EP3089260B1 - Filtres multiples comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale - Google Patents

Filtres multiples comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale Download PDF

Info

Publication number
EP3089260B1
EP3089260B1 EP16165214.4A EP16165214A EP3089260B1 EP 3089260 B1 EP3089260 B1 EP 3089260B1 EP 16165214 A EP16165214 A EP 16165214A EP 3089260 B1 EP3089260 B1 EP 3089260B1
Authority
EP
European Patent Office
Prior art keywords
filter
resonator
chambers
dielectric
filter chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16165214.4A
Other languages
German (de)
English (en)
Other versions
EP3089260B8 (fr
EP3089260A1 (fr
Inventor
Frank Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP3089260A1 publication Critical patent/EP3089260A1/fr
Publication of EP3089260B1 publication Critical patent/EP3089260B1/fr
Application granted granted Critical
Publication of EP3089260B8 publication Critical patent/EP3089260B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2133Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using coaxial filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • H01P1/2138Frequency-selective devices, e.g. filters combining or separating two or more different frequencies using hollow waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the invention relates to a multiplex filter, which is particularly suitable for the transmission of TM modes in the transverse direction.
  • TM modes or TM waves
  • a multiplex filter in the context of this invention comprises a common connection and at least two signal line connections, wherein the at least two signal line connections to the common connection are connected to one another via a respective signal transmission path.
  • the signal transmission direction may be both from the common port to one of the plurality of signal line ports (eg, in the form of a diplexer or multiplexer), as well as simultaneously from another one of the signal port ports to the other Common connection (for example in the form of a duplexer, in which two further connections are provided in addition to the one common connection).
  • the respective signal transmission paths pass through different resonator chambers, so that different frequency ranges are filtered in them.
  • ISHIKAWA Y ET AL "1.9 GHz compact low loss dielectric duplexer designed by dual mode waveguide transmission line method", 5 September 1994 shows the construction of a duplexer comprising various modules arranged in two rows of modules one behind the other, the individual modules of one row being connected to their adjacent module in the same row via grid openings. In each module a dielectric is arranged. This influences the resonance frequency. Tuning elements can be screwed into the module from outside at least one module to adjust the resonant frequency.
  • a multiplexer is known. This comprises a housing in which different resonator chambers are arranged, which are interconnected via coupling openings. In the resonator chamber dielectrics are arranged, which are cut from a disk into pieces. The connections are located at different positions on the housing.
  • a bandpass filter which comprises a plurality of resonator chambers which are connected to one another via an opening. Through this opening is a one-piece guided dielectric resonator, which is thereby arranged in all resonator chambers. Tuning screws can be screwed into the resonator chambers from outside to change the resonance frequency.
  • the US 6,072,378 A shows a resonator arrangement.
  • a dielectric is arranged in a housing in order to be able to set the resonance frequency.
  • Two of these housings are connected to each other via an opening.
  • At least one signal connection is arranged on the housings.
  • a high-frequency filter which comprises various resonator bodies.
  • a resonator body consists of a dielectric, which has been coated with an electrically conductive layer. In order to allow coupling between different resonator bodies, part of the dielectric is not coated.
  • Several of these resonator bodies can be arranged in a composite, wherein a coupling between the individual resonator bodies on the mismatches of the coatings is possible.
  • the high-frequency filter can be operated, for example, as a duplex filter.
  • the multiplex filter according to the invention has a housing which comprises a housing bottom, a housing cover spaced from the housing cover and a circumferential between the housing bottom and the housing cover housing wall.
  • the housing bottom and the housing cover are preferably penetrated by a central axis.
  • the multiplex filter also has at least n filter chambers, which are enclosed by the housing and / or at least one insert located in the housing.
  • a dividing device consisting of metal or metal is formed, which divides each filter chamber into m resonator chambers, with m ⁇ 2, each of which forms a resonator.
  • the splitting devices are arranged parallel to the central axis or with a component predominantly parallel to the central axis and subdivide the filter chamber parallel to the central axis or with a component predominantly parallel to the central axis in m resonator chambers.
  • the resonator chambers located in each filter chamber and thus the respective resonators are decoupled from each other by the splitters located in the respective filter chamber.
  • at least n dielectrics are formed, of which at least one is arranged in each filter chamber.
  • the multiplex filter has n-1 separators.
  • the n filter chambers are arranged along a central axis that is perpendicular or with a component predominantly perpendicular to the H field of the TM modes, with two adjacent or along the central axis successive filter chambers are separated by a separator.
  • Each of the n-1 separating devices has at least m coupling openings, via which two successive resonator chambers are coupled to one another in the signal transmission direction.
  • the coupling between the resonator chambers is perpendicular to the H-fields of the TM modes and / or parallel to the central axis or with a component predominantly perpendicular to the H-fields of the TM modes and / or parallel to the central axis.
  • a common connection is guided via a first opening in the housing into the first filter chamber and coupled in this with the m resonators of the m resonator chambers.
  • m signal line connections are coupled via m openings in the housing with the m resonators in the m resonator chambers in the nth filter chamber.
  • the or each of the n-1 separators consists of a metal layer to which one or both end faces of at least one or all n dielectrics is coated, wherein the at least one dielectric is integrally formed with the at least one of the n-1 separators and the coating of the metal layer has at least one recess as one of the coupling openings.
  • the splitting device is formed by a plurality of plated-through holes within one or all of the n dielectrics arranged in the filter chamber parallel or at least with a component parallel to the central axis are, whereby one or all of the n dielectrics is divided into m parts, wherein each of the m parts is located in one of the m resonator chambers of a filter chamber.
  • This allows the use of a single dielectric, which is preferably formed from a ceramic.
  • the first filter chamber comprises a region in which the splitting device extends through the first dielectric only in a partial length of the diameter, whereby an opening region is formed in which the common connection is coupled to all the m resonators in the first filter chamber the opening area has a size or length which corresponds to less than 10%, preferably less than 20%, more preferably less than 30%, more preferably less than 40% and more preferably less than 50% of the smallest diameter of the first filter chamber.
  • a common port can be used as a common port.
  • a mobile radio antenna can be connected to this common connection via which signals are transmitted and received by the signals.
  • the filter chambers and / or the dielectrics have a circular cross-section.
  • the individual filter chambers and thus the individual resonator chambers are stacked with the resonators one above the other, wherein the coupling is effected by coupling openings which are formed within the separating means.
  • This coupling takes place in the signal transmission direction and thus perpendicular to the H-field.
  • the method according to the invention for adjusting the multiplex filter comprises various method steps.
  • a method step all coupling openings of the 1 + X-th separation device and / or the n-1-X-th separation device are closed at the beginning, wherein X is 0 at the beginning.
  • a reflection parameter is measured at the common connection and / or at least one, preferably at all signal line connections.
  • the resonance frequency and / or the coupling bandwidth or the coupling bandwidth are set to a desired value.
  • the resonant frequency and / or the coupling bandwidth of m resonator chambers of a filter chamber can be set independently of other resonator chambers in other filter chambers to the desired value.
  • Another advantage of the multiplex filter according to the invention also exists if a diameter of at least one, preferably all filter chambers by at least one insert, in particular by an annular insert, which is based on the housing wall, defined and / or predetermined. This allows the resonance frequency to be adjusted.
  • the particular form-fitting leaning of the insert on the housing wall also ensures that the insert is not displaced over time in its position.
  • each filter chamber has adjacent to the inner wall of the housing wall segments of different thickness, whereby the volume of the individual resonator chambers of a filter chamber can be set independently or they differ from each other.
  • Another advantage of the multiplex filter according to the invention is when the inserts of at least two non-consecutive, ie adjacent n-filter chambers have an opening, wherein the at least two openings are interconnected by a channel which extends for example at least partially within the housing wall. In this channel, an electrical conductor runs, wherein the electrical conductor capacitively and / or inductively coupled to each other the two resonator chambers of the different filter chambers. In this way, despite the compact construction of the multiplex filter according to the invention, it is possible to achieve a coupling between two resonators which are not directly adjacent.
  • At least one anti-rotation element between at least one of the n-1 separating devices and the at least one insert and / or the adjacent dielectric is attached, which prevents the mutual rotation of these elements. It is also possible that at least one anti-rotation element between the housing bottom and / or the housing cover and / or the housing wall and the insert in the first filter chamber and the n-th filter chamber is attached, which prevents the mutual rotation of these elements. This ensures that the resonance frequencies and the group delay of the individual resonators do not change over time due to vibrations of the high-frequency filter.
  • the n-type dielectrics may be disk-shaped, or all or some of the n-type dielectrics may differ completely or partially in their dimensions. It is also possible for all or at least one of the n dielectrics to completely or partially fill the volume of their respective filter chamber and thus of the m resonator chambers. Due to the geometric design and the arrangement of the dielectrics, the behavior of each resonator with respect to its resonator frequency and its coupling bandwidth can be adjusted accordingly.
  • the dielectric in principle, it would also be possible for the dielectric to be composed within each filter chamber by m parts, which are preferably of the same size, each of the m parts being located in one of the m resonator chambers in a filter chamber, wherein between the m parts as a division device within the respective Filter chamber is formed a metal layer.
  • This metal layer separates the individual resonator chambers from one another within a filter chamber, the metal layer being arranged parallel thereto or at least with a component parallel to the central axis.
  • a metal layer may be an electrically conductive coating on the side peripheral surface of the dielectric. Such a The electrically conductive coating must be applied only to the parts of the parts that are not in contact with the insert or any other part of the parts that has already been coated.
  • At least two or all of the n dielectrics or two or all of the m parts of at least one dielectric are made of different material. It is also possible that at least one or all of the n dielectrics preferably have at least one air-filled recess. Thereby, the resonance frequency for each resonator of a resonator chamber can be changed separately within a filter chamber.
  • the signal transmission direction extends each of the m signal line terminals either from the signal line terminal to the common terminal or from the common terminal to the signal line terminal. If the signal transmission direction extends from one or more of the signal line connections to the common connection, a resonator of a resonator chamber of a filter chamber is coupled to exactly one resonator of a resonator chamber a filter chamber adjacent in the signal transmission direction. This ensures that in the signal transmission direction towards the common connection a resonator chamber is coupled to exactly one further resonator chamber.
  • a resonator of a resonator chamber of a filter chamber is coupled to one or more resonators of a filter chamber adjacent in the signal transmission direction.
  • a resonator of a resonator chamber having more than one resonator is coupled by a plurality of resonator chambers of a further filter chamber.
  • additional signal transmission paths can be created. However, this is preferable only when the signal transmission direction extends from the common terminal toward the m signal line terminals.
  • the coupling between the individual resonators is thereby increased, in that the dielectric in the first resonator is in contact with the first isolator and the dielectric in the nth resonator is in contact with the n-th th separator, the remaining dielectrics of the remaining n-2 resonators having both, the respective filter chamber limiting separators in contact. It is particularly advantageous if, in addition, the dielectric in the first resonator is additionally in contact with the housing cover and the dielectric in the nth resonator is in contact with the housing bottom.
  • in contact it is understood that at least two entities touch each other.
  • the dielectrics of the n-filter chambers are preferably firmly connected to the respective separation device or the respective separation devices, whereby the coupling is improved.
  • the common connection is in central or eccentric contact with the dielectric in the first filter chamber.
  • the dielectric in the first filter chamber has a recess into which protrudes the common terminal, whereby the common terminal is in contact with the first dielectric, or the dielectric in the first filter chamber has a continuous recess through which the common terminal extends, whereby the common terminal is in contact with the first dielectric and in contact with the first separator.
  • the m signal line connections are in central or eccentric contact with the dielectric, which is arranged in the m resonator chambers of the n-th filter chamber.
  • the dielectric in the nth filter chamber has up to m recesses into which the m signal line terminals project, whereby the m signal line terminals are in contact with the nth dielectric, and / or the dielectric in the nth filter chamber is up to m through recesses through which the m signal line terminals extend through, whereby the m signal line terminals are in contact with the n-th dielectric and in contact with the n-1 th separator.
  • Another advantage of the multiplex filter according to the invention is also that the arrangement and / or the size and / or the cross-sectional shape of at least one coupling opening of one of the n-1 separation devices completely or partially to the arrangement and / or the size and / or the cross-sectional shape of a different coupling opening of the same n-1 separator or to a coupling opening of another of the n-1 separating devices.
  • the number of coupling openings in the n-1 separation devices may be completely or partially different from each other, or the number of coupling openings in one of the n-1 separation device for coupling a resonator is different from the number of coupling openings of the same separation device Coupling of a another resonator.
  • the coupling between the individual resonators can be set to the desired value.
  • At least one, preferably all, of the resonator chambers can have at least one additional opening to the outside of the housing, whereby at least one tuning element can be introduced into the resonator chamber of at least one filter chamber via this additional opening ,
  • the distance between the tuning element, which is introduced through the at least one additional opening in the at least one resonator chamber at least one filter chamber, can be changed to the corresponding respective dielectric within the at least one resonator in the at least one filter chamber.
  • a plurality of tuning elements can be introduced into a resonator, wherein, for example, a tuning element consists entirely of a metal or a metallic coating, whereas the other tuning element comprises a dielectric material.
  • the tuning element, which is made of a metallic material can be used for coarse tuning and the tuning element comprising a dielectric material for fine tuning the resonant frequency and / or the coupling bandwidth of the corresponding resonator.
  • the distance between the at least one spacer element and the respective dielectric within the at least one of the m resonator chambers of the at least one of the n filter chambers can also be reduced to such an extent that it is in direct contact with this.
  • the dielectric of at least one of the n filter chambers can also have at least one indentation, wherein the distance between the tuning element and the dielectric can be reduced such that the tuning element dips into the indentation of the respective dielectric and thus is in contact therewith.
  • the tuning element occurs in this case in particular perpendicular to the signal transmission direction, ie preferably perpendicular to the central axis, into the at least one of the m resonator chambers of at least one of the n filter chambers.
  • the inventive method for adjusting the multiplex filter is repeated for the other filter chambers accordingly.
  • the resonant frequency and / or the coupling bandwidth of at least one resonator, preferably all resonators in the first and / or last, ie n-th filter chamber is set to the desired value
  • the value of the counter variable X is increased by 1.
  • the previous process steps are executed again. Again, a reflection factor at the common terminal and / or a reflection factor at at least one, preferably at all m signal line terminals are measured.
  • the equalization of the multiplex filter begins with the resonators, in which the common terminal and the m signal line terminals intervene, that is, in the resonators the outermost filter chamber, and ends at the resonators, which are arranged in the filter chamber (n odd) or the filter chambers (n straight) in the center of the multiplex filter.
  • the filter chamber in the center of the multiplex filter must be used once for the measurement of the reflection factor at the common terminal and another time for the measurement of the reflection factor on at least one, preferably all of the m signal line connections.
  • the coupling openings of the two separation devices surrounding the filter chamber in the center of the multiplex filter must be closed to the respective other connection, ie common connection or at least one, preferably all, of the signal line connections.
  • the forward transmission factor and / or the backward transmission factor can be measured in addition to the reflection factors at the common connection and / or at least one, preferably only the m signal line connections become.
  • the resonance frequencies and / or the coupling bandwidths can be varied for each resonator chamber of a filter chamber and thus for each resonator in a filter chamber by changing the diameter of at least one resonator chamber of a filter chamber, for example by exchanging the at least one resonator chamber Use by another use with changed dimensions is possible. It is also possible for the arrangement and / or the number and / or the size and / or the cross-sectional shape of the at least one coupling opening to be changed by turning and / or exchanging the at least one separating device. The screwing in or turning out of at least one tuning element into at least one resonator chamber of a filter chamber likewise makes it possible to change the resonance frequency and / or the coupling bandwidth. Finally, the dielectric in a filter chamber can be replaced by another dielectric with changed dimensions and / or recesses.
  • FIG. 1 shows an embodiment of the multiplex filter 1 according to the invention in an exploded view.
  • the multiplex filter 1 according to the invention comprises a housing 2, which has a housing bottom 3 and a housing cover 3 spaced from the housing cover 4 and a circumferential between the housing bottom 3 and the housing cover 4 housing wall 5.
  • the housing 2 is not shown together with the housing bottom 3, the housing cover 4 and the housing wall 5 for clarity. This is only off FIG. 6A shown.
  • Both the housing cover 4 and the housing bottom 3 have at least one opening, via which a common connection 14 and up to m signal line connections 15 can be introduced.
  • a common connection 14 is fed through the opening of the housing cover 4 to the multiplex filter 1 and up to m more signal line connections 15 through m openings in the housing bottom 3.
  • the opening in the housing cover 4 need not be arranged in the center of the housing cover 4. It is also possible that the opening is arranged eccentrically.
  • the multiplex filter 1 also has n-filter chambers 7 1 , 7 2 , ..., 7 n .
  • n is a natural number with n ⁇ 1, preferably n ⁇ 2, more preferably n ⁇ 3, more preferably n ⁇ 4 and more preferably n ⁇ 5.
  • M is also a natural number with m ⁇ 1, preferably m ⁇ 2, more preferably m ⁇ 3, more preferably m ⁇ 4 and more preferably m ⁇ 5.
  • the first subscript number here “1” indicates the number of the filter chamber 7 1 , 7 2 ,..., 7 n, and the value for this number therefore ends at “n " walk can.
  • the second number here “m” indicates the number of the resonator chamber within the respective filter chamber 7 1 , 7 2 ,..., 7 n and can therefore go to "m”.
  • all resonator 6 1_1 , 6 1_2 , ..., 6 1_m to 6 n_1 , 6 n_2 , ..., 6 n_m within the filter chambers 7 1 , 7 2 , ..., 7 n addressable.
  • each filter chamber 7 1 , 7 2 , ..., 7 n is at least one dielectric 8 1 , 8 2 , ..., 8 n .
  • This dielectric 8 1 , 8 2 ,..., 8 n is preferably disk-shaped or cylindrical. It extends over the entire volume of the respective filter chamber 7 1 , 7 2 , ..., 7 n or only over a part thereof.
  • the individual resonator 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n m each filter chamber 7 1, 7 2, ..., 7 n n from each other by dividing means 13 1 , 13 2 , ..., 13 n decoupled.
  • These subdivisions 13 1 , 13 2 ,..., 13 n are preferably arranged parallel to the central axis 12 and / or parallel to the m signal transmission devices 21 1 ,... 21 m and subdivide the n filter chambers 7 1 , 7 2 ,.
  • the n division means 13 1, 13 2, ..., 13 n are, for example, by a plurality of vias within the dielectric 8 1, 8 2, ... 8 n formed.
  • the plated-through holes are in the dielectrics 8 1 , 8 2 , ... 8 n , which are arranged in the filter chamber 7 1 , 7 2 , ..., 7 n , parallel or at least with a component parallel to the central axis 12 and / or to one of the signal transmission directions 21 2 , ... 21 m arranged. This makes the n Dielectrics 8 1 , 8 2 , ...
  • the plated-through holes are preferably bores whose inner walls are galvanized with an electrically conductive layer.
  • the vias may be arranged in a row. However, it is also possible for a plurality of rows of plated-through holes to be arranged directly adjacent to one another in parallel.
  • each filter chamber 7 1 , 7 2 , ... 7 n composed of m parts, which are preferably the same size, each of the m Parts in one of the m resonator 6 1_1 , 6 1_2 , ..., 6 1_m , to 6 n_1 , 6 n_2 , ..., 6 nm of a filter chamber 7 1 , 7 2 , ... 7 n is located.
  • a metal layer is formed, which forms the splitting device 13 1 , 13 2 , ... 13 n .
  • the metal layer may be, for example, an electrically conductive coating.
  • only that surface of the side peripheral surface of the m parts is coated so that the other m parts of the dielectric 8 1 , 8 2 , ... 8 n directly adjacent, which are not covered with such an electrically conductive layer.
  • all side peripheral surfaces of the m parts can be coated with the electrically conductive layer.
  • n dielectrics 8 1 , 8 2 ,..., 8 n made of a different material.
  • the same also applies to the n dielectrics 8 1 , 8 2 ,..., 8 n with one another, should they be formed in one piece.
  • the m parts of one of the n dielectrics 8 1 , 8 2 ,..., 8 n or the one-piece n dielectrics 8 1 , 8 2 ,..., 8 n have one or more recesses 16 preferably filled with air. Instead of using air, these recesses 16 can also be filled with a material which has a permeability which differs from the permeability of the n dielectrics 8 1 , 8 2 ,..., 8 n .
  • the individual filter chambers 7 1, 7 2, ..., 7 n are by separation devices 9 1, 9 2, ... 9 n-1 separated from each other.
  • These separating devices 9 1 , 9 2 ,... 9 n-1 are preferably cutting discs.
  • These separators 9 1 , 9 2 , ..., 9 n-1 are made of an electrically conductive material or are coated with such.
  • Each of these separating devices 9 1 , 9 2 ,..., 9 n-1 has at least one coupling opening 10.
  • the size, the geometric shape, the number and the arrangement of the coupling opening 10 within the respective separating device 9 1 , 9 2 , ..., 9 n-1 can be chosen arbitrarily and by separating device 9 1 , 9 2 , ... , 9 n-1 to separator 9 1 , 9 2 , ..., 9 n-1 differ.
  • the diameter of the coupling openings 10 is, depending on the frequency range, for example, only a fraction of a millimeter. It can be several millimeters, especially at low frequencies.
  • the separating devices 9 1 , 9 2 ,..., 9 n-1 are preferably thinner than the dielectrics 8 1 , 8 2 ,..., 8 n .
  • the separating devices 9 1 , 9 2 ,..., 9 n-1 are preferably only a few millimeters thick, preferably they are thinner than 3 millimeters, more preferably they are thinner than 2 millimeters.
  • Each filter chamber 7 1 , 7 2 , ..., 7 n may also comprise at least one insert 11 1 , 11 2 , ..., 11 n .
  • Such an insert 11 1 , 11 2 ,..., 11 n is preferably a ring which, with its outer surface, preferably bears in a form-fitting manner against an inner surface of the housing wall 5.
  • Such an insert 11 1 , 11 2 , ..., 11 n which is electrically conductive, can be used to adjust the volume of the filter chamber 7 1 , 7 2 , ..., 7 n , and thus to adjust the volume of the individual resonator 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n m are used, and thus allows adjustment of the resonant frequency of the multiplex filter.
  • a central axis 12 which passes through the multiplexing filter 1.
  • the central axis 12 preferably passes through the entire housing 2, in particular the housing bottom 3 and the housing cover 4.
  • all filter chambers 7 1 , 7 2 , ..., 7 n from the central axis 12 passes through centrally or eccentrically.
  • There are two signal transmission directions 21 1 and 21 2 because m takes the value "2". Basically, there are "m" signal transmission directions 21 1 , 21 2 , ..., 21 m .
  • the signal transmission directions 21 1 , 21 2 ,..., 21 m preferably run parallel to the central axis 12.
  • the filter chambers 7 1 , 7 2 ,..., 7 n are arranged one above the other. Each filter chamber 7 1 , 7 2 , ..., 7 n therefore has a maximum of two directly adjacent filter chambers 7 1 , 7 2 , ..., 7 n , wherein the filter chambers 7 1 , 7 2 , ..., 7 n from each other are separated by the respective separation means 9 1 , 9 2 , ..., 9 n-1 .
  • a coupling of the individual resonators of the resonator 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n n_m a filter chamber 7 1, 7 2, ..., 7 is not possible , or by more than a factor 100, preferably by more than 1000-fold weaker than the coupling of two resonators of two resonator chambers 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 ... n_2r , 6 n_m , which are coupled to each other via the coupling openings 10 within the separators 9 1 , 9 2 , ..., 9 n-1 .
  • the coupling of the individual resonators of the resonator 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n m is carried out parallel to the respective signal transmission device 21 1, 21 2, ..., 21 m .
  • the H-field 20 propagates perpendicular to the respective signal transmission direction 21 1 , 21 2 , ..., 21 m .
  • All filter chambers 7 1 , 7 2 , ..., 7 n are penetrated by the central axis 12.
  • the central axis 12 is perpendicular to the end face of the respective dielectrics 8 1 , 8 2 , ..., 8 n within the filter chambers 7 1 , 7 2 , ..., 7 n .
  • the inner wall of the housing 5 of the multiplex filter 1 is preferably cylindrical in cross section. The same applies to the inner wall of the respective inserts 11 1 , 11 2 , ..., 11 n .
  • Other shapes in cross section are also possible.
  • the inner walls in cross section in plan view may correspond to or approximate the shape of a rectangle or a square or an oval or a regular or irregular n-polygon.
  • the signal transmission device 21 1, ..., 21 m runs for each of the n signal line terminals 15 1, 15 2, ..., 15 m from either the signal line terminal 15 1, 15 2, ..., 15 m toward the common- Terminal 14 or from the common terminal 14 to the signal line terminal 15 1 , 15 2 , ..., 15 m .
  • the signal transmission direction 21 1 ,..., 21 m can run in different directions for the individual ones of the n signal line connections 15 1 , 15 2 ,..., 15 m .
  • the signal transmission device 21 1, ..., 21 m runs from one or more of m signal line terminals 15 1, 15 2, ..., 15 m toward the common terminal 14, wherein a resonator of a resonator chamber 6 1_1, 6 1_2, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n m a filter chamber 7 1, 7 2, ..., 7 n by exactly one resonator a resonator 6 1_1, 1_2 6, ..., 6 is coupled 1_m, n_1 to 6, 6 n_2, ..., 6 n m in a direction of signal transmission 21 1, ..., 21 m adjacent filter chamber 7 1, 7 2, ..., 7 n. This fact is also in FIG.
  • the signal transmission device 21 1, ..., 21 m extends in this case from the common terminal 14, to one or more of m signal line terminals 21 1, ..., 21 m, wherein a resonator of a resonator chamber 6 1_1, 6 1_2, ..., 6 1_m , to 6 n_1 , 6 n_2 , ..., 6 n_m of a filter chamber 7 1 , 7 2 ,..., 7 n with one or more resonators in the signal transmission direction 21 1 ,..., 21 m adjacent filter chamber 7 1 , 7 2 , ..., 7 n is coupled.
  • the n-1 separators 9 1 , 9 2 ,..., 9 n-1 are preferably each composed of a separating plate which is made of metal.
  • the coupling openings 10 can in this Separating plates are introduced for example by means of a laser or a punching process or a milling process.
  • FIG. 2 shows a representation that explains that a magnetic field 20 (H field), is arranged perpendicular to the signal transmission direction 21 1 .
  • the magnetic field lines thereby propagate radially outward about the signal transmission direction 21 1 .
  • the central axis 12 and the signal transmission direction 21 1 are in the embodiment of FIG. 1 not congruent, but parallel to each other. The same applies to the further signal transmission direction 21 2 ,..., 21 m with respect to the central axis 12.
  • FIG. 3A shows a cross section through the first filter chamber 7 1 with two resonator 6 1_1 , 6 1_m , wherein the dielectric 8 1 a resonator 6 1_1 a plurality of recesses 16 has.
  • the first filter chamber 7 1 is limited by a first insert 11 1 in its volume, wherein the first insert 11 1 adjacent to an inner wall of the housing wall 5 is arranged.
  • the common connection 14 is centered, that is arranged centrally in the first filter chamber 7 1 and coupled thereto.
  • These recesses 16 are preferably filled with air and arranged symmetrically with respect to an axis AA '.
  • the axis AA ' extends transversely to the central axis 12 and divides the first resonator chamber 6 1_1 into two equal areas.
  • the m resonator chambers 6 1_1 , 6 1_m of the first filter chamber 7 1 are the same size. This also applies to the further m resonator chambers 6 1_1 , 6 1_m of the further filter chambers 7 2 ,..., 7 n . It may also be that the m resonator chambers 6 1_1 , 6 1_m of the n filter chamber 7 1 , 7 2 ,..., 7 n are of different sizes.
  • the first filter chamber 7 1 comprises a region in which the splitting device 13 1 extends through the first dielectric 8 1 only in a partial length of the diameter. Characterized an opening portion 30 is formed, in which the common terminal 14 with all m resonators of the resonator 6 m 1_1, 6 1_m is coupled into the first filter chamber 7. 1
  • the opening area 30 has a size or length which is less than 10%, preferably less than 20%, more preferably less than 30%, more preferably less than 40% and more preferably less than 50% of the smallest diameter of the first filter chamber 7 1 equivalent.
  • the common connection can be arranged closer to or closer to the other resonator chamber 6 1_1 , 6 1_m and thus eccentrically .
  • the first division device 13 1 may be configured such that the coupling between the common pole 14 towards one of the two resonator chambers 6 1_1, 6 1_m is stronger than to the other.
  • FIG. 3B shows a cross section through the n-th filter chamber 7 n with two resonator 6 n_1 , 6 n_m , wherein the dielectric 8 n of the filter chamber 7 n in the region of a resonator 6 n_1 a recess 16 has.
  • the insert 11 n has a smaller inner diameter than the insert 11 1 made FIG. 3A .
  • the number of recesses 16 in each resonator chamber 6 n_1 , 6 n_m may be partially or completely different from the number of recesses in the other resonator chambers 6 n_1 , 6 n_m of the same filter chamber 7 n .
  • FIG. 4A shows a cross section through the first filter chamber 7 1 , wherein the common terminal 14 with three resonator 6 1_1 , 6 1_2 , 6 1_m the first filter chamber 7 1 is coupled, all of the same size.
  • an opening region 30 is again formed, which in this case is characterized not by a length but by a diameter, the diameter being less than 10%, preferably less than 20%, more preferably less than 30%. , more preferably less than 40% and more preferably less than 50% of the smallest diameter of the first filter chamber 7 1 corresponds.
  • the splitting device 13 1 is not formed, so that a coupling between the common connection 14 and the m resonator chambers 6 1_1 , 6 1_ 2 , 6 1_m can take place.
  • the points of the dotted opening area 30 are free of vias of any kind and are intended to symbolize only the opening area 30 itself.
  • the m resonator chambers 6 1_1 , 6 1_ 2 , 6 1_m have a different number of recesses 16, which in turn at least partially have a different size.
  • FIG. 4B shows a cross section through the n-th filter chamber 7 n with three resonator 6 n_1 , 6 n_2 , 6 n_m , which are each the same size.
  • the m resonator chambers 6 n_1 , 6 n_ 2 , 6 n_m are not coupled together.
  • Within each of these m resonator chambers 6 n_1 , 6 n_2 , 6 n_m is located for coupling or decoupling one of m signal line terminals 15 1 , 15 2 , ..., 15 m .
  • the dielectric 8 m has a different number of recesses 16, which differ in size at least partially, wherein the recesses 16 in each case different resonator 6 n_1 , 6 n_2 , 6 n_m are arranged.
  • the recesses 16 may completely penetrate the dielectric 8 m or be designed only as a "blind bore” or "blind hole”.
  • FIG. 5A shows a cross section through the first filter chamber 7 1 with four resonator 6 1_1 , 6 1_2 , 6 1_3 , 6 1_m , wherein the insert 11 1 has a wall segment 45 having a thickness which differs from the thickness of the remaining wall segments, so that distinguishes the volume of at least one resonator chamber 6 1_3 n_m of the volume of the other resonator 6 n_1, 6 n_2,.
  • the fat the at least one wall segment 45 can also be alternating, for example, in the in FIG. 5A illustrated cross section, the wall segment 45 have a sawtooth shape.
  • the opening region 30 is selected such that the common connection 14 is coupled to all the m resonators of the m resonator chambers 6 1_1 , 6 1_ 2 , 6 1_ 3 , 6 1_m , the m resonator chambers 6 1_1 , 6 1_ 2 , 6 1_ 3 , 6 1_m a has different number of recesses 16, which differ partially or completely from each other both in their number, as well as in their size, as well as in their shape.
  • the recesses 16 may correspond in plan view, for example, the shape of a rectangle and / or a square and / or an oval and / or a regular or irregular n-polygon or be approximated to this.
  • the corners of these recesses 16 may for example be additionally rounded.
  • FIG. 5B shows a cross section through the n-th filter chamber 7 n with four resonator 6 n_1 , 6 n_2 , 6 n_3 , 6 n_m , which are each the same size, but have a different number of recesses 16.
  • the dividing means 11 prevents n that the individual resonator 6 n_1, 6 n_2, 6 n_3, 6 are n_m coupled together.
  • the splitting device 11 n consists of m webs, which are preferably connected to one another in the middle, that is to say in the center of the n-th filter chamber 7 n .
  • each of the m Resonator chambers 6 n_1 , 6 n_2 , 60_ 3 , 6 n_m is one of n signal line connections 15 1 , 15 2 , 15 3 , 15 m coupled.
  • FIG. 6A shows a longitudinal section through the inventive multiplex filter 1, the plurality of filter chambers 7 1 , 7 2 , ..., 7 n with the respective resonator 6 1_1 , 6 1_2 , ..., 6 1_m , to 6 n_1 , 6 n_2 , .. ., 6 n_m shows, which are coupled to each other via coupling openings 10 in the separators 9 1 , 9 2 , ..., 9 n-1 .
  • the common connection 14 is inserted through an opening in the housing cover 4 into the first filter chamber 7 1 .
  • m signal line connections 15 1 ,..., 15 m are each guided through an opening in the housing bottom 3 and coupled to the m resonators 6 n_ 1,..., 6 n_m in the n th filter chamber 7 n .
  • a distance between the first dielectric 8 1 and the housing cover 4 is not present.
  • the same applies to the n-th dielectric 8 n which is also in contact with the housing bottom 3 with its front side.
  • a distance between the n-th dielectric 8 n and the housing bottom 3 is not present.
  • the elements of the high-frequency filter 1, so for example the inserts 11 1 , ..., 11 n , the dielectrics 8 1 , ..., 8 n , the separators 9 1 , ..., 9 n-1 and the housing cover 4, or housing bottom 3 are preferably pressed together. This pressing manifests itself, for example, in that the individual dielectrics 8 1 , 8 2 ,..., 8 n partially protrude into the individual separating devices 9 1 , 9 2 ,..., 9 n-1 .
  • the first dielectric 8 1 in the first filter chamber 7 1 has a recess into which the common terminal 14 protrudes. As a result, it is in contact with the first dielectric 8 1 .
  • the multiplex filter 1 off FIG. 6A has five filter chambers 7 1 , 7 2 , 7 3 , 7 4 , ..., 7 n , each having m resonator 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m own.
  • Each filter chamber 7 1 , 7 2 , 7 3 , 7 4 , ..., 7 n comprises a dielectric 8 1 , 8 2 , 8 3 , 8 4 , ..., 8 n .
  • FIG. 6A fill the individual dielectrics 8 1 , 8 2 , ..., 8 n, the volume of the respective filter chamber 7 1 , 7 2 , ..., 7 n completely.
  • the dielectrics 8 1 , 8 2 ,..., 8 n have the same dimensions with respect to their respective height in this embodiment, they differ in their respective diameters from one another. They could all be the same diameter.
  • the inserts 11 1 , 11 2 , 11 3 , 11 4 , ..., 11 n would all have the same inner diameter.
  • the outer diameter for all inserts 11 1 , 11 2 , 11 3 , 11 4 , ..., 11 n is the same, the wall thickness, so the inner diameter is different.
  • the volume of the individual filter chambers 7 1 , 7 2 ,..., 7 n is different.
  • the electrically conductive housing cover 4 is both in electrical contact with a front side of the housing 5, as well with an end face of the first insert 11 1 .
  • the housing bottom 3 is also in electrical contact with the housing 5 and an end face of the nth insert 11 n .
  • the housing 5 may be electrically conductive, that is, for example, may be made of metal, but not necessarily.
  • the housing 5 can be made of any other material, in particular of an electrically non-conductive material such as a dielectric or plastic.
  • the function of the housing 5 is to mechanically hold together and mechanically fix the components located in the interior of the housing 5.
  • the housing 5 can only consist of a dielectric, if it is ensured that the filter chambers 7 1 , 7 2 , ..., 7 n are shielded from the environment of the multiplex filter 1 . Such shielding can for example be done by the inserts 11 1 , 11 2 , ..., 11 n .
  • the separating devices 9 1 , 9 2 ,..., 9 n-1 have an outer diameter which preferably corresponds to an inner diameter of the housing wall 5. This means that an outer surface, ie a circumferential wall of each separating device 9 1 , 9 2 ,..., 9 n-1 touches the inner surface of the housing 5, ie is in mechanical contact therewith.
  • the coupling openings 10 of a separating device 9 1 , 9 2 ,..., 9 n-1 may differ from the coupling openings of the other separating devices 9 1 , 9 2 ,..., 9 n-1 with respect to their arrangement, ie orientation and / or their number and / or their size and / or their cross-sectional shape.
  • the coupling openings 10 of a separating device 9 1 , 9 2 ,..., 9 n-1 may themselves also be different with respect to their arrangement, ie orientation and / or their number and / or their size and / or their cross-sectional shape.
  • the coupling openings 10 of the individual separation devices 9 1 , 9 2 ,..., 9 n-1 have a different diameter and are arranged, for example, at different locations of the separation devices 9 1 , 9 2 ,..., 9 n-1 .
  • the number of coupling openings 10 may also differ.
  • the coupling openings 10 connect the individual resonator 6 1_1, 1_2 6, ..., 6 1_m, n_1 to 6, 6 n_2, ..., 6 n m of the individual filter chambers 7 1, 7 2, ..., 7 n to each other, being surrounded by the dielectric 8 1 , 8 2 , ..., 8 n of the adjacent filter chambers 7 1 , 7 2 , ..., 7 n .
  • An electrically conductive insert 11 1 , 11 2 ,..., 11 n can not cover a coupling opening 10. It is also possible that the cross-sectional shape of the individual coupling openings 10 changes over the length, that is, over the height.
  • the dielectrics 8 1 , 8 2 , ..., 8 n are also in contact with their respective separator 9 1 , 9 2 ,..., 9 n_1 .
  • the dielectrics 8 1 , 8 2 ,..., 8 n can be pressed and / or soldered to the respective separating devices 9 1 , 9 2 ,..., 9 n-1 .
  • the inserts 11 1 , 11 2 , ..., 11 n with the corresponding separation devices 9 1 , 9 2 , ..., 9 n-1 form fit pressed together and / or soldered.
  • a rotation of the individual elements is prevented from each other, whereby the electrical properties of the high-frequency filter 1 does not change over a longer period.
  • the splitters 131, ..., 13n are also shown. These share the filter chambers 7 1, 7 2, ..., 7 n over the entire thickness of the dielectrics 8 1, ..., 8 n in the resonator 6 m 1_1, ..., 6 1_m, n_1 to 6. .., 6 n_m on.
  • the first splitting device is shown in dashed lines, because in this still the opening portion 30 is indicated for the common coupling with the common terminal 14.
  • FIG. 6B shows a longitudinal section through a further embodiment of the multiplex filter according to the invention 1.
  • the first dielectric 8 1 is arranged with its end face spaced from the housing cover 4.
  • the common terminal 14 touches the end face of the first dielectric 8 first The common terminal is therefore in contact with the first dielectric 8 1 .
  • the further m signal line connections 15 1 ,..., 15 m also touch an end face of the n th dielectric 8 n , and are in contact therewith.
  • the end face of the n-th dielectric 8 n is also spaced from the housing bottom 3 and does not touch it, so it is not in contact with this.
  • FIG. 6B fill the individual dielectrics 8 1, 8 2, ..., 8 n the volume of the respective filter chamber 7 1, 7 2, ..., 7 n are not completely.
  • the coupling openings 10 connect the individual resonator 6 1_1, ..., 6 1_m, n_1 to 6, ..., 6 n m of the individual filter chambers 7 1, 7 2, ..., 7 n with each other to free the one hand of the Volume of a resonator 6 1 , 6 2 , ..., 6 n or of the dielectric 8 1 , 8 2 , ..., 8 n of the resonator 6 1 , 6 2 , ..., 6 n are surrounded.
  • FIG. 7A shows a longitudinal section through a further embodiment of the multiplex filter 1 according to the invention, wherein tuning elements 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m different distances in the individual filter chambers 7 1 , 7 2 , ..., 7 n and thus in the individual resonator 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m are introduced.
  • At least one tuning element each 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m is at least one through an additional opening 41 1_1 , ..., 41 1_m , to 41 n_1 ..., 41 n_m Filter chamber 7 1 , 7 2 , ..., 7 introduced n .
  • 40 1_m, n_m to 40 n_1 ..., 40 in each resonator 6 1_1, ..., 6 1_m, n_1 to 6, ..., 6 is arranged n_m.
  • the openings 41 1_1 , ..., 41 1_m , to 41 n_1 ..., 41 n_m extend through the housing wall 5 and through the corresponding insert 11 1 , 11 2 , ..., 11 n into the filter chamber 7 1 , 7 2 , ..., 7 n into it.
  • the corresponding tuning element 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m can then be turned into or out of the respective filter chamber 7 1 , 7 2 ,..., 7 n .
  • the distance between the tuning element 41 1_1 , ..., 41 1_m , to 41 n_1 ..., 41 n_m and the respective dielectric 8 1 , 8 2 , ..., 8 n is variable.
  • the respective opening 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m preferably runs perpendicular to Signal propagation direction 21 1 , ..., 21 m and thus also perpendicular to the central axis 12th
  • the distance of the at least one tuning element 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m to the respective dielectric 8 1 , 8 2 , ..., 8 n in the filter chamber 7 1 , 7 2 , ..., 7 n is reducible as far as that n with the dielectric 8 1, 8 2, ..., 8 is in contact, so touches it.
  • the n-th dielectric 8 n in the n-th filter chamber 7 n also has a recess, so that n-th tuning elements 40 n-1 , ..., 40 nm can dip into the n-th dielectric 8 n .
  • FIG. 7B shows a longitudinal section through a further embodiment of the multiplex filter according to the invention 1.
  • the dielectric 8 1 in the first filter chamber 7 1 has a continuous recess through which the common terminal 14 extends therethrough.
  • the common terminal 14 comes directly into contact with the first separator 9 first.
  • the same also applies to at least one or all of the m signal line connections 15 1 ,..., 15 m , which extend through one or m continuous recesses in the n th dielectric 8 n of the n th filter chamber 7 n and in contact with the n-1-th separator 9 n-1 stand.
  • the part of the common connection 14 or the m signal line connections 15 1 ,..., 15 m which is in contact with the respective dielectric 8 1 , 8 n or with the respective separation device 9 1 , 9 n-1 , runs parallel to Central axis 12, or parallel to the signal transmission direction 21 1 , ..., 21 m .
  • the other parts of the common connection 14 or the m signal line connections 15 1 ,..., 15 m do not have to run parallel to the signal transmission direction 21 1 ,..., 21 m , or to the central axis 12.
  • those parts of the common connection 14 or the m signal line connections 15 1 ,..., 15 m run parallel to the signal transmission direction 21 1 ,..., 21 m , which extend within the first or n-th filter chamber 7 1 , 7 n are located.
  • FIG. 8 shows a longitudinal section through a further embodiment of the multiplex filter 1 according to the invention, wherein a coupling between two resonator 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m takes place in not adjacent filter chambers 7 1 , 7 2 , ..., 7 n are arranged, wherein additional anti-rotation elements 62 are arranged in the housing
  • the inserts 11 1, 11 2, ..., 11 n of at least two not directly adjacent resonator cavities 6 1_1, ..., 6 1_m, n_1 to 6, ..., 6 n m each have an opening 50 1, 50 2 on.
  • the at least two openings 50 1 , 50 2 are interconnected by a channel 51, this channel 51 preferably parallel to the signal propagation direction 21 1 , ..., 21 m , that is parallel to the central axis 12.
  • This channel 51 extends at least partially within the housing wall 5. It is also possible that the parallel course of this channel 51 is completely within the housing wall 5.
  • this channel 51 does not run within the housing wall 5, but only through the inserts 11 1 , 11 2 , ..., 11 n and the separating devices 9 1 , 9 2 , ..., 9 n lying therebetween -1 .
  • This electrical conductor 52 couples the at least two resonator chambers 6 1_m , 6 3_m capacitively and / or inductively with each other.
  • the at least two resonator chambers 6 1_m , 6 3_m are also part of a signal transmission path without the coupling.
  • a first end 53 1 of the electrical conductor 52 is connected to the first separator 9 1 .
  • the first end 53 1 of the electrical conductor 52 preferably runs parallel to the signal propagation direction 21 1 ,..., 21 m and thus parallel to the central axis 12.
  • a second end 53 2 of the electrical conductor 52 is galvanically connected to the third separator 9 3 .
  • the second end 53 2 likewise preferably runs parallel to the signal propagation direction 21 1 ,..., 21 m and thus parallel to the central axis 12.
  • the first and second ends 53 1 , 53 2 can be connected to the respective separating devices 9 1 , 9 2 ,. .. 9 n-1 be connected for example by means of a solder joint.
  • the electrical conductor 52 which extends within the channel 51, is within this preferably via dielectric spacers, not shown, of the walls which surround the channel 51, electrically separated and held by these in its position.
  • a first end 53 1 of the electrical conductor 52 may also be connected to the housing cover 4, as shown in dashed lines.
  • a second end 53 2 of the electrical conductor 52 may also be connected to the second separator 9 2 , as shown in dashed lines.
  • the first dielectric 8 1 and the third dielectric 8 3 between whose resonator chambers 6 1_m , 6 3_m an over-coupling is to take place, have a preferably continuous slot 80 in the longitudinal direction.
  • This continuous slot 80 can be introduced, for example, by means of a diamond saw in the existing of a ceramic dielectric 8 1 , 8 2 , ..., 8 n .
  • the anti-rotation elements 62 may consist of a combination between a projection and a receiving opening.
  • the housing cover 4 may have a projection which engages in a corresponding receiving opening within the first insert 11 1 .
  • the anti-rotation elements 62 are preferably between at least one of the n-1 separators 9 1 , 9 2 , ..., 9 n and the at least one insert 11 1 , 11 2 , ..., 11 n and / or the adjacent dielectric. 8 1 , 8 2 , ..., 8 n attached.
  • the housing bottom 3 and / or the housing cover 4 and / or the housing wall 5 and the insert 11 1 in the first filter chamber 7 1 and the insert 11 n in the n-th filter chamber 7 n mounted the prevents the mutual rotation of those elements which are arranged closest to the common terminal 14 and / or to the m signal line terminals 15 1 , ..., 15 m . This also prevents twisting of those elements which are arranged further inside the multiplexing filter 1.
  • the multiplex filter 1 is preferably realized in stacked construction, wherein all the filter chambers 7 1 , 7 2 , ..., 7 n are arranged one above the other.
  • the Verstontician 62 thereby prevent the electrical properties of the individual resonator 6 1_1, ..., 6 1_m, n_1 to 6, ..., 6 n m within the filter chambers 7 1, 7 2, ..., 7 n, to which, for example, the resonance frequencies belong, change.
  • FIG. 9 shows a longitudinal section through a further embodiment of the multiplex filter according to the invention 1.
  • the separator 9 1 , 9 2 , ..., 9 n-1 is an integral part of each dielectrics 8 1 , 8 2 , ..., 8 n . This means that one or both end faces of each of the n-type dielectrics 8 1 , 8 2 ,..., 8 n are coated with a metal layer. This metal layer then represents one of the n-1 separation devices 9 1 , 9 2 ,..., 9 n-1 .
  • Adjacent dielectrics 8 1 , 8 2 ,..., 8 n have the recesses 90 within the coating of the metal layer in each case in the same places, so that a coupling in signal propagation direction 21 1 , ..., 21 m is made possible.
  • FIG. 10 shows a flowchart which explains how the resonance frequency and / or the coupling bandwidth for at least one or all of the resonators in the resonator 6 1_1, ..., 6 1_m, and 6 n_1, ..., 6 n m of the first and n-th filter chamber 7 1, 7 n is set to match multiplexing filter 1 according to the invention.
  • a counter variable X is defined with 0.
  • method step S 1 is carried out.
  • all coupling openings 10 of the 1 + x th separator and / or the n-1 th separator are closed. Looking at the longitudinal section in FIG. 6A this would be the coupling openings 10 in the first separator 9 1 and in the last separator 9 n-1 .
  • the method step S 2 is carried out.
  • the reflection factor is measured at the common connection 14 and / or at least one, preferably at all signal line connections 15 1 ,..., 15 m .
  • the measured reflection factor is determined solely from the geometric properties of the first and nth resonators 6 1 , 6 n .
  • method step S 3 is carried out.
  • the resonant frequency and / or the coupling band width of at least one, preferably all the resonators of the resonator 6 1_1, ..., 6 1_m and 6 n_1, ..., 6 n m in the first and n-th filter stage 7 1 , 7 n set to a certain value.
  • the method step S 2 is again executed in order to measure the changed reflection factor again to determine whether the method step S 3 must be repeated, or whether the set values for the resonance frequency and / or the Coupling bandwidth already correspond to the desired values.
  • the matching of the multiplex filter 1 according to the invention takes place from the outside to the inside, that is to say beginning with the resonators which are directly coupled to the common connection or the m signal line connections 15 1 ,..., 15 m , ie in the resonators, in the resonator chambers 6 1_1 , ..., 6 1_m and 6 n_1 , ..., 6 n_m , which are arranged at the common terminal or at the m signal line terminals 15 1 , ..., 15 m .
  • FIG. 11 shows a further flow chart, which explains how the resonance frequencies and / or the coupling bandwidths for the other resonators of the resonator 6 2_1 , ..., 6 2_m , to 6 n-1_1 , ..., 6 n-1_m are set to to match the multiplex filter 1 according to the invention.
  • the method step S 4 is executed.
  • the method step S 5 is carried out.
  • the value of X is increased by 1.
  • the method step S 6 is listed, in which again the method steps S 1 , S 2 , S 3 , S 4 , S 5 are carried out, namely until all coupling openings 10 are opened.
  • the coupling openings 10 of the separator 9 2 and the coupling openings 10 of the separator 9 3 are closed.
  • the resonance frequency and / or the coupling bandwidth of the resonators in the filter chambers 7 2 , 7 n-1 and, preferably, in addition to the resonators in the filter chambers 7 1 , 7 n-1 is again set.
  • the resonators of the resonator chambers 6 3_1 ,..., 6 3_m of the middle filter chamber 7 3 are used once in the method for matching the multiplex filter 1 for the calculation of the reflection factor on the Common terminal 14 and once for the calculation of the reflection factor at the at least one, preferably at all m signal line connection 15 1 , ..., 15 m used.
  • the coupling openings 10 of the X-th separator are opened and the coupling openings 10 of the X + 1-th separator closed.
  • the coupling openings 10 are opened in the separator 9 2 and closed in the separator 9 3 .
  • the reflection factor at the common connection 14 is measured and the resonance frequency and / or the coupling bandwidth are adjusted accordingly.
  • the coupling opening 10 of the X + 1 th separator is opened and the coupling openings 10 of the X th separator are closed.
  • the coupling openings 10 would be closed in the separator 9 2
  • the coupling opening 10 would be opened within the separator 9 3 3 .
  • method step S 2 is carried out again and the reflection factor is measured on one or preferably all the signal line connections 15 1 ,..., 15 m .
  • the method step S 3 is carried out, in which the resonance frequency and / or the coupling bandwidth can be adjusted.
  • the resonance frequencies and / or the coupling bandwidths of the resonators in the resonator chambers of the filter chamber in the middle of the multiplex filter 1 according to the invention must be adjusted so that both for the reflection factor at the common terminal 14, as well as for the reflection factors on one, preferably on all of the m Signal line terminals 15 1 , ..., 15 m an acceptable value is reached. Possibly. compromises must be made.
  • step S 9 is carried out and the coupling openings of the X-th and the X + 1-th separator are opened.
  • all coupling openings 10 in all separators 9 1 , 9 2 , ..., 9 n-1 are open. This condition automatically exits after passing through the flowchart FIG. 11 when there are an even number of filter chambers 7 1 , 7 2 , ..., 7 n .
  • method step S 10 is carried out.
  • the forward transmission factor and / or the backward transmission factor are determined.
  • the resonance frequency and / or the coupling bandwidth are again set to a specific value, or finely adjusted. This takes place in method step S 3 .
  • Repetition of the method steps S 2 and S 10 is possible as often as the desired target value for the resonant frequency and / or the coupling bandwidth has not yet been reached in method step S 3 .
  • FIG. 14 shows a further flowchart, which explains by what measures the resonance frequency and / or the coupling bandwidth can be changed within a resonator in a resonator 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m .
  • the method step S 11 describes that the resonance frequency and / or the coupling bandwidth can be adjusted by the diameter of the respective filter chamber 7 1 , 7 2 ,..., 7 n being replaced by exchanging the insert 11 1 , 11 2 , ... , 11 n can be done by another with changed dimensions, in particular with a changed inner diameter.
  • the inserts 11 1 , 11 2 , ..., 11 n can here also wall segments 45 have that differ from other wall segments of the same insert 11 1 , 11 2 , ..., 11 n by a changed thickness, so that the Resonance frequencies of the individual Resonator chambers 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m a filter chamber 7 1 , 7 2 , ..., 7 n differ from each other.
  • the method step S 12 can be carried out.
  • an intended separating device 9 1 , 9 2 ,..., 9 n-1 can be rotated so that the coupling openings 10 are arranged differently. It is also possible that the separating device 9 1 , 9 2 , ..., 9 n is replaced by another, wherein the coupling openings 10, a different arrangement and / or a different number and / or a different size and / or another Have geometry.
  • the method step S 13 can be carried out.
  • a change in the resonance frequency and / or the coupling bandwidth can also be achieved by further screwing and / or turning at least one tuning element 40 1_1 ,..., 40 1_m , to 40 n_1 ..., 40 n_m into the respective resonator chamber 6 1_1,. .., 6 1_m , to 6 n_1 , ..., 6 n_m occur.
  • a resonator chamber 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m can also be more than one tuning element 40 1_1 , ..., 40 1_m , to 40 n_1 ..., 40 n_m one or turned off.
  • the method step S 14 can also be carried out.
  • at least one dielectric 8 1 , 8 2 ,..., 8 n in a filter chamber 7 1 , 7 2 ,..., 7 n can be replaced by another dielectric 8 1 , 8 2 ,. 8 n exchanged, which has changed dimensions, in particular in its height and / or its diameter.
  • step S 1 or each time when coupling openings 10 are to be closed, this is preferably done by the respective separation device 9 1 , 9 2 , ... 9 n is replaced by one which has no coupling openings 10.
  • splitting devices 13 1 , 13 2 ,..., 13 n are preferably designed as separate components separate from the housing 2, but may also be integrally connected to the housing 2.
  • dielectrics 8 1 , 8 2 ,..., 8 n are preferably formed separately from the housing 2 as separate components. These could also be integrally connected to the housing 2.
  • the resonator 6 1_1, ..., 6 1_m, n_1 to 6, ..., 6 n_m free of any cavity inner conductors which are electrically connected with one end to the housing 2 and extending into the resonator 6 1_1, ..., 6 1_m , extend to 6 n_1 , ..., 6 n_m and end with another end in the resonator chambers 6 1_1 , ..., 6 1_m , to 6 n_1 , ..., 6 n_m .
  • Such a construction would be common in coaxial cavities.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Claims (24)

  1. Filtre multiplexe (1) destiné à la transmission de modes TM dans une direction transversale présentant les caractéristiques suivantes :
    - un boîtier (2) qui comporte un fond de boîtier (3), un couvercle de boîtier (4) espacé du fond de boîtier (3) et une paroi de boîtier (5) circonférentielle entre le fond de boîtier (3) et le couvercle de boîtier (4);
    - au moins n chambres de filtration (71, 72, ..., 7n), avec n ≥ 2, de préférence ≥ 3, de manière davantage préférée n ≥ 4, de manière davantage préférée n ≥ 5, qui sont entourées par le boîtier (2) et/ou au moins une cartouche (111) se trouvant dans le boîtier (2);
    - dans chacune des n chambres de filtration (71, 72, ..., 7n) est conçu un dispositif de répartition (131, 132, ..., 13n) constitué de métal ou comprenant du métal qui répartit chaque chambre de filtration (71, 72, ..., 7n) en m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m), avec m ≥ 2, dont chacune constitue un résonateur;
    - le filtre multiplexe (1) comporte n-1 dispositifs de séparation (91, 92, ..., 9n-1) ;
    - les n chambres de filtration (71, 72, ..., 7n) sont disposées le long d'un axe central (12) qui est situé de manière perpendiculaire au champ H des modes TM ou avec un composant de manière sensiblement perpendiculaire au champ H des modes TM, respectivement deux chambres de filtration (71, 72, ..., 7n) adjacentes ou successives le long de l'axe central (12) étant séparées par un dispositif de séparation (91, 92, ..., 9n-1) ;
    - chacun des n-1 dispositifs de séparation (91, 92, ..., 9n-1) comporte au moins m ouvertures de couplage (10), par lesquelles respectivement deux chambres de résonance successives (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) sont couplées l'une à l'autre dans une direction de transmission de signal (211, ..., 21m) ;
    - les chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) situées dans chaque chambre de filtration (71, 72, ..., 7n) et ainsi les résonateurs respectifs sont découplés les uns des autres par le biais des dispositifs de répartition (131, 132, ..., 13n) situés dans la chambre de filtration (71, 72, ..., 7n) respective;
    - les dispositifs de répartition (131, 132, ..., 13n) sont disposés de manière parallèle à l'axe central (12) ou avec un composant de manière sensiblement parallèle à l'axe central (12);
    - au moins n diélectriques (81, 82, ..., 8n), dont respectivement au moins un est disposé dans chaque chambre de filtration (71, 72, ..., 7n) ;
    - le couplage entre les chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) se produit de manière perpendiculaire aux champs H des modes TM et/ou de manière parallèle à l'axe central (12) ou avec un composant sensiblement perpendiculaire aux champs H des modes TM et/ou parallèle à l'axe central;
    - un raccordement commun (14), qui est guidé par une première ouverture dans le boîtier (2) dans la première chambre de filtration (71) et est couplé dans celle-ci avec les m résonateurs des m chambres de résonance (61_1, ..., 61_m) ;
    - m raccordements de ligne de signal (151, ..., 15m) qui sont couplés par m ouvertures dans le boîtier (2) avec les m résonateurs dans les m chambres de résonance (61_1, ..., 61_m) dans la nième chambre de filtration (7n) ;
    - les ou chacun des n-1 dispositifs de séparation (91, 92, ..., 9n-1) est constitué d'une couche métallique, dont une ou les deux faces frontales d'au moins un ou de l'ensemble des n diélectriques (81, 82, ..., 8n) est recouverte, l'au moins un diélectrique (81, 82, ..., 8n) étant formé d'un seul tenant avec l'au moins un des n-1 dispositifs de séparation (91, 92, ..., 9n-1) et le revêtement de la couche métallique présentant au moins un évidement (90) en tant qu'une des ouvertures de couplage (10); et/ou
    - le dispositif de répartition (131, 132, ..., 13n) est formé par le biais d'une pluralité de trous d'interconnexion à l'intérieur d'un ou de l'ensemble des n diélectriques (81, 82, ..., 8n) qui sont disposés dans la chambre de filtration (71, 72, ..., 7n) de manière parallèle ou au moins avec un composant parallèle à l'axe central (12), un ou l'ensemble des n diélectriques (81, 82, ..., 8n) étant ainsi répartis en m parties, chacune des m parties étant située dans une des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n)
    caractérisé par les caractéristiques suivantes:
    - la première chambre de filtration (71) comprend une zone dans laquelle le dispositif de répartition (131, 132, ..., 13n) s'étend seulement dans une longueur partielle du diamètre à travers le premier diélectrique (81), permettant ainsi de créer une zone d'ouverture (30) dans laquelle le raccordement commun (4) est couplé à tous les m résonateurs (61_1, ..., 61_m) dans la première chambre de filtration (71), la zone d'ouverture (30) présentant une dimension ou longueur, qui correspond à moins de 10 %, de préférence moins de 20 %, de manière davantage préférée moins de 30 %, de manière davantage préférée moins de 40 % et de manière davantage préférée moins de 50 % du plus petit diamètre de la première chambre de filtration (71) ;
    et/ou
    - les chambres de filtration (71, 72, ..., 7n) et/ou les diélectriques (81, 82, ..., 8n) présentent une section transversale circulaire.
  2. Filtre multiplexe selon la revendication 1, caractérisé par les caractéristiques suivantes :
    - les n chambres de filtration (71, 72, ..., 7n) sont disposées dans une direction de transmission de signal (211, ..., 21m) et/ou le long de l'axe central (12), le champ H des modes TM s'étendant radialement autour de l'axe central (12) et/ou autour de la direction de transmission de signal (211, ..., 21m) vers l'extérieur; et/ou
    - chacune des n chambres de filtration (71, 72, ..., 7n) est traversée par l'axe central (12) de manière médiane et/ou de manière excentrée.
  3. Filtre multiplexe selon la revendication 1 ou 2, caractérisé par la caractéristique suivante:
    - la direction de transmission de signal (211, ..., 21m) s'étend pour chacun des m raccordements de ligne de signal (151, ..., 15m) soit du raccordement de ligne de signal (151, ..., 15m) au raccordement commun (14) soit du raccordement commun (14) au raccordement de ligne de signal (151, ..., 15m).
  4. Filtre multiplexe selon la revendication 3, caractérisé par les caractéristiques suivantes:
    - la direction de transmission de signal (211, ..., 21m) s'étend d'un ou de plusieurs des m raccordements de ligne de signal (151, ..., 15m) au raccordement commun (14), un résonateur d'une chambre de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) étant couplé à exactement un résonateur d'une chambre de résonance (61_1, ..., 61_m, jusqu' à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) adjacente dans une direction de transmission de signal (211, ... ; 21m) ; et/ou
    - la direction de transmission de signal (211, ..., 21m) s'étend du raccordement commun (14) à un ou plusieurs des m raccordements de ligne de signal (151, ..., 15m), un résonateur d'une chambre de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) étant couplé à un ou plusieurs résonateurs de la chambre de filtration (71, 72, ..., 7n) adjacente dans une direction de transmission de signal (211, ..., 21m).
  5. Filtre multiplexe selon l'une des revendications 1 à 4, caractérisé par la caractéristique suivante:
    - au moins une des n chambres de filtration (71, 72, ..., 7n) et/ou un des n diélectriques (81, 82, ..., 8n) est de forme cylindrique.
  6. Filtre multiplexe selon l'une des revendications 1 à 5, caractérisé par la caractéristique suivante:
    - le dispositif ou chacun des n-1 dispositifs de séparation (91, 92, ..., 9n-1) est constitué d'un feuillet de séparation.
  7. Filtre multiplexe selon l'une des revendications 1 à 6, caractérisé par les autres caractéristiques:
    - le diélectrique (81, 82, ..., 8n) à l'intérieur de chaque chambre de filtration (71, 72, ..., 7n) est constitué de m parties qui sont de préférence de taille identique, chacune des m parties étant située dans une des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n), une couche métallique étant conçue entre les m parties individuelles comme dispositif de répartition (131, 132, ..., 13n) à l'intérieur de la chambre de filtration respective (71, 72, ..., 7n), laquelle couche métallique séparant les unes des autres les chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) individuelles à l'intérieur d'une chambre de filtration (71, 72, ..., 7n), la couche métallique étant disposée de manière parallèle ou au moins avec un composant parallèle à l'axe central (12).
  8. Filtre multiplexe selon la revendication 7, caractérisé par les autres caractéristiques:
    - au moins deux ou l'ensemble des n diélectriques (81, 82, ..., 8n) ou deux ou l'ensemble des m parties au moins d'un diélectrique (81, 82, ..., 8n) sont constitués d'un matériau différent; et/ou
    - au moins un ou l'ensemble des n diélectriques (81, 82, ..., 8n) présentent un évidement (16) de préférence rempli d'air.
  9. Filtre multiplexe selon l'une des revendications 1 à 8, caractérisé par l'autre caractéristique:
    - les m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'au moins une, de préférence de chaque chambre de filtration (71, 72, ..., 7n), sont de même dimension.
  10. Filtre multiplexe selon l'une des revendications 1 à 9, caractérisé par les autres caractéristiques:
    a) un diamètre d'au moins une des n chambres de filtration (71, 72, ..., 7n) est formé par le biais d'au moins une cartouche (111, 112, ..., 11n), en particulier par le biais d'un cartouche circulaire (111, 112, ..., 11n), qui est maintenue par la paroi de boîtier (5) de réception de la cartouche (111, 112, ..., 11n) ; et/ou
    b) au moins un élément de protection anti-torsion (62) est placé entre au moins un des n-1 dispositifs de séparation (91, 92, ..., 9n-1) et l'au moins une cartouche (111, 112, ..., 11n) et/ou le diélectrique adjacent (81, 82, ..., 8n) et empêche la rotation réciproque de ces éléments; et/ou
    c) l'au moins un élément de protection anti-torsion (62) respectif est placé entre le fond de boîtier (3) et/ou le couvercle de boîtier (4) et/ou la paroi de boîtier (5) et la cartouche (111) dans la première chambre de filtration (71) et la cartouche (11n) dans la nième chambre de filtration (7n) et empêche la rotation réciproque de ces éléments.
  11. Filtre multiplexe selon la revendication 10, caractérisé par l'autre caractéristique:
    - la cartouche (111, 112, ..., 11n) d'une, de préférence de chaque chambre de filtration (71, 72, ..., 7n) comporte des segments de paroi (45) adjacents à la paroi interne du boîtier (2) d'épaisseurs différentes, de manière que les volumes des chambres de résonance individuelles (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) se différencient les uns des autres.
  12. Filtre multiplexe selon la revendication 10 ou 11, caractérisé par les autres caractéristiques:
    - les cartouches (111, 112, ..., 11n) d'au moins deux chambres de filtration (71, 72, ..., 7n) pas directement successives présentent une ouverture (501, 502) ;
    - les au moins deux ouvertures (501, 502) sont reliées entre elles par le biais d'un conduit (51), celui-ci s'étendant au moins partiellement à l'intérieur de la paroi de boîtier (5);
    - un conducteur électrique (52) s'étend entre les deux chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) à l'intérieur du conduit (52), les au moins deux résonateurs des deux chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) étant ainsi couplés entre eux de manière capacitive et/ou inductive.
  13. Filtre multiplexe selon l'une des revendications 1 à 12, caractérisé par les autres caractéristiques:
    - les n diélectriques (81, 82, ..., 8n) sont en forme de disque; et/ou
    - une partie ou l'ensemble des n diélectriques (81, 82, ..., 8n) se différencient entièrement ou partiellement dans leurs dimensions; et/ou
    - au moins un ou l'ensemble des n diélectriques (81, 82, ..., 8n) remplissent un volume de la chambre de filtration (71, 72, ..., 7n) et ainsi des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) à l' intérieur de la chambre de filtration (71, 72, ..., 7n), dans laquelle ils sont disposés, entièrement ou partiellement.
  14. Filtre multiplexe selon l'une des revendications 1 à 13, caractérisé par les autres caractéristiques:
    - le diélectrique (81) dans la première chambre de filtration (71) est en contact avec le premier dispositif de séparation (91) et le diélectrique (8n) dans la nième chambre de filtration (7n) est en contact avec le n-1ième dispositif de séparation (9n-1) et/ou les diélectriques (82, ..., 8n-1) des n-2 chambres de filtration (72, ..., 7n-1) restantes sont en contact avec les deux dispositifs de séparation (91, 92, ..., 9n-1) limitant la chambre de filtration (72, ..., 7n-1) respective; et/ou
    - le diélectrique (81) dans la première chambre de filtration (71) est en contact avec le couvercle de boîtier (4) et le diélectrique (8n) dans la nième chambre de filtration (7n) est en contact avec le fond de boîtier (3); et/ou
    - les diélectriques (81, 82, ..., 8n) des n chambres de filtration (71, 72, ..., 7n) sont solidaires d'un ou des deux dispositifs de séparation (91, 92, ..., 9n-1) qui limitent la chambre de filtration (71, 72, ..., 7n) respective, en particulier soudés ou comprimés.
  15. Filtre multiplexe selon l'une des revendications 1 à 14, caractérisé par les autres caractéristiques:
    - l'agencement et/ou la dimension et/ou la forme transversale d'au moins une ouverture de couplage (10) d'un des n-1 dispositifs de séparation (91, 92, ..., 9n-1) sont entièrement ou partiellement différents de l'agencement et/ou de la dimension et/ou de la forme transversale d'une autre ouverture de couplage (10) du même n-1 dispositif de séparation (91, 92, ..., 9n-1) ou d'une ouverture de couplage (10) d'un autre des n-1 dispositifs de séparation (91, 92, ..., 9n-1) ; et/ou
    - le nombre d'ouvertures de couplage (10) dans les n-1 dispositifs de séparation (91, 92, ..., 9n-1) est entièrement ou partiellement différent; et/ou
    - le nombre d'ouvertures de couplage (10) dans un des n-1 dispositifs de séparation (91, 92, ..., 9n-1) en vue du couplage d'un résonateur est différent du nombre d'ouvertures de couplage (10) du même dispositif de séparation (91, 92, ..., 9n-1) en vue du couplage d'un autre résonateur.
  16. Filtre multiplexe selon l'une des revendications 1 à 15, caractérisé par les autres caractéristiques:
    - le raccordement commun (14) est en contact médian ou excentré avec le diélectrique (81) dans la première chambre de filtration (71), et:
    a) le diélectrique (81) dans la première chambre de filtration (71) comporte un renfoncement dans lequel le raccordement commun (14) pénètre, le raccordement commun (14) étant ainsi en contact avec le premier diélectrique (81); ou
    b) le diélectrique (81) dans la première chambre de filtration (71) présente un évidement continu à travers lequel le raccordement commun (14) s'étend, le raccordement commun (14) étant ainsi en contact avec le premier diélectrique (81) et en contact avec le premier dispositif de séparation (91).
  17. Filtre multiplexe selon l'une des revendications 1 à 16, caractérisé par les autres caractéristiques:
    - les m raccordements de ligne de signal (151, ..., 15m) sont en contact médian ou excentré avec le diélectrique (8n) qui est disposé dans les m chambres de résonance (61_1, ..., 6n_m) de la nième chambre de filtration (7n), et:
    a) le diélectrique (8n) dans la nième chambre de filtration (7n) comporte jusqu'à m renfoncements dans lesquels les m raccordements de ligne de signal (151, ..., 15m) pénètrent, les m raccordements de ligne de signal (151, ..., 15m) étant en contact avec le nième diélectrique (8n) ; et/ou
    b) le diélectrique (8n) dans la nième chambre de filtration (7n) comporte jusqu'à m évidements continus par lesquels les m raccordements de ligne de signal (151, ..., 15m) s'étendent, les m raccordements de ligne de signal (151, ..., 15m) étant en contact avec le nième diélectrique (8n) et en contact avec le n-1ieme dispositif de séparation (9n-1).
  18. Filtre multiplexe selon l'une des revendications 1 à 17, caractérisé par les autres caractéristiques:
    - au moins une, de préférence toutes les chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) de chaque chambre de filtration (71, 72, ..., 7n) comportent au moins une ouverture supplémentaire (411_1, ..., 411_m, jusqu'à 41n_1 ..., 41n_m) traversant la paroi de boîtier (5) ;
    - dans l'au moins une ouverture supplémentaire (411_1, ..., 411_m, jusqu'à 41n_1 .., 41n_m) ou dans l'ensemble des ouvertures supplémentaires (411_1, ..., 411_m, jusqu'à 41n_1 ..., 41n_m) au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 .., 40n_m) est introduit dans au moins une chambre de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) de chacune des n chambres de filtration (71, 72, ..., 7n) ;
    - l'écart entre l'élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 .., 40n_m) qui est introduit par l'au moins une ouverture supplémentaire (411_1, ..., 411_m, jusqu'à 41n_1 ..., 41n_m) dans l'au moins une des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) de chaque chambre de filtration (71, 72, ..., 7n) est modifiable par rapport au diélectrique respectif (81, 82, ..., 8n) à l'intérieur de la chambre de résonance respective (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m).
  19. Filtre multiplexe selon la revendications 18, caractérisé par les autres caractéristiques:
    - l'écart de l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) au diélectrique respectif (81, 82, ..., 8n) dans l'au moins une des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) de chacune des m chambres de filtration (71, 72, ..., 7n) peut être réduit de manière qu'il est en contact avec celui-ci; ou
    - le diélectrique respectif (81, 82, ..., 8n) dans au moins une des m chambres de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) dans au moins une des n chambres de filtration (71, 72, ..., 7n) comporte un creux, l'écart de l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) au diélectrique respectif (81, 82, ..., 8n) dans la chambre de résonance (61_1, ..., 61_m, jusqu' à 6n_1, ..., 6n_m) de l'au moins une des n chambres de filtration (71, 72, ..., 7n) pouvant être réduit de manière que celui-ci s'enfonce dans le creux du diélectrique respectif (81, 82, ..., 8n) et est en contact avec celui-ci; et/ou
    - l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 .., 40n_m) est orienté perpendiculairement à l'axe central (12) et/ou perpendiculairement à la direction de transmission de signal (211, ..., 21m) dans au moins une des m chambres de résonance (61_1, ..., 61_m, jusqu' à 6n_1, ..., 6n_m) dans au moins une des n chambres de filtration (71, 72, ..., 7n) ; et/ou
    - l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) est constitué d'un diélectrique ou l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) est constitué d'un diélectrique qui est entièrement ou partiellement recouvert d'une couche métallique ou l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) est constitué d'un métal.
  20. Procédé d'ajustement d'un filtre multiplexe qui est construit selon l'une des revendications 1 à 19, caractérisé par les étapes de procédé suivantes:
    - fermeture (S1) de toutes les ouvertures de couplage (10) du 1+Xième dispositif de séparation et/ou du n-1-Xième dispositif de séparation, avec X = 0;
    - mesure (S2) d'un facteur de réflexion sur le raccordement commun (14) et/ou mesure d'un facteur de réflexion sur au moins un, de préférence sur l'ensemble des m raccordements de ligne de signal (151, ..., 15m) ;
    - réglage (S3) de la fréquence de résonance et/ou de la largeur de bande de couplage sur une valeur désirée.
  21. Procédé d'ajustement d'un filtre multiplexe, selon la revendication 20, caractérisé par les étapes de procédé suivantes:
    - ouverture (S4) d'au moins une des ouvertures de couplage (10) du 1+Xième dispositif de séparation et/ou du n-1-Xieme dispositif de séparation;
    - élévation (S5) de X de un;
    - réalisation renouvelée (S6) des étapes de procédé de fermeture (S1), mesure (S2), réglage (S3), ouverture (S4) et élévation (S5) jusqu'à ce que toutes les ouvertures de couplage (10) soient ouvertes.
  22. Procédé d'ajustement d'un filtre multiplexe, selon la revendication 21, caractérisé en ce que l'étape de procédé réalisation renouvelée (S6) pour un nombre impair de chambres de filtration (71, 72, ..., 7n) comprend les étapes de procédé suivantes lorsque X atteint la valeur (n-1) / 2 :
    - ouverture (S7) d'au moins m ouvertures de couplage (10) du Xième dispositif de séparation et fermeture de toutes les ouvertures de couplage du X+1ième dispositif de séparation et mesure (S2) d'un facteur de réflexion d'entrée sur le raccordement commun (14) et réglage (S3) de la fréquence de résonance et/ou de la largeur de bande de couplage sur une valeur désirée et/ou
    - ouverture (S8) d'au moins m ouvertures de couplage (10) du X+1ieme dispositif de séparation et fermeture de toutes les ouvertures de couplage (10) du Xième dispositif de séparation et mesure (S2) d'un facteur de réflexion d'entrée sur les m raccordements de ligne de signal (151, ..., 15m) et réglage (S3) de la fréquence de résonance et/ou de la largeur de bande de couplage sur une valeur désirée; et
    - ouverture (S9) des au moins m ouvertures de couplage (10) des Xième et X+1ième dispositifs de séparation.
  23. Procédé d'ajustement d'un filtre multiplexe, selon la revendication 21 ou 22, caractérisé en ce qu'au cas où dans chaque dispositif de séparation (91, 92, ..., 9n-1) au moins m ouvertures de couplage (10) sont ouvertes, les étapes de procédé suivantes sont effectuées:
    - mesure (S2) d'un facteur de réflexion sur le raccordement commun (14) et/ou mesure d'un facteur de réflexion sur les m raccordements de ligne de signal (151, ..., 15m) ; et/ou
    - mesure (S10) d'un facteur de transmission vers l'avant et/ou mesure d'un facteur de transmission vers l'arrière sur le raccordement commun (14) d'un facteur de transmission vers l'arrière sur le raccordement commun (14) et/ou sur les m raccordements de ligne de signal (151, ..., 15m) ; et
    - réglage (S3) des fréquences de résonance et/ou de la largeur de bande de couplage sur une valeur désirée.
  24. Procédé d'ajustement d'un filtre multiplexe, selon l'une des revendications 20 à 23 compte tenu au moins d'une des revendications 1, 8, 10, 11, 13, 15, 18, 19, caractérisé en ce que l'étape de procédé ajustement comprend les étapes de procédé suivantes:
    - modification du diamètre (S11) d'au moins une chambre de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) par le biais du remplacement de l'au moins une cartouche (111, 112, ..., 11n) par une autre cartouche (111, 112, ..., 11n) avec des dimensions modifiées; et/ou
    - modification (S12) de l'agencement et/ou du nombre et/ou de la dimension et/ou de la forme transversale d'au moins une ouverture de couplage (10) par la rotation et/ou le remplacement d'au moins un dispositif de séparation (91, 92, ..., 9n-1) ; et/ou
    - autre vissage et/ou dévissage (S13) de l'au moins un élément d'ajustement (401_1, ..., 401_m, jusqu'à 40n_1 ..., 40n_m) dans au moins une chambre de résonance (61_1, ..., 61_m, jusqu'à 6n_1, ..., 6n_m) d'une chambre de filtration (71, 72, ..., 7n) ; et/ou
    - remplacement (S14) du diélectrique (81, 82, ..., 8n) dans une chambre de filtration (71, 72, ..., 7n) par un autre diélectrique (81, 82, ..., 8n) avec des dimensions et/ou des évidements modifiés.
EP16165214.4A 2015-04-30 2016-04-14 Filtres multiples comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale Active EP3089260B8 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015005613.1A DE102015005613B4 (de) 2015-04-30 2015-04-30 Multiplexfilter mit dielektrischen Substraten zur Übertragung von TM-Moden in transversaler Richtung

Publications (3)

Publication Number Publication Date
EP3089260A1 EP3089260A1 (fr) 2016-11-02
EP3089260B1 true EP3089260B1 (fr) 2018-12-12
EP3089260B8 EP3089260B8 (fr) 2019-03-06

Family

ID=55755398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165214.4A Active EP3089260B8 (fr) 2015-04-30 2016-04-14 Filtres multiples comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale

Country Status (4)

Country Link
US (1) US10224588B2 (fr)
EP (1) EP3089260B8 (fr)
CN (1) CN106099283B (fr)
DE (1) DE102015005613B4 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3583656B1 (fr) * 2017-02-15 2021-12-15 Isotek Microwave Limited Résonateur à micro-ondes, filtre à micro-ondes et multiplexeur à micro-ondes
WO2019175538A1 (fr) * 2018-03-16 2019-09-19 Isotek Microwave Limited Résonateur à micro-ondes, filtre à micro-ondes et multiplexeur à micro-ondes
FR3083015B1 (fr) 2018-06-21 2021-12-17 Thales Sa Systeme hyperfrequence accordable
EP3660977B1 (fr) * 2018-11-30 2023-12-13 Nokia Solutions and Networks Oy Résonateur pour signaux de fréquence radio
CN110011011B (zh) * 2019-05-06 2020-10-27 中国工程物理研究院电子工程研究所 一种仅存tm模式的强场模式滤波器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128484A1 (fr) * 2013-02-21 2014-08-28 Mesaplexx Pty Ltd Filtre multimode présentant une disposition d'ouvertures avec segments d'accouplement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267537A (en) * 1979-04-30 1981-05-12 Communications Satellite Corporation Right circular cylindrical sector cavity filter
US4721933A (en) * 1986-09-02 1988-01-26 Hughes Aircraft Company Dual mode waveguide filter employing coupling element for asymmetric response
CA1251835A (fr) * 1988-04-05 1989-03-28 Wai-Cheung Tang Multiplexeur a resonateurs images dielectriques
US5576674A (en) * 1995-03-17 1996-11-19 Allen Telecom Group, Incorporated Optimum, multiple signal path, multiple-mode filters and method for making same
JP3019750B2 (ja) 1995-08-21 2000-03-13 株式会社村田製作所 誘電体共振器装置
JP3298485B2 (ja) * 1997-02-03 2002-07-02 株式会社村田製作所 多重モード誘電体共振器
DE19847006A1 (de) 1998-10-13 2000-04-20 Degussa Ruß
AUPP747098A0 (en) * 1998-12-04 1998-12-24 Alcatel Waveguide directional filter
JP3506104B2 (ja) 1999-10-04 2004-03-15 株式会社村田製作所 共振器装置、フィルタ、複合フィルタ装置、デュプレクサおよび通信装置
CA2313925A1 (fr) 2000-07-17 2002-01-17 Mitec Telecom Inc. Filtre passe-bande accordable
FR2815475B1 (fr) * 2000-10-18 2003-01-17 Thomson Multimedia Sa Filtre en guide d'onde
US6624723B2 (en) * 2001-07-10 2003-09-23 Radio Frequency Systems, Inc. Multi-channel frequency multiplexer with small dimension
FR2996395B1 (fr) * 2012-10-01 2015-08-14 Centre Nat Etd Spatiales Dispositif routeur multiports compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128484A1 (fr) * 2013-02-21 2014-08-28 Mesaplexx Pty Ltd Filtre multimode présentant une disposition d'ouvertures avec segments d'accouplement

Also Published As

Publication number Publication date
DE102015005613B4 (de) 2017-04-06
US20160322687A1 (en) 2016-11-03
DE102015005613A1 (de) 2016-11-03
CN106099283A (zh) 2016-11-09
EP3089260B8 (fr) 2019-03-06
US10224588B2 (en) 2019-03-05
CN106099283B (zh) 2020-07-07
EP3089260A1 (fr) 2016-11-02

Similar Documents

Publication Publication Date Title
EP3089260B1 (fr) Filtres multiples comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale
DE2538614C3 (de) Dielektrischer Resonator
EP2044648B1 (fr) Filtre haute frequence a structure coaxiale
DE818384C (de) Filter zur UEbertragung eines Bandes in Hohlleitern gefuehrter elektrischer Mikro-Wellen
EP2656435B1 (fr) Filtre haute fréquence réglable
EP3220473B1 (fr) Filtre coaxial en treillis
DE112013005683T5 (de) Dielektrischer Wellenleiterfilter mit direkter Kopplung und alternativer Kreuzkopplung
DE2726799C2 (de) Frequenzweiche
EP2912714B1 (fr) Filtre réglable à haute fréquence
EP2449622B1 (fr) Filtre à haute fréquence
DE69816324T2 (de) Verbundfilter
WO2015180820A1 (fr) Boîtier blindé contre les hautes fréquences, en particulier boîtier de filtre blindé contre les hautes fréquences
EP3096394B1 (fr) Filtres haute frequence comprenant des substrats dielectriques destines a transmettre des modes tm dans une direction transversale
EP3451441B1 (fr) Filtre coaxial
DE2705245C2 (fr)
DE60215749T2 (de) Dielektrisches Bauteil
EP3298649B1 (fr) Système de transmission des hautes fréquences comprenant une traversée hf reliée par ligne
DE60027982T2 (de) Dielektrisches Filter, dielektrischer Duplexer und Kommunikationsgerät mit einer derartigen Schaltungsanordnung
DE102015011182B4 (de) HF-Filter in cavity Bauweise mit einer Umgehungsleitung für niederfrequente Signale und Spannungen
DE102013018484B4 (de) Dielektrisch gefüllter Resonator für 30GHz-Imux-Applikationen
EP2991158B1 (fr) Filtre de gaine generique
WO2016184965A1 (fr) Filtre passe-bande comprenant un résonateur à cavité et procédé pour faire fonctionner, régler ou fabriquer un tel filtre passe-bande
DE19842040B4 (de) Dielektrisches Filter
DE19842218B4 (de) Dielektrisches Filter
EP2920840B1 (fr) Filtre de coupure de haute fréquence

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170905

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20181017

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1077202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002753

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KATHREIN SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016002753

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016002753

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1077202

Country of ref document: AT

Kind code of ref document: T

Owner name: KATHREIN SE, DE

Effective date: 20190128

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190412

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002753

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

26N No opposition filed

Effective date: 20190913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016002753

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016002753

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016002753

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016002753

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016002753

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

REG Reference to a national code

Ref country code: FI

Ref legal event code: PCE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160414

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20210428

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210428

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1077202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210414

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 8