1 (fr) 2009-08-06 2011-02-10 Ray Partha S Diagnostic du cancer du sein primitif et de type basal métastatique et d'autres types de cancer
US10047398B2 (en) 2010-10-06 2018-08-14 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
EP2671076A4 (fr) 2011-02-04 2016-11-16 Bioarray Genetics Inc Procédés d'utilisation de signatures d'expression génique pour sélectionner un procédé de traitement, prédire un pronostic, la survie, et/ou prédire une réponse à un traitement
EP2685988A4 (fr) 2011-03-15 2014-08-20 Univ North Carolina Méthodes de traitement du cancer du sein par une thérapie par anthracycline
US20140303133A1 (en) 2011-11-18 2014-10-09 Vanderbilt University Markers of Triple-Negative Breast Cancer And Uses Thereof
EP2650682A1 (fr) 2012-04-09 2013-10-16 Fundació Privada Institut de Recerca Biomèdica Esters asymétriques d'acides gras utiles en tant que lubrifiants
JP6386450B2 (ja) 2012-06-06 2018-09-05 フンダシオ、インスティトゥト、デ、レセルカ、ビオメディカ(イエレベ、バルセロナ)Fundacio Institut De Recerca Biomedica (Irb Barcelona) 肺がん転移の診断、予後診断および処置のための方法
US10119171B2 (en) 2012-10-12 2018-11-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
DK2906718T3 (da) 2012-10-12 2019-07-01 Inbiomotion Sl Fremgangsmåde til diagnose, prognose og behandling af prostatakræftmetastase under anvendelse af c-maf
US20160032399A1 (en) 2013-03-15 2016-02-04 Inbiomotion S.L. Method for the Prognosis and Treatment of Renal Cell Carcinoma Metastasis
JP6577873B2 (ja) 2013-03-15 2019-09-18 フンダシオ、インスティトゥト、デ、レセルカ、ビオメディカ(イエレベ、バルセロナ)Fundacio Institut De Recerca Biomedica (Irb Barcelona) がんの転移の予後診断および処置のための方法
EP3272880B1 (fr) 2013-03-15 2020-11-25 Fundació Institut de Recerca Biomèdica (IRB Barcelona) Procédé pour le diagnostic, le pronostic et le traitement de cancer métastatique
CA2926894A1 (fr) 2013-10-09 2015-04-16 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Methode de pronostic et de traitement d'une metastase cancereuse
KR20170093182A (ko) 2014-12-11 2017-08-14 인바이오모션 에스.엘. 인간 c-maf에 대한 결합 구성원
KR102571924B1 (ko) 2016-05-25 2023-08-28 인바이오모션 에스.엘. c-MAF 상태에 기초한 유방암의 치료
EP3713581A1 (fr) 2017-11-22 2020-09-30 Inbiomotion S.L. Traitement thérapeutique du cancer du sein basé sur le c-maf

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2721639T3 (es) 2019-08-02
JP6946385B2 (ja) 2021-10-06
AU2021203599A1 (en) 2021-07-01
CN108192972A (zh) 2018-06-22
JP2021192636A (ja) 2021-12-23
JP6159254B2 (ja) 2017-07-12
AU2021203599B2 (en) 2024-10-10
US20140057796A1 (en) 2014-02-27
AU2016266009B2 (en) 2018-12-06
ES2911505T3 (es) 2022-05-19
AU2016266009A1 (en) 2016-12-15
CN108192972B (zh) 2022-09-09
JP2018099132A (ja) 2018-06-28
US20220049316A1 (en) 2022-02-17
BR112013008505A2 (pt) 2016-07-05
CN103339265B (zh) 2018-03-30
AU2011311452B2 (en) 2016-09-01
KR20140071946A (ko) 2014-06-12
HK1187377A1 (zh) 2014-04-04
KR102240323B1 (ko) 2021-04-14
US11072831B2 (en) 2021-07-27
AR083357A1 (es) 2013-02-21
EP2626431B1 (fr) 2015-09-16
CA2813674C (fr) 2020-11-24
KR20190009835A (ko) 2019-01-29
MX2013003880A (es) 2013-12-02
JP2019195340A (ja) 2019-11-14
BR112013008505B1 (pt) 2023-01-24
ES2562274T3 (es) 2016-03-03
DK2626431T3 (en) 2015-12-21
KR101944555B1 (ko) 2019-02-01
JP6571698B2 (ja) 2019-09-04
WO2012045905A2 (fr) 2012-04-12
EP2626431A2 (fr) 2013-08-14
EP3091085A1 (fr) 2016-11-09
CN103339265A (zh) 2013-10-02
WO2012045905A3 (fr) 2012-06-21
AU2019201493A1 (en) 2019-03-28
EP3517630B1 (fr) 2022-01-19
AU2011311452A1 (en) 2013-05-09
US20190169693A1 (en) 2019-06-06
JP2017104115A (ja) 2017-06-15
EP3517630A1 (fr) 2019-07-31
MX344315B (es) 2016-12-13
DK3091085T3 (da) 2019-05-06
AU2019201493B2 (en) 2021-03-11
CA2813674A1 (fr) 2012-04-12
JP2013541339A (ja) 2013-11-14
US10047398B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
AU2021203599B2 (en) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
US11892453B2 (en) Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
EP2650682A1 (fr) Esters asymétriques d'acides gras utiles en tant que lubrifiants
EP2971113B1 (fr) Procédé de pronostic et de traitement de métastases cancéreuses
US11591599B2 (en) Method for the diagnosis, prognosis and treatment of cancer metastasis
EP2859120B1 (fr) Methode de diagnostic et pronostic de metastases du cancer du poumon
US20170101683A1 (en) Method for the Prognosis and Treatment of Cancer Metastasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2626431

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170509

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170818

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1229858

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011056791

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C12Q0001680000

Ipc: C12Q0001688600

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C12Q 1/6886 20180101AFI20180823BHEP

INTG Intention to grant announced

Effective date: 20180911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2626431

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011056791

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190430

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2721639

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1101403

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011056791

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191005

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231107

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231004

Year of fee payment: 13

Ref country code: SE

Payment date: 20231010

Year of fee payment: 13

Ref country code: DE

Payment date: 20230915

Year of fee payment: 13

Ref country code: CH

Payment date: 20231101

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240925

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240930

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240912

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240913

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240918

Year of fee payment: 14