EP3060872B1 - Verfahren zur steuerung einer richtbaren waffe eines fahrzeugs bei schiessübungen - Google Patents
Verfahren zur steuerung einer richtbaren waffe eines fahrzeugs bei schiessübungen Download PDFInfo
- Publication number
- EP3060872B1 EP3060872B1 EP14802303.9A EP14802303A EP3060872B1 EP 3060872 B1 EP3060872 B1 EP 3060872B1 EP 14802303 A EP14802303 A EP 14802303A EP 3060872 B1 EP3060872 B1 EP 3060872B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shooting
- weapon
- vehicle
- sector
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 30
- 238000010304 firing Methods 0.000 description 85
- 238000012549 training Methods 0.000 description 14
- 230000033001 locomotion Effects 0.000 description 11
- 230000000717 retained effect Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000026058 directional locomotion Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/26—Teaching or practice apparatus for gun-aiming or gun-laying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A17/00—Safety arrangements, e.g. safeties
- F41A17/08—Safety arrangements, e.g. safeties for inhibiting firing in a specified direction, e.g. at a friendly person or at a protected area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H7/00—Armoured or armed vehicles
- F41H7/02—Land vehicles with enclosing armour, e.g. tanks
Definitions
- the invention relates to a method for controlling a directable weapon of a vehicle during shooting exercises, the orientation of a shooting sector in which shooting is permitted being defined.
- the invention can be used in particular in military vehicles.
- Military vehicles usually have a z. B. designed as a trough vehicle housing and a weapon, which can be directed relative to the vehicle housing in azimuth and elevation.
- Such weapons can be arranged, for example, on a tower of the vehicle that can be rotated relative to the vehicle housing.
- firing exercises are carried out on training grounds, such as military training areas, in which shots are fired with live ammunition.
- training grounds such as military training areas
- vehicle-related shooting sectors are defined before the actual shooting practice, into which shooting is permitted during the shooting practice. Firing can then be released via a control method when the weapon is aimed into the shooting sector and blocked when it is aimed outside of the shooting sector.
- the U.S. 2004/005532 A1 discloses a method for ensuring safety when firing live fire in a restricted training area, the current positions of the mobile combatants being continuously determined and reported to a monitoring center.
- current, permissible firing sectors are calculated from the reported positions and the ranges of movement of all combatants and any existing stationary objects to be protected that need to be protected, taking into account the boundary of the training area, and transmitted individually to the shooting combatant.
- the current weapon position is compared with the firing sectors assigned to him and a shot can only be fired for a firing sector if the weapon position is within this firing sector.
- a control method for a directional weapon of a vehicle in which the weapon is aimed at several boundary points of the firing sector before the start of the firing practice in order to define the firing sector.
- the aiming position of the gun is continuously compared to the shooting sector. The weapon is released only when aimed in the firing sector, and blocked otherwise.
- the aiming position of the weapon is determined via a rotary encoder and is therefore defined in relation to the vehicle housing. The result of this is that the firing range would rotate with the vehicle if the vehicle were to rotate and would no longer have the originally defined orientation. It is therefore not possible to drive the vehicle during the firing practice, which limits the opportunities for crew members to train.
- the object of the invention is to enable movements of the vehicle during firing practice.
- the specified orientation is retained when the vehicle moves.
- the orientation of the firing sector in space is maintained.
- the orientation of the firing sector is not defined in relation to the vehicle body, but in relation to the environment.
- the orientation of the firing sector is determined by aiming the weapon at boundary points of the firing sector. This can be done before or at the beginning of the exercise.
- the shooting sector can be specified from the vehicle. It is not necessary to determine the firing sector from a unit separate from the vehicle, for example a control center.
- An autonomous method of controlling the weapon during target practice is provided.
- the weapon is preferably aimed in azimuth and/or elevation to determine the shooting sector before or at the start of the shooting exercise, so that the shooting sector can be determined in azimuth and/or elevation.
- an azimuth angle and an elevation angle can preferably be defined and stored in a control device.
- the firing sector orientation is then maintained in azimuth and/or elevation.
- the aiming position of the weapon is determined relative to a vehicle-independent spatial coordinate system. This brings with it the advantage that the aiming position of the weapon is defined independently of the orientation of the vehicle or the orientation of the vehicle housing. In this respect, the aiming position of the weapon is determined relative to the surroundings of the vehicle.
- the aiming position of the weapon is determined independently of a sensor system in the weapon.
- additional sensors can be arranged on the vehicle, via which the directional position of the weapon is detected in order to release the weapon for target practice. In this way, a weapon sensor-free determination of the aiming position of the weapon can be made possible.
- Two independent sensors for determining the straightening position can thus be arranged in the vehicle. This also makes it possible to check the weapon's sensors using a second sensor system.
- the additional sensors are identically to the sensors required for controlling the servomotors for aiming the weapon.
- a preferred embodiment of the invention provides that the aiming position of the weapon is determined by inertial sensors.
- inertial sensors are characterized by a particularly high level of availability.
- the inertial sensors can be embodied as yaw rate sensors, acceleration sensors and/or magnetic field sensors.
- the inertial sensors can be designed as microelectromechanical systems (MEMS).
- the straightening position is particularly preferably determined by an inertial measuring unit which has a plurality of, in particular orthogonally arranged, yaw rate sensors and/or a plurality of, in particular orthogonally arranged, acceleration sensors and/or a plurality of, in particular orthogonally arranged, magnetic field sensors.
- an inertial measuring unit which has a plurality of, in particular orthogonally arranged, yaw rate sensors and/or a plurality of, in particular orthogonally arranged, acceleration sensors and/or a plurality of, in particular orthogonally arranged, magnetic field sensors.
- several inertial measurement units can be used to determine the straightening position, the measurement values of which can be combined with one another.
- the alignment can be carried out independently of the shooting lane and independently of possible targets.
- the inertial sensors are aimed together with the weapon, so that the orientation of the inertial sensors corresponds to the aiming position of the weapon collapses.
- the aiming position of the weapon can be detected directly by the inertial sensors.
- the inertial sensors are arranged on a weapon cradle or on a turret of the vehicle.
- the inertial sensors are arranged within an adjustable tower of the vehicle.
- an arrangement of the inertial sensors that is protected from enemy threats and weather influences can be made possible.
- the sensors are arranged in an interference-free manner. It is not possible for an enemy to detect the inertial sensors from the outside and to jam or influence them. The interference immunity can thereby be further increased.
- a satellite navigation receiver can be used to determine the pointing position of the weapon.
- Such a satellite navigation receiver generally has less availability than an inertial sensor.
- the satellite navigation receiver is preferably used in addition to determining the aiming position, since inertial sensors often show drift phenomena which reduce the accuracy of the determination of the aiming position of the weapon. The drift of the inertial sensors can be compensated by the satellite navigation receiver.
- the satellite navigation receiver can also be used to determine the vehicle's position.
- the aiming position of the weapon is compared to the firing sector for its release during firing practice.
- the weapon can then be released depending on whether the weapon is aimed in the firing sector or not.
- the weapon is preferably released when the aiming position of the weapon is within the firing sector. Alternatively, the weapon can be blocked if the aiming position of the weapon is outside the firing sector.
- the size of the firing sector is adapted to the pointing position of the weapon and/or the pointing speed of the weapon.
- delays caused by the inertial sensors and/or the data processing logic downstream of the inertial sensors can be taken into account.
- the firing sector can be reduced when the aiming position of the weapon is within the firing sector and/or if the aiming speed exceeds a threshold value greater than or equal to zero, so that the weapon release is not withdrawn too late when the weapon is sighted out of the firing sector.
- the firing sector can therefore be smaller when the weapon is aimed within the firing sector than when the weapon is aimed outside the firing sector.
- a shooting lane is divided into sub-areas and the orientation of the shooting sector is defined and maintained in each sub-area. Due to the shape of the firing lane, it may be necessary to recalibrate the firing sector orientation during movement of the vehicle along a firing lane to ensure that the weapon is only released when the firing sector orientation changes corresponds to the orientation of the shooting lane.
- the adjustment of the orientation of the shooting sector can preferably take place automatically. In this way it can also be ensured, for example on large shooting ranges, that the weapon is only released if it is within the specified shooting sector. In this way, changes in the direction of the shooting lane can be included when the shot is released.
- the orientation of the firing sector is determined when the vehicle crosses a position line arranged in a partial area.
- the position of the vehicle determined by means of the satellite navigation receiver is compared with georeferenced boundary points and position lines stored in the control device. In this way it can be determined whether the vehicle is located in a new sub-area and whether the orientation of the shooting sector must therefore be redefined.
- limit points can be arranged along the course of the shooting lane, which define the respective partial areas of the shooting lane.
- Position lines can be defined at a distance from the boundary points, which are preferably in front of the boundary points at which the orientation is to be redefined.
- the shooting sector has an orientation that corresponds to the orientation of the shooting lane.
- the firing sector includes an azimuth angle that is maintained when the vehicle is moving.
- the azimuth angle can be enclosed by the boundary lines spanning the firing sector.
- a centerline running through the azimuth angle can determine the orientation of the shooting sector. This orientation is also maintained in a partial area while the vehicle is moving.
- the firing sector can include an azimuth angle which is changed as the vehicle moves, but the orientation is also maintained.
- the orientation of the shooting sector can be defined by the boundary points. This is maintained in a partial area while the vehicle is moving. Since the border points serve as landmarks, in order to maintain orientation it is necessary that the azimuth angle of the firing sector changes during the movement of the vehicle.
- the determination of the orientation can be determined when entering a new sub-area and maintained in this. It can thus be ensured in a simple manner that the weapon is released only when the orientation of the firing sector corresponds to the orientation of the firing lane.
- the shooting sector is defined via limit points and the limit points are retained when the vehicle moves.
- the orientation of the shooting sector is retained, as this is also determined by the boundary points. In this respect, only the azimuth angle of the firing sector is changed. This can ensure that the shooting sector covers the entire shooting lane between the boundary points.
- the boundary points can preferably be configured as shooting lane boundary points.
- Training area 15 is in the manner of a military training area designed and has a control center 18, with which vehicles 1 located on the training ground 15 are in radio contact.
- a shooting range 16 is set up on the training ground 15, on which shots can be fired.
- target objects 17 are arranged on the shooting lane 16, which form practice targets for shooting practice. In order to train different shooting distances, the vehicle should be able to drive on the shooting range.
- a military vehicle 1 designed as a battle tank which has a chassis designed as an armored hull 2 with a tracked chassis 5 and a turret 3 rotatably mounted relative to the chassis 2 .
- a weapon 4 is arranged on the turret 3 and can be directed in azimuth by rotating the turret 3 .
- the weapon 4 is designed such that it can be raised in relation to the turret 3, so that the weapon 4 can also be aimed in elevation.
- the weapon 4 is actuated via a fire control system which has a sensor system for determining the aiming position of the weapon 4 .
- This sensor system determines the aiming position R of the weapon in azimuth and elevation.
- the measured values determined by the weapon sensors form the basis for controlling servomotors for aiming the weapon 4 in azimuth and elevation.
- a control device independent of the fire control system is provided on the vehicle 1, with which the method according to the invention for controlling the directional weapon 4 of the vehicle 1 is carried out.
- the control device is used in target practice to train crew members in handling the vehicle 1 and/or the weapon 4 .
- a shooting sector S is defined before the start of the shooting practice, in which shooting is allowed.
- the orientation of the shooting sector S is defined in such a way that it corresponds to the orientation of a shooting lane 16 .
- the shooting sector S is designed essentially in the manner of an inclined pyramid. As shown in Figure 2a can be seen, the shooting sector S is delimited in azimuth by two boundary lines, which each emanate from a vehicle-fixed boundary point D and predetermined boundary points A and B intersect.
- the boundary point D fixed to the vehicle forms the vertex and the boundary lines form the legs of an azimuth angle ⁇ .
- the shooting sector S is bounded on the one hand by a horizontal line which runs through the boundary point D fixed on the vehicle, and on the other hand by a straight line which proceeds from the boundary point D fixed on the vehicle and which intersects a third predefined boundary point C.
- the horizontal and the boundary line through the boundary point C enclose an elevation angle ⁇ .
- the specified orientation of the shooting sector S is retained when the vehicle 1 is moving.
- the shooting sector S is moved along with the vehicle 1 in such a way that the orientation of the shooting sector S in relation to the shooting lane 16 is maintained.
- the specified orientation of the shooting sector S is retained when the vehicle 1 rotates.
- the vehicle 1 can be moved as described in Figure 2c is shown with the orientation of the shooting sector S remaining unchanged. Also with the procedure of the vehicle 1, it is therefore not necessary to redefine the shooting sector S.
- the vehicle 1 can thus also drive closer to the target 17 on a curved path in order to change the distance to the target 17 for training purposes.
- the Figures 2b and 2c 12 show various examples of movements of the vehicle 1 in which the orientation of the vehicle 1 is changed in azimuth, the orientation of the shooting sector S in azimuth and elevation not changing.
- the orientation of the firing sector S is maintained even when the orientation of the vehicle 1 in elevation changes, as shown in FIG 3 can be seen.
- Such changes in orientation of the vehicle 1 can occur, for example, when driving on uneven terrain and can be expressed in the vehicle tilting relative to the horizontal.
- the shooting sector S is also moved in such a way that the fixed orientation of the shooting sector S in azimuth and elevation is maintained.
- the weapon 4 is always released when the aiming position R of the weapon 4 is within the firing sector S.
- the aiming position R of the weapon 4 is compared with the firing sector S continuously during the firing exercise or before a shot is fired.
- the weapon 4 is released in a straightening position R as shown in FIG Figures 2a, 3a or 4 is shown.
- the weapon 4 is not released if the aiming position R of the weapon is outside the firing sector S, such as in 2b, 3b or 3c shown.
- the weapon 4 can be blocked when the weapon 4 is aimed outside the firing sector S and the blocking can be released when the weapon 4 is aimed in the firing sector S.
- the determination of the shooting sector S and in particular its orientation takes place exclusively by means of devices 6, 7, 8 fixed to the vehicle. Control by the control center 18, which is separate from the vehicle 1, is not required. In this respect, it is a self-sufficient control method for target practice.
- the weapon 4 is aimed at different boundary points A, B, C of the shooting sector S in order to define the boundaries and thus also the angles ⁇ , ⁇ of the shooting sector S.
- an operating device 8 of the control device is used, which figure 5 is shown.
- the operating device 8 has several operating elements 9, 10, 11, 12 designed as buttons, via which limit points A, B, C of the shooting sector S can be defined.
- the weapon 4 is aimed at a boundary point A on the left boundary area of the firing range 16 via the fire control system of the vehicle 1 .
- the alignment R of the weapon 4 is checked using a target optics.
- the operating element 10 is then actuated, as a result of which the current aiming position R of the weapon 4 is temporarily stored as the left limit of the firing sector S.
- the weapon 4 is aimed at a boundary point B in the right boundary area of the firing range 16 via the fire control system.
- the operating element 11 is now actuated, as a result of which the current aiming position R of the weapon 4 is temporarily stored as the right limit of the firing sector S.
- the weapon 4 is aimed at a maximum permissible elevation ⁇ for the respective firing lane 16 .
- the weapon 4 is aimed at an elevation limit point C.
- the operating element 9 is actuated, whereby the current alignment position R of the weapon 4 is temporarily stored as the upper limit of the firing sector S.
- the definition of the shooting sector S is completed by pressing the button 12.
- the temporarily stored values for the right, left and upper limit of the shooting sector S are thereby adopted as the new limits of the shooting sector S.
- the azimuth angle ⁇ and the elevation angle ⁇ are also stored in the control device.
- the aiming position R of the weapon 4 is determined relative to a vehicle-independent spatial coordinate system with the spatial directions x, y and z, both for establishing the firing sector S and for comparison with the fixed firing sector S, cf. Figure 2a and 4 .
- the aiming position R of the weapon 4 relative to the surroundings of the vehicle 1 is always known, which has the advantage that the firing sector S is determined relative to a vehicle-independent spatial coordinate system x, y, z.
- the shooting sector S is defined independently of the orientation of the vehicle 1 .
- inertial measuring units 6 that are independent of the fire control system are provided for determining the alignment position R.
- the inertial measuring units 6 each include a plurality of inertial sensors 13 which are designed as yaw rate sensors, acceleration sensors and magnetic field sensors.
- the inertial sensors 13 are part of an inertial navigation system (INS), via which the alignment position R is determined in a vehicle-independent coordinate system.
- INS inertial navigation system
- the straightening position R is determined by three orthogonally arranged yaw rate sensors and three orthogonally arranged acceleration sensors and three orthogonally arranged magnetic field sensors.
- the inertial sensors 13 are arranged inside the turret 3 on the weapon cradle, so that they are aimed together with the weapon 4 in azimuth and elevation, cf. 6 and 7 . In this way it can be ensured that the orientation of the inertial sensors 13 corresponds to the aiming position R of the weapon 4 .
- the arrangement inside the tower 3 protects the inertial sensors 13 from external influences and in particular from interference. It is not directly apparent to an opponent at which position the inertial sensors 13 are arranged, so that interference or interference can be prevented.
- the use of inertial sensors 13 also makes it possible to minimize sources of error, such as those that can occur, for example, due to occlusions, deflections or the like.
- two identical inertial measuring units 6 are arranged on the vehicle 1 so that if one of the two units 6 fails, the alignment position R can be determined via the other unit 6 in each case. If both inertial measuring units 6 are functional, the measured values of both units 6 can be interpolated in order to increase the accuracy of the measurement.
- a satellite navigation receiver 7 is also arranged on the tower 3, which can be designed, for example, as a GPS receiver or another satellite navigation system. Additional position data of the weapon 4 can be determined via the satellite navigation receiver 7, which is used to compensate for drift phenomena of the inertial sensors.
- the inertial sensors 13 and also the data processing logic downstream of the inertial sensors 13 each have signal delays that must be taken into account in the control method.
- the size of the firing sector S is adapted to the aiming position R of the weapon 4 and/or to the current aiming movement of the weapon 4, which can be seen from the illustrations in Figure 2a and 4 should be explained.
- the shooting sector S is reduced, which is in the Figure 2a and 4 is represented by the boundary points A", B" and C". This counteracts the risk that, without adjustment, the weapon 4 will only be released for firing in the event of a rapid directional movement from the firing sector S at points A', B' and C' and This circumstance must be taken into account in advance, when planning the safety of shooting sector S.
- Large shooting ranges 16 are often divided into several areas in which a vehicle 1 can be located during a shooting practice. These areas are defined by different boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 which are staggered in depth.
- the representation in the 8 a first area, which extends from the beginning of the shooting range 16 to the first boundary points A 1 , B 1 .
- a second area then lies between the first boundary points A 1 , B 1 and the second boundary points A 2 , B 2 .
- Other areas can be defined in a similar way.
- position lines 20, 20', 20" can be defined in the individual partial areas of the shooting range 16, on which the orientation of the shooting sector S, S', S" is determined should. If such a position line 20, 20′, 20′′ is crossed by the vehicle 1, the shooting sector S, S′, S′′ is redefined and initialized so that the orientation is then adapted to the respective partial area of the shooting lane 16. The orientation is then maintained in a partial area during the movement of the vehicle 1 .
- the position and driving movement of the vehicle 1 can be determined continuously using the satellite navigation receiver 7 and stored in the control device.
- the position data determined by the satellite navigation receiver 7 of the Vehicle 1 with in the control device stored georeferenced boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 and the position lines 20, 20 ', 20' are compared.
- the comparison establishes that the vehicle 1 is leaving a sub-area and entering a new sub-area, it is necessary to redefine the orientation of the shooting sector S, S', S", which in turn is then retained in this sub-area.
- the orientation can be determined in different ways.
- a first possibility is in the 8 shown and has already been explained to the figures described above.
- a first shooting sector S is fixed in its orientation when crossing the first position line 20 . This means that the azimuth angle ⁇ remains the same over the entire sub-area and the shooting sector S defines the orientation along the center line between the two boundary lines that enclose the angle ⁇ . If the vehicle 1 now moves along any curve, this orientation of the shooting sector S is maintained until the vehicle 1 crosses the next position line 20', thus indicating that the vehicle 1 is in a new sub-area of the shooting range 16.
- the position lines 20, 20', 20" are each arranged at a sufficient distance in front of the associated boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , so that it can be ensured that a redefinition of the orientation of Shooting sector S, S', S" takes place in good time and shooting out of the shooting lane 16 is not possible.
- the position line 20' By crossing the position line 20', by comparing the vehicle position determined by the satellite navigation receiver 7 and the stored georeferenced boundary points A1 , B1 , A2 , B2 , A3 , B3 and the position lines 20, 20', 20" in the control device that the vehicle 1 is now in a new sub-area of the shooting lane 16 and that the shooting sector S must therefore be redefined.
- the orientation of the shooting sector S is recalculated accordingly, so that the orientation then corresponds to the shooting sector S Consequently, the firing sector S' is also adjusted when crossing further position lines 20", so that it can be ensured that the weapon 4 is released only when there is no danger.
- a second, alternative way of defining the orientation of the shooting sector S, S', S" is in 9 shown.
- the orientation of the shooting sector S, S', S" is not defined by a center line between the boundary lines, but rather by the boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 themselves.
- the orientation of a first shooting sector S is defined in a known manner while the vehicle 1 is on the position line 20. If the vehicle 1 now moves along a driving curve on the shooting lane 16, the angle ⁇ of the shooting sector S changes, the orientation, which over the Boundary points A 1 , B 1 is fixed, however, is retained.
- the orientation of the shooting sector S redefined and then maintained when the vehicle 1 moves in the new sub-area.
- the now spanned shooting sector S ' uses the boundary points A 2 , B 2 as Orientation boundary points such that the orientation of the shooting sector S' is determined via them.
- the shooting sector S, S', S" is defined via the boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 , with the boundary points A 1 , B 1 , A 2 , B 2 , A 3 , B 3 are retained as fixing points when the vehicle 1 moves.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Steuerung einer richtbaren Waffe eines Fahrzeugs bei Schießübungen, wobei die Orientierung eines Schießsektors, in welchem geschossen werden darf, festgelegt wird.
- Die Erfindung kann insbesondere bei militärischen Fahrzeugen eingesetzt werden. Militärische Fahrzeuge weisen üblicherweise ein z. B. als Wanne ausgebildetes Fahrzeuggehäuse und eine Waffe auf, welche gegenüber dem Fahrzeuggehäuse in Azimut und Elevation gerichtet werden kann. Derartige Waffen können beispielsweise an einem gegenüber dem Fahrzeuggehäuse drehbaren Turm des Fahrzeugs angeordnet sein.
- Zur Ausbildung von Besatzungsmitgliedern solcher Fahrzeuge werden auf Übungsgeländen, wie beispielsweise Truppenübungsplätzen, Schießübungen durchgeführt, bei welchen Schüsse mit scharfer Munition abgegeben werden. Um die Gefährdung anderer sich auf dem Übungsgelände befindender Personen und sowie anderer Fahrzeuge zu verringern und zu verhindern, dass Schüsse in einen außerhalb des Übungsgeländes liegenden Bereich abgegeben werden, werden vor der eigentlichen Schießübung fahrzeugbezogene Schießsektoren festgelegt, in welche während der Schießübung geschossen werden darf. Über ein Steuerungsverfahren kann die Schussabgabe dann freigegeben werden, wenn die Waffe in den Schießsektor gerichtet ist und blockiert werden, wenn sie außerhalb des Schießsektors gerichtet ist.
- Die
US 2004/005532 A1 offenbart ein Verfahren zur Gewährleistung der Sicherheit beim Schießbetrieb mit scharfem Schuss in einem begrenzten Übungsgelände, wobei fortlaufend die momentanen Positionen der mobilen Gefechtsteilnehmer bestimmt und an eine Überwachungszentrale gemeldet werden. In der Überwachungszentrale werden aus den gemeldeten Positionen und den daraus ableitbaren Bewegungsbereichen aller Gefechtsteilnehmer und ggf. vorhandener, zu schützender, stationärer Objekte für jeden schießenden Gefechtsteilnehmer unter Berücksichtigung der Grenze des Übungsgeländes aktuelle, zulässige Schusssektoren berechnet und individuell an den schießenden Gefechtsteilnehmer übermittelt. Bei jedem schießenden Gefechtsteilnehmer wird die momentane Waffenstellung mit den ihm zugewiesenen Schusssektoren verglichen und eine Schussauslösung für einen Schusssektor nur dann zugelassen, wenn die Waffenstellung innerhalb dieses Schusssektors liegt. - Aus der
FR 2 712 675 A1 - Zwar kann auf diese Weise wirkungsvoll verhindert werden, dass Schüsse in den Bereich außerhalb des Schießsektors abgegeben werden, jedoch hat es sich bei diesem Verfahren als nachteilig herausgestellt, dass die Richtstellung der Waffe über Drehgeber ermittelt wird und somit in Bezug auf das Fahrzeuggehäuse definiert ist. Dies hat zur Folge, dass sich der Schießbereich bei einer Drehung des Fahrzeugs mit dem Fahrzeug mitdrehen würde und nicht mehr die ursprünglich definierte Orientierung aufwiese. Es sind daher keine Fahrten mit dem Fahrzeug während der Schießübung möglich, was die Möglichkeiten zur Ausbildung der Besatzungsmitglieder einschränkt.
- Vor diesem Hintergrund stellt sich die Erfindung die Aufgabe, Bewegungen des Fahrzeugs während der Schießübung zu ermöglichen.
- Bei einem Verfahren der eingangs genannten Art wird die Aufgabe mit den Merkmalen des Anspruchs 1 gelöst.
- Erfindungsgemäß ist vorgesehen, dass die festgelegte Orientierung bei Bewegung des Fahrzeugs beibehalten wird.
- Bei Bewegungen des Fahrzeugs wird die Orientierung des Schießsektors im Raum beibehalten. Insofern wird die Orientierung des Schießsektors nicht gegenüber dem Fahrzeuggehäuse, sondern gegenüber der Umgebung definiert.
- Hierdurch wird es möglich, dass das Fahrzeug während der Schießübung bewegt werden kann, ohne dass die Orientierung des Schießbereichs verändert wird.
- Gemäß einer vorteilhaften Ausgestaltung des Verfahrens wird die Orientierung des Schießsektors festgelegt, in dem die Waffe auf Grenzpunkte des Schießsektors gerichtet wird. Dies kann vor oder zu Beginn der Übung erfolgen. Es ergibt sich der Vorteil, dass der Schießsektor vom Fahrzeug aus vorgegeben werden kann. Es ist nicht erforderlich, den Schießsektor von einer von dem Fahrzeug getrennte Einheit, beispielsweise einer Leitstelle aus, festzulegen. Es wird ein autonomes Verfahren zur Steuerung der Waffe bei Schießübungen bereitgestellt.
- Bevorzugt wird die Waffe zur Festlegung des Schießsektors vor oder zu Beginn der Schießübung in Azimut und/oder Elevation gerichtet, so dass der Schießsektor in Azimut und/oder Elevation festgelegt werden kann. Hierzu können bevorzugt ein Azimutwinkel und ein Elevationswinkel definiert und in einer Steuervorrichtung hinterlegt werden. Während der Schießübung wird die Orientierung des Schießsektors dann in Azimut und/oder Elevation beibehalten.
- Erfindungsgemäß wird die Richtstellung der Waffe relativ zu einem fahrzeugunabhängigen Raumkoordinatensystem bestimmt. Dies bringt den Vorteil mit sich, dass die Richtstellung der Waffe unabhängig von der Orientierung des Fahrzeugs bzw. der Orientierung des Fahrzeuggehäuses definiert ist. Insofern wird die Richtstellung der Waffe relativ zu der Umgebung des Fahrzeugs bestimmt.
- Besonders vorteilhaft ist es, wenn die Richtstellung der Waffe unabhängig von einer Sensorik der Waffe bestimmt wird. Neben der ohnehin vorhandenen Sensorik der Waffe, welche zur Steuerung der Richtbewegungen der Waffe dient, können zusätzliche Sensoren an dem Fahrzeug angeordnet sein, über welche die Richtstellung der Waffe zur Freigabe der Waffe für Schießübungen erfasst wird. Auf diese Weise kann eine waffensensoriklose Bestimmung der Richtstellung der Waffe ermöglicht werden. Es können somit zwei voneinander unabhängige Sensoriken zur Bestimmung der Richtstellung in dem Fahrzeug angeordnet sein. Hierdurch wird es zusätzlich möglich, die Sensoren der Waffe durch ein zweites Sensorsystem überprüfen zu können.
- Grundsätzlich ist es möglich, die zusätzlichen Sensoren identisch mit den für die Steuerung der Stellmotoren zum Richten der Waffe erforderlichen Sensoren auszubilden. Eine bevorzugte Ausgestaltung der Erfindung sieht jedoch vor, dass die Richtstellung der Waffe durch Inertialsensoren bestimmt wird. Derartige Inertialsensoren zeichnen sich durch eine besonders hohe Verfügbarkeit aus. Die Inertialsensoren können als Drehratensensoren, Beschleunigungssensoren und/oder Magnetfeldsensoren ausgebildet sein. Die Inertialsensoren können als mikroelektromechanische Systeme (MEMS) ausgestaltet sein. Besonders bevorzugt wird die Richtstellung durch eine inertiale Messeinheit ermittelt, welche mehrere, insbesondere orthogonal angeordnete, Drehratensensoren und/oder mehrere, insbesondere orthogonal angeordnete, Beschleunigungssensoren und/oder mehrere, insbesondere orthogonal angeordnete, Magnetfeldsensoren aufweist. Um die Messgenauigkeit zu erhöhen, können zur Ermittlung der Richtstellung mehrere inertiale Messeinheiten verwendet werden, deren Messwerte miteinander kombiniert werden. Durch die Verwendung einer inertialen Messeinheit kann die Richtstellung unabhängig von der Schießbahn und unabhängig von möglichen Zielen erfolgen.
- Vorteilhaft ist es, wenn die Inertialsensoren zusammen mit der Waffe gerichtet werden, so dass die Orientierung der Inertialsensoren mit der Richtstellung der Waffe zusammenfällt. Die Richtstellung der Waffe kann durch die Inertialsensoren unmittelbar erfasst werden. Konstruktiv kann vorgesehen sein, dass die Inertialsensoren auf einer Waffenwiege oder an einem Turm des Fahrzeugs angeordnet sind.
- Ferner hat es sich als vorteilhaft erwiesen, wenn die Inertialsensoren innerhalb eines richtbaren Turms des Fahrzeugs angeordnet sind. Auf diese Weise kann eine vor feindlichen Bedrohungen und Witterungseinflüssen geschützte Anordnung der Inertialsensoren ermöglicht werden. Auch kann hierdurch erreicht werden, dass die Sensoren störsicher angeordnet sind. Es ist einem Feind nicht möglich, die Inertialsensoren von außen zu erkennen und diese zu stören oder zu beeinflussen. Die Störsicherheit kann dadurch weiter erhöht werden.
- Alternativ oder zusätzlich kann zur Bestimmung der Richtstellung der Waffe ein Satellitennavigations-Empfänger verwendet werden. Ein solcher Satellitennavigations-Empfänger weist in der Regel eine geringere Verfügbarkeit als ein Inertialsensor auf. Bevorzugt wird der Satellitennavigations-Empfänger zusätzlich zur Bestimmung der Richtstellung verwendet, da Inertialsensoren oftmals Driftphänomene zeigen, welche die Genauigkeit der Bestimmung der Richtstellung der Waffe reduzieren. Durch den Satellitennavigations-Empfänger kann der Drift der Inertialsensoren kompensiert werden. Der Satellitennavigations-Empfänger kann ebenfalls zur Ermittlung der Fahrzeugposition verwendet werden.
- Es ist vorteilhaft, wenn die Richtstellung der Waffe zu deren Freigabe während der Schießübung mit dem Schießsektor verglichen wird. Es kann dann eine Freigabe der Waffe abhängig davon erfolgen, ob die Waffe in den Schießsektor gerichtet ist oder nicht.
- Bevorzugt wird die Waffe freigegeben, wenn sich die Richtstellung der Waffe innerhalb des Schießsektors befindet. Alternativ kann die Waffe blockiert werden, wenn sich die Richtstellung der Waffe außerhalb des Schießsektors befindet.
- Vorteilhaft ist es, wenn die Festlegung der Orientierung des Schießbereichs und die Freigabe der Waffe durch eine fahrzeugfeste Vorrichtung erfolgt, so dass eine autarke Funktionsweise der Steuerung sichergestellt wird.
- Gemäß einer vorteilhaften Ausgestaltung des Verfahrens wird die Größe des Schießsektors an die Richtstellung der Waffe und/oder die Richtgeschwindigkeit der Waffe angepasst. Hierdurch können Verzögerungen, welche durch die Inertialsensoren und/oder die den Inertialsensoren nachgeschaltete Datenverarbeitungslogik hervorgerufen werden, berücksichtigt werden. Der Schießsektor kann verkleinert werden, wenn sich die Richtstellung der Waffe innerhalb des Schießsektors befindet und/oder wenn die Richtgeschwindigkeit einen Schwellenwert größer/gleich Null überschreitet, so dass die Freigabe der Waffe bei einer Richtbewegung aus dem Schießsektor heraus nicht zu spät zurückgenommen wird. Der Schießsektor kann also, wenn die Waffe innerhalb des Schießsektors gerichtet ist, kleiner sein als wenn die Waffe außerhalb des Schießsektors gerichtet ist.
- Erfindungsgemäß ist vorgesehen, dass eine Schießbahn in Teilbereiche unterteilt und die Orientierung des Schießsektors in jedem Teilbereich festgelegt und beibehalten wird. Aufgrund der Form der Schießbahn kann es erforderlich sein, die Orientierung des Schießsektors während der Bewegung des Fahrzeugs entlang einer Schießbahn neu festzulegen, so dass sicher gestellt werden kann, dass eine Freigabe der Waffe nur erfolgt, wenn die Orientierung des Schießsektors der Orientierung der Schießbahn entspricht. Die Anpassung der Orientierung des Schießsektors kann dabei bevorzugt automatisch erfolgen. So kann auch beispielsweise auf großen Schießbahnen sichergestellt werden, dass die Waffe nur freigegeben wird, wenn sich diese innerhalb des vorgegebenen Schießsektors befindet. So können Richtungsänderungen der Schießbahn bei der Schussfreigabe mit einbezogen werden.
- Die Orientierung des Schießsektors wird beim Überqueren des Fahrzeugs einer in einem Teilbereich angeordneten Positionslinie festgelegt. Zur Neufestlegung der Orientierung des Schießsektors an die Schießbahn wird die mittels des Satellitennavigations-Empfängers ermittelte Position des Fahrzeugs mit in der Steuervorrichtung hinterlegten georeferenzierten Grenzpunkten sowie von Positionslinien verglichen. So kann festgestellt werden, ob sich das Fahrzeug in einem neuen Teilbereich befindet und daher eine Neufestlegung der Orientierung des Schießsektors erforderlich ist. Hierzu können Grenzpunkte entlang des Schießbahnverlaufs angeordnet werden, welche die jeweiligen Teilbereiche der Schießbahn definieren. In einem Abstand zu den Grenzpunkten können Positionslinien festgelegt werden, welche bevorzugt vor den Grenzpunkten liegen, an denen die Neufestlegung der Orientierung erfolgen soll. So kann sichergestellt werden, dass eine Neufestlegung rechtzeitig erfolgt, wodurch die Schießsicherheit weiter erhöht werden kann. Durch die kontinuierliche Neufestlegung des Schießsektors in den verschiedenen Teilbereichen der Schießbahn kann erreicht werden, dass der Schießsektor eine Orientierung aufweist, welche der Orientierung der Schießbahn entspricht.
- Es ist ferner von Vorteil, wenn der Schießsektor einen Azimutwinkel einschließt, welcher bei Bewegung des Fahrzeugs beibehalten wird. Der Azimutwinkel kann von den Grenzlinien eingeschlossen werden, welche den Schießsektor aufspannen. Eine durch den Azimutwinkel verlaufende Mittellinie kann dabei die Orientierung des Schießsektors festlegen. Diese Orientierung wird auch während der Bewegung des Fahrzeugs in einem Teilbereich beibehalten.
- Alternativ kann der Schießsektor einen Azimutwinkel einschließen, welcher bei Bewegung des Fahrzeugs verändert wird, wobei die Orientierung jedoch ebenfalls beibehalten wird. Die Orientierung des Schießsektors kann dabei durch die Grenzpunkte festgelegt werden. Diese wird während der Bewegung des Fahrzeugs in einem Teilbereich beibehalten. Da die Grenzpunkte als Orientierungspunkte dienen, ist es zur Beibehaltung der Orientierung notwendig, dass sich der Azimutwinkel des Schießsektors während der Bewegung des Fahrzeugs verändert. Die Festlegung der Orientierung kann beim Eintritt in einen neuen Teilbereich festgelegt und in diesem beibehalten werden. So kann auf einfache Weise sichergestellt werden, dass eine Freigabe der Waffe nur dann erfolgt, wenn die Orientierung des Schießsektors der Orientierung der Schießbahn entspricht.
- In diesem Zusammenhang ist es bevorzugt, wenn der Schießsektor über Grenzpunkte festgelegt wird und die Grenzpunkte bei Bewegung des Fahrzeugs beibehalten werden. Die Orientierung des Schießsektors wird dabei weiterhin beibehalten, da diese ebenfalls über die Grenzpunkte festgelegt wird. Insoweit wird lediglich der Azimutwinkels des Schießsektors verändert. Hierdurch kann gewährleistet werden, dass der Schießsektor die gesamte Schießbahn zwischen den Grenzpunkten abdeckt. Bevorzugt können die Grenzpunkte dabei als Schießbahnbegrenzungspunkte ausgebildet sein.
- Weitere Einzelheiten und Vorteile der Erfindung sollen nachfolgend anhand des in den Zeichnungen dargestellten Ausführungsbeispiels erläutert werden. Hierin zeigt:
- Fig. 1
- in einer schematischen Draufsicht ein Übungsgelände,
- Fig. 2
- in einer schematischen Draufsicht ein Fahrzeug und einen Schießsektor in einer ersten Stellung des Fahrzeugs (a), bei Drehung des Fahrzeugs (b) und bei Bewegung des Fahrzeugs (c),
- Fig. 3
- eine schematische Seitenansicht des Fahrzeugs und des Schießsektors mit unterschiedlichen Richtstellungen der Waffe und Neigungen des Fahrzeugs,
- Fig. 4
- eine schematische Seitenansicht des Fahrzeugs und den Schießsektors zur Veranschaulichung erforderlicher Sicherheitsbereiche,
- Fig. 5
- eine Steuerungsvorrichtung zur Festlegung des Schießsektors,
- Fig. 6
- eine seitliche Schnittdarstellung eines Turms des Fahrzeugs,
- Fig. 7
- eine Draufsicht auf den Turm nach
Fig. 6 , - Fig. 8
- eine schematische Draufsicht einer ersten Ausführungsvariante der Festlegung der Orientierung des Schießsektors in einem Übungsgelände, und
- Fig. 9
- eine schematische Draufsicht einer zweiten Ausführungsvariante der Festlegung der Orientierung des Schießsektors in einem Übungsgelände.
- In der
Fig. 1 ist ein Übungsgelände 15 zur Durchführung von Schießübungen dargestellt. Das Übungsgelände 15 ist nach Art eines Truppenübungsplatzes ausgestaltet und weist eine Leitstelle 18 auf, mit welcher auf dem Übungsgelände 15 befindliche Fahrzeuge 1 in Funkkontakt stehen. Auf dem Übungsgelände 15 ist eine Schießbahn 16 eingerichtet, auf welcher Schüsse abgegeben werden können. Zu Übungszwecken sind auf der Schießbahn 16 mehrere Zielobjekte 17 angeordnet, welche Übungsziele für Schießübungen bilden. Um unterschiedliche Schieß-Entfernungen zu trainieren, sollte das Fahrzeug auf der Schießbahn fahren können. - In den
Fig. 2 bis Fig. 4 ist ein als Kampfpanzer ausgebildetes militärisches Fahrzeug 1 dargestellt, welches ein als gepanzerte Wanne 2 ausgebildetes Fahrgestell mit einem Kettenfahrwerk 5 sowie einen gegenüber dem Fahrgestell 2 drehbar gelagerten Turm 3 aufweist. An dem Turm 3 ist eine Waffe 4 angeordnet, welche durch Drehung des Turms 3 in Azimut gerichtet werden kann. Ferner ist die Waffe 4 gegenüber dem Turm 3 höhenrichtbar ausgebildet, so dass die Waffe 4 zusätzlich auch in Elevation gerichtet werden kann. - Die Betätigung der Waffe 4 erfolgt über eine Feuerleitanlage, welche eine Sensorik zur Ermittlung der Richtstellung der Waffe 4 aufweist. Diese Sensorik ermittelt die Richtstellung R der Waffe in Azimut und Elevation. Die durch die Waffensensoren ermittelten Messwerte bilden die Grundlage für die Steuerung von Stellmotoren zum Richten der Waffe 4 in Azimut und Elevation.
- Zudem ist an dem Fahrzeug 1 eine von der Feuerleitanlage unabhängige Steuervorrichtung vorgesehen, mit welcher das erfindungsgemäße Verfahren zur Steuerung der richtbaren Waffe 4 des Fahrzeugs 1 ausgeführt wird. Die Steuervorrichtung wird bei Schießübungen verwendet, um Besatzungsmitglieder im Umgang mit dem Fahrzeug 1 und/oder der Waffe 4 zu trainieren.
- Um beim Training zu verhindern, dass Schüsse in den Bereich außerhalb der in
Fig. 1 gezeigten Schießbahn 16, wie etwa auf außerhalb des Übungsgeländes 15 gelegene Objekte 19, abgegeben werden können, wird vor Beginn der Schießübung ein Schießsektor S festgelegt, in welchen geschossen werden darf. Die Orientierung des Schießsektors S wird dabei derart festgelegt, dass sie mit der Orientierung einer Schießbahn 16 übereinstimmt. Der Schießsektor S ist im Wesentlichen nach Art einer schiefen Pyramide ausgebildet. Wie der Darstellung inFig. 2a zu entnehmen ist, wird der Schießsektor S in Azimut durch zwei Grenzlinien begrenzt, welche jeweils von einem fahrzeugfesten Grenzpunkt D ausgehen und vorgegebene Grenzpunkte A und B schneiden. Der fahrzeugfeste Grenzpunkt D bildet dabei den Scheitelpunkt und die Grenzlinien bilden die Schenkel eines Azimutwinkels σ. In Elevation wird der Schießsektor S zum einen durch eine Horizontale begrenzt, welche durch den fahrzeugfesten Grenzpunkt D verläuft, und zum anderen durch eine vom fahrzeugfesten Grenzpunkt D ausgehende Gerade, welche einen dritten vorgegebenen Grenzpunkt C schneidet. Die Horizontale und die Grenzlinie durch den Grenzpunkt C schließen dabei einen Elevationswinkel α ein. - Bei dem erfindungsgemäßen Verfahren ist zudem vorgesehen, dass die festgelegte Orientierung des Schießsektors S bei Bewegung des Fahrzeugs 1 beibehalten wird. Insofern wird der Schießsektor S bei Bewegung des Fahrzeugs 1 derart mit dem Fahrzeug 1 mitbewegt, dass die Orientierung des Schießsektors S in Relation zur Schießbahn 16 beibehalten wird. Hierdurch wird es möglich, das Fahrzeug 1 während der Schießübung, wie in
Fig. 2b dargestellt, gegenüber der ursprünglichen Stellung zu drehen, ohne dass der Schießsektor S erneut auf die Schießbahn 16 festgelegt werden müsste. Die festgelegte Orientierung des Schießsektors S bleibt bei einer Drehung des Fahrzeugs 1 erhalten. Ferner kann das Fahrzeug 1 verfahren werden, wie es inFig. 2c dargestellt ist, wobei die Orientierung des Schießsektors S unverändert bleibt. Auch beim Verfahren des Fahrzeugs 1 ist daher eine erneute Festlegung des Schießsektors S nicht erforderlich. Das Fahrzeug 1 kann damit auch auf einer Kurvenbahn näher an das Ziel 17 heranfahren, um zu Trainingszwecken die Entfernung zum Ziel 17 zu verändern. - Die
Fig. 2b und Fig. 2c zeigen verschiedene Beispiele von Bewegungen des Fahrzeugs 1, bei denen die Orientierung des Fahrzeugs 1 in Azimut verändert wird, wobei sich die Orientierung des Schießsektors S in Azimut und Elevation nicht verändert. Die Orientierung des Schießsektors S wird jedoch auch bei Veränderungen der Orientierung des Fahrzeugs 1 in Elevation beibehalten, wie den Darstellungen inFig. 3 zu entnehmen ist. Solche Orientierungsänderungen des Fahrzeugs 1 können sich beispielsweise beim Befahren von unebenem Gelände ergeben und in einem Kippen des Fahrzeugs gegenüber der Horizontalen äußern. Auch bei Bewegungen des Fahrzeugs 1 in Elevation wird der Schießsektor S derart mitbewegt, dass die festgelegte Orientierung des Schießsektors S in Azimut und Elevation beibehalten wird. - Die Freigabe der Waffe 4 erfolgt immer dann, wenn sich die Richtstellung R der Waffe 4 innerhalb des Schießsektors S befindet. Hierzu wird die Richtstellung R der Waffe 4 während der Schießübung kontinuierlich oder vor Abgabe eines Schusses mit dem Schießsektor S verglichen. Beispielsweise erfolgt eine Freigabe der Waffe 4 bei einer Richtstellung R wie sie in der
Fig. 2a, Fig. 3a oderFig. 4 gezeigt ist. Eine Freigabe der Waffe 4 erfolgt nicht, wenn sich die Richtstellung R der Waffe außerhalb des Schießsektors S befindet, wie z.B. inFig. 2b, Fig. 3b oder Fig. 3c gezeigt. - Alternativ kann die Waffe 4 blockiert werden, wenn die Waffe 4 außerhalb des Schießsektor S gerichtet ist und die Blockierung aufgehoben werden, wenn die Waffe 4 in den Schießsektor S gerichtet ist.
- Bevor auf Einzelheiten der Bewegung des Schießsektors S zusammen mit dem Fahrzeug 1 eingegangen wird, soll zunächst beschrieben werden, wie der Schießsektor S festgelegt wird.
- Die Festlegung des Schießsektors S und insbesondere seiner Orientierung erfolgt ausschließlich durch fahrzeugfeste Vorrichtungen 6, 7, 8. Eine Steuerung durch die von dem Fahrzeug 1 getrennte Leitstelle 18 ist nicht erforderlich. Insofern handelt es sich um ein autarkes Steuerungsverfahren für Schießübungen. Vor der eigentlichen Schießübung wird die Waffe 4 auf verschiedene Grenzpunkte A, B, C des Schießsektors S gerichtet, um die Grenzen und damit auch die Winkel σ, α des Schießsektors S zu definieren. Hierbei kommt ein Bediengerät 8 der Steuervorrichtung zur Anwendung, welches in
Fig. 5 dargestellt ist. - Das Bediengerät 8 weist mehrere als Taster ausgebildete Bedienelemente 9, 10, 11, 12 auf, über welche Grenzpunkte A, B, C des Schießsektors S definiert werden können. Zunächst wird die Waffe 4 über die Feuerleitanlage des Fahrzeugs 1 auf einen Grenzpunkt A am linken Grenzbereich der Schießbahn 16 gerichtet. Die Richtstellung R der Waffe 4 wird über eine Zieloptik überprüft. Sodann wird das Bedienelement 10 betätigt, wodurch die momentane Richtstellung R der Waffe 4 als linke Grenze des Schießsektors S zwischengespeichert wird. In einem nächsten Schritt wird die Waffe 4 über die Feuerleitanlage auf einen Grenzpunkt B im rechten Grenzbereich der Schießbahn 16 gerichtet. Es wird nun das Bedienelement 11 betätigt, wodurch die momentane Richtstellung R der Waffe 4 als rechte Grenze des Schießsektors S zwischengespeichert wird. In einem weiteren Schritt wird die Waffe 4 auf eine für die jeweilige Schießbahn 16 maximal zulässige Elevation α gerichtet. In dieser Stellung ist die Waffe 4 auf einen Elevationsgrenzpunkt C gerichtet. In der maximalen Elevationsstellung der Waffe 4 wird das Bedienelement 9 betätigt, wodurch die momentane Richtstellung R der Waffe 4 als obere Grenze des Schießsektors S zwischengespeichert wird. Abgeschlossen wird die Festlegung des Schießsektors S durch Betätigung der Taste 12. Hierdurch werden die zwischengespeicherten Werte für die rechte, linke und obere Grenze des Schießsektors S als neue Grenzen des Schießsektors S übernommen. Auch der Azimutwinkel σ sowie der Elevationswinkel α werden in der Steuervorrichtung hinterlegt.
- Die Richtstellung R der Waffe 4 wird sowohl zur Festlegung des Schießsektors S als auch zum Vergleich mit dem festgelegten Schießsektor S während der Schießübung relativ zu einem fahrzeugunabhängigen Raumkoordinatensystem mit den Raumrichtungen x, y, und z bestimmt, vgl.
Fig. 2a undFig. 4 . Somit ist die Richtstellung R der Waffe 4 stets relativ zu der Umgebung des Fahrzeugs 1 bekannt, was den Vorteil mit sich bringt, dass der Schießsektor S relativ zu einem fahrzeugunabhängigen Raumkoordinatensystem x, y, z bestimmt wird. Insofern wird der Schießsektor S unabhängig von der Orientierung des Fahrzeugs 1 definiert. - Die Erfassung der Richtstellung R für die Festlegung des Schießsektors S und den anschließenden Vergleich mit dem Schießsektor S erfolgt unabhängig von der Sensorik der Feuerleitanlage. Bei dem Fahrzeug 1 sind von der Feuerleitanlage unabhängige inertiale Messeinheiten 6 zur Ermittlung der Richtstellung R vorgesehen. Die inertialen Messeinheiten 6 umfassen jeweils mehrere Inertialsensoren 13, welche als Drehratensensoren, Beschleunigungssensoren und Magnetfeldsensoren ausgebildet sind. Die Inertialsensoren 13 sind Teil eines inertialen Navigationssystems (INS), über welches die Richtstellung R in einem fahrzeugunabhängigen Koordinatensystem ermittelt wird. Die Richtstellung R wird durch drei orthogonal angeordnete Drehratensensoren sowie drei orthogonal angeordnete Beschleunigungssensoren und drei orthogonal angeordnete Magnetfeldsensoren ermittelt. Die Inertialsensoren 13 sind im Inneren des Turms 3 auf der Waffenwiege angeordnet, so dass diese zusammen mit der Waffe 4 in Azimut und Elevation gerichtet werden, vgl.
Fig. 6 und Fig. 7 . Auf diese Weise kann sichergestellt werden, dass die Orientierung der Inertialsensoren 13 mit der Richtstellung R der Waffe 4 übereinstimmt. Durch die Anordnung im Inneren des Turms 3 sind die Inertialsensoren 13 vor äußeren Einwirkungen und insbesondere vor Störeinflüssen geschützt. Es ist für einen Gegner nicht direkt ersichtlich, an welcher Position die Inertialsensoren 13 angeordnet sind, so dass eine Störung oder Beeinflussung verhindert werden kann. Auch ist es durch die Verwendung von Inertialsensoren 13 möglich, Fehlerquellen, wie diese beispielsweise durch Verdeckungen, Ablenkungen oder dergleichen auftreten können, zu minimieren. - Um das Ausfallrisiko des Steuerungssystems zu verringern, sind an dem Fahrzeug 1 zwei identische inertiale Messeinheiten 6 angeordnet, so dass beim Ausfall einer der beiden Einheiten 6 die Bestimmung der Richtstellung R über die jeweils andere Einheit 6 erfolgen kann. Sind beide inertiale Messeinheiten 6 funktionsfähig, können die Messwerte beider Einheiten 6 interpoliert werden, um die Genauigkeit der Messung zu erhöhen.
- An dem Turm 3 ist zusätzlich ein Satellitennavigations-Empfänger 7 angeordnet, welcher z.B. als GPS-Empfänger oder ein anderes Satellitennavigationssystem ausgebildet sein kann. Über den Satellitennavigations-Empfänger 7 können zusätzliche Positionsdaten der Waffe 4 ermittelt werden, welche zur Kompensation von Driftphänomenen der Inertialsensoren herangezogen werden.
- Die Inertialsensoren 13 und auch die den Inertialsensoren 13 nachgeschaltete Datenverarbeitungslogik weisen jeweils Signalverzögerungen auf, die bei dem Steuerungsverfahren zu berücksichtigen sind. Um diese Verzögerungen bei Richtbewegungen der Waffe zu kompensieren, wird die Größe des Schießsektors S an die Richtstellung R der Waffe 4 und/oder an die aktuelle Richtbewegung der Waffe 4 angepasst, was anhand der Darstellungen in
Fig. 2a undFig. 4 erläutert werden soll. - Wenn die Richtstellung R innerhalb des Schießsektors S liegt und/oder wenn die Waffe 4 gerichtet wird, wird der Schießsektor S verkleinert, was in der
Fig. 2a undFig. 4 durch die Grenzpunkte A", B" und C" dargestellt ist. Hierdurch wird der Gefahr begegnet, dass ohne Anpassung die Schussfreigabe der Waffe 4 bei einer schnellen Richtbewegung aus dem Schießsektor S heraus erst bei den Punkten A', B' und C' und somit verspätet blockiert würde. Dieser Umstand ist bereits im Vorfeld, bei der Sicherheitsplanung des Schießsektors S, zu berücksichtigen. - Im umgekehrten Fall, also dann wenn sich die Richtstellung R der Waffe 4 außerhalb des Schießsektors S befindet, erfolgt die Freigabe der Waffe 4 bei Einschwenken der Waffe 4 in den Schießbereich aufgrund der oben genannten Verzögerungen von sich aus verspätet, so dass der Schießsektor nicht verkleinert werden muss. Dieser Umstand ist bereits im Vorfeld, bei der Sicherheitsplanung des Schießsektors S, zu berücksichtigen.
- Um die Sicherheit des Systems insbesondere bei großen Schießbahnen 16 weiter zu erhöhen, ist es von Vorteil, wenn die Orientierung des durch das System freigegebenen Schießsektors S während der Bewegung des Fahrzeugs 1 entlang der Schießbahn 16 an bestimmten Stellen neu festgelegt wird. Dieses Verfahren soll nachfolgend anhand der Darstellungen in den
Fig. 8 und9 näher beschrieben werden. - Große Schießbahnen 16 sind häufig in mehrere Bereiche unterteilt, in welchen sich ein Fahrzeug 1 während einer Schießübung befinden kann. Diese Bereiche werden durch unterschiedliche in der Tiefe gestaffelt angeordnete Grenzpunkte A1, B1, A2, B2, A3, B3 definiert. So zeigt beispielsweise die Darstellung in der
Fig. 8 einen ersten Bereich, welcher vom Anfang der Schießbahn 16 bis hin zu den ersten Grenzpunkten A1, B1 reicht. Ein zweiter Bereich liegt dann zwischen den ersten Grenzpunkten A1, B1 und den zweiten Grenzpunkten A2, B2. Auf ähnliche Weise können auch weitere Bereiche definiert werden. - Bei solch großen Schießbahnen 16 kann es vorkommen, dass bei Beibehaltung der einmalig zu Beginn des Schießtrainings festgelegten Orientierung des Schießsektors S die Waffe 4 den Sicherheitsbereich verlassen kann und somit eine Gefährdung entsteht. Um dies zu verhindern ist es erforderlich, die Orientierung des Schießsektors S, S', S" kontinuierlich an den jeweiligen Bereich der Schießbahn 16 anzupassen. Dies kann beispielsweise mit einer automatischen Schießsektor-Anpassung realisiert werden.
- Um feststellen zu können, in welchem Bereich sich das Fahrzeug 1 gerade befindet, können in den einzelnen Teilbereichen der Schießbahn 16 Positionslinien 20, 20', 20" definiert werden, an welchen eine Festlegung der Orientierung des Schießsektors S, S', S" erfolgen soll. Wird eine solche Positionslinie 20, 20', 20" von dem Fahrzeug 1 überquert, wird der Schießsektor S, S', S" neu festgelegt und initialisiert, so dass die Orientierung dann an den jeweiligen Teilbereich der Schießbahn 16 angepasst ist. Die Orientierung wird dann während der Bewegung des Fahrzeugs 1 in einem Teilbereich beibehalten.
- Die Position und Fahrbewegung des Fahrzeugs 1 kann dabei kontinuierlich mittels des Satellitennavigations-Empfängers 7 ermittelt und in der Steuervorrichtung hinterlegt werden. Um nun feststellen zu können, an welcher Stelle bzw. in welchem Teilbereich der Schießbahn 16 sich das Fahrzeug 1 befindet und ob eine Neufestlegung der Orientierung des Schießsektors S, S', S" erforderlich ist, können die vom Satellitennavigations-Empfänger 7 ermittelten Positionsdaten des Fahrzeugs 1 mit in der Steuervorrichtung hinterlegten georeferenzierten Grenzpunkte A1, B1, A2, B2, A3, B3 sowie den Positionslinien 20, 20', 20" verglichen werden. Wird bei dem Vergleich festgestellt, dass das Fahrzeug 1 einen Teilbereich verlässt und in einen neuen Teilbereich eintritt, ist es erforderlich, die Orientierung des Schießsektors S, S', S" neu festzulegen, welche dann wiederum in diesem Teilbereich beibehalten wird. Die Orientierung kann dabei auf verschiedene Weisen festgelegt werden.
- Eine erste Möglichkeit ist in der
Fig. 8 dargestellt und wurde auch bereits zu den vorstehend beschriebenen Figuren erläutert. Ein erster Schießsektor S wird beim Überfahren der ersten Positionslinie 20 in seiner Orientierung festgelegt. Dies bedeutet, dass der Azimutwinkel σ über den gesamten Teilbereich gleich bleibt und der Schießsektor S entlang der Mittellinie zwischen den beiden den Winkel σ einschließenden Grenzlinien die Orientierung festlegt. Bewegt sich das Fahrzeug 1 nun entlang einer beliebigen Fahrkurve, so wird diese Orientierung des Schießsektors S solange beibehalten, bis das Fahrzeug 1 die nächste Positionslinie 20' überquert und damit angezeigt wird, dass sich das Fahrzeug 1 in einem neuen Teilbereich der Schießbahn 16 befindet. - Die Positionslinien 20, 20', 20" sind dabei jeweils in einem ausreichenden Abstand vor den zugehörigen Grenzpunkte A1, B1, A2, B2, A3, B3 angeordnet, so dass sichergestellt werden kann, dass eine Neufestlegung der Orientierung des Schießsektors S, S', S" rechtzeitig erfolgt und ein Herausschießen aus der Schießbahn 16 nicht möglich ist.
- Durch das Überqueren der Positionslinie 20' kann durch den Vergleich der von dem Satellitennavigations-Empfänger 7 ermittelten Fahrzeugposition und den hinterlegten georeferenzierten Grenzpunkte A1, B1, A2, B2, A3, B3 sowie den Positionslinien 20, 20', 20" in der Steuervorrichtung festgestellt werden, dass sich das Fahrzeug 1 nunmehr in einem neuen Teilbereich der Schießbahn 16 befindet und daher eine Neufestlegung des Schießsektors S erforderlich ist. Entsprechend wird die Orientierung des Schießsektors S neu berechnet, so dass die Orientierung dann dem Schießsektor S' entspricht. Folglich wird auch beim Überqueren weiterer Positionslinien 20" der Schießsektor S' angepasst, so dass sichergestellt werden kann, dass eine Freigabe der Waffe 4 nur dann erfolgt, wenn keine Gefahr besteht.
- Eine zweite, alternative Möglichkeit der Festlegung der Orientierung des Schießsektors S, S', S" ist in
Fig. 9 dargestellt. Dort wird die Orientierung des Schießsektors S, S', S" nicht über eine Mittellinie zwischen den Grenzlinien definiert sondern vielmehr über die Grenzpunkte A1, B1, A2, B2, A3, B3 selbst. Zu Beginn der Übung wird die Orientierung eines ersten Schießsektors S auf bekannte Weise festgelegt, während das Fahrzeug 1 auf der Positionslinie 20 steht. Bewegt sich das Fahrzeug 1 nun entlang einer Fahrkurve auf der Schießbahn 16, verändert sich der Winkel σ des Schießsektors S, die Orientierung, welche über die Grenzpunkte A1, B1 festgelegt ist, wird jedoch beibehalten. - Überquert das Fahrzeug 1 nun eine zweite Positionslinie 20' wird ähnlich wie bereits zu
Fig. 8 beschrieben, die Orientierung des Schießsektors S neu festgelegt und dann bei Bewegung des Fahrzeugs 1 in dem neuen Teilbereich beibehalten. Der nun aufgespannte Schießsektor S' nutzt die Grenzpunkte A2, B2 als Orientierungsgrenzpunkte, so dass die Orientierung des Schießsektors S' über diese festgelegt wird. Der Schießsektor S, S', S" wird dabei über die Grenzpunkte A1, B1, A2, B2, A3, B3 festgelegt, wobei die Grenzpunkte A1, B1, A2, B2, A3, B3 bei Bewegung des Fahrzeugs 1 als Festlegungspunkte beibehalten werden. Aufgrund dessen bleibt die Orientierung des Schießsektor S, S', S" erhalten, allerdings ändert sich der Azimutwinkel σ. Auf diese Weise wird die Orientierung des Schießvektors S, S', S" beibehalten, der Azimutwinkel σ des Schießsektors S, S', S" wird jedoch dynamisch innerhalb eines jeden Teilbereichs angepasst, so dass auch hier eine sichere Schussfreigabe erreicht werden kann. - Bei dem vorstehend beschriebenen Verfahren zur Steuerung einer richtbaren Waffe 4 eines Fahrzeugs 1 bei Schießübungen, bei welchem die Orientierung eines Schießsektors S, in welchem geschossen werden darf, festgelegt wird, wird die festgelegte Orientierung bei Bewegung des Fahrzeugs 1 beibehalten. Hierdurch wird es möglich, dass das Fahrzeug 1 während der Schießübung bewegt werden kann, ohne dass die Orientierung des Schießbereichs S verändert wird.
-
- 1
- Fahrzeug
- 2
- Wanne
- 3
- Turm
- 4
- Waffe
- 5
- Kettenfahrwerk
- 6
- Messeinheit
- 7
- Satellitennavigations-Empfänger
- 8
- Bediengerät
- 9, 10, 11, 12
- Taste
- 13
- Inertialsensor
- 14
- Freigabevorrichtung
- 15
- Übungsgelände
- 16
- Schießbahn
- 17
- Ziel
- 18
- Leitstelle
- 19
- Objekt
- 20, 20', 20"
- Positionslinie
- A, B, C
- Grenzpunkte
- A1, A2, A3
- linke Grenzpunkte
- B1, B2, B3
- rechte Grenzpunkte
- D
- fahrzeugfester Punkt
- R
- Richtstellung der Waffe
- S, S', S"
- Schießsektor
- x, y, z
- Raumrichtungen
- α
- maximale Elevation
- σ
- Azimutwinkel
Claims (13)
- Verfahren zur Steuerung einer richtbaren Waffe (4) eines Fahrzeugs (1) bei Schießübungen, wobei die Orientierung eines Schießsektors (S, S', S"), in welchen geschossen werden darf, festgelegt wird,
dadurch gekennzeichnet,dass die festgelegte Orientierung bei Bewegung des Fahrzeugs (1) beibehalten wird,dass eine Schießbahn (16) in Teilbereiche unterteilt ist und die Orientierung des Schießsektors (S, S', S") in jedem Teilbereich festgelegt und beibehalten wird, wobei die Orientierung des Schießsektors (S, S`, S") beim Überqueren des Fahrzeugs (1) einer in einem Teilbereich angeordneten Positionslinie (20, 20', 20") festgelegt wird,wobei zur Neufestlegung der Orientierung des Schießsektors (S, S', S") an die Schießbahn (16) eine mittels eines Satellitennavigations-Empfängers (7) ermittelte Position des Fahrzeugs (1) mit in einer Steuervorrichtung hinterlegten georeferenzierten Grenzpunkten (A1, B1, A2, B2, A3, B3) sowie von Positionslinien (20, 20', 20") verglichen wird, und dass die Richtstellung (R) der Waffe (4) relativ zu einem fahrzeugunabhängigen Raumkoordinatensystem bestimmt wird. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Richtstellung (R) der Waffe (4) unabhängig von einer Sensorik der Waffe (4) bestimmt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Richtstellung (R) der Waffe (4) durch Inertialsensoren (13) bestimmt wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Inertialsensoren (13) zusammen mit der Waffe (4) gerichtet werden.
- Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Inertialsensoren (13) an einem richtbaren Turm (3) des Fahrzeugs (1) angeordnet sind.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Richtstellung (R) der Waffe (4) zu deren Freigabe während der Schießübung mit dem Schießsektor (S, S', S") verglichen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Waffe (4) freigegeben wird, wenn sich die Richtstellung (R) der Waffe (4) innerhalb des Schießsektors (S, S', S") befindet.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Größe des Schießsektors (S, S', S") an die Richtstellung (R) der Waffe (4) und/oder die Richtgeschwindigkeit der Waffe (4) angepasst wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Festlegung der Orientierung und die Freigabe der Waffe (4) durch eine fahrzeugfeste Vorrichtung (14) erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schießsektor (S, S', S") einen Azimutwinkel (σ) einschließt, welcher bei Bewegung des Fahrzeugs (1) beibehalten wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schießsektor (S, S', S") einen Azimutwinkel (σ) einschließt, welcher bei Bewegung des Fahrzeugs (1) verändert wird.
- Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Schießsektor (S, S', S") über Grenzpunkte (A1, B1, A2, B2, A3, B3) festgelegt wird und die Grenzpunkte (A1, B1, A2, B2, A3, B3) bei Bewegung des Fahrzeugs (1) beibehalten werden.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die festgelegte Orientierung bei Bewegung des Fahrzeugs (1) auf einer Kurvenbahn beibehalten wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201310111644 DE102013111644A1 (de) | 2013-10-22 | 2013-10-22 | Verfahren zur Steuerung einer richtbaren Waffe eines Fahrzeugs bei Schießübungen |
PCT/DE2014/100377 WO2015058743A1 (de) | 2013-10-22 | 2014-10-22 | Verfahren zur steuerung einer richtbaren waffe eines fahrzeugs bei schiessübungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3060872A1 EP3060872A1 (de) | 2016-08-31 |
EP3060872B1 true EP3060872B1 (de) | 2023-02-15 |
Family
ID=51947085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14802303.9A Active EP3060872B1 (de) | 2013-10-22 | 2014-10-22 | Verfahren zur steuerung einer richtbaren waffe eines fahrzeugs bei schiessübungen |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160265881A1 (de) |
EP (1) | EP3060872B1 (de) |
BR (1) | BR112016008798B1 (de) |
DE (1) | DE102013111644A1 (de) |
WO (1) | WO2015058743A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11010674B2 (en) * | 2015-08-28 | 2021-05-18 | James D. Harlow | Axiomatic control of automorphic dynamical systems |
FR3049199A1 (fr) * | 2016-03-22 | 2017-09-29 | Ortec Expansion | Outil de projection, en particulier a projection dangereuse. |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3024247A1 (de) * | 1980-06-27 | 1982-01-21 | Fried. Krupp Gmbh, 4300 Essen | Einrichtung zur begrenzung des schussfeldes einer rohrwaffe, insbesondere einer panzerkanone, beim uebungsschiessen |
US5456157A (en) * | 1992-12-02 | 1995-10-10 | Computing Devices Canada Ltd. | Weapon aiming system |
FR2712675B1 (fr) * | 1993-11-18 | 1996-02-02 | Giat Ind Sa | Méthode et système pour interdire le tir d'une arme de petit, moyen ou gros calibre, notamment à trajectoire tendue, en dehors d'au moins une zone de surveillance terrestre ou aérienne. |
DE19606685C2 (de) * | 1996-01-26 | 1999-09-30 | Industrieanlagen Betriebsges | System zur Gefechtssimulation mit einem frei operierenden Kampffahrzeug und einem quasi ortsfesten Objektsimulator |
DE10160946A1 (de) * | 2001-12-12 | 2003-07-03 | Stn Atlas Elektronik Gmbh | Verfahren zur Gewährleistung der Sicherheit beim Schießbetrieb mit scharfem Schuß |
DE102005001558B4 (de) * | 2005-01-13 | 2018-12-27 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Verfahren zur Überwachung und Steuerung von Abschussvorgängen eines Kampffahrzeugs |
DE102005059225B4 (de) * | 2005-12-12 | 2013-09-12 | Moog Gmbh | Waffe mit einem Waffenrohr, das außerhalb des Schwerpunkts auf einer bewegbaren Unterlage drehbar gelagert ist |
US7962243B2 (en) * | 2007-12-19 | 2011-06-14 | Foster-Miller, Inc. | Weapon robot with situational awareness |
US8006427B2 (en) * | 2008-07-29 | 2011-08-30 | Honeywell International Inc. | Boresighting and pointing accuracy determination of gun systems |
FI122890B (fi) * | 2011-06-16 | 2012-08-31 | Sako Ltd | Ampuma-aseen varolaite ja menetelmä varolaitteen käyttämiseksi |
-
2013
- 2013-10-22 DE DE201310111644 patent/DE102013111644A1/de not_active Withdrawn
-
2014
- 2014-10-22 WO PCT/DE2014/100377 patent/WO2015058743A1/de active Application Filing
- 2014-10-22 EP EP14802303.9A patent/EP3060872B1/de active Active
- 2014-10-22 US US15/030,882 patent/US20160265881A1/en not_active Abandoned
- 2014-10-22 BR BR112016008798-4A patent/BR112016008798B1/pt active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
BR112016008798B1 (pt) | 2022-04-05 |
WO2015058743A1 (de) | 2015-04-30 |
BR112016008798A2 (de) | 2017-08-01 |
DE102013111644A1 (de) | 2015-04-23 |
EP3060872A1 (de) | 2016-08-31 |
US20160265881A1 (en) | 2016-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69721876T2 (de) | Lenkungssystem für Luft-Luft-Flugkörper | |
DE102010005199B4 (de) | Verfahren und Vorrichtung zur Ortsbestimmung eines fliegenden Ziels | |
CH694382A5 (de) | Verfahren zur Bekämpfung mindestens eines Flugzieles mittels einer Feuergruppe, Feuergruppe aus mindestens zwei Feuereinheiten und Verwendung der Feuergruppe. | |
DE2648873A1 (de) | Feuerleitsystem | |
EP1454111B1 (de) | Verfahren zur gewährleistung der sicherheit beim schiessbetrieb mit scharfem schuss | |
EP3060872B1 (de) | Verfahren zur steuerung einer richtbaren waffe eines fahrzeugs bei schiessübungen | |
EP0359950B1 (de) | Verfahren und Visiereinrichtung zum Grobausrichten von Feuerleit- und Waffenanlagen | |
WO1999028696A1 (de) | Verfahren zur einstellung einer automatischen waffe zur bekämpfung von fahrzeugen | |
EP2538166B1 (de) | Feuerleiteinrichtung | |
DE2325355B2 (de) | Verfahren zur Zielsteuerung eines Flugkörpers | |
DE1951622C3 (de) | Anordnung zur simulierten Darstellung von Schußbahnen | |
EP3350536B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
EP3034983B1 (de) | Maschinenwaffe | |
EP4229352A1 (de) | Ermittlung einer feuerleitlösung einer artilleristischen waffe | |
DE2932428A1 (de) | Verfahren zur bekaempfung von bodenzielen durch gelenkte flugkoerper | |
DE4018198C2 (de) | Lenkverfahren für Geschosse und Anordnungen zur Durchführung des Verfahrens | |
DE19912093A1 (de) | Verfahren zur Schußsimulation | |
DE3048272C2 (de) | Lenkverfahren für Munition | |
EP3350535B1 (de) | Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation | |
EP2395409A2 (de) | Verfahren und Vorrichtung zum Steuern eines Lenkflugkörpers | |
EP1094292B1 (de) | Verfahren zum Führen eines Flugkörpers auf ein Ziel bei Zielverlust | |
DE2339164C3 (de) | Verfahren und Einrichtung zur Simulation eines Schuß- oder Wurfvorganges | |
DE1815992C (de) | Zielvorrichtung für leichte Waffen, insbesondere zum Bekämpfen von sich bewegenden Luftzielen | |
DE3876664T2 (de) | Vorrichtung zur fuehrung eines aerodynamischen luftfahrzeuges mit hilfe eines merkmales der aeusseren umgebung, das der pilot bestimmt. | |
DE2244826A1 (de) | Mobiles, schnell reagierendes abwehrsystem gegen tiefafnliegende flugobjekte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160504 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200114 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220907 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014016489 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1548433 Country of ref document: AT Kind code of ref document: T Effective date: 20230315 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230215 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230615 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230515 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230615 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230516 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014016489 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20231116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231031 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230215 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231022 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231022 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502014016489 Country of ref document: DE Owner name: KNDS DEUTSCHLAND GMBH & CO. KG, DE Free format text: FORMER OWNER: KRAUSS-MAFFEI WEGMANN GMBH & CO. KG, 80997 MUENCHEN, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231022 |