EP3059524B1 - A method of operating a cooling system - Google Patents
A method of operating a cooling system Download PDFInfo
- Publication number
- EP3059524B1 EP3059524B1 EP14850262.8A EP14850262A EP3059524B1 EP 3059524 B1 EP3059524 B1 EP 3059524B1 EP 14850262 A EP14850262 A EP 14850262A EP 3059524 B1 EP3059524 B1 EP 3059524B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- refrigerant
- amount
- suction pressure
- regulating valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 33
- 238000000034 method Methods 0.000 title claims description 7
- 239000003507 refrigerant Substances 0.000 claims description 214
- 230000006835 compression Effects 0.000 claims description 67
- 238000007906 compression Methods 0.000 claims description 67
- 230000001105 regulatory effect Effects 0.000 claims description 61
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000003570 air Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/22—Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
- F25B49/022—Compressor control arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/027—Compressor control by controlling pressure
- F25B2600/0272—Compressor control by controlling pressure the suction pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
Definitions
- the present invention is related to a method of operating a cooling system, and more particularly of operating a cooling system for a freezer vehicle, an air conditioner and a refrigerator, wherein an unloaded operation is possible by decreasing flow rate of refrigerant into a compressor upon an initial startup of a compressor or upon a re-startup after an interruption, and by increasing flow rate of refrigerant into the compressor during an normal operation to match it with a compression capacity of the compressor.
- an unloaded operation is possible by decreasing flow rate of refrigerant into a compressor upon an initial startup of a compressor or upon a re-startup after an interruption, and by increasing flow rate of refrigerant into the compressor during an normal operation to match it with a compression capacity of the compressor.
- a cooling system comprises a compressor for compressing circulating-refrigerant to have a high pressure, a condenser for condensing the compressed refrigerant with a high temperature, an expansion valve for expanding condensed refrigerant to have a low temperature, and an evaporator for evaporating expanded refrigerator with low temperature to thereby cool down ambient air.
- the cooling system is used for a freezer vehicle, an air conditioner and a refrigerator.
- the conventional cooling system comprises a valve for regulating suction pressure (SPR valve or CPR valve) disposed between an evaporator and a compressor. Accordingly, the refrigerant is supplied to the compressor while the refrigerant pressure is maintained below a predetermined level to thereby improve the compression efficiency, wherein the refrigerant has a high pressure state other than a low pressure state, because defrosting is unavailable due to frost generated in the evaporator.
- SPR valve or CPR valve suction pressure
- the conventional cooling system comprises an unloading valve which is integrated with a compressor for compressing refrigerant.
- document JP H07 22366 U discloses a method of operating a cooling system according to the preamble of claim 1.
- an object of the present invention is to provide a method of operating a cooling system according to claim 1, the cooling system comprising a suction pressure regulating valve and an unloading part, which are in parallel with each other and which are installed to a refrigerant inflow tube between a compressor and an evaporator, wherein the refrigerant through the suction pressure regulating valve, the amount of which is less than the compression capacity of the compressor, is supplied to the compressor in a closed state of the unloading part upon initial startup or re-startup of the compressor, and wherein the amount of the refrigerant equivalent to a full capacity of the compressor is supplied to the compressor through the suction pressure regulating valve and the unloading part, while the unloading part is opened in a normal operation, so that an unloaded operation is enabled, which minimizes an operation load of the compressor.
- a cooling system not forming part of the claimed invention comprising a suction pressure regulating valve for supplying refrigerant, an unloading part and a loading part, wherein said suction pressure regulating valve is installed to a refrigerant inflow tube between a compressor and an evaporator or to a refrigerant inflow tube and supplies the refrigerant, the amount of which is equivalent to compression capacity of a compressor, wherein said unloading part and said loading part are installed at an exit end of the suction pressure regulating valve in parallel with each other for supplying the refrigerant, the amount of which is less than the compression capacity of the compressor, wherein the amount of the refrigerant less than the compression capacity of the compressor is supplied to the compressor through the loading part, while the unloading part is closed upon an initial startup or a re-startup of the compressor, and wherein the amount of the refrigerant equivalent to the compression capacity of the compressor is supplied to the compressor through the unloading part and the loading part, while the unload
- a cooling system which comprises: a compressor for compressing refrigerant; a condenser for condensing the refrigerant which is compressed by said compressor; an expansion valve for expanding the refrigerant which is condensed by said condenser; an evaporator for evaporating the refrigerant which is expanded by said expansion valve; a suction pressure-regulating valve which is installed to a refrigerant inflow tube connecting between said compressor and said evaporator and which allows the refrigerant supplied from said evaporator to said compressor to have a pressure lower than a predetermined pressure for preventing said compressor from being overloaded, wherein said suction pressure-regulating valve is set to supply the amount of the refrigerant which is less than amount of refrigerant corresponding to compression capacity of said compressor; and, an unloading part which is installed to said refrigerant inflow tube in parallel with said suction pressure-regulating valve and which includes a bypass tube for an unloaded operation and an opening/closing-valve for said bypass tube,
- said suction pressure regulating valve supplies the refrigerant to the compressor in such a way that the amount of the refrigerant through the said suction pressure regulating valve is equivalent to 40 % - 80% of the amount of the refrigerant corresponding to the compression capacity of the compressor.
- said bypass tube supplies the refrigerant to the compressor in such a way that the amount of the refrigerant through the said bypass tube is equivalent to 60 % - 20% of the amount of the refrigerant corresponding to the compression capacity of the compressor.
- a cooling system not forming part of the claimed invention which comprises: a compressor for compressing refrigerant; a condenser for condensing the refrigerant which is compressed by said compressor; an expansion valve for expanding the refrigerant which is condensed by said condenser; an evaporator for evaporating the refrigerant which is expanded by said expansion valve; a suction pressure-regulating valve for supplying the amount of the refrigerant equivalent to the amount of the refrigerant corresponding to the compression capacity of the compressor, said suction pressure-regulating valve being installed to a refrigerant inflow tube between said compressor and said evaporator or to a refrigerant inflow tube; and an unloading part and a loading part which are installed at an exit of said compressor in parallel with each other for supplying the amount of the refrigerant less than the amount of the refrigerant corresponding to the compression capacity of the compressor, wherein an unloaded operation of the compressor is possible by supplying through the loading part the amount of the refrigerant
- said loading part comprises a loading tube, which has such a diameter as to supply to the compressor the amount of the refrigerant that is equivalent to the amount of the refrigerant corresponding to 40 %-80 % of the compression capacity of the compressor.
- said unloading part comprises a bypass tube and a valve for opening and closing said bypass tube, wherein said bypass tube has such a diameter as to supply the amount of the refrigerant that is equivalent to the amount of the refrigerant corresponding to 60 %-20 % of the compression capacity of the compressor.
- the suction pressure regulating valve and the unloading part being in parallel with each other are installed to the refrigerant inflow tube between the compressor and the evaporator, so that the refrigerant, the amount of which is less than the compression capacity of the compressor, is supplied to the compressor through the suction pressure regulating valve in a closed state of the unloading part upon the initial startup or the re-startup of the compressor.
- the amount of the refrigerant corresponding to the full capacity of the compressor is supplied to the compressor through the suction pressure regulating valve and the unloading part, while opening the unloading part.
- the suction pressure regulating valve which supplies the amount of the refrigerant corresponding to the compression capacity of the compressor, is installed to the refrigerant inflow tube between the compressor and the evaporator.
- the unloading part and a loading part being in parallel with each other, each of which supplies the amount of the refrigerant less than the amount of the refrigerant corresponding to the compression capacity of the compressor, are installed at an outlet of the suction pressure regulating valve. Accordingly, upon the initial startup or the re-startup of the compressor, the amount of the refrigerant less than the refrigerant corresponding to the compression capacity of the compressor is supplied to the compressor through the loading part, while the unloading part is closed.
- the amount of the refrigerant being equivalent to the amount of the refrigerant corresponding to the compression capacity of the compressor is supplied to the compressor through the loading part and the unloading part, while the unloading part is open.
- the unloading part is open.
- Figure 1 is a schematic view of the cooling system according to a preferred embodiment of the present invention.
- Figure 2 is a schematic view showing a flow of refrigerant during an unloaded operation of a compressor in the cooling system in Figure 1 .
- Figure 3 is a schematic view showing a flow of refrigerant during a normal operation of the compressor in the cooling system in Figure 1 .
- Figure 4 is a schematic view of the cooling system according to a variant of the preferred embodiment , the variant not forming part of the claimed invention.
- a cooling system comprises: a compressor (110) for compressing refrigerant; a condenser (120) for condensing the refrigerant which is compressed by said compressor (110); an expansion valve (130) for expanding the refrigerant which is condensed by said condenser (120); an evaporator (140) for evaporating the refrigerant which is expanded by said expansion valve (130); a suction pressure-regulating valve (150) which is installed to a refrigerant inflow tube (111) connecting between said compressor (110) and said evaporator (130) and which allows the refrigerant supplied from said evaporator (140) to said compressor (110) to have a pressure lower than a predetermined pressure, wherein said suction pressure regulating valve prevents said compressor (110) from being overloaded and wherein said suction pressure-regulating valve is set to supply the amount of the refrigerant which is less than amount of refrigerant corresponding to compression capacity of
- the compressor (110) is driven by a drive pump (110A) to thereby compress the refrigerant to have a high temperature and a high pressure, wherein the drive pump (110A) is driven by electric power means.
- the compressor (110) receives the refrigerant through the refrigerant inflow tube (111), the refrigerant being discharged from the evaporator (140). Thereafter, the compressor (110) compresses the refrigerant and supplies the refrigerant to the condenser (120) through a refrigerant discharging tube (112) connected to the condenser (120).
- the compressor (110) is driven by an electric motor; otherwise, the compressor (110) is connected to a driving axis of a separate engine through a flywheel and a belt, so that it receives a driving force when the engine is driven.
- the condenser (120) condenses the compressed refrigerant, which is supplied from the refrigerant discharging tube (112) of said compressor (110), into a liquid state with a median temperature and a high pressure by means of air cooling. Then, the condenser (120) cools down and condenses the refrigerant by means of the air cooling, while using a condenser fan (120A). Thereafter, the refrigerant is supplied to the expansion valve (130) through a liquid receiver (RT), such as a receiver tank.
- a dehumidifier (DR), such as a drier is further installed at an end of said liquid receiver (RT) to thereby remove water contained in the refrigerant supplied to the expansion valve (130).
- the expansion valve (130) expands the refrigerant, which is condensed by said condenser (120), to turn it into a gas state having a low temperature and a low pressure.
- the expansion valve (130) receives the condensed refrigerant from the liquid receiver (RT) which stores the refrigerant condensed by the condenser (120).
- the evaporator (140) evaporates the refrigerant, which is expanded by the expansion valve (130), using an evaporation fan (140A) to thereby cool ambient air. Thereafter, the evaporator (140) supplies the refrigerant to the refrigerant inflow tube (111) of the compressor (110) to thereby make the low temperature-refrigerant to have a constant temperature.
- a sensitive heat tube (SB) is wrapped in heating coils (HT) at an exit of the evaporator (140), so that the expansion valve (130) is adjusted to open/close according to the temperature and the pressure of the refrigerant due to evaporation in the evaporator (140).
- an accumulator is arranged at an outlet of said evaporator (140), wherein said accumulator stores water contained in the liquid-state refrigerant so as to prevent the water from being supplied to the compressor (110), whereas said accumulator supplies only the gas-state refrigerant to the compressor (110).
- Said suction pressure regulating valve (150) is CPR valve (Crankcase Pressure Regulating valve) or SPR valve (Suction Pressure Regulating valve).
- Said suction pressure regulating valve is installed to the refrigerant inflow tube (111), to thereby allow the refrigerant supplied from the evaporator (140) to the compressor (110) to have a pressure below a predetermined level of the pressure. Thereby, it prevents the compressor (110) from being overloaded.
- said suction pressure regulating valve (150) sets a supply amount of the refrigerant in such a way that it supplies the refrigerant, amount of which is less than the compression capacity of the compressor (110).
- the suction pressure regulating valve (150) controls the amount of the refrigerant by adjusting its diameter with the use of adjusting means in such a way that the amount of the refrigerant flowing from the evaporator (140) to the refrigerant inflow tube (111) is less than the amount of the refrigerant corresponding to the compression capacity of the compressor (110).
- the amount of the refrigerant supplied from the refrigerant inflow tube (111) to the compressor (110) is reduced in such a way that the amount of the refrigerant thorough the suction pressure regulating valve (150) is equivalent to 40 % - 80 % of the amount of the refrigerant corresponding to the compression capacity of the compressor (110).
- the refrigerant is supplied to the compressor (110) through the refrigerant inflow tube (111) in such a way that the amount of the refrigerant is equivalent to 40-80 % of the amount of the refrigerant during the normal operation.
- the unloaded operation is possible by relieving a maximum load which may be momentarily generated in the drive pump (110A) or the compressor (110). Therefore, the accumulation of fatigue in the compressor (110) or the drive pump (110A) may be prevented and the durability thereof may be improved.
- the pressure in the compressor (110) decreases greatly due to rapid decrease of the load. It causes the incorrect operation of the drive pump (110A), while splashing oil used in the drive pump (110A).
- the suction pressure regulating valve (150) by means of the suction pressure regulating valve (150), the amount of the refrigerant supplied from the refrigerant inflow tube (111) to the compressor (110) is reduced by 40-80% relative to the compression capacity of the compressor. Thereby, upon the initial startup of the compressor (110) or the re-startup after interruption, it is possible to provide the effect of the unloaded operation, while preventing the incorrect operation of the drive pump (110A).
- suction pressure regulating valve (150) which comprises the CPR valve or the SPR valve, is well known in the field of art. Accordingly, the detailed description will not be provided herein with respect thereto.
- Said unloading part (160) provides the unloaded operation by supplying the amount of the refrigerant, which is less than the amount of the refrigerant corresponding to the compression capacity of the compressor (110), from the evaporator (140) to the compressor (110), upon the initial startup or the re-startup after interruption of the compressor (110).
- said unloading part (160) provides the normal operation by supplying the amount of the refrigerant, which is equivalent to the amount of the refrigerant corresponding to the compression capacity of the compressor, from the evaporator (140) to the compressor (110) while in the normal operation of the compressor (110).
- the unloading part (160) is installed to the refrigerant inflow tube (111) in parallel with the suction pressure regulating valve (150).
- the unloading part (160) comprises the bypass tube (161) for the unloaded operation and the valve (162) for opening/closing the bypass tube (161), wherein the bypass tube (161) allows the amount of the refrigerant, which is equivalent to the difference between the amount of the refrigerant corresponding to the compression capacity of the compressor (110) and the amount of the refrigerant through the suction pressure regulating valve (150).
- said opening/closing valve (162) comprises a solenoid valve, a PWM valve, an electronic proportional control valve, etc.
- the opening/closing valve (162) operates to open/close in accordance with an electronic signal.
- said opening/closing valve (162) closes the bypass tube (161) in accordance with a control signal from the control means, to thereby supply the refrigerant to the compressor (110) only through the suction pressure regulating valve (150), wherein the amount of the refrigerant through the valve (150) is less than the amount of the refrigerant corresponding to the compression capacity of the compressor (111).
- the opening/closing valve (162) opens the bypass tube (161) in accordance with a control signal from the control means.
- the amount of the refrigerant corresponding to the compression capacity of the compressor (110) can be supplied to the compressor (110) through the suction pressure regulating valve (150) and the bypass tube (161) to thereby enable the normal operation.
- the bypass tube (161) may be configured to have such a diameter as to supply the amount of the refrigerant, which is equivalent to 60-20 % of the amount of the refrigerant corresponding to the compression capacity of the compressor (110).
- the amount of the refrigerant corresponding to 100 % of the compression capacity of the compressor (110) can be supplied to the compressor (110).
- the diameter of the bypass tube (161) is configured so as to supply the amount of the refrigerant corresponding to 40 % of the compression capacity of the compressor (110).
- the amount of the refrigerant corresponding to 100 % of the compression capacity of the compressor (110) is supplied to the compressor (110) while in the normal operation
- the bypass tube (161) is closed upon the initial startup or the re-startup after the interruption of the compressor (110), so that a small amount of the refrigerant is supplied to the compressor (110) only through the suction pressure regulating valve (150) to thereby achieve the unloaded operation of the compressor (110).
- the bypass tube (161) opens to allow the amount of the refrigerant corresponding to the compression capacity of the compressor (110) to be supplied to the compressor (110) through the suction pressure regulating valve (150) and the bypass tube (161).
- the opening/closing valve (162) in the unloading part (160) is controlled to close the bypass tube (161) by the control means for controlling the compressor (110) or the drive pump (110A) as shown in Figure 2.
- the amount of the refrigerant flowing from the evaporator (140) to the compressor (110) is controlled to be equivalent to 40 %-80 % of the amount of the refrigerant corresponding to the compression capacity of the compressor (110) by means of the suction pressure regulating valve (150), Accordingly, the maximum load, which might be momentarily generated in the compressor (11) or the drive pump (110A), can be relieved to thereby allow the unloaded operation of the compressor (110). In this way, the accumulation of fatigue in the compressor (110) or the drive pump (110A) may be prevented and the durability thereof may be improved.
- the opening/closing valve (162) in the unloading part (160) is controlled to open the bypass tube (161) by means of the control means for controlling the compressor (110) or the drive pump (110A) as shown in Figure 3.
- the amount of the refrigerant flowing from the evaporator (140) to the compressor (110) is controlled to be equivalent to 40 %-80 % of the amount of the refrigerant corresponding to the compression capacity of the compressor (110) by means of the suction pressure regulating valve (150), an addition of the refrigerant is obtained through the bypass tube (161), the amount of which is equivalent to 60 %- 20% of the amount of the refrigerant corresponding to the compression capacity of the compressor (110). Accordingly, the amount of the refrigerant corresponding to 100 % of the compression capacity of the compressor (110) can be supplied to the compressor, and thus, the compressor (110) or the drive pump (110A) can operate in the loaded operation (the normal operation).
- the suction pressure regulating valve (150) and the unloading part (160) being in parallel with each other are installed to the refrigerant inflow tube (111) between the compressor (110) and the evaporator (140), so that the refrigerant, the amount of which is less than the compression capacity of the compressor (110), is supplied to the compressor (110) through the suction pressure regulating valve (150) in a closed state of the unloading part (160) upon the initial startup or the re-startup of the compressor (110).
- the amount of the refrigerant corresponding to the full capacity of the compressor (110) is supplied to the compressor (110) through the suction pressure regulating valve (150) and the unloading part (160), while opening the unloading part (160).
- the cooling system enabling the unloaded operation, which minimizes an operation load of the compressor (110).
- the suction pressure control valve (150) and the unloading part (160) being in parallel with other are installed to the refrigerant inflow tube (111) between the compressor (110) and the evaporator (140), so that the refrigerant, the amount of which is less than the compression capacity of the compressor (110), is supplied to the compressor (110) through the suction pressure regulating valve (150) in a closed state of the unloading part (160) upon the initial startup or the re-startup of the compressor (110), whereas the refrigerant corresponding to the full capacity of the compressor (110) is supplied to the compressor (110) through the suction pressure regulating valve (150) and the unloading part (160) in an open state of the unloading part (160) in the normal operation.
- the suction pressure regulating valve (150) which supplies the amount of the refrigerant corresponding to the compression capacity of the compressor (110), is installed to the refrigerant inflow tube (111) between the compressor (110) and the evaporator (140) or the refrigerant inflow tube (111). Also, the unloading part (160) and a loading part (170) being in parallel with each other, each of which supplies the amount of the refrigerant less than the amount of the refrigerant corresponding to the compression capacity of the compressor (110), are installed at an outlet of the suction pressure regulating valve (150).
- the amount of the refrigerant less than the refrigerant corresponding to the compression capacity of the compressor (110) is supplied to the compressor (110) through the loading part (170), while closing the unloading part (160).
- the amount of the refrigerant being equivalent to the amount of the refrigerant corresponding to the compression capacity of the compressor (110) is supplied to the compressor (110) through the loading part (170) and the unloading part (160), while opening the unloading part (160).
- Said suction pressure regulating valve (150) or said refrigerant inflow tube (111) allows the amount of the refrigerant, which is equivalent to the amount of the refrigerant corresponding to the capacity of the compressor (110), to be supplied to the compressor (110).
- Said loading part (170) comprises a loading tube (171), the diameter of which is configured in such a way that the amount of the refrigerant supplied to the compressor (110) through the loading tube (171) is equivalent to the amount of the refrigerant corresponding to 40 %-80 % of the compression capacity of the compressor (110).
- the bypass tube (161) in the unloading part (160) has the diameter which is configured in such a way that the amount of the refrigerant corresponding to 60%-20% of the compression capacity of the compressor (110) is supplied to the compressor (110) through the bypass tube (161).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Compressor (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130008094U KR200471061Y1 (ko) | 2013-10-01 | 2013-10-01 | 냉각시스템 |
PCT/KR2014/001820 WO2015050297A1 (ko) | 2013-10-01 | 2014-03-05 | 냉각시스템 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3059524A1 EP3059524A1 (en) | 2016-08-24 |
EP3059524A4 EP3059524A4 (en) | 2017-08-23 |
EP3059524B1 true EP3059524B1 (en) | 2021-01-13 |
Family
ID=51419636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14850262.8A Active EP3059524B1 (en) | 2013-10-01 | 2014-03-05 | A method of operating a cooling system |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3059524B1 (zh) |
KR (1) | KR200471061Y1 (zh) |
CN (1) | CN105593618B (zh) |
ES (1) | ES2861873T3 (zh) |
WO (1) | WO2015050297A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106369856B (zh) * | 2016-10-31 | 2018-05-11 | 合肥华凌股份有限公司 | 制冷装置 |
WO2018076364A1 (zh) | 2016-10-31 | 2018-05-03 | 合肥华凌股份有限公司 | 制冷装置 |
KR101802107B1 (ko) * | 2017-02-09 | 2017-11-27 | 장판홍 | 냉동시스템 |
CN109494430B (zh) * | 2018-12-25 | 2024-09-13 | 武汉松芝车用空调有限公司 | 顶置式电池热管理总成压缩机保护结构及保护方法 |
CN109812930A (zh) * | 2018-12-27 | 2019-05-28 | 珠海格力电器股份有限公司 | 一种二通阀控制组件、空调器和卸荷控制方法 |
WO2024101920A1 (ko) * | 2022-11-09 | 2024-05-16 | 다함에이블 주식회사 | 공기 조화 시스템, 이에 사용되는 압축기 제어장치 및 그 장치의 구동방법 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076727B2 (ja) * | 1990-05-10 | 1995-01-30 | 高橋工業株式会社 | ヒートポンプを使用した解凍、保冷装置 |
JPH0497259U (zh) * | 1991-01-21 | 1992-08-24 | ||
JPH0722366U (ja) * | 1993-09-09 | 1995-04-21 | 中野冷機株式会社 | 温度帯切替え式ショーケース |
JPH109690A (ja) * | 1996-06-21 | 1998-01-16 | Mitsubishi Heavy Ind Ltd | 冷凍装置 |
KR100201689B1 (ko) | 1996-10-09 | 1999-06-15 | 오상수 | 압축기의 언로딩밸브 |
JPH11182946A (ja) * | 1997-12-18 | 1999-07-06 | Topre Corp | 冷凍装置 |
JP3437437B2 (ja) * | 1998-02-25 | 2003-08-18 | エスペック株式会社 | 圧縮機冷媒補給式冷凍装置 |
KR200300275Y1 (ko) | 2002-09-10 | 2003-01-14 | 류옥란 | 냉동시스템 |
EP2203693B1 (en) * | 2007-09-24 | 2019-10-30 | Carrier Corporation | Refrigerant system with bypass line and dedicated economized flow compression chamber |
JP5130910B2 (ja) * | 2007-12-28 | 2013-01-30 | ダイキン工業株式会社 | 空気調和装置及び冷媒量判定方法 |
CN102331123B (zh) * | 2011-05-30 | 2013-07-10 | 宁波奥克斯电气有限公司 | 螺杆压缩机多联空调润滑油安全控制方法 |
KR200467801Y1 (ko) * | 2013-01-21 | 2013-07-04 | 김성준 | 냉각 시스템 |
KR101270208B1 (ko) | 2013-03-28 | 2013-05-31 | 주식회사 유한엔지니어링 | 동시 핫가스 제상 수단을 구비한 냉동 냉장 장치 |
-
2013
- 2013-10-01 KR KR20130008094U patent/KR200471061Y1/ko active IP Right Grant
-
2014
- 2014-03-05 CN CN201480053421.9A patent/CN105593618B/zh active Active
- 2014-03-05 EP EP14850262.8A patent/EP3059524B1/en active Active
- 2014-03-05 ES ES14850262T patent/ES2861873T3/es active Active
- 2014-03-05 WO PCT/KR2014/001820 patent/WO2015050297A1/ko active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3059524A4 (en) | 2017-08-23 |
KR200471061Y1 (ko) | 2014-02-11 |
EP3059524A1 (en) | 2016-08-24 |
ES2861873T3 (es) | 2021-10-06 |
CN105593618B (zh) | 2017-10-10 |
CN105593618A (zh) | 2016-05-18 |
WO2015050297A1 (ko) | 2015-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3059524B1 (en) | A method of operating a cooling system | |
EP0969257B1 (en) | Refrigerated container and method for optimizing temperature pull down in the container | |
CN112292276B (zh) | 用于运行车辆的具有制冷介质回路的制冷设备的方法 | |
US9829242B2 (en) | Refrigeration device | |
WO2007029803A1 (ja) | 冷凍装置 | |
JP2003166774A (ja) | 輸送機関用温度制御システムの圧縮機制御方法 | |
EP3575708B1 (en) | Refrigeration cycle device | |
EP2719976B1 (en) | Refrigeration apparatus | |
CN110234944B (zh) | 制冷系统 | |
EP1521685B1 (en) | Hvac system shutdown sequence | |
US9702607B2 (en) | Air-conditioner system for vehicle and method for controlling same | |
KR20090036509A (ko) | 냉동 장치 및 냉동 장치의 운전 방법 | |
KR101728404B1 (ko) | 다단 압축 시스템 및 그의 제어방법 | |
JP2007322022A (ja) | 圧縮機装置および冷媒循環装置 | |
JP2013164250A (ja) | 冷凍装置 | |
CN112361633B (zh) | 制冷系统及其控制方法 | |
JP2002071228A (ja) | 冷凍サイクルの制御装置 | |
WO2004005060A1 (en) | Hvac system shutdown sequence | |
JP4773760B2 (ja) | 冷凍装置 | |
US6748756B2 (en) | HVAC system with periodic override of evaporator control | |
JP2005009725A (ja) | 空気調和装置及び空気調和装置の制御方法 | |
US11435125B2 (en) | Heating compressor at start-up | |
JP2016205643A (ja) | 冷却装置 | |
JP2000094941A (ja) | 車両用空気調和装置 | |
JP2005201483A (ja) | 冷凍装置およびその冷凍装置の運転制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160330 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20170721 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25B 1/00 20060101ALI20170717BHEP Ipc: F25B 41/00 20060101AFI20170717BHEP Ipc: F25B 41/04 20060101ALI20170717BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200422 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200710 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTC | Intention to grant announced (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTG | Intention to grant announced |
Effective date: 20201124 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014074287 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1354874 Country of ref document: AT Kind code of ref document: T Effective date: 20210215 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1354874 Country of ref document: AT Kind code of ref document: T Effective date: 20210113 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210113 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210413 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210413 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210414 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210513 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014074287 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2861873 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
26N | No opposition filed |
Effective date: 20211014 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210313 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210305 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210413 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210305 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240405 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210113 |