EP3054358B1 - Clock oscillator mechanism - Google Patents

Clock oscillator mechanism Download PDF

Info

Publication number
EP3054358B1
EP3054358B1 EP16152268.5A EP16152268A EP3054358B1 EP 3054358 B1 EP3054358 B1 EP 3054358B1 EP 16152268 A EP16152268 A EP 16152268A EP 3054358 B1 EP3054358 B1 EP 3054358B1
Authority
EP
European Patent Office
Prior art keywords
resonators
clock oscillator
oscillator
blades
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16152268.5A
Other languages
German (de)
French (fr)
Other versions
EP3054358A1 (en
Inventor
Pascal Winkler
Jean-Luc Helfer
Gianni Di Domenico
Thierry Conus
Jean-Jacques Born
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
ETA SA Manufacture Horlogere Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA SA Manufacture Horlogere Suisse filed Critical ETA SA Manufacture Horlogere Suisse
Priority to EP17192071.3A priority Critical patent/EP3293584B1/en
Priority to EP16152268.5A priority patent/EP3054358B1/en
Publication of EP3054358A1 publication Critical patent/EP3054358A1/en
Application granted granted Critical
Publication of EP3054358B1 publication Critical patent/EP3054358B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/08Oscillators with coil springs stretched and unstretched axially
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/002Component shock protection arrangements

Definitions

  • the invention relates to a clock oscillator according to claim 1.
  • the invention also relates to a watch movement comprising at least one such watch oscillator.
  • the invention relates to a watch comprising at least one such movement.
  • the invention relates to the field of watch oscillators for watches, in particular for mechanical movements.
  • the exhaust must be robust, shock-resistant, and constructed to prevent entrapment (overturning).
  • the Swiss lever escapement has a low fuel efficiency of around 30%. This low yield is due to the fact that the movements of the exhaust are jerky, and that several parts are transmitted their movement via inclined planes that rub against each other.
  • the documents WO2015104692 and WO2015104693 in the name of EPFL each describe a mechanical isotropic harmonic oscillator which comprises at least one link with two degrees of freedom supporting a mass in orbit relative to a fixed base having springs having linear and isotropic restoring force properties, the mass having a tilting motion.
  • the oscillator may be used in a time measuring device, for example a watch.
  • the document CH451021A on behalf of EBAUCHES SA describes a symmetrical oscillator for bending for a timepiece, in particular for an electric timepiece, comprising a U-shaped part, the two flexible branches of which constitute two vibrating blades, as in a tuning fork. It has two rigid arms, serving as a counterweight, each connected to one of the flexible branches, in the vicinity of the end thereof, the arrangement being such that for each of the two symmetrical parts of this oscillator, the center The instantaneous rotation of the oscillator coincides with the center of gravity, so that the frequency of the oscillator hardly changes with its changes of position in the gravitational field.
  • the present invention aims to provide a high efficiency exhaust system.
  • the invention consists in the development of an architecture for continuous interactions, without saccades, between resonator and escape wheel. To do this, we must concede the use of at least a second resonator out of phase with respect to a first resonator.
  • the invention relates to a clock oscillator according to claim 1.
  • the invention also relates to a watch movement comprising at least one such watch oscillator.
  • the invention relates to a watch comprising at least one such movement.
  • the invention relates to a mechanical watch 200 provided with balanced resonators, out of phase and maintained continuously.
  • the invention relates to a watch oscillator 1 comprising a structure 2 or / and a frame 4, and a plurality of primary resonators 10 and distinct.
  • These primary resonators 10 are phase-shifted temporally and geometrically. They each comprise at least one inertial mass 5, which is recalled to the structure 2, or the frame 4, by an elastic return means 6. It is meant by “distinct resonators” the fact that each primary resonator 10 has its own inertial mass 5 and its own elastic return means 6, especially a spring.
  • this clock oscillator 1 comprises coupling means 11, which are arranged to allow the interaction of the primary resonators 10.
  • the mobile 13 is subjected to a force or / and a motor torque.
  • These coupling means 11 comprise motor means 12, arranged to drive such a mobile 13. More particularly, motor means 12 are arranged to drive this mobile 13.
  • This mobile 13 comprises driving and guiding means 14, which are arranged to drive and guide, preferably captively, a mechanical control means.
  • This control means 15 is articulated around a first control axis with a plurality of transmission means 16, each hinged about a second axis of articulation, away from the control means 15, with an inertial mass 5 of a primary resonator 10.
  • the primary resonators 10 oscillate about axes parallel to each other.
  • the invention sets out to compensate the forces to the recesses, both in translation and in rotation, unlike the known prior art, which performs only compensation in translation.
  • Rotational compensation is an important feature of the invention, it allows the oscillator to vibrate longer, and to have a better quality factor. In addition, the impact sensitivity is lower.
  • the primary resonators 10 and the mobile 13 are arranged in such a way that the second axes of articulation of any two of the primary resonators 10, and the first control axis of the control means 15, are never coplanar. In other words, the projections of these axes in a common perpendicular plane are never aligned. It is understood that the axes of articulation may, in some embodiments, be virtual pivot axes.
  • the mobile 13 is subjected to a rotational movement; more particularly, the motor means 12 are arranged to drive the mobile 13 in a rotational movement about an axis of rotation A.
  • the driving and guiding means 14 are constituted by a groove 140 in which a finger 150 slides which comprises the control means 15.
  • this groove 140 is substantially radial with respect to the rotation axis A of the mobile 13.
  • the mobile 13 replaces a conventional escape wheel, and is preferably downstream of a finishing train powered by a barrel or the like.
  • the transmission means 16 may in particular be made in the form of connecting rods 160, each having a first articulation 161 with the control means 15, and a second articulation 162 with the inertial mass 5 considered.
  • the first hinge 161 and the second hinge 162 together define a rod direction.
  • all the connecting rod directions are in pairs, at any time, an angle other than zero or ⁇ . Otherwise formulated, the vector product of the two directions of rods is different from zero.
  • the transmission means 16 are non-collinear connecting rods 160.
  • the mobile 13, subjected to a driving torque, and the coupling means 11 have an interaction geometry, which allows to essentially transmit tangential forces to these rods 160.
  • Elementary resonators are termed resonators that together constitute a primary resonator: they are mounted in a tuning fork so that the reactions and errors cancel each other out.
  • a number n of elementary resonators together constitute a primary resonator they are out of phase with each other by 2 ⁇ / n.
  • the figure 1 illustrates a general case of two elementary resonators 10A and 10B mass-spring type oscillating linearly and in different directions, and whose masses 5A and 5B are articulated to connecting rods 16A and 16B, which cooperate together in an articulated manner with a finger 150 , which constitutes the control means 15, which runs through a groove 140 of a wheel constituting the mobile 13, the motor means being represented in FIG. figure 4 which shows a detail at the articulation of the connecting rods on the control means 15.
  • the primary resonators 10 are rotary resonators.
  • at least one mobile of the primary resonator has a large amplitude of oscillation, preferably greater than 180 ° and advantageously greater than 270 °.
  • Such a rotary resonator is distinguished from an angular resonator with recessed cantilever blades known from the prior art.
  • FR 630831 where the oscillation of a blade is limited to a small angle, of the order of 30 °.
  • the figure 2 illustrates such an example, where the primary resonators 10A, 10B, are balance-spiral assemblies, where the spirals 6A, 6B are attached at their outer turn to the structure 2, and at their inner turn to the pendulums 5A, 5B, which are articulated with ends 162A, 162B, connecting rods 16A, 16B, arranged in a manner similar to those of FIG. figure 1 .
  • the oscillator 1 is arranged so that the forces and the reaction torques of all the primary resonators 10 on the support 2 (or on the frame 4 if they are all fixed on such a frame) cancel each other out.
  • the forces cancel out in an approximate way because the center of mass remains fixed only approximately, or moves very little, when the axis of rotation passes through the center of mass.
  • the center of mass is substantially coincident with the center of rotation, that is to say with a positional deviation of only a few micrometers or tens of micrometers.
  • the pairs cancel each other because each component in rotation is compensated by another component in inverse rotation.
  • the coupling between the resonators can be done via a flexible recess as in a tuning fork or via the connecting rods 160, or, more generally, the transmission means 16.
  • the coupling of the primary resonators 10 with respect to each other is then performed by a flexible embedding of each of the primary resonators 10 with respect to the common structure 2 or to the frame 4.
  • the resultant of the forces and reaction torques of the primary resonators 10 with respect to the common structure 2 or the frame 4, to which they are attached is approximately zero, thanks to the phase-shifted arrangement of the n resonators. primary 10, in particular rotary.
  • the primary rotary resonators 10 are arranged so that their centers of mass remain approximately in fixed position, at least during the normal oscillations of these primary resonators 10.
  • the watch oscillator 1 preferably comprises means for stop to limit their stroke in case of shock or the like.
  • these primary resonators 10 have at least one substantially identical resonance mode, they are arranged to vibrate in a phase shift between them of the value 2 ⁇ / n, where n is their number, and they are arranged according to a symmetry in the space such that the resultant forces and torques applied by the primary resonators 10 on the structure 2, or on a frame 4 which supports them, is zero.
  • substantially identical resonance mode is meant that these primary resonators 10 have substantially the same amplitude, substantially the same inertia, and substantially the same natural frequency. The most important is this phase shift of 2 ⁇ / n.
  • the primary resonators 10 are even in number, and they constitute pairs of pairs in which the inertial masses 5 are in phase-shifting of ⁇ relative to one another. .
  • At least one of the primary resonators 10 consists of a plurality of n elementary resonators 810.
  • These elementary resonators 810 each comprise at least one elementary mass carried by a flexible elementary elastic blade, constituting an elastic return means, and which is arranged to work in bending, and which is embedded in an elementary cross.
  • These elementary resonators 810 have at least one substantially identical resonance mode, and are arranged to vibrate in a phase shift between them of the value 2 ⁇ / n, where n is the number of elementary resonators 810. They are arranged in a symmetry in the space, such that the resultant forces and torques applied by the elementary resonators 810 on the elementary cross is zero.
  • This elementary crosspiece is fixed to the fixed support 2 by an elementary main elastic connection, whose rigidity is greater than the rigidity of each elastic flexible elemental blade, and whose damping is greater than the damping of each elementary flexible blade.
  • the elementary resonators 810 are arranged in space so that the resultant of their operating errors due to gravitation is zero.
  • At least one of the primary resonators 10 consists of a pair of such elementary resonators 810.
  • the elementary inertial masses are in phase shift of ⁇ relative to each other.
  • this pair consists of identical elementary resonators 810, which are geometrically opposed and phase to each other.
  • each primary resonator 10 consists of such a pair of elementary resonators 810.
  • each primary resonator 10A, 10B thus forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of tuning fork type called horned goat horns.
  • a cross 40A, respectively 40B is fixed to the fixed support 2 by a main elastic connection 3A, respectively 3B, whose rigidity is greater than the rigidity of each elastic flexible blade 61A, 62A, respectively 61B, 62B. And the damping of this main elastic connection is greater than that of each flexible blade.
  • each primary resonator 10 is balanced for itself, in translation and in rotation.
  • the fixed support 2 forms a monolithic assembly with these two primary monolithic structures.
  • planar structure is meant that this monolithic structure is a right prism, realized by raising a two-dimensional contour, along a direction of elongation, and delimited by two end planes parallel to each other and perpendicular. to this direction of elongation of the prism.
  • the monolithic structure has a constant thickness defined by the spacing of these two end planes, and therefore has a single level, in certain variants certain areas, in particular blades flexible of the monolithic structure, can occupy only part of this thickness.
  • the monolithic structure is produced by a growth method, of the "MEMS", "LIGA” or similar type.
  • the monolithic structure is produced by cutting a plate, for example by electro-erosion wire and / or sinking.
  • the cross member 40A carries a pair of masses 5, marked 51A and 52A, respectively 51B and 52B, mounted symmetrically on either side of the fixed support 2 and the main elastic connection 3A, respectively 3B .
  • Each of these masses is oscillatingly mounted and biased by an elastic flexible blade 61A, 62A, respectively 61B, 62B, which is a spiral, or a spiral assembly.
  • These spirals are each linked directly or indirectly to a mass at their inner turn, and attached to the cross 40A, respectively 40B, by its outer turn.
  • Each mass pivots around a virtual pivot axis of position determined relative to the cross 40A, respectively 40B.
  • Each virtual pivot axis is, in the rest position of the isochronous oscillator mechanism 1, coinciding with the center of mass, of the respective mass.
  • the masses extend substantially parallel to each other in the rest position, in a transverse direction.
  • each spiral has a section or variable curvature along its development.
  • the variant of the figure 5 is a structure similar to that of the figure 3 , where each primary resonator 10A, 10B forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of the so-called tuning fork type in H.
  • the elastic flexible blades 6: 61A, 62A, respectively 61B , 62B, are no longer constituted by spirals, but by straight and short blades.
  • the term "short blade” is used here to denote a blade whose length is less than the smallest value between four times its height or thirty times its thickness, this short blade characteristic making it possible to limit movements of the center of mass concerned.
  • These short blades are here arranged on either side of a cross 40A, respectively 40B, with which it forms the horizontal bar of an H whose masses form the vertical bars. Due to the symmetry and the alignment, the longitudinal arrangement of the elastic flexible blades makes it possible to compensate the direction of greater displacement of the centers of mass, which move symmetrically with respect to the plane of symmetry.
  • Each primary resonator 10A, 10B thus rendered isochronous by one of these particular combinations of elementary resonators, advantageously comprises rotational abutments, and / or translational limit stops in the longitudinal and transverse directions, and / or abutments. limitation in translation in a direction perpendicular to the two preceding.
  • These stroke limiting means can be integrated, be part of a one-piece construction, and / or be reported.
  • the masses comprise, advantageously, stop means arranged to cooperate with complementary abutment means that the sleepers 40A, 40B comprise, to limit the displacement of the resilient flexible blades relative to these sleepers, in case of shocks or similar accelerations .
  • the figure 5 also illustrates an advantageous variant where the transmission means 16A, 16B, are resilient flexible blades. It is then possible to make a monolithic assembly comprising the structure 2, the primary resonators 10 as described above, in particular complete, and these resilient flexible blades, and the finger 150.
  • the Figures 6 and 7 illustrate variants where the connecting rods are beams having collars at both ends in place of the hubs.
  • the figure 6 illustrates a case of coupling of two primary resonators, the figure 7 of three such resonators.
  • the transmission means 16 thus comprise at least one monolithic connecting rod arranged to cooperate both with the control means 15 and with at least two inertial masses 5 of as many primary resonators 10, and comprise at least one flexible neck at the level of each articulation zone.
  • FIGS. 1, 2 , 3 and 5 illustrate a clock oscillator 1 comprising two primary resonators 10.
  • the watch oscillator 1 comprises at least three primary resonators 10.
  • the figure 8 illustrates a clock oscillator 1 comprising three primary resonators 10. This figure shows the application of the coupling of the figure 7 to the inertial masses 5A, 5B, 5C, of the three primary resonators 10A, 10B, 10C.
  • the figure 9 illustrates a clock oscillator 1 having four resonators. These four resonators may be four primary resonators 10. They may also be four elementary resonators, constituting two by two primary resonators: one composed of the elementary resonators 10A and 10C, phase shifted by ⁇ , the other of the elementary resonators 10B and 10D , also out of phase with ⁇ .
  • each resonator taken alone has a reaction to the embedding, and it is the juxtaposition and the judicious combination of the "n" resonators that compensates for all the reactions.
  • the figures 10 , 12, and 13 illustrate a variant where at least one elastic return means 6 also constitutes a rotary guide, which avoids the friction inherent in the use of pivots.
  • the figure 10 shows a transmission means 16 constituted by a flexible blade, in the configuration of the figure 9 .
  • This figure also shows angular stops: 71, 72, 710, 720, 76 on the mass 5, the respective complementary abutment surfaces 73, 74, 730, 740, 77 at the frame 4 on which is attached a short flexible blade 6, and an anti-shock abutment surface 75 on the mass 5, arranged to cooperate with a complementary surface 750 at the frame 4.
  • These integrated shock are particularly advantageous, and require no adjustment.
  • the mobile 13 is subjected to a rotational movement; more particularly, the motor means 12 are arranged to drive the mobile 13 in a rotational movement, and the mobile 13 and the drive and guide means 14 are arranged to apply to the control means 15 a substantially tangential force with respect to the rotation of the mobile 13.
  • the figure 11 illustrates a variant where the mobile 13 comprises a resilient structure 130 deformable, forming a rigid radially rigid guide tangentially, this deformable structure 130 comprises a housing 140 for cooperating with the finger 150 of the control means 15 at the main joint.
  • the elastic return means 6 of the primary resonators 10 comprise flexible blades
  • the primary resonators 10 and / or the common structure 2, and / or the frame 4 comprise radial stops and / or or angular and / or axial arranged to limit the deformations of the flexible blades and to avoid breaks in case of shocks or too high engine torque.
  • the watch oscillator 1 comprises a monolithic structure which groups together a common structure 4 towards which the inertial masses 5 are recalled by their elastic return means 6, the control means 15 and its articulations with the transmission means 16, and the means transmission 16 with their joints to the inertial masses 5.
  • the desired phase shifts are perfectly assured, the cancellation of reactions also.
  • Such monolithic structures allow the removal of traditional pivots, by implementing flexible blades that have a dual function: the pivoting guide constituting a virtual pivot, and the elastic return.
  • this monolithic structure further comprises the stops.
  • the orientation of the elastic return means 6 of the primary resonators 10 is optimized so that the operating errors due to the gravity vanish between the primary resonators 10.
  • the elastic return means 6 of the primary resonators 10 are virtual cross-blade pivots.
  • the primary resonators 10 are isochronous.
  • At least the elastic means that comprises the watch oscillator 1 according to the invention are thermally compensated.
  • An embodiment of micro-machinable material makes it possible to provide such compensation.
  • the invention also relates to a watch movement 100 comprising at least one watch oscillator 1.
  • the invention also relates to a watch 200 comprising at least one such movement 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Electric Clocks (AREA)

Description

Domaine de l'inventionField of the invention

L'invention concerne un oscillateur horloger selon la revendication 1.The invention relates to a clock oscillator according to claim 1.

L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel oscillateur horloger.The invention also relates to a watch movement comprising at least one such watch oscillator.

L'invention concerne une montre comportant au moins un tel mouvement.The invention relates to a watch comprising at least one such movement.

L'invention concerne le domaine des oscillateurs d'horlogerie pour montres, notamment pour des mouvements mécaniques.The invention relates to the field of watch oscillators for watches, in particular for mechanical movements.

Arrière-plan de l'inventionBackground of the invention

La plupart des montres mécaniques actuelles comportent un échappement à ancre suisse. Les deux fonctions principales de l'échappement sont:

  • l'entretien des va-et-vient du résonateur, constitué par un ensemble balancier-spiral ;
  • le comptage de ces va-et-vient.
Most of today's mechanical watches feature a Swiss lever escapement. The two main functions of the exhaust are:
  • maintenance of the comings and goings of the resonator, constituted by a pendulum-balance assembly;
  • Counting these back and forth.

En plus de ces deux fonctions, l'échappement doit être robuste, et résister aux chocs, et constitué de façon à éviter de coincer le mouvement (renversement).In addition to these two functions, the exhaust must be robust, shock-resistant, and constructed to prevent entrapment (overturning).

L'échappement à ancre suisse a un rendement énergétique faible, de l'ordre de 30%. Ce faible rendement provient du fait que les mouvements de l'échappement sont saccadés, et du fait que plusieurs pièces se transmettent leur mouvement via des plans inclinés qui frottent les uns par rapport aux autres.The Swiss lever escapement has a low fuel efficiency of around 30%. This low yield is due to the fact that the movements of the exhaust are jerky, and that several parts are transmitted their movement via inclined planes that rub against each other.

Le brevet FR 630831 au nom de SCHIEFERSTEIN décrit un procédé et une disposition pour la transmission de puissance entre des systèmes mécaniques et pour la commande de systèmes mécaniquesThe patent FR 630831 in the name of SCHIEFERSTEIN describes a method and an arrangement for the transmission of power between mechanical systems and for the control of mechanical systems

Les documents WO2015104692 et WO2015104693 au nom de EPFL décrivent chacun un oscillateur harmonique isotrope mécanique qui comprend au moins une liaison à deux degrés de liberté supportant une masse en orbite par rapport à une base fixe ayant des ressorts présentant des propriétés de force de restauration linéaire et isotrope, la masse ayant un mouvement d'inclinaison. L'oscillateur peut être utilisé dans un dispositif de mesure du temps, par exemple une montre.The documents WO2015104692 and WO2015104693 in the name of EPFL each describe a mechanical isotropic harmonic oscillator which comprises at least one link with two degrees of freedom supporting a mass in orbit relative to a fixed base having springs having linear and isotropic restoring force properties, the mass having a tilting motion. The oscillator may be used in a time measuring device, for example a watch.

Le document CH451021A au nom de EBAUCHES SA décrit un oscillateur symétrique à flexion pour pièce d'horlogerie, notamment pour pièce d'horlogerie électrique, comprenant une partie en U, dont les deux branches, flexibles, constituent deux lames vibrantes, comme dans un diapason. Il présente deux bras rigides, servant de contrepoids, reliés chacun à l'une des branches flexibles, au voisinage de l'extrémité de celle-ci, l'agencement étant tel que, pour chacune des deux parties symétriques de cet oscillateur, le centre instantané de rotation coïncide avec le centre de gravité, le tout de manière que la fréquence de l'oscillateur ne varie pratiquement pas avec ses changements de position dans le champ de gravité.The document CH451021A on behalf of EBAUCHES SA describes a symmetrical oscillator for bending for a timepiece, in particular for an electric timepiece, comprising a U-shaped part, the two flexible branches of which constitute two vibrating blades, as in a tuning fork. It has two rigid arms, serving as a counterweight, each connected to one of the flexible branches, in the vicinity of the end thereof, the arrangement being such that for each of the two symmetrical parts of this oscillator, the center The instantaneous rotation of the oscillator coincides with the center of gravity, so that the frequency of the oscillator hardly changes with its changes of position in the gravitational field.

Résumé de l'inventionSummary of the invention

La présente invention a pour objectif de proposer un système d'échappement à haut rendement. On propose également un oscillateur sans pivot et sans réaction au support permettant d'atteindre de très haut facteur de qualité.The present invention aims to provide a high efficiency exhaust system. We also propose a oscillator without pivot and without reaction to the support to achieve a very high quality factor.

Pour atteindre ce but, l'invention consiste dans la mise au point d'une architecture permettant des interactions continues, sans saccades, entre résonateur et roue d'échappement. On doit, pour ce faire, concéder l'utilisation d'au moins un deuxième résonateur déphasé par rapport à un premier résonateur.To achieve this goal, the invention consists in the development of an architecture for continuous interactions, without saccades, between resonator and escape wheel. To do this, we must concede the use of at least a second resonator out of phase with respect to a first resonator.

A cet effet, l'invention concerne un oscillateur horloger selon la revendication 1.For this purpose, the invention relates to a clock oscillator according to claim 1.

L'invention concerne encore un mouvement d'horlogerie comportant au moins un tel oscillateur horloger.The invention also relates to a watch movement comprising at least one such watch oscillator.

L'invention concerne une montre comportant au moins un tel mouvement.The invention relates to a watch comprising at least one such movement.

Description sommaire des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui va suivre, en référence aux dessins annexés, où :

  • la figure 1 représente, de façon schématisée et en plan, un oscillateur horloger comportant deux résonateurs élémentaires de type masse-ressort oscillant linéairement et selon des directions différentes, et dont les masses sont articulées à des bielles, lesquelles coopèrent ensemble de façon articulée avec un doigt qui parcourt une rainure d'un mobile soumis à un couple moteur, pour coupler les deux résonateurs élémentaires ;
  • la figure 2 représente, de façon schématisée et en vue en plan, une variante de l'invention où les résonateurs primaires sont des résonateurs rotatifs, de type balancier-spiral ;
  • la figure 3 représente, de façon schématisée et en vue en plan, une autre variante de l'invention avec deux résonateurs primaires, dont chacun est lui-même constitué d'une paire de résonateurs élémentaires, qui comportent chacun une masse élémentaire portée par une lame flexible élastique élémentaire sous forme de spiral, constituant un moyen de rappel élastique, et qui est agencée pour travailler en flexion, et qui est encastrée dans une traverse ; chaque résonateur primaire forme ainsi, par la combinaison de ces deux résonateurs élémentaires, un mécanisme oscillateur isochrone de type diapason dit en cornes de bouc ;
  • la figure 4 représente, de façon schématisée et en perspective, un détail de l'articulation des bielles des figures 1 à 3 ;
  • la figure 5 représente, de façon similaire, une structure similaire à celle de la figure 3, où les lames flexibles élastiques ne sont plus constituées par des spiraux, mais par des lames droites et courtes, disposées de part et d'autre d'une traverse avec laquelle elle forment la barre horizontale d'un H dont les masses forment les barres verticales; chaque résonateur primaire forme ainsi, par la combinaison de ces deux résonateurs élémentaires, un mécanisme oscillateur isochrone de type diapason dit en H ; cette figure 5 montre des moyens de transmission constitués par des lames flexibles, en remplacement des bielles des figures précédentes ;
  • les figures 6 et 7 représentent, de façon schématisée et en perspective, des variantes où les bielles sont des poutres comportant des cols aux deux extrémités en lieu et place des moyeux, la figure 6 illustre un cas de couplage de deux résonateurs primaires, la figure 7 illustre un cas de couplage de trois tels résonateurs ;
  • la figure 8 représente, de façon schématisée et en perspective, un oscillateur horloger comportant trois résonateurs primaires disposés en triangle autour de leur moyen de commande commun ; cette figure montre l'application du couplage de la figure 7 aux masses inertielles des trois résonateurs ;
  • la figure 9 représente, de façon similaire à la figure 8, un oscillateur horloger comportant quatre résonateurs;
  • la figure 10 représente, de façon schématisée et en perspective, une variante où un moyen de rappel élastique constitue également un guidage rotatif, un moyen de transmission est constitué par une lame flexible, dans la configuration de la figure 9; cette figure montre également des butées angulaires et des butées antichoc, ménagées sur un ensemble monolithique regroupant un cadre, des lames flexibles courtes, les masses inertielles, les moyens de transmission et l'interface avec des moyens de commande ;
  • la figure 11 représente, de façon schématisée et en vue en plan, une variante où le mobile comporte une structure élastique déformable, formant un guidage souple radialement et rigide tangentiellement, comportant un logement de réception d'un doigt du moyen de commande, à l'articulation principale, la structure déformable étant représentée en deux positions extrêmes ;
  • la figure 12 représente, de façon schématisée et en perspective, l'extrapolation de l'ensemble monolithique de la figure 10 pour un mécanisme comportant quatre masses inertielles ; cet ensemble est élargi, et comporte encore la structure porteuse, et une liaison élastique principale de suspension du cadre à cette structure ;
  • la figure 13 représente l'ensemble de la figure 10 dans un champ de gravitation ;
  • la figure 14 est un schéma-blocs représentant une montre comportant un mouvement qui intègre un oscillateur horloger selon l'invention.
Other features and advantages of the invention will appear on reading the detailed description which follows, with reference to the appended drawings, in which:
  • the figure 1 schematically shows in plan a clock oscillator comprising two mass-spring-type elementary resonators oscillating linearly and in different directions, and whose masses are articulated to connecting rods, which cooperate together in an articulated manner with a finger that runs through a groove of a moving body subjected to a driving torque, for coupling the two elementary resonators;
  • the figure 2 is schematically shown in plan view, a variant of the invention wherein the primary resonators are rotary resonators, sprung-balance type;
  • the figure 3 is schematically and in plan view, another variant of the invention with two primary resonators, each of which is itself constituted by a pair of elementary resonators, each comprising an elementary mass carried by an elastic flexible blade elementary spiral form, constituting an elastic return means, and which is arranged to work in bending, and which is embedded in a cross; each primary resonator thus forms, by the combination of these two elementary resonators, an isochronous oscillator mechanism of tuning fork type known as goat horns;
  • the figure 4 represents, schematically and in perspective, a detail of the articulation of the connecting rods of Figures 1 to 3 ;
  • the figure 5 represents, similarly, a structure similar to that of the figure 3 , where the elastic flexible blades are no longer constituted by spirals, but by straight and short blades, arranged on either side of a crossbar with which it forms the horizontal bar of an H whose masses form the bars vertical; each primary resonator thus forms, by the combination of these two elementary resonators, an isochronous oscillator mechanism of tuning fork type referred to as H; this figure 5 shows transmission means constituted by flexible blades, replacing the connecting rods of the preceding figures;
  • the Figures 6 and 7 represent schematically and in perspective, variants where the rods are beams having collars at both ends instead of hubs, the figure 6 illustrates a case of coupling of two primary resonators, the figure 7 illustrates a case of coupling of three such resonators;
  • the figure 8 schematically shows in perspective a clock oscillator comprising three primary resonators arranged in a triangle around their common control means; this figure shows the application of the coupling of the figure 7 the inertial masses of the three resonators;
  • the figure 9 represents, similarly to the figure 8 a watch oscillator with four resonators;
  • the figure 10 represents schematically and in perspective, a variant where an elastic return means also constitutes a rotary guide, a transmission means is constituted by a flexible blade, in the configuration of the figure 9 ; this figure also shows angular stops and shockproof stops, formed on a monolithic assembly comprising a frame, short flexible blades, the inertial masses, the transmission means and the interface with control means;
  • the figure 11 represents schematically and in plan view, a variant where the mobile comprises a deformable elastic structure, forming a rigid radially and tangentially rigid guide, comprising a housing for receiving a finger of the control means, at the main joint the deformable structure being represented in two extreme positions;
  • the figure 12 represents, schematically and in perspective, the extrapolation of the monolithic set of the figure 10 for a mechanism with four inertial masses; this assembly is enlarged, and still includes the supporting structure, and a main elastic link suspension frame to this structure;
  • the figure 13 represents the whole of the figure 10 in a field of gravitation;
  • the figure 14 is a block diagram representing a watch comprising a movement that integrates a watch oscillator according to the invention.

Description détaillée des modes de réalisation préférésDetailed Description of the Preferred Embodiments

L'invention concerne une montre mécanique 200 munie de résonateurs équilibrés, déphasés et entretenus de manière continue.The invention relates to a mechanical watch 200 provided with balanced resonators, out of phase and maintained continuously.

L'invention concerne un oscillateur horloger 1 comportant une structure 2 ou/et un cadre 4, et une pluralité de résonateurs primaires 10 et distincts.The invention relates to a watch oscillator 1 comprising a structure 2 or / and a frame 4, and a plurality of primary resonators 10 and distinct.

Ces résonateurs primaires 10 sont déphasés temporellement et géométriquement. Ils comportent chacun au moins une masse inertielle 5, qui est rappelée vers la structure 2, ou le cadre 4, par un moyen de rappel élastique 6. On entend en effet par « résonateurs distincts » le fait que chaque résonateur primaire 10 possède sa propre masse inertielle 5 et son propre moyen de rappel élastique 6, notamment un ressort.These primary resonators 10 are phase-shifted temporally and geometrically. They each comprise at least one inertial mass 5, which is recalled to the structure 2, or the frame 4, by an elastic return means 6. It is meant by "distinct resonators" the fact that each primary resonator 10 has its own inertial mass 5 and its own elastic return means 6, especially a spring.

Selon l'invention, cet oscillateur horloger 1 comporte des moyens de couplage 11, qui sont agencés pour permettre l'interaction des résonateurs primaires 10. Le mobile 13 est soumis à un effort ou/et à un couple moteur. Ces moyens de couplage 11 comportent des moyens moteurs 12, agencés pour entraîner un tel mobile 13. Plus particulièrement, des moyens moteurs 12 sont agencés pour entraîner en mouvement ce mobile 13. Ce mobile 13 comporte des moyens d'entraînement et de guidage 14, qui sont agencés pour entraîner et guider, de préférence de façon prisonnière, un moyen de commande 15 mécanique. Ce moyen de commande 15 est articulé autour d'un premier axe de commande avec une pluralité de moyens de transmission 16, chacun articulé autour d'un deuxième axe d'articulation, à distance du moyen de commande 15, avec une masse inertielle 5 d'un résonateur primaire 10.According to the invention, this clock oscillator 1 comprises coupling means 11, which are arranged to allow the interaction of the primary resonators 10. The mobile 13 is subjected to a force or / and a motor torque. These coupling means 11 comprise motor means 12, arranged to drive such a mobile 13. More particularly, motor means 12 are arranged to drive this mobile 13. This mobile 13 comprises driving and guiding means 14, which are arranged to drive and guide, preferably captively, a mechanical control means. This control means 15 is articulated around a first control axis with a plurality of transmission means 16, each hinged about a second axis of articulation, away from the control means 15, with an inertial mass 5 of a primary resonator 10.

De préférence, les résonateurs primaires 10 oscillent autour d'axes parallèles entre eux.Preferably, the primary resonators 10 oscillate about axes parallel to each other.

L'invention s'attache à effectuer une compensation des efforts aux encastrements, aussi bien en translation qu'en rotation, contrairement à l'art antérieur connu, qui n'effectue qu'une compensation en translation.The invention sets out to compensate the forces to the recesses, both in translation and in rotation, unlike the known prior art, which performs only compensation in translation.

La compensation en rotation est une caractéristique importante de l'invention, elle permet à l'oscillateur de vibrer plus longtemps, et d'avoir un meilleur facteur qualité. De plus, la sensibilité aux chocs est moindre.Rotational compensation is an important feature of the invention, it allows the oscillator to vibrate longer, and to have a better quality factor. In addition, the impact sensitivity is lower.

Bien sûr, le fait d'annuler les réactions aux encastrements n'est pas indispensable pour le fonctionnement de l'oscillateur, mais il représente une caractéristique très avantageuse car cette disposition améliore très sensiblement la sensibilité aux petits chocs.Of course, the fact of canceling the reactions to the recesses is not essential for the operation of the oscillator, but it represents a very advantageous characteristic because this arrangement very significantly improves sensitivity to small impacts.

De plus, les résonateurs primaires 10 et le mobile 13 sont agencés de telle façon que les deuxièmes axes d'articulation de deux quelconques des résonateurs primaires 10, et le premier axe de commande du moyen de commande 15, ne sont jamais coplanaires. En d'autres termes, les projections de ces axes selon un plan perpendiculaire commun ne sont jamais alignées. On comprend que les axes d'articulation peuvent, dans certaines réalisations, être des axes de pivots virtuels.In addition, the primary resonators 10 and the mobile 13 are arranged in such a way that the second axes of articulation of any two of the primary resonators 10, and the first control axis of the control means 15, are never coplanar. In other words, the projections of these axes in a common perpendicular plane are never aligned. It is understood that the axes of articulation may, in some embodiments, be virtual pivot axes.

Dans les variantes non limitatives de réalisation illustrées aux figures 1 à 9, le mobile 13 est soumis à un mouvement de rotation; plus particulièrement, les moyens moteurs 12 sont agencés pour entraîner le mobile 13 selon un mouvement de rotation autour d'un axe de rotation A.In the nonlimiting embodiments of embodiments illustrated in FIGS. Figures 1 to 9 , the mobile 13 is subjected to a rotational movement; more particularly, the motor means 12 are arranged to drive the mobile 13 in a rotational movement about an axis of rotation A.

Dans une variante particulière de réalisation, les moyens d'entraînement et de guidage 14 sont constitués par une rainure 140 dans laquelle coulisse un doigt 150 que comporte le moyen de commande 15. De préférence, cette rainure 140 est sensiblement radiale par rapport à l'axe de rotation A du mobile 13.In a particular variant embodiment, the driving and guiding means 14 are constituted by a groove 140 in which a finger 150 slides which comprises the control means 15. Preferably, this groove 140 is substantially radial with respect to the rotation axis A of the mobile 13.

On comprend que le mobile 13 se substitue à une roue d'échappement classique, et est préférentiellement en aval d'un rouage de finissage alimenté par un barillet ou similaire.It is understood that the mobile 13 replaces a conventional escape wheel, and is preferably downstream of a finishing train powered by a barrel or the like.

Les moyens de transmission 16 peuvent en particulier être réalisés sous la forme de bielles 160, comportant chacune une première articulation 161 avec le moyen de commande 15, et une deuxième articulation 162 avec la masse inertielle 5 considérée. La première articulation 161 et la deuxième articulation 162 définissent ensemble une direction de bielle. Selon l'invention, toutes les directions de bielle font deux à deux, à tout instant, un angle différent de zéro ou π. Autrement formulé, le produit vectoriel des deux directions de bielles est différent de zéro.The transmission means 16 may in particular be made in the form of connecting rods 160, each having a first articulation 161 with the control means 15, and a second articulation 162 with the inertial mass 5 considered. The first hinge 161 and the second hinge 162 together define a rod direction. According to the invention, all the connecting rod directions are in pairs, at any time, an angle other than zero or π. Otherwise formulated, the vector product of the two directions of rods is different from zero.

Dans une application particulière, les moyens de transmission 16 sont des bielles 160 non colinéaires. Le mobile 13, soumis à un couple moteur, et les moyens de couplage 11 ont une géométrie d'interaction, qui permet de transmettre essentiellement des forces tangentielles à ces bielles 160.In a particular application, the transmission means 16 are non-collinear connecting rods 160. The mobile 13, subjected to a driving torque, and the coupling means 11 have an interaction geometry, which allows to essentially transmit tangential forces to these rods 160.

On appelle ci-après résonateurs élémentaires des résonateurs constituant ensemble un résonateur primaire: ils sont montés en diapason, de telle façon que les réactions et les erreurs s'annulent. Quand un nombre n de résonateurs élémentaires constituent ensemble un résonateur primaire, ils sont déphasés entre eux de 2π/n.Elementary resonators are termed resonators that together constitute a primary resonator: they are mounted in a tuning fork so that the reactions and errors cancel each other out. When a number n of elementary resonators together constitute a primary resonator, they are out of phase with each other by 2π / n.

La figure 1 illustre un cas général de deux résonateurs élémentaires 10A et 10B de type masse-ressort oscillant linéairement et selon des directions différentes, et dont les masses 5A et 5B sont articulées à des bielles 16A et 16B, lesquelles coopèrent ensemble de façon articulée avec un doigt 150, qui constitue le moyen de commande 15, qui parcourt une rainure 140 d'une roue constituant le mobile 13, les moyens moteurs étant représentés en figure 4 qui montre un détail au niveau de l'articulation des bielles sur le moyen de commande 15.The figure 1 illustrates a general case of two elementary resonators 10A and 10B mass-spring type oscillating linearly and in different directions, and whose masses 5A and 5B are articulated to connecting rods 16A and 16B, which cooperate together in an articulated manner with a finger 150 , which constitutes the control means 15, which runs through a groove 140 of a wheel constituting the mobile 13, the motor means being represented in FIG. figure 4 which shows a detail at the articulation of the connecting rods on the control means 15.

Dans une application particulière préférée de l'invention, mais non limitative, et illustrée par les figures, les résonateurs primaires 10 sont des résonateurs rotatifs. On entend par là qu'au moins un mobile du résonateur primaire a une amplitude d'oscillation importante, de préférence supérieure à 180° et avantageusement supérieure à 270°. On distingue un tel résonateur rotatif d'un résonateur angulaire avec des lames encastrées en porte-à-faux connu de l'art antérieur FR 630831 , où l'oscillation d'une lame est limitée à un angle faible, de l'ordre de 30°.In a particular preferred application of the invention, but not limited to, and illustrated by the figures, the primary resonators 10 are rotary resonators. By this is meant that at least one mobile of the primary resonator has a large amplitude of oscillation, preferably greater than 180 ° and advantageously greater than 270 °. Such a rotary resonator is distinguished from an angular resonator with recessed cantilever blades known from the prior art. FR 630831 , where the oscillation of a blade is limited to a small angle, of the order of 30 °.

Ces résonateurs primaires 10 rotatifs sont peu sensibles aux chocs en translation, et aux problèmes de positionnement, contrairement aux résonateurs linéaires et angulaires.These rotary primary resonators are not very sensitive to shocks in translation, and to positioning problems, in contrast to linear and angular resonators.

La figure 2 illustre un tel exemple, où les résonateurs primaires 10A, 10B, sont des ensembles balancier-spiral, où les spiraux 6A, 6B sont attaché au niveau de leur spire externe à la structure 2, et au niveau de leur spire interne aux balanciers 5A, 5B, lesquels sont articulés avec des extrémités 162A, 162B, de bielles 16A, 16B, agencées de façon similaire à celles de la figure 1.The figure 2 illustrates such an example, where the primary resonators 10A, 10B, are balance-spiral assemblies, where the spirals 6A, 6B are attached at their outer turn to the structure 2, and at their inner turn to the pendulums 5A, 5B, which are articulated with ends 162A, 162B, connecting rods 16A, 16B, arranged in a manner similar to those of FIG. figure 1 .

Pour obtenir un meilleur facteur de qualité, l'oscillateur 1 est agencé de façon à ce que les forces et les couples de réactions de l'ensemble des résonateurs primaires 10 sur le support 2 (ou sur le cadre 4 s'ils sont tous fixés sur un tel cadre) s'annulent. Les forces s'annulent de façon approximative parce que le centre de masse ne reste fixe que de façon approximative, ou bouge très peu, quand l'axe de rotation passe par le centre de masse. Le centre de masse est sensiblement confondu avec le centre de rotation, c'est-à-dire avec un écart de position de seulement quelques micromètres ou dizaines de micromètres. Les couples s'annulent car chaque composant en rotation est compensé par un autre composant en rotation inverse. Le couplage entre les résonateurs peut se faire via un encastrement flexible comme dans un diapason ou via les bielles 160, ou, plus généralement, les moyens de transmission 16. Le couplage des résonateurs primaires 10 les uns par rapport aux autres se fait alors par un encastrement flexible de chacun des résonateurs primaires 10 par rapport à la structure commune 2 ou au cadre 4.To obtain a better quality factor, the oscillator 1 is arranged so that the forces and the reaction torques of all the primary resonators 10 on the support 2 (or on the frame 4 if they are all fixed on such a frame) cancel each other out. The forces cancel out in an approximate way because the center of mass remains fixed only approximately, or moves very little, when the axis of rotation passes through the center of mass. The center of mass is substantially coincident with the center of rotation, that is to say with a positional deviation of only a few micrometers or tens of micrometers. The pairs cancel each other because each component in rotation is compensated by another component in inverse rotation. The coupling between the resonators can be done via a flexible recess as in a tuning fork or via the connecting rods 160, or, more generally, the transmission means 16. The coupling of the primary resonators 10 with respect to each other is then performed by a flexible embedding of each of the primary resonators 10 with respect to the common structure 2 or to the frame 4.

Ainsi, de préférence, la résultante des efforts et couples de réaction des résonateurs primaires 10 par rapport à la structure commune 2 ou au cadre 4, à laquelle ou auquel ils sont fixés, est approximativement nulle, grâce à l'agencement déphasé des n résonateurs primaires 10, en particulier rotatifs.Thus, preferably, the resultant of the forces and reaction torques of the primary resonators 10 with respect to the common structure 2 or the frame 4, to which they are attached, is approximately zero, thanks to the phase-shifted arrangement of the n resonators. primary 10, in particular rotary.

Pour un fonctionnement optimal, les résonateurs primaires rotatifs 10 sont agencés de façon à ce que leurs centres de masse restent approximativement en position fixe, au moins lors des oscillations normales de ces résonateurs primaires 10. L'oscillateur horloger 1 comporte de préférence des moyens de butée pour limiter leur course en cas de choc ou similaire.For optimum operation, the primary rotary resonators 10 are arranged so that their centers of mass remain approximately in fixed position, at least during the normal oscillations of these primary resonators 10. The watch oscillator 1 preferably comprises means for stop to limit their stroke in case of shock or the like.

De préférence, ces résonateurs primaires 10 ont au moins un mode de résonance sensiblement identique, ils sont agencés pour vibrer selon un déphasage entre eux de la valeur 2π/n, où n est leur nombre, et ils sont agencés selon une symétrie dans l'espace telle que la résultante des efforts et des couples appliqués par les résonateurs primaires 10 sur la structure 2, ou sur un cadre 4 qui les supporte, est nulle.Preferably, these primary resonators 10 have at least one substantially identical resonance mode, they are arranged to vibrate in a phase shift between them of the value 2π / n, where n is their number, and they are arranged according to a symmetry in the space such that the resultant forces and torques applied by the primary resonators 10 on the structure 2, or on a frame 4 which supports them, is zero.

Par « mode de résonance sensiblement identique », on entend que ces résonateurs primaires 10 ont sensiblement la même amplitude, sensiblement la même inertie, et sensiblement la même fréquence propre. Le plus important est ce déphasage temporel de 2π/n. Dans une application particulière, tel que visible sur les figures, les résonateurs primaires 10 sont en nombre pair, et ils constituent deux à deux des paires dans lesquelles les masses inertielles 5 sont en mouvement déphasé de π l'un par rapport à l'autre.By "substantially identical resonance mode" is meant that these primary resonators 10 have substantially the same amplitude, substantially the same inertia, and substantially the same natural frequency. The most important is this phase shift of 2π / n. In a particular application, as can be seen in the figures, the primary resonators 10 are even in number, and they constitute pairs of pairs in which the inertial masses 5 are in phase-shifting of π relative to one another. .

Dans un agencement particulier, tel que visible sur les figures 3 et 5, au moins un des résonateurs primaires 10 est constitué d'une pluralité de n résonateurs élémentaires 810. Ces résonateurs élémentaires 810 comportent chacun au moins une masse élémentaire portée par une lame flexible élastique élémentaire, constituant un moyen de rappel élastique, et qui est agencée pour travailler en flexion, et qui est encastrée dans une traverse élémentaire.In a particular arrangement, as visible on the Figures 3 and 5 at least one of the primary resonators 10 consists of a plurality of n elementary resonators 810. These elementary resonators 810 each comprise at least one elementary mass carried by a flexible elementary elastic blade, constituting an elastic return means, and which is arranged to work in bending, and which is embedded in an elementary cross.

Ces résonateurs élémentaires 810 ont au moins un mode de résonance sensiblement identique, et sont agencés pour vibrer selon un déphasage entre eux de la valeur 2π/n, où n est le nombre des résonateurs élémentaires 810. Ils sont agencés selon une symétrie dans l'espace, telle que la résultante des efforts et des couples appliqués par les résonateurs élémentaires 810 sur la traverse élémentaire est nulle.These elementary resonators 810 have at least one substantially identical resonance mode, and are arranged to vibrate in a phase shift between them of the value 2π / n, where n is the number of elementary resonators 810. They are arranged in a symmetry in the space, such that the resultant forces and torques applied by the elementary resonators 810 on the elementary cross is zero.

Cette traverse élémentaire est fixée au support fixe 2 par une liaison élastique principale élémentaire, dont la rigidité est supérieure à la rigidité de chaque lame flexible élastique élémentaire, et dont l'amortissement est supérieur à l'amortissement de chaque lame flexible élémentaire. Et les résonateurs élémentaires 810 sont agencés dans l'espace de manière à ce que la résultante de leurs erreurs de marche dues à la gravitation soit nulle.This elementary crosspiece is fixed to the fixed support 2 by an elementary main elastic connection, whose rigidity is greater than the rigidity of each elastic flexible elemental blade, and whose damping is greater than the damping of each elementary flexible blade. And the elementary resonators 810 are arranged in space so that the resultant of their operating errors due to gravitation is zero.

Plus particulièrement, au moins un des résonateurs primaires 10 est constitué d'une paire de tels résonateurs élémentaires 810. Dans cette paire, les masses inertielles élémentaires sont en mouvement déphasé de π l'un par rapport à l'autre.More particularly, at least one of the primary resonators 10 consists of a pair of such elementary resonators 810. In this pair, the elementary inertial masses are in phase shift of π relative to each other.

Plus particulièrement encore, cette paire est constituée de résonateurs élémentaires 810 identiques, qui sont en opposition géométrique et de phase l'un par rapport à l'autre.More particularly, this pair consists of identical elementary resonators 810, which are geometrically opposed and phase to each other.

Dans le cas particulier des figures 3 et 5, chaque résonateur primaire 10 est constitué d'une telle paire de résonateurs élémentaires 810.In the particular case of Figures 3 and 5 each primary resonator 10 consists of such a pair of elementary resonators 810.

Dans la variante de la figure 3, chaque résonateur primaire 10A, 10B, forme ainsi, par la combinaison de deux résonateurs élémentaires 8101, 8102, respectivement 8103, 8104, un mécanisme oscillateur isochrone de type diapason dit en cornes de bouc. Une traverse 40A, respectivement 40B, est fixée au support fixe 2 par une liaison élastique principale 3A, respectivement 3B, dont la rigidité est supérieure à la rigidité de chaque lame flexible élastique 61A, 62A, respectivement 61B, 62B. Et l'amortissement de cette liaison élastique principal est supérieur à celui de chaque lame flexible. Ces caractéristiques assurent un couplage entre les résonateurs élémentaires 8101 et 8102, respectivement 8103 et 8104.In the variant of the figure 3 each primary resonator 10A, 10B thus forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of tuning fork type called horned goat horns. A cross 40A, respectively 40B, is fixed to the fixed support 2 by a main elastic connection 3A, respectively 3B, whose rigidity is greater than the rigidity of each elastic flexible blade 61A, 62A, respectively 61B, 62B. And the damping of this main elastic connection is greater than that of each flexible blade. These characteristics provide a coupling between the elementary resonators 8101 and 8102, respectively 8103 and 8104.

Dans cette variante, chaque résonateur primaire 10 est équilibré pour lui-même, en translation et en rotation.In this variant, each primary resonator 10 is balanced for itself, in translation and in rotation.

Pour chaque résonateur primaire 10A, 10B, au moins la liaison élastique principale 3A, respectivement 3B, la traverse 40A, respectivement 40B, les lames flexibles élastiques 61A, 62A, respectivement 61B, 62B, forment ensemble une structure monolithique primaire plane, en matériau micro-usinable, tel que silicium, ou silicium oxydé, ou quartz, ou DLC, ou similaire, qui, dans la position de repos du mécanisme oscillateur isochrone 1, est symétrique par rapport à un plan de symétrie. Avantageusement, le support fixe 2 forme un ensemble monolithique avec ces deux structures monolithiques primaires. Par « structure plane », on entend que cette structure monolithique est un prisme droit, réalisé par élévation d'un contour à deux dimensions, le long d'une direction d'élongation, et délimité par deux plans de bout parallèles entre eux et perpendiculaires à cette direction d'élongation du prisme.For each primary resonator 10A, 10B, at least the main elastic connection 3A, respectively 3B, the cross member 40A, respectively 40B, the flexible flexible blades 61A, 62A, respectively 61B, 62B, together form a flat primary monolithic structure, made of micro material -usinable, such as silicon, or oxidized silicon, or quartz, or DLC, or the like, which, in the rest position of the isochronous oscillator mechanism 1, is symmetrical with respect to a plane of symmetry. Advantageously, the fixed support 2 forms a monolithic assembly with these two primary monolithic structures. By "planar structure" is meant that this monolithic structure is a right prism, realized by raising a two-dimensional contour, along a direction of elongation, and delimited by two end planes parallel to each other and perpendicular. to this direction of elongation of the prism.

Si, dans une réalisation particulière, la structure monolithique a une épaisseur constante définie par l'écartement de ces deux plans de bout, et a de ce fait un seul niveau, dans certaines variantes certaines zones, notamment des lames flexibles de la structure monolithique, peuvent n'occuper qu'une partie de cette épaisseur.If, in a particular embodiment, the monolithic structure has a constant thickness defined by the spacing of these two end planes, and therefore has a single level, in certain variants certain areas, in particular blades flexible of the monolithic structure, can occupy only part of this thickness.

Une telle réalisation monolithique, particulièrement avantageuse, est applicable aux différentes variantes non limitatives de l'invention illustrées dans la présente description. Dans une première variante, la structure monolithique est élaborée par un procédé de croissance, de type « MEMS », « LIGA », ou similaire.Such a monolithic embodiment, particularly advantageous, is applicable to the various non-limiting variants of the invention illustrated in the present description. In a first variant, the monolithic structure is produced by a growth method, of the "MEMS", "LIGA" or similar type.

Dans une autre variante, la structure monolithique est élaborée par découpe d'une plaque, par exemple par électro-érosion au fil ou/et enfonçage.In another variant, the monolithic structure is produced by cutting a plate, for example by electro-erosion wire and / or sinking.

La traverse 40A, respectivement 40B, porte une paire de masses 5, repérées 51A et 52 A, respectivement 51B et 52 B, montées de façon symétrique de part et d'autre du support fixe 2 et de la liaison élastique principale 3A, respectivement 3B. Chacune de ces masses est montée de façon oscillante et rappelée par une lame flexible élastique 61A, 62A, respectivement 61B, 62B, qui est un spiral, ou encore un assemblage de spiraux. Ces spiraux sont, chacun, lié directement ou indirectement à une masse au niveau de leur spire interne, et attachés à la traverse 40A, respectivement 40B, par sa spire externe. Chaque masse pivote autour d'un axe de pivotement virtuel de position déterminée par rapport à la traverse 40A, respectivement 40B. Chaque axe de pivotement virtuel est, en position de repos du mécanisme oscillateur isochrone 1, confondu avec le centre de masse, de la masse respective. Les masses s'étendent sensiblement parallèlement l'une à l'autre en position au repos, selon une direction transversale. Pour limiter le déplacement des centres de masse à une course transversale par rapport à la traverse 4, aussi réduite que possible dans cette direction transversale Y, et à une course longitudinale selon une direction longitudinale (perpendiculaire à cette direction transversale) qui est supérieure à cette course transversale, chaque spiral est à section ou courbure variable le long de son développement.The cross member 40A, respectively 40B, carries a pair of masses 5, marked 51A and 52A, respectively 51B and 52B, mounted symmetrically on either side of the fixed support 2 and the main elastic connection 3A, respectively 3B . Each of these masses is oscillatingly mounted and biased by an elastic flexible blade 61A, 62A, respectively 61B, 62B, which is a spiral, or a spiral assembly. These spirals are each linked directly or indirectly to a mass at their inner turn, and attached to the cross 40A, respectively 40B, by its outer turn. Each mass pivots around a virtual pivot axis of position determined relative to the cross 40A, respectively 40B. Each virtual pivot axis is, in the rest position of the isochronous oscillator mechanism 1, coinciding with the center of mass, of the respective mass. The masses extend substantially parallel to each other in the rest position, in a transverse direction. To limit the displacement of the centers of mass to a transverse stroke relative to the crossbar 4, as small as possible in this transverse direction Y, and to a longitudinal race in a longitudinal direction (perpendicular to this transverse direction) which is greater than this transversal stroke, each spiral has a section or variable curvature along its development.

La variante de la figure 5, est une structure similaire à celle de la figure 3, où chaque résonateur primaire 10A, 10B, forme, par la combinaison de deux résonateurs élémentaires 8101, 8102, respectivement 8103, 8104, un mécanisme oscillateur isochrone de type diapason dit en H. Les lames flexibles élastiques 6 : 61A, 62A, respectivement 61B, 62B, ne sont plus constituées par des spiraux, mais par des lames droites et courtes. On appelle ici « lame courte » une lame d'une longueur inférieure à la plus petite valeur entre quatre fois sa hauteur ou trente fois son épaisseur, cette caractéristique de lame courte permettant de limiter les déplacements du centre de masse concerné. Ces lames courtes sont ici disposées de part et d'autre d'une traverse 40A, respectivement 40B, avec laquelle elle forment la barre horizontale d'un H dont les masses forment les barres verticales. Du fait de la symétrie, et de l'alignement, la disposition longitudinale des lames flexibles élastiques permet de compenser la direction de plus grand déplacement des centres de masse, qui se déplacent de façon symétrique par rapport au plan de symétrie.The variant of the figure 5 , is a structure similar to that of the figure 3 , where each primary resonator 10A, 10B forms, by the combination of two elementary resonators 8101, 8102, respectively 8103, 8104, an isochronous oscillator mechanism of the so-called tuning fork type in H. The elastic flexible blades 6: 61A, 62A, respectively 61B , 62B, are no longer constituted by spirals, but by straight and short blades. The term "short blade" is used here to denote a blade whose length is less than the smallest value between four times its height or thirty times its thickness, this short blade characteristic making it possible to limit movements of the center of mass concerned. These short blades are here arranged on either side of a cross 40A, respectively 40B, with which it forms the horizontal bar of an H whose masses form the vertical bars. Due to the symmetry and the alignment, the longitudinal arrangement of the elastic flexible blades makes it possible to compensate the direction of greater displacement of the centers of mass, which move symmetrically with respect to the plane of symmetry.

Chaque résonateur primaire 10A, 10B, ainsi rendu isochrone par l'une de ces combinaisons particulières de résonateurs élémentaires, comporte avantageusement des butées en rotation, ou/et des butées de limitation de translation selon les directions longitudinale et transversale, ou/et des butées de limitation en translation selon une direction perpendiculaire aux deux précédentes. Ces moyens de limitation de course peuvent être intégrés, faire partie d'une construction monobloc, ou/et être rapportés. Les masses comportent, avantageusement, des moyens de butée agencés pour coopérer avec des moyens de butée complémentaire que comportent les traverses 40A, 40B, pour limiter le déplacement des lames flexibles élastiques par rapport à ces traverses, en cas de chocs ou d'accélérations similaires.Each primary resonator 10A, 10B, thus rendered isochronous by one of these particular combinations of elementary resonators, advantageously comprises rotational abutments, and / or translational limit stops in the longitudinal and transverse directions, and / or abutments. limitation in translation in a direction perpendicular to the two preceding. These stroke limiting means can be integrated, be part of a one-piece construction, and / or be reported. The masses comprise, advantageously, stop means arranged to cooperate with complementary abutment means that the sleepers 40A, 40B comprise, to limit the displacement of the resilient flexible blades relative to these sleepers, in case of shocks or similar accelerations .

La figure 5 illustre également une variante avantageuse où les moyens de transmission 16A, 16B, sont des lames flexibles élastiques. Il est, alors, possible de réaliser un ensemble monolithique comportant la structure 2, les résonateurs primaires 10 tels que décrits ci-dessus, notamment complets, et ces lames flexibles élastiques, et le doigt 150.The figure 5 also illustrates an advantageous variant where the transmission means 16A, 16B, are resilient flexible blades. It is then possible to make a monolithic assembly comprising the structure 2, the primary resonators 10 as described above, in particular complete, and these resilient flexible blades, and the finger 150.

Les figures 6 et 7 illustrent des variantes où les bielles sont des poutres comportant des cols aux deux extrémités en lieu et place des moyeux. La figure 6 illustre un cas de couplage de deux résonateurs primaires, la figure 7 de trois tels résonateurs. Les moyens de transmission 16 comportent, ainsi, au moins une bielle monolithique agencée pour coopérer à la fois avec le moyen de commande 15 et avec au moins deux masses inertielles 5 d'autant de résonateurs primaires 10, et comportent au moins un col flexible au niveau de chaque zone d'articulation.The Figures 6 and 7 illustrate variants where the connecting rods are beams having collars at both ends in place of the hubs. The figure 6 illustrates a case of coupling of two primary resonators, the figure 7 of three such resonators. The transmission means 16 thus comprise at least one monolithic connecting rod arranged to cooperate both with the control means 15 and with at least two inertial masses 5 of as many primary resonators 10, and comprise at least one flexible neck at the level of each articulation zone.

Les figures 1, 2, 3, et 5 illustrent un oscillateur horloger 1 comportant deux résonateurs primaires 10.The Figures 1, 2 , 3 and 5 illustrate a clock oscillator 1 comprising two primary resonators 10.

Dans une réalisation particulière, l'oscillateur horloger 1 comporte au moins trois résonateurs primaires 10.In a particular embodiment, the watch oscillator 1 comprises at least three primary resonators 10.

La figure 8 illustre un oscillateur horloger 1 comportant trois résonateurs primaires 10. Cette figure montre l'application du couplage de la figure 7 aux masses inertielles 5A, 5B, 5C, des trois résonateurs primaires 10A, 10B, 10C.The figure 8 illustrates a clock oscillator 1 comprising three primary resonators 10. This figure shows the application of the coupling of the figure 7 to the inertial masses 5A, 5B, 5C, of the three primary resonators 10A, 10B, 10C.

La figure 9 illustre un oscillateur horloger 1 comportant quatre résonateurs. Ces quatre résonateurs peuvent être quatre résonateurs primaires 10. Ils peuvent aussi être quatre résonateurs élémentaires, constituant deux à deux des résonateurs primaires: l'un composés des résonateurs élémentaires 10A et 10C, déphasés de π, l'autre des résonateurs élémentaires 10B et 10D, également déphasés de π.The figure 9 illustrates a clock oscillator 1 having four resonators. These four resonators may be four primary resonators 10. They may also be four elementary resonators, constituting two by two primary resonators: one composed of the elementary resonators 10A and 10C, phase shifted by π, the other of the elementary resonators 10B and 10D , also out of phase with π.

Pour les réalisations de ces figures 8 et 9, chaque résonateur pris isolément a une réaction à l'encastrement, et c'est la juxtaposition et la combinaison judicieuse des « n » résonateurs compense l'ensemble des réactions.For the achievements of these Figures 8 and 9 each resonator taken alone has a reaction to the embedding, and it is the juxtaposition and the judicious combination of the "n" resonators that compensates for all the reactions.

En somme, l'invention couvre l'ensemble des combinaisons entre des résonateurs primaires qui sont :

  • ou bien chacun équilibré, ou bien équilibrés collectivement du fait de leur agencement particulier,
  • équilibrés en translation ou/et en rotation.
In sum, the invention covers all combinations of primary resonators which are:
  • or else each one balanced, or else balanced collectively because of their particular arrangement,
  • balanced in translation and / or rotation.

Les figures 10, 12, et 13 illustrent une variante où au moins un moyen de rappel élastique 6 constitue également un guidage rotatif, ce qui permet d'éviter les frottements inhérents à l'utilisation de pivots.The figures 10 , 12, and 13 illustrate a variant where at least one elastic return means 6 also constitutes a rotary guide, which avoids the friction inherent in the use of pivots.

La figure 10 montre un moyen de transmission 16 constitué par une lame flexible, dans la configuration de la figure 9. Cette figure montre également des butées angulaires : 71, 72, 710, 720, 76 sur la masse 5, les surfaces de butée complémentaires respectives 73, 74, 730, 740, 77 au niveau du cadre 4 sur lequel est attachée une lame flexible courte 6, et une surface de butée antichoc 75 sur la masse 5, agencée pour coopérer avec une surface complémentaire 750 au niveau du cadre 4. Ces antichocs intégrés sont particulièrement avantageux, et ne nécessitent aucun réglage.The figure 10 shows a transmission means 16 constituted by a flexible blade, in the configuration of the figure 9 . This figure also shows angular stops: 71, 72, 710, 720, 76 on the mass 5, the respective complementary abutment surfaces 73, 74, 730, 740, 77 at the frame 4 on which is attached a short flexible blade 6, and an anti-shock abutment surface 75 on the mass 5, arranged to cooperate with a complementary surface 750 at the frame 4. These integrated shock are particularly advantageous, and require no adjustment.

Dans les variantes illustrées, le mobile 13 est soumis à un mouvement de rotation ; plus particulièrement, les moyens moteurs 12 sont agencés pour entraîner le mobile 13 selon un mouvement de rotation, et le mobile 13 et les moyens d'entraînement et de guidage 14 sont agencés pour appliquer au moyen de commande 15 un effort essentiellement tangentiel par rapport à la rotation du mobile 13.In the variants shown, the mobile 13 is subjected to a rotational movement; more particularly, the motor means 12 are arranged to drive the mobile 13 in a rotational movement, and the mobile 13 and the drive and guide means 14 are arranged to apply to the control means 15 a substantially tangential force with respect to the rotation of the mobile 13.

La figure 11 illustre une variante où le mobile 13 comporte une structure élastique 130 déformable, formant un guidage souple radialement et rigide tangentiellement, cette structure déformable 130 comporte un logement 140 pour coopérer avec le doigt 150 du moyen de commande 15, à l'articulation principale.The figure 11 illustrates a variant where the mobile 13 comprises a resilient structure 130 deformable, forming a rigid radially rigid guide tangentially, this deformable structure 130 comprises a housing 140 for cooperating with the finger 150 of the control means 15 at the main joint.

Dans les différentes variantes décrites ici, de préférence les moyens de rappel élastique 6 des résonateurs primaires 10 comportent des lames flexibles, et les résonateurs primaires 10 et/ou la structure commune 2, ou/et le cadre 4, comportent des butées radiales et/ou angulaires et/ou axiales agencées pour limiter les déformations des lames flexibles et pour éviter les ruptures en cas de chocs ou de couple moteur trop élevé.In the various variants described here, preferably the elastic return means 6 of the primary resonators 10 comprise flexible blades, and the primary resonators 10 and / or the common structure 2, and / or the frame 4, comprise radial stops and / or or angular and / or axial arranged to limit the deformations of the flexible blades and to avoid breaks in case of shocks or too high engine torque.

Dans une réalisation avantageuse, tel que visible notamment sur les figures 12 et 13, l'oscillateur horloger 1 comporte une structure monolithique qui regroupe une structure commune 4 vers laquelle sont rappelées les masses inertielles 5 par leurs moyens de rappel élastique 6, le moyen de commande 15 et ses articulations avec les moyens de transmission 16, et les moyens de transmission 16 avec leurs articulations aux masses inertielles 5. Les déphasages voulus sont parfaitement assurés, l'annulation des réactions également.In an advantageous embodiment, as can be seen in particular on the Figures 12 and 13 , the watch oscillator 1 comprises a monolithic structure which groups together a common structure 4 towards which the inertial masses 5 are recalled by their elastic return means 6, the control means 15 and its articulations with the transmission means 16, and the means transmission 16 with their joints to the inertial masses 5. The desired phase shifts are perfectly assured, the cancellation of reactions also.

De telles structures monolithiques permettent la suppression des pivots traditionnels, en mettant en oeuvre des lames flexibles qui ont une double fonction : le guidage en pivotement constituant un pivot virtuel, et le rappel élastique.Such monolithic structures allow the removal of traditional pivots, by implementing flexible blades that have a dual function: the pivoting guide constituting a virtual pivot, and the elastic return.

Avantageusement, cette structure monolithique comporte encore les butées.Advantageously, this monolithic structure further comprises the stops.

De préférence, l'orientation des moyens de rappel élastique 6 des résonateurs primaires 10 est optimisée de manière à ce que les erreurs de marche dues à la gravité s'annule entre les résonateurs primaires 10.Preferably, the orientation of the elastic return means 6 of the primary resonators 10 is optimized so that the operating errors due to the gravity vanish between the primary resonators 10.

Dans une variante non illustrée, les moyens de rappel élastique 6 des résonateurs primaires 10 sont des pivots virtuels à lames croisées.In a variant that is not illustrated, the elastic return means 6 of the primary resonators 10 are virtual cross-blade pivots.

Dans une variante particulière de l'oscillateur horloger 1 selon invention, les résonateurs primaires 10 sont isochrones.In a particular variant of the watch oscillator 1 according to the invention, the primary resonators 10 are isochronous.

De préférence, au moins les moyens élastiques que comporte l'oscillateur horloger 1 selon l'invention sont compensés thermiquement. Une réalisation en matériau micro-usinable permet d'assurer une telle compensation.Preferably, at least the elastic means that comprises the watch oscillator 1 according to the invention are thermally compensated. An embodiment of micro-machinable material makes it possible to provide such compensation.

L'invention concerne encore un mouvement d'horlogerie 100 comportant au moins un tel oscillateur horloger 1.The invention also relates to a watch movement 100 comprising at least one watch oscillator 1.

L'invention concerne encore une montre 200 comportant au moins un tel mouvement 100.The invention also relates to a watch 200 comprising at least one such movement 100.

Les avantages de l'invention sont nombreux :

  • une roue à rainure, contrairement à une liaison élastique sur une manivelle, n'ajoute pas de force de rappel parasite aux résonateurs lorsque l'amplitude change. Il s'ensuit un meilleur isochronisme ;
  • l'utilisation de résonateurs rotatifs dont le centre de rotation est sensiblement confondu avec le centre de masse évite que le centre de masse se déplace dans le champ de gravité, et, partant, évite que la période soit affectée par un changement d'orientation de la montre. Le même argument explique que notre système est moins affecté par des chocs en translations ;
  • de préférence, les résonateurs sont tous identiques et montés en parallèle. Les mouvements de l'un ne risquent donc pas de parasiter l'inertie de l'autre, contrairement aux montages en série ;
  • l'utilisation de deux résonateurs, ou davantage, complètement distincts, c'est-à-dire avec une masse inertielle propre à chaque résonateur primaire ou élémentaire, permet d'optimiser l'isochronisme des résonateurs séparément, et de jouer sur leur orientation pour que les erreurs dues aux positions et les réactions à l'encastrement s'annulent. Cela est un grand avantage pour obtenir un oscillateur indépendant des positions de la montre, et ayant un facteur de qualité très élevé.
  • la conception permet une fabrication très simple de la version intégrée ;
  • l'invention permet des réalisations dans la plus pure tradition horlogère puisqu'on peut simplement utiliser deux ensembles balancier-spiral reliés à la roue d'échappement par des bielles très légères ou des lames flexibles.
The advantages of the invention are numerous:
  • a grooved wheel, unlike an elastic link on a crank, does not add a parasitic biasing force to the resonators when the amplitude changes. It follows a better isochronism;
  • the use of rotary resonators whose center of rotation is substantially coincidental with the center of mass prevents the center of mass from moving in the gravitational field, and thus avoids that the period is affected by a change of orientation of the watch. The same argument explains that our system is less affected by shocks in translations;
  • preferably, the resonators are all identical and connected in parallel. The movements of one are not likely to interfere with the inertia of the other, unlike series editing;
  • the use of two or more completely distinct resonators, that is to say with an inertial mass specific to each primary or elementary resonator, makes it possible to optimize the isochronism of the resonators separately, and to play on their orientation for that positional errors and flush responses cancel each other out. This is a great advantage to obtain an oscillator independent of the positions of the watch, and having a very high quality factor.
  • the design allows a very simple manufacture of the integrated version;
  • the invention allows achievements in the purest watchmaking tradition since one can simply use two sprung balance assemblies connected to the escape wheel by very light rods or flexible blades.

Claims (21)

  1. Clock oscillator (1) comprising a structure (2) or/and a frame (4), and a plurality of separate temporally and geometrically offset resonators, and each comprising at least one inertial mass (5) returned to said structure (2) or to said frame (4) by an elastic return means (6), said clock oscillator (1) comprising coupling means (11) arranged to allow the interaction of said resonators, said coupling means (11) comprising a wheel set (13) subjected to a drive torque by motor means (12) arranged such that they drive said wheel set (13) in a rotational movement and which comprise drive and guide means (14) arranged such that they drive and guide a single control means (15), which is articulated about a first control axis with a plurality of transmission means (16), each articulated about a second hinge axis, remote from said control means (15), with one said inertial mass (5) of one said resonator, said resonators and said wheel set (13) being arranged such that said second hinge axes of any two of said resonators and said first control axis of said control means (15) are never coplanar, characterised in that said resonators are rotating or angular resonators, the centres of mass whereof remain, during the normal oscillations of said resonators, in immediate proximity, at a distance of less than several tens of micrometres, to the centres of rotation of said resonators.
  2. Clock oscillator (1) according to claim 1, characterised in that said drive and guide means (14) are formed by a groove (140) in which slides a finger (150) comprised in said control means (15).
  3. Clock oscillator (1) according to claim 2, characterised in that said groove (140) is substantially radial with respect to the axis of rotation (A) of said wheel set (3).
  4. Clock oscillator (1) according to one of claims 1 to 3, characterised in that the resultant of the reaction torques of all of said resonators with respect to said common structure (2) or to said frame (4) is zero.
  5. Clock oscillator (1) according to one of claims 1 to 4, characterised in that said resonators have at least one substantially identical resonance mode, and are arranged such that they vibrate with a phase-shift therebetween of value 2π/n, where n is the number of said resonators.
  6. Clock oscillator (1) according to one of claims 1 to 5, characterised in that said transmission means (16) are flexible elastic blades.
  7. Clock oscillator (1) according to one of claims 1 to 5, characterised in that said transmission means (16) comprise at least one one-piece connecting rod arranged such that it engages both with said control means (15) and with at least two said inertial masses (5) of as many said resonators, and comprise at least one flexible neck in each articulation area.
  8. Clock oscillator (1) according to one of claims 1 to 7, characterised in that said transmission means (16) comprise connecting rods (160) each comprising a first articulation (161) with said control means (15) and a second articulation (162) with said inertial mass (5), said first articulation (161) and said second articulation (162) jointly defining a connecting rod direction, and characterised in that all of said connecting rod directions form, in pairs, at any time, an angle different from zero or π.
  9. Clock oscillator (1) according to one of claims 1 to 8, characterised in that said wheel set (13) and said drive and guide means (14) are arranged such that they apply to said control means (15) an essentially tangential force with respect to said rotation of said wheel set (3).
  10. Clock oscillator (1) according to one of claims 1 to 9, characterised in that said elastic return means (6) of said resonators comprise flexible blades, and in that said resonators and/or said common structure (2) or said frame (4) comprise radial and/or angular and/or axial bankings arranged such that they limit the deformations of said flexible blades and prevent breakage in the event of impacts or excessive drive torque.
  11. Clock oscillator (1) according to one of claims 1 to 10, characterised in that said clock oscillator (1) comprises a one-piece structure which combines a common structure (4) to which are returned said inertial masses (5) and said elastic return means (6) thereof, said control means (15) and the articulations thereof with said transmission means (16), and said transmission means (16) with the articulations thereof to said inertial masses (5).
  12. Clock oscillator (1) according to claim 10 and claim 11, characterised in that said one-piece structure further comprises said bankings.
  13. Clock oscillator (1) according to either claim 11 or claim 12, characterised in that said one-piece structure is a straight prism delimited by two planes that are parallel to one other and perpendicular to the direction of elongation of said prism.
  14. Clock oscillator (1) according to one of claims 1 to 13, characterised in that said elastic return means (6) of said resonators comprise short rectilinear blades, the length whereof is less than the smallest value of four times the height or thirty times the thickness of said blades.
  15. Clock oscillator (1) according to one of claims 1 to 14, characterised in that said resonators are isochronous.
  16. Clock oscillator (1) according to one of claims 1 to 8, characterised in that said resonators jointly form an isochronous, so-called H-shaped, tuning fork-type oscillator mechanism and each comprise flexible elastic blades formed by short straight blades, the length whereof is less than the smallest value of four times the height or thirty times the thickness of said blades, arranged on either side of a crosspiece (40A; 40B) with which they form the horizontal bar of an H, the vertical bars whereof are formed by said masses (5).
  17. Clock oscillator (1) according to one of claims 1 to 8, characterised in that said resonators jointly form an isochronous, so-called goat horn-shaped, tuning fork-type oscillator mechanism and each comprise a crosspiece (40A; 40B) bearing said masses (5), each mounted in an oscillating manner and returned by a flexible elastic blade which is a balance spring or an assembly of balance springs, each said balance spring being directly or indirectly connected to one said mass (5) at the inner coil thereof, and attached to said crosspiece (40A; 40B) via the outer coil thereof, each said balance spring having a variable section or curvature along the developed length thereof.
  18. Clock oscillator (1) according to one of claims 1 to 8, characterised in that at least one said elastic return means (6) also forms a rotating guide member.
  19. Clock oscillator (1) according to one of claims 1 to 8, characterised in that at least said elastic means comprised therein are temperature compensated.
  20. Clock movement (100) comprising at least one clock oscillator (1) according to one of claims 1 to 19.
  21. Watch (200) comprising at least one movement (100) according to claim 20.
EP16152268.5A 2015-02-03 2016-01-21 Clock oscillator mechanism Active EP3054358B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17192071.3A EP3293584B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism
EP16152268.5A EP3054358B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15153657.0A EP3054357A1 (en) 2015-02-03 2015-02-03 Clock oscillator mechanism
EP16152268.5A EP3054358B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP17192071.3A Division EP3293584B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism
EP17192071.3A Division-Into EP3293584B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism

Publications (2)

Publication Number Publication Date
EP3054358A1 EP3054358A1 (en) 2016-08-10
EP3054358B1 true EP3054358B1 (en) 2019-08-28

Family

ID=52434684

Family Applications (3)

Application Number Title Priority Date Filing Date
EP15153657.0A Withdrawn EP3054357A1 (en) 2015-02-03 2015-02-03 Clock oscillator mechanism
EP17192071.3A Active EP3293584B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism
EP16152268.5A Active EP3054358B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP15153657.0A Withdrawn EP3054357A1 (en) 2015-02-03 2015-02-03 Clock oscillator mechanism
EP17192071.3A Active EP3293584B1 (en) 2015-02-03 2016-01-21 Clock oscillator mechanism

Country Status (6)

Country Link
US (1) US9465363B2 (en)
EP (3) EP3054357A1 (en)
JP (1) JP6114845B2 (en)
CN (2) CN205539955U (en)
CH (1) CH710692B1 (en)
RU (1) RU2692817C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749943C2 (en) * 2016-10-18 2021-06-21 Эта Са Мануфактюр Орложэр Сюис Resonator for mechanical watches

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686446C2 (en) 2014-01-13 2019-04-25 Эколь Политекник Федераль Де Лозанн (Епфл) Isotropic harmonic oscillator with at least two degrees of freedom, and corresponding controller with missing dispensing mechanism or with simplified dispensing mechanism
JP6661543B2 (en) * 2014-01-13 2020-03-11 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル)Ecole Polytechnique Federale De Lausanne (Epfl) General two-degree-of-freedom isotropic harmonic oscillator without escapement or with simple escapement and associated time base
CN106537264B (en) * 2014-09-09 2019-03-15 Eta瑞士钟表制造股份有限公司 Clock and watch regulating mechanism, watch and clock movement and clock and watch
EP3035126B1 (en) * 2014-12-18 2017-12-13 The Swatch Group Research and Development Ltd. Timepiece resonator with crossed blades
EP3054357A1 (en) * 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Clock oscillator mechanism
US9983549B2 (en) * 2015-02-03 2018-05-29 Eta Sa Manufacture Horlogere Suisse Isochronous timepiece resonator
US20190227493A1 (en) * 2016-07-06 2019-07-25 Ecole Polytechnique Federale De Lausanne (Epfl) General 2 Degree of Freedom Isotropic Harmonic Oscillator and Associated Time Base Without Escapement or with Simplified Escapement
CH713056A2 (en) 2016-10-18 2018-04-30 Eta Sa Mft Horlogere Suisse Clockwork mechanical movement with two degrees of freedom resonator with roller maintenance mechanism on a track.
CH713069A2 (en) * 2016-10-25 2018-04-30 Eta Sa Mft Horlogere Suisse Mechanical watch with rotary isochronous resonator, insensitive to positions.
CH713137A2 (en) 2016-11-16 2018-05-31 Swatch Group Res & Dev Ltd Protection of a resonator mechanism with blades against axial shocks.
FR3059792B1 (en) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa DEVICE FOR WATCHMAKING PART, CLOCK MOVEMENT AND TIMEPIECE COMPRISING SUCH A DEVICE
EP3336613B1 (en) * 2016-12-16 2020-03-11 Association Suisse pour la Recherche Horlogère Timepiece resonator with two balances arranged to oscillate in a single plane
CH713288A1 (en) * 2016-12-23 2018-06-29 Sa De La Manufacture Dhorlogerie Audemars Piguet & Cie Flexible monolithic component for timepiece.
CH713829B1 (en) * 2017-05-24 2022-01-14 Mft Dhorlogerie Audemars Piguet Sa Regulation device for a timepiece with an isotropic harmonic oscillator having rotating masses and a common restoring force.
WO2018215284A1 (en) 2017-05-24 2018-11-29 Sa De La Manufacture D'horlogerie Audemars Piguet & Cie Adjustment device for timepiece with isotropic harmonic oscillator having rotating masses and a common return force
EP3425458A1 (en) * 2017-07-07 2019-01-09 ETA SA Manufacture Horlogère Suisse Cleavable piece of a clock oscillator
CH714019A2 (en) * 2017-07-26 2019-01-31 Eta Sa Mft Horlogere Suisse Mechanical clockwork movement with rotary resonator.
JP7000585B2 (en) * 2017-10-02 2022-01-19 マニュファクチュール・ドルロジュリ・オーデマ・ピゲ・ソシエテ・アノニム A clock setting device equipped with a harmonic oscillator that has a common reaction force with the rotary weight.
WO2019141789A1 (en) 2018-01-18 2019-07-25 Ecole polytechnique fédérale de Lausanne (EPFL) Horological oscillator
EP3561607B1 (en) 2018-04-23 2022-03-16 ETA SA Manufacture Horlogère Suisse Collision protection of a resonator mechanism with rotatable flexible guiding
CH714922A2 (en) * 2018-04-23 2019-10-31 Eta Sa Mft Horlogere Suisse Shockproof protection of a rotational flexible guiding clock resonator mechanism.
EP3561603B1 (en) * 2018-04-25 2021-01-06 The Swatch Group Research and Development Ltd Timepiece regulator mechanism with hinged resonators
EP3561606B1 (en) * 2018-04-27 2022-01-26 The Swatch Group Research and Development Ltd Shock protection of a leaf spring resonator with rcc pivot
EP3572885B1 (en) * 2018-05-25 2022-04-20 ETA SA Manufacture Horlogère Suisse Timepiece mechanical oscillator that is isochronous in any position
EP3627242B1 (en) 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Optimised magneto-mechanical timepiece escapement mechanism
EP3719584A1 (en) * 2019-04-02 2020-10-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Two degree of freedom oscillator system
EP3739394A1 (en) 2019-05-16 2020-11-18 Ecole Polytechnique Fédérale de Lausanne (EPFL) Crank arrangement for driving a mechanical oscillator
EP3842876A1 (en) * 2019-12-24 2021-06-30 The Swatch Group Research and Development Ltd Timepiece fitted with a mechanical movement and a device for correcting the time displayed
EP3926412A1 (en) * 2020-06-16 2021-12-22 Montres Breguet S.A. Regulating mechanism of a timepiece
EP3982204A1 (en) * 2020-10-08 2022-04-13 The Swatch Group Research and Development Ltd Timepiece resonator comprising at least one flexible guide
EP4191346B1 (en) 2021-12-06 2024-06-26 The Swatch Group Research and Development Ltd Shock protection of a resonator mechanism with rotatable flexible guiding
CH720138A2 (en) 2022-10-18 2024-04-30 Goujon Pierre Device for displaying discrete indications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104692A2 (en) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Xy isotropic harmonic oscillator and associated time base without escapement or with simplified escapement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE451035C (en) * 1922-11-10 1927-10-22 Heinrich Schieferstein Elastic coupling between an engine, especially a clockwork, and a member regulating its sequence
CH113025A (en) * 1924-04-28 1925-12-16 Heinrich Schieferstein Georg Method for controlling a rotating mechanism.
CH474466A (en) * 1961-06-20 1969-06-30 Inventa Ag Process for the preparation of cyclodecen- (5) -one- (1)
DE1205464B (en) * 1961-08-24 1965-11-18 United States Time Corp Regulator
CH452443A (en) * 1964-07-10 1968-05-31 Movado Montres Oscillator for timepieces
CH451021A (en) 1965-05-28 1968-05-15 Ebauches Sa Symmetrical bending oscillator for timepiece
CH485145A (en) 1966-03-29 1970-01-31 Ebauches Sa Device transforming the oscillating movements of an acoustic resonator into rotary movements of a counting wheel
CH481411A (en) * 1967-06-27 1969-12-31 Movado Montres Mechanical rotation resonator for time measuring device
DE1805777A1 (en) * 1968-10-29 1970-05-21 Kienzle Uhrenfabriken Gmbh Oscillation system
GB1293159A (en) * 1969-12-10 1972-10-18 Suwa Seikosha Kk A vibrator for an electric timepiece
JP3614009B2 (en) * 1998-12-21 2005-01-26 セイコーエプソン株式会社 Piezoelectric actuator, driving method of piezoelectric actuator, portable device, and timepiece
EP2141555B1 (en) * 2008-07-04 2011-04-06 The Swatch Group Research and Development Ltd. Coupled resonators for timepiece
CH702062B1 (en) * 2009-10-26 2022-01-31 Mft Dhorlogerie Audemars Piguet Sa Regulating organ comprising at least two pendulums, a watch movement as well as a timepiece comprising such an organ.
US9201398B2 (en) * 2010-07-19 2015-12-01 Nivarox-Far S.A. Oscillating mechanism with an elastic pivot and mobile element for transmitting energy
CH707171A2 (en) * 2012-11-09 2014-05-15 Nivarox Sa Horological limiting or transmission mechanism for limiting or transmitting angular movement of clockwork, has limiting or transmission unit fixed with component of clockwork by bistable flexible element or with structural element
JP6661543B2 (en) 2014-01-13 2020-03-11 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル)Ecole Polytechnique Federale De Lausanne (Epfl) General two-degree-of-freedom isotropic harmonic oscillator without escapement or with simple escapement and associated time base
EP3054357A1 (en) * 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Clock oscillator mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015104692A2 (en) * 2014-01-13 2015-07-16 Ecole Polytechnique Federale De Lausanne (Epfl) Xy isotropic harmonic oscillator and associated time base without escapement or with simplified escapement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749943C2 (en) * 2016-10-18 2021-06-21 Эта Са Мануфактюр Орложэр Сюис Resonator for mechanical watches

Also Published As

Publication number Publication date
JP2016142736A (en) 2016-08-08
CN105843026B (en) 2018-04-20
CH710692B1 (en) 2021-09-15
EP3293584B1 (en) 2022-03-30
RU2692817C2 (en) 2019-06-28
EP3054357A1 (en) 2016-08-10
RU2016103417A3 (en) 2019-05-22
CH710692A2 (en) 2016-08-15
CN105843026A (en) 2016-08-10
JP6114845B2 (en) 2017-04-12
CN205539955U (en) 2016-08-31
EP3293584A1 (en) 2018-03-14
US20160223989A1 (en) 2016-08-04
US9465363B2 (en) 2016-10-11
EP3054358A1 (en) 2016-08-10
RU2016103417A (en) 2017-08-07

Similar Documents

Publication Publication Date Title
EP3054358B1 (en) Clock oscillator mechanism
EP3254158B1 (en) Isochronous clock resonator
EP3035127B1 (en) Clock oscillator with tuning fork
EP3206089B1 (en) Timepiece resonator mechanism
EP3561607B1 (en) Collision protection of a resonator mechanism with rotatable flexible guiding
EP3054356B1 (en) Isochronous clock resonator
EP3561609B1 (en) Shock protection of a resonator mechanism with rotatable flexible guiding
EP2995999B1 (en) Synchronisation of clock resonators
CH715526A2 (en) Shock protection of a resonator mechanism with flexible rotary guide.
EP3324246B1 (en) Protection of a resonator mechanism with axial impact blades
EP3435172B1 (en) Method for producing a flexible guide mechanism for a timepiece mechanical oscillator
EP3316047B1 (en) Mechanical watch with isochronous rotary resonator, which is not position-sensitive
EP3561606B1 (en) Shock protection of a leaf spring resonator with rcc pivot
EP3435173B1 (en) Mechanical movement with isochronous rotary resonator, which is not position-sensitive
EP4047424A1 (en) Component with flexible pivot, in particular for clockmaking
EP3451073B1 (en) Timepiece oscillator having flexible guides with wide angular travel
CH714030A2 (en) Clock oscillator with flexible guides with long angular travel.
EP3637196B1 (en) Mechanical oscillator
CH714936B1 (en) Shock protection of an RCC pivot reed resonator.
WO2019106448A1 (en) Timepiece setting device with harmonic oscillator having rotating weights and a common recoil strength
EP3435171B1 (en) Timepiece oscillator having flexible guides with wide angular travel
EP4191346B1 (en) Shock protection of a resonator mechanism with rotatable flexible guiding
EP3812842B1 (en) Device for guiding the pivoting of a pivoting mass and timepiece resonator mechanism
EP4432019A1 (en) Method for reducing out-of-plane oscillations in a resonator mechanism with a rotary flexible guide
CH719206A2 (en) Clockwork resonator mechanism with rotating flexible guide.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170411

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1173158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016019232

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1173158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016019232

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 9

Ref country code: CH

Payment date: 20240201

Year of fee payment: 9