EP3071724A1 - Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur - Google Patents

Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur

Info

Publication number
EP3071724A1
EP3071724A1 EP14750237.1A EP14750237A EP3071724A1 EP 3071724 A1 EP3071724 A1 EP 3071724A1 EP 14750237 A EP14750237 A EP 14750237A EP 3071724 A1 EP3071724 A1 EP 3071724A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
combustion engine
internal combustion
producing
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14750237.1A
Other languages
German (de)
English (en)
Inventor
Leander Schramm
Dr. Christian KLIMESCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KS Huayu Alutech GmbH
Original Assignee
KS Huayu Alutech GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KS Huayu Alutech GmbH filed Critical KS Huayu Alutech GmbH
Publication of EP3071724A1 publication Critical patent/EP3071724A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F2001/008Stress problems, especially related to thermal stress

Definitions

  • the invention relates to a method for producing a cylinder running surface of a cylinder crankcase
  • the plasma stream entrains the powder particles and accelerates the completely or partially melted parts of the coating material onto the cylinder inner wall to be coated.
  • DE 697 02 576 T2 discloses a method for coating cylinder inner walls by thermal spraying, in which first the molten powder or the molten wire of a low-carbon steel with a fraction of less than 0.3% carbon or of a stainless steel by means of an air flow the cylinder inner wall is thrown, whereby a lower layer with high oxide content is generated.
  • a layer is very hard.
  • an inert gas serves as a sputtering gas, so that the oxide content in the layer is significantly reduced.
  • This softer layer is subsequently removed to produce a surface with the desired surface finish, so that the hard wear-resistant lower layer remains as a running surface.
  • a plasma spraying process is also known from DE 199 34 991 A1, in which nitrogen is used as an atomizing gas in the production of cylinder running surfaces.
  • nitrogen is used as an atomizing gas in the production of cylinder running surfaces.
  • a second nitrogen gas stream flanking the atomizing gas flow is used.
  • the oxide content of the coating should be adjusted.
  • This object is achieved by a method for producing a cylinder running surface of a cylinder crankcase
  • a cylinder crankcase for an internal combustion engine in which the sprayed-on coating has a layer porosity of 4.5 to 25% and an oxide content of 0.5 to 5%.
  • the low oxide content which is also achieved by using the inert gas, results in a low Wüstitphase, whereby the oxidation rate of the layer decreases significantly, so that the corrosion is reduced.
  • the sputter gas flow rate during thermal spraying is 900 to 1500 l / min. This gas throughput makes it easy to produce corrosion resistant protective coatings with high porosity. In a particularly preferred embodiment of the method, the sputter gas throughput during thermal spraying is reduced to 300 to 900 l / min.
  • the speed and temperature of the coating material at the nozzle is further reduced, so that less energy is transferred to the particles of the coating material.
  • the effect which is caused by the increase in the mass flow rate is additionally enhanced, so that an even higher porosity is achieved.
  • nitrogen or argon is used as the inert gas.
  • nitrogen or argon is used as the inert gas. With these gases, low-oxide layers can be produced in a cost-effective manner.
  • the coating is produced by plasma spraying or arc spraying, in particular by plasma transferred-wire-arc spraying (PTWA spraying) or rotating single-wire spraying (RSW spraying). These processes are particularly suitable for the production of porous, low-oxide layers.
  • the plasma gas used is preferably an argon-hydrogen mixture or an argon-nitrogen mixture, the hydrogen content of the plasma gas being 5 to 40% when using an argon-hydrogen mixture.
  • the particulate surface temperature is 1,600 to 2,400 ° C.
  • the arc temperature is 3,000 to 6,000 ° C.
  • the plasma gas temperature is 10,000 to 15,000 ° C. It does not form fully molten particles on the surface with low oxide inclusions.
  • the plasma gas flow rate is 40 to 250 l / min, so that a still relatively low velocity of the Parti cle at relatively low Parti keltemperaturen arises.
  • the coating for producing the cylinder surface is honed after the injection process.
  • additional pores of the spray layer which act as Wed krodruckschn and in which oil can store exposed, and there is a functional honing surface.
  • axisymmetric constant wall thicknesses can be produced. It is thus provided a method for producing a cylinder surface of a cylinder crankcase and a cylinder crankcase produced in this way, which has a high Has corrosion resistance.
  • the supply of oil to the running surfaces is ensured so that a long service life of the coating is achieved.
  • the costs for the production of the coating are reduced in comparison with other known processes, in particular when using carbonaceous, low-alloyed steels as coating materials.
  • the figure shows a nozzle of a PTWA or RSW burner and the structure of the resulting on a cylinder inner wall coating in a schematic representation.
  • a cylinder crankcase is cast with one or more cylinders in a cast aluminum process in a known manner. Since the cylinder inner walls of the cylinder crankcase often do not have a sufficiently durable cylinder surface, this is produced by first the cylinder inner wall is activated, for example by generating undercut structures. Subsequently, a coating is applied to the cylinder inner walls by thermal spraying. For this purpose, in the present embodiment, a PTWA or RSW burner 10 is inserted into the cylinder and moved axially and rotationally for applying the layer.
  • a cylindrical inner wall can be seen, to which a thermal spray coating is applied by means of the burner 10.
  • the burner 10 shown in the figure has a connected to a first voltage source electrode 12 and acting as a second electrode electrically conductive wire 14 from a low alloyed carbon steel, which is connected to the opposite pole of the voltage source, is supplied vertically and serves as a coating material 15.
  • the first electrode 12 is surrounded by bores 16 of the burner 10, through the location of which an optionally along the first electrode 12 associated with a swirling gas flow, which escapes at high speed through a nozzle 18.
  • the plasma gas consists of an argon-hydrogen mixture with a hydrogen content of about 25%.
  • the plasma gas flowing through the plasma burner 10 is passed through the resulting arc and ionizes in this case.
  • the dissociation, or subsequent ionization generates a highly heated electrically conductive gas of positive ions and electrons, the plasma.
  • the plasma has a temperature of about 12,000 ° C at a plasma gas flow rate of about 100 l / min. It flows through the nozzle 18 and expands along the longitudinal axis of the nozzle 18. In this case, the plasma is transported to the perpendicular to the nozzle 18 continuously supplied wire 14, whereby the electric circuit is closed.
  • the resulting arc has a temperature of about 4,000 ° C.
  • the wire 14 is supplied according to the invention at a throughput of 8 to 22.5 kg / h and is resistance-heated by the large applied currents, whereby it merges into a molten, and atomized by the impact of the plasma state.
  • the holes 16 are surrounded by a plurality of channels 20 through which flows a nebulizer gas, which consists of an inert gas, in the present case of nitrogen and is supplied at a rate of about 900 l / min.
  • This additional gas flow on the one hand creates an inert atmosphere and serves as a carrier gas for the melted Parti cle 22 of the wire 16 and provides additional atomization of this Parti cle 22.
  • the Parti cle 22 are thrown by the gas flow against a cylinder inner wall 24 of the cylinder 26.
  • the mass throughput of the wire 16, which is approximately doubled for a PTWA or RSW injection process, and the reduced velocity of the atomizing gas flow ensure that the particles 22 of the coating material 15 thrown onto the cylinder inner wall 24 are not all completely melted and have a relatively low velocity meet the cylinder inner wall 24 to be coated.
  • a relatively low particle surface temperature of about 2,000 ° C. is achieved on the one hand by the low velocity of the gas stream and on the other hand by the inert gas used as atomizing gas. This results in relatively large Parti cle 22, which settle on the cylinder inner wall 24, resulting in a significant increase in the layer porosity to about 20%.
  • the use of nitrogen as a nebulizer gas creates an inert atmosphere which ensures that oxidation of the particles 22 is significantly reduced despite the use of a carbonaceous steel as the coating material 15. This reduces the resulting temperature of Parti cle 22 in addition, since exothermic reactions are largely prevented, so again large particles 22 arise.
  • the proportion of oxides 28 in the coating 30 on the cylinder inner wall 24 is reduced in this way to about 3%, whereby a small Wüstitphase is present, resulting in a decreasing rate of oxidation in the coating 30, so that the corrosion is reduced. However, the formation of martinsite in the coating 30 is maintained, so that a sufficient hardness of the coating 30 is present.
  • the coating 30 is honed in a further processing step to form the desired cylinder surface.
  • the result is a cylinder crankcase with a sprayed cylinder surface, which on the one hand are very resistant to corrosion and on the other hand have very little wear due to very good lubrication.
  • the scope of protection is not limited to the embodiment described.
  • other thermal spraying processes for the production of such a coating are also suitable, wherein a hitherto unknown high quotient of mass flow rate of the spraying material to the inert gas flow rate is to be maintained in order to obtain the desired cylinder running surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

On connaît des procédés de production d'une surface de cylindre d'un bloc-moteur d'un moteur à combustion interne dans lesquels un revêtement (30) est réalisé par projection thermique sur une paroi intérieure de cylindre (24) d'un bloc-moteur coulé, un gaz inerte étant utilisé comme gaz de pulvérisation. Cependant, les couches obtenues sont souvent sensibles à la corrosion. Selon l'invention, pour éviter cela, le débit massique de la matière de revêtement (15) lors de la projection thermique est de 8 à 22,5 kg/h. Ainsi, un bloc-moteur pour moteur à combustion interne est pourvu d'une surface de cylindre, le revêtement pulvérisé (30) ayant une porosité de couche de 4,5 à 25% et une teneur en oxydes de 0,5 à 5%. Ce revêtement possède une résistance élevée à la corrosion.
EP14750237.1A 2013-11-20 2014-08-12 Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur Withdrawn EP3071724A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013112809.2A DE102013112809A1 (de) 2013-11-20 2013-11-20 Verfahren zur Herstellung einer gespritzten Zylinderlauffläche eines Zylinderkurbelgehäuses einer Verbrennungskraftmaschine sowie derartiges Zylinderkurbelgehäuse
PCT/EP2014/067246 WO2015074775A1 (fr) 2013-11-20 2014-08-12 Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur

Publications (1)

Publication Number Publication Date
EP3071724A1 true EP3071724A1 (fr) 2016-09-28

Family

ID=51301305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14750237.1A Withdrawn EP3071724A1 (fr) 2013-11-20 2014-08-12 Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur

Country Status (8)

Country Link
US (1) US20160273477A1 (fr)
EP (1) EP3071724A1 (fr)
JP (1) JP6324508B2 (fr)
KR (1) KR20160111368A (fr)
CN (1) CN105745350A (fr)
DE (1) DE102013112809A1 (fr)
RU (1) RU2647064C2 (fr)
WO (1) WO2015074775A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116815A1 (de) * 2016-09-08 2018-03-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Beschichtung eines Zylinders einer Verbrennungskraftmaschine und Zylinder für eine Verbrennungskraftmaschine
CN107164715B (zh) * 2017-06-09 2019-03-26 华晨宝马汽车有限公司 用于电弧丝材喷涂的方法、设备及产品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468914A1 (fr) * 2010-12-23 2012-06-27 Linde Aktiengesellschaft Procédé et dispositif destinés à l'injection à arc électrique

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663243A (en) * 1982-10-28 1987-05-05 Union Carbide Corporation Flame-sprayed ferrous alloy enhanced boiling surface
JPS63121648A (ja) * 1986-11-11 1988-05-25 Toyota Motor Corp 金属基複合材料溶射層の形成方法
JP2576108B2 (ja) * 1987-02-09 1997-01-29 トヨタ自動車株式会社 シリンダライナ−
SU1785290A1 (ru) * 1990-10-02 1996-06-20 Институт газа АН УССР Способ электродугового напыления
DK16494A (da) * 1994-02-08 1995-08-09 Man B & W Diesel Gmbh Fremgangsmåde til fremstilling af en cylinderforing samt en sådan foring
US5466906A (en) * 1994-04-08 1995-11-14 Ford Motor Company Process for coating automotive engine cylinders
DE4427262C1 (de) * 1994-07-30 1995-03-23 Mtu Muenchen Gmbh Verfahren und Vorrichtung zum Flammspritzen
US5766693A (en) * 1995-10-06 1998-06-16 Ford Global Technologies, Inc. Method of depositing composite metal coatings containing low friction oxides
US5932293A (en) * 1996-03-29 1999-08-03 Metalspray U.S.A., Inc. Thermal spray systems
US5958521A (en) 1996-06-21 1999-09-28 Ford Global Technologies, Inc. Method of depositing a thermally sprayed coating that is graded between being machinable and being wear resistant
US6001426A (en) * 1996-07-25 1999-12-14 Utron Inc. High velocity pulsed wire-arc spray
JP3460968B2 (ja) * 1998-11-04 2003-10-27 株式会社豊田中央研究所 溶射方法
DE19929247A1 (de) 1998-12-18 2000-06-21 Volkswagen Ag Verfahren zum thermischen Beschichten einer Fläche eines Innenraumes und Anordnung zur Durchführung des Verfahrens
CH695339A5 (de) * 2002-02-27 2006-04-13 Sulzer Metco Ag Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung.
DE10308563B3 (de) * 2003-02-27 2004-08-19 Federal-Mogul Burscheid Gmbh Zylinderlaufbuchse mit Verschleißschutzbeschichtung, ihre Herstellung und ihre Verwendung
JP4268491B2 (ja) * 2003-09-30 2009-05-27 新日本製鐵株式会社 搬送ロール及び連続焼鈍炉用ハースロール
JP5168823B2 (ja) * 2006-06-21 2013-03-27 新日鐵住金株式会社 搬送ロールおよび連続焼鈍炉用ハースロール
DE102011085324A1 (de) * 2011-10-27 2013-05-02 Ford Global Technologies, Llc Plasmaspritzverfahren
DE102011119087B3 (de) * 2011-11-22 2013-03-14 Märkisches Werk GmbH Verfahren zum Erzeugen einer Chrom-Schutzschicht und ihre Verwendung
CN102560326B (zh) * 2012-02-24 2014-05-21 中国科学院金属研究所 一种制备准晶涂层的温喷涂方法
JP5586740B2 (ja) * 2013-05-30 2014-09-10 株式会社ナカシマ 金属基材ロール体用ガラス質溶射材料、ガラス質被膜形成金属基材ロール体、及びオゾン発生装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2468914A1 (fr) * 2010-12-23 2012-06-27 Linde Aktiengesellschaft Procédé et dispositif destinés à l'injection à arc électrique

Also Published As

Publication number Publication date
DE102013112809A1 (de) 2015-05-21
JP2016540123A (ja) 2016-12-22
CN105745350A (zh) 2016-07-06
WO2015074775A1 (fr) 2015-05-28
KR20160111368A (ko) 2016-09-26
JP6324508B2 (ja) 2018-05-23
US20160273477A1 (en) 2016-09-22
RU2016123807A (ru) 2017-12-25
RU2647064C2 (ru) 2018-03-13

Similar Documents

Publication Publication Date Title
EP2041331B1 (fr) Procédé pour le dépôt de couches électriquement isolantes
EP3008317A1 (fr) Procédé permettant de produire une couche de protection contre l'oxydation pour un piston destiné à être utilisé dans un moteur à combustion interne et piston pourvu d'une couche de protection contre l'oxydation
EP3325685B1 (fr) Procédé pour recouvrir une surface de glissement de cylindre d'un bloc-cylindres, bloc-cylindres avec une surface de glissement de cylindre recouverte et moteur
EP1495151A1 (fr) Procede de projection au plasma
DE102006044906A1 (de) Plasmabrenner
EP2768997A1 (fr) Procédé de projection plasma
WO2011088818A1 (fr) Dispositif et procédé pour la pulvérisation de poudre avec une vitesse de flux de gaz élevée
DE102006038780A1 (de) Verfahren und Vorrichtung zum Herstellen einer Beschichtung
DE102009004581A1 (de) Vorrichtung und Verfahren zum Lichtbogendrahtspritzen
DE102011085324A1 (de) Plasmaspritzverfahren
EP3071724A1 (fr) Procédé de réalisation par projection d'une surface de cylindre d'un bloc-moteur de moteur à combustion interne et un tel bloc moteur
DE10223865B4 (de) Verfahren zur Plasmabeschichtung von Werkstücken
EP2711441B1 (fr) Dispositif et procédé destinés à la production d'un système de couches
DE10111565A1 (de) Innenbrenner
EP1358943B1 (fr) Procédé et appareil de pulvérisation à arc électrique
DE102004006857B4 (de) Gradientenschicht und Verfahren zu ihrer Herstellung
DE102009004201A1 (de) Lichtbogendrahtspritzverfahren
DE112014004111T5 (de) Drahtlegierung für Plasma-Lichtbogen-Beschichtung
EP3896190B1 (fr) Procédé et installation de revêtement métallique d'une paroi d'alésage
DE102013200055B3 (de) Verfahren zum thermischen Beschichten einer Oberfläche
DE102022105774A1 (de) Verfahren zum Bearbeiten eines Kurbelgehäuses sowie Kurbelgehäuse
DE4112156A1 (de) Mit hilfe eines plasmabrenners aufgebrachte beschichtung sowie plasmabrenner
DE102012105607A1 (de) Verfahren zur Herstellung von Komposit-Spritzschichten auf Zylinderlaufflächen von Zylinderkurbelgehäusen
DE102008004601A1 (de) Lichtbogendrahtbrenner und zugehöriges Lichtbogendrahtspritzverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160418

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180810

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181221