EP2141555B1 - Coupled resonators for timepiece - Google Patents

Coupled resonators for timepiece Download PDF

Info

Publication number
EP2141555B1
EP2141555B1 EP08159759A EP08159759A EP2141555B1 EP 2141555 B1 EP2141555 B1 EP 2141555B1 EP 08159759 A EP08159759 A EP 08159759A EP 08159759 A EP08159759 A EP 08159759A EP 2141555 B1 EP2141555 B1 EP 2141555B1
Authority
EP
European Patent Office
Prior art keywords
resonator
fixed
spring
resonators
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08159759A
Other languages
German (de)
French (fr)
Other versions
EP2141555A1 (en
Inventor
Thierry Hessler
Kaspar Trümpy
Jean-Luc Helfer
Thierry Conus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to DE602008006057T priority Critical patent/DE602008006057D1/en
Priority to EP08159759A priority patent/EP2141555B1/en
Priority to TW098121379A priority patent/TW201017350A/en
Priority to US12/497,136 priority patent/US7950846B2/en
Priority to KR1020090060996A priority patent/KR20100004896A/en
Priority to CN2009101584127A priority patent/CN101620406B/en
Priority to JP2009159544A priority patent/JP5302120B2/en
Publication of EP2141555A1 publication Critical patent/EP2141555A1/en
Priority to HK10106464.2A priority patent/HK1140552A1/en
Application granted granted Critical
Publication of EP2141555B1 publication Critical patent/EP2141555B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • the present invention relates to a timepiece resonator resulting from the coupling of a first low frequency resonator with a second resonator at a higher frequency.
  • a resonator as defined above has been described in the document EP 1 843 227 A1 .
  • the first low-frequency resonator is a balance-spring and the second high-frequency resonator is a tuning fork.
  • a branch of the tuning fork is directly connected to the outer turn of the hairspring to form the coupling between the two resonators.
  • the purpose of this arrangement is to stabilize the frequency of operation of the timepiece and make this frequency more independent of external stresses to ultimately improve the running accuracy of the same room.
  • the natural frequency of the first resonator is a few hertz, that of the second resonator being of the order of kHz.
  • the idea is to enslave a first resonator very sensitive to external disturbances to a second resonator which, because of its high operating frequency, is much less sensitive to said disturbances. This enslavement will result in an improvement in the performance of the first resonator as for its impact resistance for example, this first resonator cooperating with a conventional exhaust system.
  • the hourly alternation numbers of 18000, 21600 and 28800, corresponding to oscillation frequencies of 2.5, 3 and 4 Hz, are commonly used in watchmaking for the sprung balance resonator.
  • watches are known with oscillating balance springs oscillating at higher frequencies, the purpose being to allow the watch to achieve better chronometric performance to wear.
  • the conventional escape wheel generally has 15 teeth for frequencies of the balance-spring resonator of 2.5 to 3 Hz. This number has been widely accepted as such, because it takes into account the manufacturing problems of the escape wheel and a judicious distribution of the ratios and the number of teeth of the wheels and gears of the finishing gear of the watch. With higher frequencies of the resonator between 4 and 10Hz, gear ratios become too great, but this disadvantage disappears if the number of teeth of the escape wheel is increased. The number of 21 teeth is cited for a frequency oscillation of 5Hz, this change however bringing a reduction in safety such as rest and falls that require special care during reassembly. On the other hand and generally, it is well known that the performance of a Swiss lever escapement drops sharply above 4 or 5 Hz.
  • the first low frequency resonator 2,41 is constituted by a sprung balance driven by an escapement and a finishing train 70, this wheel being actuated by a cylinder 71. Derived from the gear train 70, there is the display 72 hour materialized by needles for example.
  • the second higher frequency resonator is represented by block 3,42.
  • the coupling between the two resonators is represented by the double-headed block 8.46.
  • the document CH 276,465 discloses a resonator system having a first resonator having a first mass of inertia associated with a first spring, and a second resonator having a second mass of inertia associated with a second spring, the second spring connecting the first and second masses of inertia for coupling the first and second resonators.
  • the present invention relates to a resonator according to claim 1 of the patent.
  • the resonator 1 executed according to the first embodiment of the invention can be assimilated to the equivalent diagram of the figure 2 .
  • This resonator 1 results from the coupling of a first resonator 2 with a second resonator 3.
  • the first resonator 2 comprises a first mass of inertia 4 (here illustrated by a square mass) associated with a first spring 5 (illustrated here by a spring helical, one end of which is attached to the square mass and whose other end is attached to a fixed part 73 of the timepiece, for example to the plate).
  • the second resonator 3 comprises a second mass of inertia 6 (here illustrated by a square mass) associated with a second spring 7 (illustrated here by a spring helical whose one end is attached to the square weight and the other end is attached to a fixed portion 74 of the timepiece, for example to a bridge).
  • a third spring 8 (here represented by a helical spring) is disposed between the first (4) and second (6) masses of inertia for coupling said first (2) and second (3) resonators.
  • FIGS. 3 to 6 illustrate a practical construction of the first embodiment of the invention.
  • the first and second masses of inertia are respectively constituted by first and second balances 4 and 6
  • the first, second and third springs are respectively first, second and third spiral springs 5, 7 and 8.
  • the first and second resonators 2 and 3 are arranged coaxially inside the timepiece between a plate 11 and a bridge 17.
  • the invention is not limited to this arrangement, the two resonators being able to be arranged, for example, side by side in the timepiece.
  • the first resonator 2 essentially comprises a first rocker 4 with which is associated a first spiral spring 5.
  • This first resonator 2 is mounted on a first shaft 9 which pivots at its first end in a bearing 10 fixed in a plate 11 and its second end in a bearing 12 fixed in an intermediate bridge 13.
  • the outer and inner turns of the first spiral spring 5 are respectively fixed on a peak 23 carried by the plate 11 and on an inner attachment point 28 fixed on the first shaft 9.
  • the second resonator 3 essentially comprises a second rocker 6 with which is associated a second spiral spring 7.
  • This second resonator 3 is mounted on a second shaft 14 which pivots at its first end in a bearing 15 fixed in the intermediate bridge 13 and its second end in a bearing 16 fixed in a bridge 17.
  • the turns outer and inner of the second spiral spring 7 are respectively fixed on a stud 25 carried by the bridge 17 and on an inner attachment point 26 fixed on the second shaft 14.
  • the examination of Figures 3 to 6 shows again that the first resonator 2 comprises a balance 4 having a larger diameter than the balance 6 of the resonator 3, which indicates that the frequency of the first resonator is lower than the frequency of the second resonator, provided of course that the torque developed by each of the spiral springs is substantially the same.
  • the escape mechanism will be linked to the first resonator, the one that is enslaved to the second to improve its resistance to disturbances.
  • the figure 4 shows that the first shaft 9 which is attached to the first resonator 2 carries a plate 18 and a plate pin 19, the latter cooperating for example with an anchor which in turn cooperates with an escape wheel.
  • FIGS. 4 and 5 show that this spiral spring 8 comprises two windings 20 and 21 arranged in series and mounted on either side of the intermediate bridge 13. In this way, the inner turn of the first winding 20 is fixed to an internal point of attachment. 27 fixed on the second shaft 14 while the inner coil of the second winding 21 is fixed to an inner attachment point 22 fixed on the first shaft 9, the outer turns of said windings being connected to each other by a ribbon 75.
  • the third spiral spring may have only one winding.
  • the inner turn of this single winding is fixed to an attachment point 27 fixed on the second shaft 14 while the outer turn is fixed to a peak carried by the first pendulum 4.
  • a mechanical resonator composed of a mass and a spring is characterized by the weight of its mass m and the constant of its spring k which are expressed, in the case of the equivalent diagram of the figure 2 and in orders of magnitude relating to watchmaking, in milligram (mg) and micronewton per meter ( ⁇ N / m), respectively.
  • the central question is whether the presence of the second higher frequency resonator stabilizes the frequency of the first low frequency resonator.
  • the stabilization factor S is equal to two, the timepiece is twice as accurate with a system of coupled resonators as with the first resonator only. For example, a timepiece with a lead of ten seconds a day will have only five for the same period.
  • the low frequency resonator 1 bears the reference 2, m 1 being the rocker arm 4, k 1 being the constant of the spiral spring 5.
  • the resonator 2 higher frequency carries the reference 3, m 2 being the balance wheel 6, k 2 being the constant of the spiral spring 7. It will be noted however that in this practical example the rockers are of the same dimensions, which is not the case of the rockers of the figure 4 the second resonator having a higher natural frequency due to its higher spring constant.
  • the figure 7 is a graph showing the evolution of the natural frequencies f 1 and f 2 of the coupled resonator system as a function of the constant k c of the spiral spring which couples the two resonators.
  • the figure 8 is a graph showing the evolution of the stabilization factor S as a function of the constant k c of the spiral spring 8 which couples the two resonators.
  • the curve S m shows the stabilizing effect resulting from the coupling of the first and second resonators on disturbances affecting the mass of inertia of the balance of the first low frequency resonator when the constant k c is varied. This effect is not very pronounced, which is relatively unimportant, the mass of inertia of the balance being little influenced by external disturbances.
  • the curve S k shows the stabilizing effect that results from the coupling of the first and second resonators on disturbances affecting the torque of the spiral spring of the first resonator, ie that caused by the exhaust system. It can be seen that for a value of k c of 1 ⁇ Nm / rad, the stabilization factor is not far from reaching 2, which is positive, since it is mainly on the spiral spring that the disturbances due to inter alia spring position, shock and temperature variations.
  • the resonator 40 results from the coupling of a first resonator 41 with a second resonator 42.
  • the first resonator 41 comprises a first mass of inertia 43 (here illustrated by a square mass) associated with a first spring 44 (illustrated here by a spring helical, one end of which is attached to the square mass and whose other end is attached to a fixed part 73 of the timepiece, for example to the plate).
  • the second resonator 42 comprises a second mass of inertia 45 (here illustrated by a square mass) associated with a second spring 46 (here illustrated by a helical spring whose one end is attached to the square mass 43 and whose other end is attached to the square mass 45).
  • This second spiral spring 46 thus connects the first (43) and second (45) masses of inertia to couple said first (41) and second (42) resonators.
  • the spring 46 plays a dual role here: that of forming the second resonator 42 and that of coupling the first and second resonators 41 and 42.
  • the Figures 10 to 13 illustrate a practical construction of the exemplary embodiment of a resonator.
  • the first and second masses of inertia are constituted respectively by first and second balances 43 and 45, and the first and second springs are respectively first and second spiral springs 44 and 46.
  • the first balance 43 has a circular cage inside which is confined the second resonator 42 at higher frequency, said circular cage 43 forming with the first spiral spring 44 the first resonator 41 low frequency.
  • the circular cage 43 forming the first balance is equipped with a first cheek 47 carrying a first pivoting pin 48 in a bearing 49 fixed in a plate 50.
  • This first pin 48 carries a plate 51 and a plateau pin 52, the latter cooperating for example with an anchor which cooperates in turn with an escape wheel.
  • the circular cage 43 is also equipped with a second cheek 53 carrying a second pin 54 pivoting in a bearing 55 fixed in a bridge 56.
  • the bridge 56 is equipped with a pin 57 to which is fixed the outer turn of the first spiral spring 44 , the inner turn of said first spiral spring 44 being fixed to an internal attachment point 58 fixed on the second pin 54.
  • the circular cage or balance 43 and the spiral spring 44 form the first resonator 41 at low frequency, the one of which it s is to improve performance.
  • the figure 11 shows again that the second balance 45 and spiral spring 46 constituting the second resonator 42 - and which is confined in the cage 43 - are supported by a shaft 59 pivoting at its first end in a bearing 60 fixed in the first cheek 47 of the cage 43 and at its second end in a bearing 61 fixed in the second cheek 53 of the cage.
  • the outer and inner turns of the second spiral spring 46 are respectively fixed to a peg 62 carried by the second cheek 53 of the cage 43 and to an inner attachment point 63 fixed on the shaft 59.
  • first resonator 41 comprises a rocker or cage 43 having a larger diameter than the rocker 45 of the second resonator 42, which indicates that the frequency of the first resonator is lower than the frequency of the second resonator, the torque developed by each spiral springs being equal elsewhere. It will therefore be understood that the escape mechanism will be linked to the first resonator, the one that is to enslave the second to improve its resistance to disturbances.
  • the low frequency resonator 1 is referenced 41, m 1 being the balance, or the cage 43, k 1 being the constant of the spiral spring 44 and the resonator 2 at a higher frequency has the reference 42, m 2 being the balance 45 , k c being the constant of the spiral spring 46, k c being also the spiral spring which couples the two resonators.
  • the figure 14 is a graph showing the evolution of the natural frequencies f 1 and f 2 of the coupled resonator system as a function of the constant k 1 of the spiral spring 44 constituting the first resonator 41.
  • the figure 15 is a graph showing the evolution of the stabilization factor - which has been defined above with respect to the first embodiment - as a function of the constant k 1 of the spiral spring 44 affecting the first resonator 41.
  • the curve S m shows the stabilizing effect resulting from the coupling of the first and second resonators 41 and 42 on disturbances affecting the mass of inertia of the balance of the first low frequency resonator 41 when the constant k 1 of the spiral spring is varied. 44. This effect is much more pronounced than that observed with respect to the embodiment.
  • the curve S k shows the stabilizing effect which results from the coupling of the first and second resonators 41 and 42 on disturbances affecting the torque of the spiral spring 44 of the first resonator 41. It can be seen that for a value of k 1 of 2 ⁇ N ⁇ m / rad, the stabilization factor S is of the order of 2.5.
  • first low-frequency spiral balance resonator the latter being of the order of 2 to 6 Hz
  • second resonator with a balance-spring balance.
  • high frequency the latter being of the order of 10Hz.
  • the first low frequency resonator is more sensitive to certain disturbances due for example to wearing, or to shocks than the second resonator to more high frequency.
  • the first resonator cooperates easily with a usual exhaust system whereas this is not the case of the second resonator. It is therefore logical to couple the two resonators in question to benefit from both the good adaptation of the first to the exhaust system and the good insensitivity of the second to the disturbances mentioned above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Springs (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Gyroscopes (AREA)
  • Electric Clocks (AREA)

Description

La présente invention est relative à un résonateur pour pièce d'horlogerie résultant du couplage d'un premier résonateur à basse fréquence avec un second résonateur à plus haute fréquence.The present invention relates to a timepiece resonator resulting from the coupling of a first low frequency resonator with a second resonator at a higher frequency.

Un résonateur répondant à la définition qui vient d'être donnée a été décrit dans le document EP 1 843 227 A1 . Dans cet exposé le premier résonateur à basse fréquence est un balancier-spiral et le second résonateur à haute fréquence est un diapason. Une branche du diapason est directement liée à la spire extérieure du spiral pour former le couplage entre les deux résonateurs. Le but de cette disposition est de stabiliser la fréquence de fonctionnement de la pièce d'horlogerie et de rendre cette fréquence plus indépendante des sollicitations extérieures pour finalement améliorer la précision de marche de cette même pièce. Dans la disposition décrite la fréquence propre du premier résonateur est de quelques hertz, celle du second résonateur étant de l'ordre du kHz. L'idée est donc d'asservir un premier résonateur très sensible aux perturbations extérieures à un second résonateur qui, de par sa fréquence de fonctionnement élevée, est bien moins sensible aux dites perturbations. De cet asservissement va résulter une amélioration des performances du premier résonateur quant à sa résistance aux chocs par exemple, ce premier résonateur coopérant avec un système d'échappement classique.A resonator as defined above has been described in the document EP 1 843 227 A1 . In this presentation, the first low-frequency resonator is a balance-spring and the second high-frequency resonator is a tuning fork. A branch of the tuning fork is directly connected to the outer turn of the hairspring to form the coupling between the two resonators. The purpose of this arrangement is to stabilize the frequency of operation of the timepiece and make this frequency more independent of external stresses to ultimately improve the running accuracy of the same room. In the arrangement described the natural frequency of the first resonator is a few hertz, that of the second resonator being of the order of kHz. The idea is to enslave a first resonator very sensitive to external disturbances to a second resonator which, because of its high operating frequency, is much less sensitive to said disturbances. This enslavement will result in an improvement in the performance of the first resonator as for its impact resistance for example, this first resonator cooperating with a conventional exhaust system.

La réalisation qui vient d'être décrite fait appel cependant à deux résonateurs très différents l'un de l'autre dont on peut penser que le couplage et l'ajustage vont présenter des difficultés, certes non pas insurmontables, mais tout de même suffisamment grandes eu égard à la faible inertie du résonateur à haute fréquence et donc à sa capacité d'influencer la marche du premier résonateur à basse fréquence.The embodiment that has just been described, however, uses two resonators very different from each other which we can think that the coupling and adjustment will present difficulties, certainly not insurmountable, but still large enough in view of the low inertia of the high frequency resonator and therefore its ability to influence the operation of the first low frequency resonator.

Il résulte de ce qui vient d'être décrit que si l'on parvient à régler la marche d'un premier résonateur à basse fréquence utilisant un balancier-spiral au moyen d'un second résonateur à plus haute fréquence utilisant aussi un balancier-spiral, on sera parvenu à stabiliser jusqu'à un certain point la fréquence de fonctionnement de la pièce d'horlogerie et cela en mettant en oeuvre des résonateurs qui n'ont plus de secret pour l'homme du métier.As a result of what has just been described, it is possible to regulate the operation of a first low-frequency resonator using a balance spring by means of a second resonator with a higher frequency also using a balance-spring it will be possible to stabilize up to a certain point the operating frequency of the timepiece and this by implementing resonators that have no secret to the skilled person.

On utilise couramment en horlogerie pour le résonateur balancier-spiral, les nombres d'alternances à l'heure de 18000, 21600 et 28800, correspondant à des fréquences d'oscillation de 2,5, 3 et 4Hz. On connait cependant des montres équipées de résonateurs à balancier-spiral oscillant à des fréquences plus élevées, le but recherché étant de permettre à la montre d'atteindre de meilleures performances chronométriques au porter.The hourly alternation numbers of 18000, 21600 and 28800, corresponding to oscillation frequencies of 2.5, 3 and 4 Hz, are commonly used in watchmaking for the sprung balance resonator. However, watches are known with oscillating balance springs oscillating at higher frequencies, the purpose being to allow the watch to achieve better chronometric performance to wear.

Comme le montre l'ouvrage « Echappement et Moteurs pas à pas » de Charles Huguenin et al (FET, Neuchâtel 1974, pages 137 à 148 ) le fait de multiplier la fréquence par deux diminue l'effet d'un défaut d'équilibre sur la marche diurne de quatre fois. Ainsi une augmentation de la fréquence d'oscillation du balancier a le double avantage d'augmenter le pouvoir réglant du résonateur et de rendre moins sensible la marche de la montre aux changements de positions.As the book shows "Exhaust and Stepper Engines" by Charles Huguenin et al (FET, Neuchatel 1974, pages 137 to 148 ) multiplying the frequency by two decreases the effect of a lack of equilibrium on the diurnal walk of four times. Thus an increase in the oscillation frequency of the balance has the double advantage of increasing the regulating power of the resonator and making the operation of the watch less sensitive to changes in positions.

Ces avantages doivent cependant se payer par une augmentation du nombre de dents de la roue d'échappement. En effet, la roue d'échappement classique a généralement 15 dents pour des fréquences du résonateur balancier-spiral de 2,5 à 3Hz. Ce nombre a été longuement admis comme tel, car il tient compte des problèmes de fabrication de la roue d'échappement et d'une répartition judicieuse des rapports et des nombres de dents des roues et des pignons du rouage de finissage de la montre. Avec des fréquences plus élevées du résonateur se situant entre 4 et 10Hz, les rapports d'engrenages deviennent trop grands, mais cet inconvénient disparaît si l'on augmente le nombre de dents de la roue d'échappement. Le nombre de 21 dents est cité pour une fréquence d'oscillation de 5Hz, ce changement amenant cependant une réduction des sécurités telles que repos et chutes qui nécessitent un soin particulier lors du remontage. D'autre part et généralement, il est bien connu que le rendement d'un échappement à ancre suisse diminue fortement au-dessus de 4 ou 5 Hz.These advantages must however be paid for by an increase in the number of teeth of the escape wheel. Indeed, the conventional escape wheel generally has 15 teeth for frequencies of the balance-spring resonator of 2.5 to 3 Hz. This number has been widely accepted as such, because it takes into account the manufacturing problems of the escape wheel and a judicious distribution of the ratios and the number of teeth of the wheels and gears of the finishing gear of the watch. With higher frequencies of the resonator between 4 and 10Hz, gear ratios become too great, but this disadvantage disappears if the number of teeth of the escape wheel is increased. The number of 21 teeth is cited for a frequency oscillation of 5Hz, this change however bringing a reduction in safety such as rest and falls that require special care during reassembly. On the other hand and generally, it is well known that the performance of a Swiss lever escapement drops sharply above 4 or 5 Hz.

Ainsi pour bénéficier des avantages que présente un résonateur à haute fréquence on va le coupler avec un résonateur à basse fréquence ce dernier étant commandé par un échappement classique sans augmentation du nombre de dents de la roue d'échappement et avec les sécurités bien connues qui accompagnent ce type d'échappement.Thus, to benefit from the advantages of a high-frequency resonator, it will be coupled with a low-frequency resonator, the latter being controlled by a conventional escapement without increasing the number of teeth of the escape wheel and with the well-known safety devices that accompany this type of exhaust.

Cette disposition est représentée dans le schéma-bloc de la figure 1. Dans cette figure, le premier résonateur à basse fréquence 2,41 est constitué par un balancier-spiral entraîné par un échappement et un rouage de finissage 70, ce rouage étant actionné par un barillet 71. Dérivé du rouage 70, on trouve l'affichage de l'heure 72 matérialisé par des aiguilles par exemple. Le second résonateur à plus haute fréquence est représenté par le bloc 3,42. Le couplage entre les deux résonateurs est représenté par le bloc à double flèche 8,46.This arrangement is represented in the block diagram of the figure 1 . In this figure, the first low frequency resonator 2,41 is constituted by a sprung balance driven by an escapement and a finishing train 70, this wheel being actuated by a cylinder 71. Derived from the gear train 70, there is the display 72 hour materialized by needles for example. The second higher frequency resonator is represented by block 3,42. The coupling between the two resonators is represented by the double-headed block 8.46.

On connait également du document FR 563 314 un système oscillant mécaniquement pour le réglage de la marche d'appareils destinés à la mesure du temps.We also know of the document FR 563 314 a mechanically oscillating system for controlling the operation of time measuring apparatus.

Le document CH 276 465 décrit un système de résonateurs comportant un premier résonateur présentant une première masse d'inertie associée à un premier ressort, et un second résonateur présentant une seconde masse d'inertie associée à un second ressort, le second ressort reliant les première et seconde masses d'inertie pour coupler les premier et second résonateurs.The document CH 276,465 discloses a resonator system having a first resonator having a first mass of inertia associated with a first spring, and a second resonator having a second mass of inertia associated with a second spring, the second spring connecting the first and second masses of inertia for coupling the first and second resonators.

La présente invention a pour objet un résonateur conforme à la revendication 1 du brevet.The present invention relates to a resonator according to claim 1 of the patent.

L'invention va être expliquée maintenant en détail ci-dessous au moyen de dessins dans lesquels :

  • la figure 1 est un schéma bloc illustrant le résonateur de l'invention et son implication dans une pièce d'horlogerie,
  • la figure 2 est un schéma équivalent montrant comment sont arrangés et couplés les deux résonateurs selon un premier mode de réalisation de l'invention,
  • la figure 3 est une vue en plan du premier mode de réalisation d'un résonateur résultant du couplage de résonateurs composés chacun d'un balancier-spiral,
  • la figure 4 est une coupe selon la ligne IV-IV de la figure 3,
  • les figures 5 et 6 sont des vues en perspective du résonateur montré en plan et en coupe sur les figures 3 et 4.
  • la figure 7 est un graphique montrant la fréquence d'oscillation propre de chacun des résonateurs lorsqu'on fait varier le couple du ressort spiral reliant les deux résonateurs,
  • la figure 8 est un graphique montrant l'effet stabilisant résultant du couplage des premier et second résonateurs sur des perturbations affectant soit le couple du ressort spiral du premier résonateur, soit la masse d'inertie du balancier dudit premier résonateur lorsqu'on fait varier le couple du ressort spiral reliant les deux résonateurs,
  • la figure 9 est un schéma équivalent montrant comment sont arrangés et couplés les deux résonateurs selon un exemple de résonateur ne faisait pas partie de l'object revendiqué
  • la figure 10 est une vue en plan du premier exemple de résonateur résonateur résultant du couplage de résonateurs composés chacun d'un balancier-spiral,
  • la figure 11 est une coupe selon la ligne XI-XI de la figure 10,
  • les figures 12 et 13 sont des vues en perspective du résonateur montré en plan et en coupe sur les figures 10 et 11,
  • la figure 14 est un graphique montrant la fréquence d'oscillation propre de chacun des résonateurs lorsqu'on fait varier le couple du ressort spiral du premier résonateur, et
  • la figure 15 est un graphique montrant l'effet stabilisant résultant du couplage des premier et second résonateurs sur des perturbations affectant soit le ressort spiral du premier résonateur, soit la masse d'inertie du balancier dudit premier résonateur lorsqu'on fait varier le couple du ressort spiral de ce même premier résonateur.
The invention will now be explained in detail below by means of drawings in which:
  • the figure 1 is a block diagram illustrating the resonator of the invention and its implication in a timepiece,
  • the figure 2 is an equivalent diagram showing how the two resonators are arranged and coupled according to a first embodiment of the invention,
  • the figure 3 is a plan view of the first embodiment of a resonator resulting from the coupling of resonators each composed of a balance-spring,
  • the figure 4 is a section along line IV-IV of the figure 3 ,
  • the Figures 5 and 6 are perspective views of the resonator shown in plan and in section on the Figures 3 and 4 .
  • the figure 7 is a graph showing the own oscillation frequency of each of the resonators when the torque of the spiral spring connecting the two resonators is varied,
  • the figure 8 is a graph showing the stabilizing effect resulting from the coupling of the first and second resonators on disturbances affecting either the pair of the spiral spring of the first resonator or the mass of inertia of the balance of said first resonator when the spring torque is varied. spiral connecting the two resonators,
  • the figure 9 is an equivalent diagram showing how are arranged and coupled the two resonators according to an example of resonator was not part of the claimed object
  • the figure 10 is a plan view of the first resonator resonator example resulting from the coupling of resonators each composed of a balance-spring,
  • the figure 11 is a section along line XI-XI of the figure 10 ,
  • the Figures 12 and 13 are perspective views of the resonator shown in plan and in section on the Figures 10 and 11 ,
  • the figure 14 is a graph showing the own oscillation frequency of each of the resonators when the spring coil torque of the first resonator is varied, and
  • the figure 15 is a graph showing the stabilizing effect resulting from the coupling of the first and second resonators on disturbances affecting either the spiral spring of the first resonator or the mass of inertia of the balance of said first resonator when the torque of the spiral spring of this same first resonator.

Premier mode d'exécution de l'inventionFirst embodiment of the invention

On peut assimiler le résonateur 1 exécuté selon le premier mode de réalisation de l'invention au schéma équivalent de la figure 2. Ce résonateur 1 résulte du couplage d'un premier résonateur 2 avec un second résonateur 3. Le premier résonateur 2 comporte une première masse d'inertie 4 (illustrée ici par une masse carrée) associée à un premier ressort 5 (illustré ici par un ressort hélicoïdal dont une extrémité est attachée à la masse carrée et dont l'autre extrémité est attachée à une partie fixe 73 de la pièce d'horlogerie, par exemple à la platine). Le second résonateur 3 comporte une seconde masse d'inertie 6 (illustrée ici par une masse carrée) associée à un deuxième ressort 7 (illustré ici par un ressort hélicoïdal dont une extrémité est attachée à la masse carrée et dont l'autre extrémité est attachée à une partie fixe 74 de la pièce d'horlogerie, par exemple à un pont). Un troisième ressort 8 (représenté ici par un ressort hélicoïdal) est disposé entre les première (4) et seconde (6) masses d'inertie pour coupler lesdits premier (2) et second (3) résonateurs.The resonator 1 executed according to the first embodiment of the invention can be assimilated to the equivalent diagram of the figure 2 . This resonator 1 results from the coupling of a first resonator 2 with a second resonator 3. The first resonator 2 comprises a first mass of inertia 4 (here illustrated by a square mass) associated with a first spring 5 (illustrated here by a spring helical, one end of which is attached to the square mass and whose other end is attached to a fixed part 73 of the timepiece, for example to the plate). The second resonator 3 comprises a second mass of inertia 6 (here illustrated by a square mass) associated with a second spring 7 (illustrated here by a spring helical whose one end is attached to the square weight and the other end is attached to a fixed portion 74 of the timepiece, for example to a bridge). A third spring 8 (here represented by a helical spring) is disposed between the first (4) and second (6) masses of inertia for coupling said first (2) and second (3) resonators.

Les figures 3 à 6 illustrent une construction pratique du premier mode de réalisation de l'invention. Ici les première et seconde masses d'inertie sont constituées respectivement par des premier et second balanciers 4 et 6, et les premier, deuxième et troisième ressorts sont respectivement des premier, deuxième et troisième ressorts spiraux 5, 7 et 8.The Figures 3 to 6 illustrate a practical construction of the first embodiment of the invention. Here the first and second masses of inertia are respectively constituted by first and second balances 4 and 6, and the first, second and third springs are respectively first, second and third spiral springs 5, 7 and 8.

On s'aperçoit aussi que, selon un mode préféré de l'invention, les premier et second résonateurs 2 et 3 sont disposés coaxialement à l'intérieur de la pièce d'horlogerie entre une platine 11 et un pont 17. L'invention n'est cependant pas limitée à cette disposition, les deux résonateurs pouvant être disposés, par exemple, côte à côte dans la pièce d'horlogerie.It can also be seen that, according to a preferred embodiment of the invention, the first and second resonators 2 and 3 are arranged coaxially inside the timepiece between a plate 11 and a bridge 17. The invention However, it is not limited to this arrangement, the two resonators being able to be arranged, for example, side by side in the timepiece.

Plus particulièrement et comme cela apparaît bien sur la figure 4, le premier résonateur 2 comprend essentiellement un premier balancier 4 auquel est associé un premier ressort spiral 5. Ce premier résonateur 2 est monté sur un premier arbre 9 qui pivote à sa première extrémité dans un palier 10 fixé dans une platine 11 et à sa seconde extrémité dans un palier 12 fixé dans un pont intermédiaire 13. Les spires extérieure et intérieure du premier ressort spiral 5 sont fixées respectivement sur un piton 23 porté par la platine 11 et sur un point d'attache intérieur 28 fixé sur le premier arbre 9.More particularly and as it appears on the figure 4 , the first resonator 2 essentially comprises a first rocker 4 with which is associated a first spiral spring 5. This first resonator 2 is mounted on a first shaft 9 which pivots at its first end in a bearing 10 fixed in a plate 11 and its second end in a bearing 12 fixed in an intermediate bridge 13. The outer and inner turns of the first spiral spring 5 are respectively fixed on a peak 23 carried by the plate 11 and on an inner attachment point 28 fixed on the first shaft 9.

Le second résonateur 3 comprend essentiellement un second balancier 6 auquel est associé un second ressort spiral 7. Ce second résonateur 3 est monté sur un second arbre 14 qui pivote à sa première extrémité dans un palier 15 fixé dans le pont intermédiaire 13 et à sa seconde extrémité dans un palier 16 fixé dans un pont 17. Les spires extérieure et intérieure du deuxième ressort spiral 7 sont fixées respectivement sur un piton 25 porté par le pont 17 et sur un point d'attache intérieur 26 fixé sur le second arbre 14.The second resonator 3 essentially comprises a second rocker 6 with which is associated a second spiral spring 7. This second resonator 3 is mounted on a second shaft 14 which pivots at its first end in a bearing 15 fixed in the intermediate bridge 13 and its second end in a bearing 16 fixed in a bridge 17. The turns outer and inner of the second spiral spring 7 are respectively fixed on a stud 25 carried by the bridge 17 and on an inner attachment point 26 fixed on the second shaft 14.

L'examen des figures 3 à 6 montre encore que le premier résonateur 2 comprend un balancier 4 présentant un plus grand diamètre que le balancier 6 du résonateur 3, ce qui indique que la fréquence du premier résonateur est plus basse que la fréquence du second résonateur, à condition bien sûr que le couple développé par chacun des ressorts spiraux soit sensiblement le même. Dans ces conditions, on comprendra que le mécanisme d'échappement devra être lié au premier résonateur, celui qu'il s'agit d'asservir au second pour améliorer sa résistance aux perturbations. La figure 4 montre que le premier arbre 9 auquel est attaché le premier résonateur 2 porte un plateau 18 et une cheville de plateau 19, cette dernière coopérant par exemple avec une ancre laquelle coopère à son tour avec une roue d'échappement.The examination of Figures 3 to 6 shows again that the first resonator 2 comprises a balance 4 having a larger diameter than the balance 6 of the resonator 3, which indicates that the frequency of the first resonator is lower than the frequency of the second resonator, provided of course that the torque developed by each of the spiral springs is substantially the same. Under these conditions, it will be understood that the escape mechanism will be linked to the first resonator, the one that is enslaved to the second to improve its resistance to disturbances. The figure 4 shows that the first shaft 9 which is attached to the first resonator 2 carries a plate 18 and a plate pin 19, the latter cooperating for example with an anchor which in turn cooperates with an escape wheel.

Reste à décrire le couplage existant entre les résonateurs 2 et 3. Ce couplage est réalisé au moyen d'un troisième ressort spiral 8. Les figures 4 et 5 montrent que ce ressort spiral 8 comporte deux enroulements 20 et 21 disposés en série et montés de part et d'autre du pont intermédiaire 13. Dans cette façon de faire, la spire intérieure du premier enroulement 20 est fixée à un point d'attache intérieur 27 fixé sur le second arbre 14 alors que la spire intérieure du second enroulement 21 est fixée à un point d'attache intérieur 22 fixé sur le premier arbre 9, les spires extérieures desdits enroulements étant reliées l'une à l'autre par un ruban 75.It remains to describe the coupling existing between the resonators 2 and 3. This coupling is achieved by means of a third spiral spring 8. figures 4 and 5 show that this spiral spring 8 comprises two windings 20 and 21 arranged in series and mounted on either side of the intermediate bridge 13. In this way, the inner turn of the first winding 20 is fixed to an internal point of attachment. 27 fixed on the second shaft 14 while the inner coil of the second winding 21 is fixed to an inner attachment point 22 fixed on the first shaft 9, the outer turns of said windings being connected to each other by a ribbon 75.

L'invention n'est pas limitée à ce qui vient d'être dit. En effet le troisième ressort spiral peut ne comporter qu'un seul enroulement. Dans ce cas, et sans qu'il soit nécessaire de le montrer par un dessin, la spire intérieure de cet enroulement unique est fixée à un point d'attache 27 fixé sur le second arbre 14 tandis que la spire extérieure est fixée à un piton porté par le premier balancier 4.The invention is not limited to what has just been said. Indeed the third spiral spring may have only one winding. In this case, and without it being necessary to show it by a drawing, the inner turn of this single winding is fixed to an attachment point 27 fixed on the second shaft 14 while the outer turn is fixed to a peak carried by the first pendulum 4.

On va montrer maintenant de façon sommaire l'avantage qu'il y a de coupler deux résonateurs oscillant l'un à basse fréquence et l'autre à plus haute fréquence dans le but de rendre plus stable le résonateur oscillant à basse fréquence.We will now briefly show the advantage of coupling two resonators oscillating one low frequency and the other higher frequency in order to make more stable oscillating resonator low frequency.

Un résonateur mécanique composé d'une masse et d'un ressort est caractérisé par le poids de sa masse m et la constante de son ressort k qui s'expriment, dans le cas du schéma équivalent de la figure 2 et dans les ordres de grandeur relatives à l'horlogerie, respectivement en milligramme (mg) et en micronewton par mètre (µN/m). Dans le cas présent la masse m est un balancier caractérisé par sa masse d'inertie exprimée en milligramme centimètre carré (mg·cm2), et la constante k est relative à un ressort spiral qui est caractérisé par son couple unitaire exprimé en micronewtonmètre par radian (µN·m/rad). Ceci étant, la fréquence d'un résonateur s'écrit : f = 1 2 π k m

Figure imgb0001
A mechanical resonator composed of a mass and a spring is characterized by the weight of its mass m and the constant of its spring k which are expressed, in the case of the equivalent diagram of the figure 2 and in orders of magnitude relating to watchmaking, in milligram (mg) and micronewton per meter (μN / m), respectively. In the present case the mass m is a balance characterized by its mass of inertia expressed in milligram square centimeter (mg · cm 2 ), and the constant k is relative to a spiral spring which is characterized by its unit torque expressed in micronewtonmeter by radian (μN · m / rad). That being so, the frequency of a resonator is written: f = 1 2 π k m
Figure imgb0001

Pour prendre un exemple relevé sur un calibre horloger courant se trouvant dans le commerce, on a k=1·10-6 Nm/rad et m = 16·10-10 kg·m2, d'où résulte la fréquence f=4Hz.To take an example taken from a current clock gauge on the market, we have ak = 1 · 10 -6 Nm / rad and m = 16 · 10 -10 kg · m 2 , which results in the frequency f = 4 Hz.

La question centrale est de savoir si la présence du second résonateur à plus haute fréquence stabilise la fréquence du premier résonateur à basse fréquence. Cet effet est pris en compte par le facteur de stabilisation S défini par : S = ω 1 p - ω 1 ω 1 Ω 1 Ω 1 p - Ω 1

Figure imgb0002
relation dans laquelle ω1 est la pulsation normale du premier résonateur seul, ω1p la pulsation perturbée du premier résonateur seul, Ω1 la pulsation normale du système couplé et Ω1p la pulsation perturbée du système couplé. On comprendra que si le facteur de stabilisation S est égal à deux, la pièce d'horlogerie est deux fois plus précise avec un système de résonateurs couplés qu'avec le premier résonateur seulement. Par exemple, une pièce d'horlogerie ayant une avance de dix secondes par jour n'en n'aura plus que cinq pour la même période.The central question is whether the presence of the second higher frequency resonator stabilizes the frequency of the first low frequency resonator. This effect is taken into account by the stabilization factor S defined by: S = ω 1 p - ω 1 ω 1 Ω 1 Ω 1 p - Ω 1
Figure imgb0002
in which ω 1 is the normal pulsation of the first resonator alone, ω 1p the disturbed pulsation of the first resonator alone, Ω 1 the normal pulsation of the coupled system and Ω 1p the disturbed pulsation of the coupled system. It will be understood that if the stabilization factor S is equal to two, the timepiece is twice as accurate with a system of coupled resonators as with the first resonator only. For example, a timepiece with a lead of ten seconds a day will have only five for the same period.

On va prendre maintenant un exemple pratique mettant en oeuvre des premier et second résonateurs ayant les caractéristiques suivantes :

  • Résonateur 1 : m1=21 mg·cm2, k1=1µN·m/rad d'où f1 =3,47Hz
  • Résonateur 2 : m2=21 mg·cm2, k2=5µN·m/rad d'où f2=7,75Hz
ces résonateurs étant couplés par un ressort spiral de constante kc.We will now take a practical example using first and second resonators having the following characteristics:
  • Resonator 1: m 1 = 21 mg · cm 2 , k 1 = 1μN · m / rad hence f 1 = 3.47 Hz
  • Resonator 2: m 2 = 21 mg · cm 2 , k 2 = 5 μN · m / rad hence f 2 = 7.75 Hz
these resonators being coupled by a spiral spring constant k c .

Si l'on se réfère aux figures 2 et 4, le résonateur 1 à basse fréquence porte la référence 2, m1 étant le balancier 4, k1 étant la constante du ressort spiral 5. Le résonateur 2 à plus haute fréquence porte la référence 3, m2 étant le balancier 6, k2 étant la constante du ressort spiral 7. On remarquera cependant que dans cet exemple pratique les balanciers sont de mêmes dimensions, ce qui n'est pas le cas des balanciers de la figure 4, le second résonateur ayant une fréquence propre plus élevée de par sa constante de ressort également plus élevée.If we refer to Figures 2 and 4 , The low frequency resonator 1 bears the reference 2, m 1 being the rocker arm 4, k 1 being the constant of the spiral spring 5. The resonator 2 higher frequency carries the reference 3, m 2 being the balance wheel 6, k 2 being the constant of the spiral spring 7. It will be noted however that in this practical example the rockers are of the same dimensions, which is not the case of the rockers of the figure 4 the second resonator having a higher natural frequency due to its higher spring constant.

Des calculs analytiques ont permis d'établir les graphiques des figures 7 et 8 sur la base des données pratiques énoncées ci-dessus.Analytical calculations made it possible to establish the graphs of Figures 7 and 8 on the basis of the practical data set out above.

La figure 7 est un graphique montrant l'évolution des fréquences propres f1 et f2 du système de résonateurs couplés en fonction de la constante kc du ressort spiral qui couple les deux résonateurs.The figure 7 is a graph showing the evolution of the natural frequencies f 1 and f 2 of the coupled resonator system as a function of the constant k c of the spiral spring which couples the two resonators.

La figure 8 est un graphique montrant l'évolution du facteur de stabilisation S en fonction de la constante kc du ressort spiral 8 qui couple les deux résonateurs.The figure 8 is a graph showing the evolution of the stabilization factor S as a function of the constant k c of the spiral spring 8 which couples the two resonators.

La courbe Sm montre l'effet stabilisant qui résulte du couplage des premier et second résonateurs sur des perturbations affectant la masse d'inertie du balancier du premier résonateur à basse fréquence quand on fait varier la constante kc. Cet effet n'est pas très prononcé, ce qui est relativement peu important, la masse d'inertie du balancier étant peu influencée par des perturbations extérieures.The curve S m shows the stabilizing effect resulting from the coupling of the first and second resonators on disturbances affecting the mass of inertia of the balance of the first low frequency resonator when the constant k c is varied. This effect is not very pronounced, which is relatively unimportant, the mass of inertia of the balance being little influenced by external disturbances.

La courbe Sk montre l'effet stabilisant qui résulte du couplage des premier et second résonateurs sur des perturbations affectant le couple du ressort spiral du premier résonateur, soit celui entraîné par le système d'échappement. On voit que pour une valeur de kc de 1 µNm/rad, le facteur de stabilisation n'est pas loin d'atteindre 2, ce qui est positif, car c'est surtout sur le ressort spiral que se portent les perturbations, dues entre autres à la position du ressort, aux chocs et aux variations de température.The curve S k shows the stabilizing effect that results from the coupling of the first and second resonators on disturbances affecting the torque of the spiral spring of the first resonator, ie that caused by the exhaust system. It can be seen that for a value of k c of 1 μNm / rad, the stabilization factor is not far from reaching 2, which is positive, since it is mainly on the spiral spring that the disturbances due to inter alia spring position, shock and temperature variations.

Example de réalisation d'un résonateur ne faisant pas partie de l'object revendiqué.Example of embodiment of a resonator not forming part of the claimed object.

On peut assimiler le résonateur 40 exécuté selon cet example au schéma équivalent de la figure 9. Le résonateur 40 résulte du couplage d'un premier résonateur 41 avec un second résonateur 42. Le premier résonateur 41 comporte une première masse d'inertie 43 (illustrée ici par une masse carrée) associée à un premier ressort 44 (illustré ici par un ressort hélicoïdal dont une extrémité est attachée à la masse carrée et dont l'autre extrémité est attachée à une partie fixe 73 de la pièce d'horlogerie, par exemple à la platine). Le second résonateur 42 comporte une seconde masse d'inertie 45 (illustrée ici par une masse carrée) associé à un second ressort 46 (illustré ici par un ressort hélicoïdal dont une extrémité est attachée à la masse carrée 43 et dont l'autre extrémité est attachée à la masse carrée 45). Ce second ressort spiral 46 relie donc les première (43) et seconde (45) masses d'inertie pour coupler lesdits premier (41) et second (42) résonateurs. En fait le ressort 46 joue ici un double rôle : celui de former le second résonateur 42 et celui de coupler les premier et second résonateurs 41 et 42.One can assimilate the resonator 40 executed according to this example to the equivalent diagram of the figure 9 . The resonator 40 results from the coupling of a first resonator 41 with a second resonator 42. The first resonator 41 comprises a first mass of inertia 43 (here illustrated by a square mass) associated with a first spring 44 (illustrated here by a spring helical, one end of which is attached to the square mass and whose other end is attached to a fixed part 73 of the timepiece, for example to the plate). The second resonator 42 comprises a second mass of inertia 45 (here illustrated by a square mass) associated with a second spring 46 (here illustrated by a helical spring whose one end is attached to the square mass 43 and whose other end is attached to the square mass 45). This second spiral spring 46 thus connects the first (43) and second (45) masses of inertia to couple said first (41) and second (42) resonators. In fact the spring 46 plays a dual role here: that of forming the second resonator 42 and that of coupling the first and second resonators 41 and 42.

Si dans le premier mode représenté par la figure 2, on supprime le troisième ressort 7 ainsi que son attache à un point fixe 74, on retrouve le schéma équivalent de la figure 9 qui illustre cet exemple et qui va être expliqué maintenant en détail en s'aidant des figures 10 à 13.If in the first mode represented by the figure 2 , we remove the third spring 7 and its attachment to a fixed point 74, we find the equivalent diagram of the figure 9 which illustrates this example and which will be explained now in detail with the help of Figures 10 to 13 .

Les figures 10 à 13 illustrent une construction pratique de l'exemple de réalisation d'un résonateur. Ici, comme cela a été dit à propos du premier mode d'exécution de l'invention, les première et seconde masses d'inertie sont constituées respectivement par des premier et second balanciers 43 et 45, et les premier et second ressorts sont respectivement des premier et second ressorts spiraux 44 et 46.The Figures 10 to 13 illustrate a practical construction of the exemplary embodiment of a resonator. Here, as has been said with respect to the first embodiment of the invention, the first and second masses of inertia are constituted respectively by first and second balances 43 and 45, and the first and second springs are respectively first and second spiral springs 44 and 46.

On s'aperçoit aussi que le premier balancier 43 présente une cage circulaire à l'intérieur de laquelle est confiné le second résonateur 42 à plus haute fréquence, ladite cage circulaire 43 formant avec le premier ressort spiral 44 le premier résonateur 41 à basse fréquence.We also see that the first balance 43 has a circular cage inside which is confined the second resonator 42 at higher frequency, said circular cage 43 forming with the first spiral spring 44 the first resonator 41 low frequency.

Comme le montre bien la coupe de la figure 11, la cage circulaire 43 formant le premier balancier est équipée d'une première joue 47 portant un premier tourillon 48 pivotant dans un palier 49 fixé dans une platine 50. Ce premier tourillon 48 porte un plateau 51 et une cheville de plateau 52, cette dernière coopérant par exemple avec une ancre laquelle coopère à son tour avec une roue d'échappement. La cage circulaire 43 est équipée encore d'une seconde joue 53 portant un second tourillon 54 pivotant dans un palier 55 fixé dans un pont 56. Le pont 56 est équipé d'un piton 57 auquel est fixé la spire extérieure du premier ressort spiral 44, la spire intérieure dudit premier ressort spiral 44 étant fixée à un point d'attache intérieur 58 fixé sur le second tourillon 54. La cage circulaire ou balancier 43 et le ressort spiral 44 forment le premier résonateur 41 à basse fréquence, celui dont il s'agit d'améliorer les performances.As the cup of the figure 11 , the circular cage 43 forming the first balance is equipped with a first cheek 47 carrying a first pivoting pin 48 in a bearing 49 fixed in a plate 50. This first pin 48 carries a plate 51 and a plateau pin 52, the latter cooperating for example with an anchor which cooperates in turn with an escape wheel. The circular cage 43 is also equipped with a second cheek 53 carrying a second pin 54 pivoting in a bearing 55 fixed in a bridge 56. The bridge 56 is equipped with a pin 57 to which is fixed the outer turn of the first spiral spring 44 , the inner turn of said first spiral spring 44 being fixed to an internal attachment point 58 fixed on the second pin 54. The circular cage or balance 43 and the spiral spring 44 form the first resonator 41 at low frequency, the one of which it s is to improve performance.

La figure 11 montre encore que les second balancier 45 et ressort spiral 46 constituant le second résonateur 42 - et qui est confiné dans la cage 43 - sont supportés par un arbre 59 pivotant à sa première extrémité dans un palier 60 fixé dans la première joue 47 de la cage 43 et à sa second extrémité dans un palier 61 fixé dans la seconde joue 53 de la cage. De plus, les spires extérieure et intérieure du second ressort spiral 46 sont fixées respectivement à un piton 62 porté par la seconde joue 53 de la cage 43 et à un point d'attache intérieur 63 fixé sur l'arbre 59.The figure 11 shows again that the second balance 45 and spiral spring 46 constituting the second resonator 42 - and which is confined in the cage 43 - are supported by a shaft 59 pivoting at its first end in a bearing 60 fixed in the first cheek 47 of the cage 43 and at its second end in a bearing 61 fixed in the second cheek 53 of the cage. In addition, the outer and inner turns of the second spiral spring 46 are respectively fixed to a peg 62 carried by the second cheek 53 of the cage 43 and to an inner attachment point 63 fixed on the shaft 59.

L'examen des figures 10 à 12 montre que le premier résonateur 41 comprend un balancier ou cage 43 présentant un plus grand diamètre que le balancier 45 du second résonateur 42, ce qui indique que la fréquence du premier résonateur est plus basse que la fréquence du second résonateur, le couple développé par chacun des ressorts spiraux étant égal par ailleurs. On comprendra donc que le mécanisme d'échappement sera lié au premier résonateur, celui qu'il s'agit d'asservir au second pour améliorer sa résistance aux perturbations.The examination of Figures 10 to 12 shows that the first resonator 41 comprises a rocker or cage 43 having a larger diameter than the rocker 45 of the second resonator 42, which indicates that the frequency of the first resonator is lower than the frequency of the second resonator, the torque developed by each spiral springs being equal elsewhere. It will therefore be understood that the escape mechanism will be linked to the first resonator, the one that is to enslave the second to improve its resistance to disturbances.

On a montré, lors des propos tenus au sujet du mode d'exécution, l'avantage qu'il y avait de coupler deux résonateurs oscillant l'un à basse fréquence et l'autre à plus haute fréquence dans le but d'améliorer les performances du résonateur oscillant à basse fréquence. On ne reviendra donc pas ici sur la théorie développée qui s'applique également au second mode de réalisation qu'on vient de décrire.The advantages of coupling two oscillating resonators, one at low frequency and the other at higher frequency, in order to improve oscillating resonator performance at low frequency. We will not return here to the developed theory that also applies to the second embodiment just described.

On va prendre cependant un exemple pratique, soit :

  • résonateur 1 : m1 = 20mg·cm2, k1=variable
  • résonateur 2 : m2 = 6,4 mg·cm 2 kc=0,4µN·m/rad, k2=0
However, we will take a practical example:
  • resonator 1: m 1 = 20mg · cm 2 , k 1 = variable
  • resonator 2: m 2 = 6.4 mg · cm 2 k c = 0.4μN · m / rad, k 2 = 0

Si l'on se réfère aux figures 9 et 11, le résonateur 1 à basse fréquence porte la référence 41, m1 étant le balancier ou la cage 43, k1 étant la constante du ressort spiral 44 et le résonateur 2 à plus haute fréquence porte la référence 42, m2 étant le balancier 45, kc étant la constante du ressort spiral 46, kc étant aussi le ressort spiral qui couple les deux résonateurs.If we refer to Figures 9 and 11 , The low frequency resonator 1 is referenced 41, m 1 being the balance, or the cage 43, k 1 being the constant of the spiral spring 44 and the resonator 2 at a higher frequency has the reference 42, m 2 being the balance 45 , k c being the constant of the spiral spring 46, k c being also the spiral spring which couples the two resonators.

Sur la base des données pratiques énoncées ci-dessus, des calculs analytiques ont permis d'établir les graphiques des figures 14 et 15. La variable choisie n'est plus kc comme dans le premier mode d'exécution mais k1 qui a paru être le paramètre le plus déterminant.On the basis of the practical data set out above, analytical calculations have made it possible to Figures 14 and 15 . The chosen variable is no longer k c as in the first execution mode but k 1 which seemed to be the most decisive parameter.

La figure 14 est un graphique montrant l'évolution des fréquences propres f1 et f2 du système de résonateurs couplés en fonction de la constante k1 du ressort spiral 44 composant le premier résonateur 41.The figure 14 is a graph showing the evolution of the natural frequencies f 1 and f 2 of the coupled resonator system as a function of the constant k 1 of the spiral spring 44 constituting the first resonator 41.

La figure 15 est un graphique montrant l'évolution du facteur de stabilisation - qui a été défini plus haut à propos du premier mode de réalisation - en fonction de la constante k1 du ressort spiral 44 affectant le premier résonateur 41.The figure 15 is a graph showing the evolution of the stabilization factor - which has been defined above with respect to the first embodiment - as a function of the constant k 1 of the spiral spring 44 affecting the first resonator 41.

La courbe Sm montre l'effet stabilisant qui résulte du couplage des premier et second résonateurs 41 et 42 sur des perturbations affectant la masse d'inertie du balancier du premier résonateur à basse fréquence 41 quand on fait varier la constante k1 du ressort spiral 44. Cet effet est beaucoup plus prononcé que celui observé à propos du mode de réalisation.The curve S m shows the stabilizing effect resulting from the coupling of the first and second resonators 41 and 42 on disturbances affecting the mass of inertia of the balance of the first low frequency resonator 41 when the constant k 1 of the spiral spring is varied. 44. This effect is much more pronounced than that observed with respect to the embodiment.

La courbe Sk montre l'effet stabilisant qui résulte du couplage des premier et second résonateurs 41 et 42 sur des perturbations affectant le couple du ressort spiral 44 du premier résonateur 41. On voit que pour une valeur de k1 de 2µN·m/rad, le facteur de stabilisation S est de l'ordre de 2,5.The curve S k shows the stabilizing effect which results from the coupling of the first and second resonators 41 and 42 on disturbances affecting the torque of the spiral spring 44 of the first resonator 41. It can be seen that for a value of k 1 of 2 μN · m / rad, the stabilization factor S is of the order of 2.5.

Conclusionsconclusions

Ce qui précède a montré que les performances d'un premier résonateur à balancier-spiral à basse fréquence, cette dernière étant de l'ordre de 2 à 6Hz, peuvent être améliorées si on le couple à un second résonateur à balancier-spiral à plus haute fréquence, cette dernière étant de l'ordre de 10Hz. Le premier résonateur à basse fréquence est plus sensible à certaines perturbations dues par exemple au porter, ou aux chocs que le second résonateur à plus haute fréquence. On peut imaginer compenser la variation thermique et/ou le défaut d'isochronisme du premier résonateur par ceux du second. Par ailleurs le premier résonateur coopère aisément avec un système d'échappement usuel alors que ce n'est pas le cas du second résonateur. Il est donc logique de coupler les deux résonateurs en question pour bénéficier à la fois de la bonne adaptation du premier au système d'échappement et de la bonne insensibilisation du second aux perturbations citées ci-dessus.The foregoing has shown that the performances of a first low-frequency spiral balance resonator, the latter being of the order of 2 to 6 Hz, can be improved if it is coupled to a second resonator with a balance-spring balance. high frequency, the latter being of the order of 10Hz. The first low frequency resonator is more sensitive to certain disturbances due for example to wearing, or to shocks than the second resonator to more high frequency. One can imagine to compensate the thermal variation and / or the isochronism defect of the first resonator by those of the second. Moreover, the first resonator cooperates easily with a usual exhaust system whereas this is not the case of the second resonator. It is therefore logical to couple the two resonators in question to benefit from both the good adaptation of the first to the exhaust system and the good insensitivity of the second to the disturbances mentioned above.

Claims (5)

  1. Resonator (1) for a timepiece resulting from coupling a first, low frequency resonator (2) with a second, higher frequency resonator (3), wherein the first resonator (2) has a first inertia mass (4) associated with a first spring (5), wherein the second resonator (3) has a second inertia mass (6) associated with a second spring (7), wherein a third spring (8) is arranged between the first (4) and second (6) inertia masses to couple said first (2) and second (3) resonators, said resonator being characterized in that the first and second inertia masses are respectively formed by first (4) and second (6) balances and in that the first, second and third springs are respectively first (5), second (7) and third (8) balance springs.
  2. Resonator according to claim 1, characterized in that the first (2) and second (3) resonators are arranged coaxially inside the timepiece.
  3. Resonator according to claim 2, characterized in that the first resonator (2) is mounted on a first arbour (9) arranged so as to pivot at the first end thereof in a bearing (10) fixed in a bottom plate (11) and at the second end thereof in a bearing (12) fixed in an intermediate bridge (13), the outer and inner coils of the first balance spring (5) of said first resonator (2) being arranged so as to be respectively fixed to a balance spring stud (23) carried by the bottom plate (11) and on an inner point of attachment (28) fixed to said first arbour (9) and in that the second resonator (3) is mounted on a second arbour (14) arranged so as to pivot at the first end thereof in a bearing (15) fixed in said intermediate bridge (13) and at the second end thereof in a bearing (16) fixed in a bridge (17), the outer and inner coils of the second balance spring of said second resonator (3) being arranged so as to be respectively fixed one a balance spring stud (25), carried by the bridge (17) and on an inner point of attachment (26) fixed to said second arbour (14).
  4. Resonator according to claim 3, characterized in that the first arbour (9) carries a roller (9) and an impulse pin (19), said impulse pin being arranged so as to cooperate with an escape mechanism.
  5. Resonator according to claim 3, characterized in that the third balance spring (8) includes two windings (20, 21) arranged in series and arranged so as to be mounted on either side of the intermediate bridge (13), the inner coil of the first winding (20) being secured to an inner point of attachment (27) fixed to the second arbour (14) and the inner coil of the second winding (21) being secured to an inner point of attachment (22) fixed to the first arbour (9).
EP08159759A 2008-07-04 2008-07-04 Coupled resonators for timepiece Active EP2141555B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE602008006057T DE602008006057D1 (en) 2008-07-04 2008-07-04 Coupled resonators for clock
EP08159759A EP2141555B1 (en) 2008-07-04 2008-07-04 Coupled resonators for timepiece
TW098121379A TW201017350A (en) 2008-07-04 2009-06-25 Coupled resonators for a timepiece
US12/497,136 US7950846B2 (en) 2008-07-04 2009-07-02 Coupled resonators for a timepiece
KR1020090060996A KR20100004896A (en) 2008-07-04 2009-07-06 Coupled resonators for a timepiece
CN2009101584127A CN101620406B (en) 2008-07-04 2009-07-06 Coupled resonators for timepiece
JP2009159544A JP5302120B2 (en) 2008-07-04 2009-07-06 Coupled resonators for watches
HK10106464.2A HK1140552A1 (en) 2008-07-04 2010-07-02 Coupled resonator for timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08159759A EP2141555B1 (en) 2008-07-04 2008-07-04 Coupled resonators for timepiece

Publications (2)

Publication Number Publication Date
EP2141555A1 EP2141555A1 (en) 2010-01-06
EP2141555B1 true EP2141555B1 (en) 2011-04-06

Family

ID=40328628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08159759A Active EP2141555B1 (en) 2008-07-04 2008-07-04 Coupled resonators for timepiece

Country Status (8)

Country Link
US (1) US7950846B2 (en)
EP (1) EP2141555B1 (en)
JP (1) JP5302120B2 (en)
KR (1) KR20100004896A (en)
CN (1) CN101620406B (en)
DE (1) DE602008006057D1 (en)
HK (1) HK1140552A1 (en)
TW (1) TW201017350A (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060957A1 (en) * 2007-11-16 2009-05-20 ETA SA Manufacture Horlogère Suisse Motor element with springs for timepiece movement
CH705118B1 (en) * 2007-12-27 2012-12-31 Chopard Technologies Sa watch movement comprising a regulating organ to high oscillation frequency.
CH699988A2 (en) * 2008-11-28 2010-05-31 Patek Philippe Sa Geneve Driving member for watch movement.
CH701783B1 (en) * 2009-09-07 2015-01-30 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A spiral spring watch movement.
CH702062B1 (en) 2009-10-26 2022-01-31 Mft Dhorlogerie Audemars Piguet Sa Regulating organ comprising at least two pendulums, a watch movement as well as a timepiece comprising such an organ.
HK1146455A2 (en) * 2010-03-12 2011-06-03 Microtechne Res & Dev Ct Ltd An oscillator system
EP2533109B1 (en) * 2011-06-09 2019-03-13 Cartier International AG Mechanism preventing rate variations due to gravitation on an adjusting device with a spiral balance and timepiece equipped with such an improvement
US9016933B2 (en) 2011-07-29 2015-04-28 Rolex S.A. Balance wheel assembly with optimized pivoting
EP2570870B1 (en) 2011-09-15 2016-04-06 The Swatch Group Research and Development Ltd. Timepiece with permanently coupled oscillators
EP2570866A1 (en) * 2011-09-15 2013-03-20 The Swatch Group Research and Development Ltd. Synchronised oscillators for an intermittent escapement
CH705493B1 (en) * 2011-09-15 2019-04-30 Swatch Group Res & Dev Ltd Timepiece with oscillators coupled in chronograph mode.
CH707503A2 (en) * 2013-01-17 2014-07-31 Omega Sa Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields
EP2757423B1 (en) 2013-01-17 2018-07-11 Omega SA Part for clockwork
EP2790067A1 (en) * 2013-04-12 2014-10-15 Montres Breguet SA Escapement system for a balance-hairspring resonator
EP2874023A1 (en) * 2013-11-13 2015-05-20 ETA SA Manufacture Horlogère Suisse Timepiece comprising a decoupling between the means for transmitting power and the counting means
EP2874020B1 (en) * 2013-11-15 2016-10-26 Rolex Sa Regulating system for a clock movement
EP3299907A1 (en) * 2013-12-23 2018-03-28 ETA SA Manufacture Horlogère Suisse Mechanical clock movement with magnetic escapement
EP2908189A3 (en) * 2014-02-17 2016-06-01 ETA SA Manufacture Horlogère Suisse Mechanism for synchronising two timepiece oscillators with a gear-train
CH709394A1 (en) 2014-03-21 2015-09-30 Gfpi S A clockwork.
CN106537264B (en) * 2014-09-09 2019-03-15 Eta瑞士钟表制造股份有限公司 Clock and watch regulating mechanism, watch and clock movement and clock and watch
JP6111380B2 (en) * 2014-09-09 2017-04-05 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Composite resonator with improved isochronism
CH710115A2 (en) * 2014-09-09 2016-03-15 Swatch Group Res & Dev Ltd Mobile module for synchronization of clock of the same frequency resonators.
CH710188A2 (en) * 2014-09-26 2016-03-31 Eta Sa Manufacture Horlogère Suisse Resonator paraxial and isochronous watchmaking.
EP3054357A1 (en) * 2015-02-03 2016-08-10 ETA SA Manufacture Horlogère Suisse Clock oscillator mechanism
EP3147725B1 (en) * 2015-09-28 2018-04-04 Nivarox-FAR S.A. Oscillator with rotary detent
EP3182216B1 (en) * 2015-12-18 2019-08-28 Montres Breguet S.A. Coupled timepiece oscillators
CH712068B1 (en) * 2016-01-29 2019-11-29 Eta Sa Mft Horlogere Suisse Clockwork resonator mechanism with virtual pivot.
CH712100A2 (en) 2016-02-08 2017-08-15 Hepta Swiss Sa Watch movement with two pendulums.
CH712813B1 (en) * 2016-08-15 2021-11-30 Rolex Sa Winding device of a watch movement.
DE102016122936B4 (en) * 2016-11-28 2018-11-08 Lange Uhren Gmbh Barrel for a watch
FR3059792B1 (en) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa DEVICE FOR WATCHMAKING PART, CLOCK MOVEMENT AND TIMEPIECE COMPRISING SUCH A DEVICE
EP3336613B1 (en) 2016-12-16 2020-03-11 Association Suisse pour la Recherche Horlogère Timepiece resonator with two balances arranged to oscillate in a single plane
EP3580618B1 (en) * 2017-02-13 2022-01-26 Patek Philippe SA Genève Timepiece driving organ
EP3382468B1 (en) * 2017-03-30 2020-01-15 The Swatch Group Research and Development Ltd Movement with extension of running reserve
CH714019A2 (en) * 2017-07-26 2019-01-31 Eta Sa Mft Horlogere Suisse Mechanical clockwork movement with rotary resonator.
EP3534222A1 (en) * 2018-03-01 2019-09-04 Rolex Sa Method for producing a thermally compensated oscillator
CH714922A2 (en) 2018-04-23 2019-10-31 Eta Sa Mft Horlogere Suisse Shockproof protection of a rotational flexible guiding clock resonator mechanism.
JP6558761B1 (en) * 2018-06-19 2019-08-14 セイコーインスツル株式会社 Escapement machine, watch movement and watch
FR3094804B1 (en) * 2019-04-02 2021-10-22 Vianney Halter "Device for coupling two clockwork oscillators"
EP3929667A1 (en) * 2020-06-26 2021-12-29 ETA SA Manufacture Horlogère Suisse Rotating mobile system of a clock movement
EP4006649A1 (en) * 2020-11-27 2022-06-01 ETA SA Manufacture Horlogère Suisse Attachment device for adjusting the movement of a balance
EP4009113A1 (en) * 2020-12-02 2022-06-08 The Swatch Group Research and Development Ltd Flexible guide assembly for rotary resonator mechanism, in particular for a timepiece movement
WO2024175797A1 (en) * 2023-02-24 2024-08-29 Rolex Sa Timepiece assembly and method for manufacturing a timepiece assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1232285A (en) * 1916-10-19 1917-07-03 John H Greeley Escapement for clocks and watches.
DE451035C (en) * 1922-11-10 1927-10-22 Heinrich Schieferstein Elastic coupling between an engine, especially a clockwork, and a member regulating its sequence
CH276465A (en) * 1948-04-07 1951-07-15 Buehler Heinrich Unruhe an Triebwerken, insbesondere für Uhren.
DE1205464B (en) * 1961-08-24 1965-11-18 United States Time Corp Regulator
US3528237A (en) * 1968-04-30 1970-09-15 Timex Corp Horological hairspring
DE1805777A1 (en) 1968-10-29 1970-05-21 Kienzle Uhrenfabriken Gmbh Oscillation system
CH1646668A4 (en) * 1968-11-05 1970-06-30
US3645089A (en) * 1969-05-28 1972-02-29 Asahiro Yamada Intermittent driving mechanism for timepiece
CH687795C1 (en) * 1994-05-07 2001-05-15 Omega Sa MECHANICAL WATCHMAKING PIECE WITH A TOURBILLON.
EP1843227A1 (en) 2006-04-07 2007-10-10 The Swatch Group Research and Development Ltd. Coupled resonator for control system

Also Published As

Publication number Publication date
DE602008006057D1 (en) 2011-05-19
KR20100004896A (en) 2010-01-13
TW201017350A (en) 2010-05-01
JP5302120B2 (en) 2013-10-02
JP2010014717A (en) 2010-01-21
US7950846B2 (en) 2011-05-31
CN101620406B (en) 2012-04-18
US20100002548A1 (en) 2010-01-07
HK1140552A1 (en) 2010-10-15
EP2141555A1 (en) 2010-01-06
CN101620406A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
EP2141555B1 (en) Coupled resonators for timepiece
EP2315082B1 (en) Mechanical movement with regulating organ comprising at least two balances
EP1333345B1 (en) Device having clockwork-movement and chronograph module
EP2761378B1 (en) Oscillator with tuning fork for mechanical timepiece movement
EP3030938B1 (en) Regulator system for mechanical watch
EP3182216B1 (en) Coupled timepiece oscillators
CH699081A2 (en) High and low frequency resonator assembly for timepiece i.e. watch, has balance spring arranged between square inertial masses for coupling high and low frequency resonators, where inertial masses are constituted by respective balances
EP2405312A1 (en) Balance hairspring with two levels and immobile mass centre
EP3208662A1 (en) Clock movement comprising a regulating device
CH700747A1 (en) Mechanical oscillator for use in mechanical resonator of horological movement of wristwatch, has balance wheels associated with respective hairsprings, where balance wheels are toothed and arranged in engagement with each other
EP2701013B1 (en) Clock movement with extended power reserve
CH716841B1 (en) Chronograph watch movement.
US10514659B2 (en) Movement with power reserve extension
EP2309344B1 (en) Method for changing the oscillatory frequency of a timepiece movement
EP2753985A1 (en) Clock movement having a balance-wheel and hairspring
EP4080292A1 (en) Timepiece mechanism for displaying at least a single indication of the time and timepiece comprising such a mechanism
EP2802941B1 (en) Regulating member for a mechanical chronograph
WO2018215284A1 (en) Adjustment device for timepiece with isotropic harmonic oscillator having rotating masses and a common return force
CH704355B1 (en) body regulating mechanical watch.
CH716057A2 (en) Oscillator for electromechanical watch movement.
CH697529B1 (en) Watch i.e. chronometer, movement, has timer gear-train connected to kinematic chains by spherical type differential gear, where timer gear-train includes cannon-pinion, timer mobile and hour wheel for carrying display units
EP1909149A1 (en) Timepiece including a striking mechanism
CH717960B1 (en) Horological mechanism for displaying the indication of the single time and timepiece comprising it.
CH716783B1 (en) Timepiece comprising two regulating organs.
EP3979008A1 (en) Watch with mechanical movement with force control mechanism

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100706

17Q First examination report despatched

Effective date: 20100803

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

REF Corresponds to:

Ref document number: 602008006057

Country of ref document: DE

Date of ref document: 20110519

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008006057

Country of ref document: DE

Effective date: 20110519

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008006057

Country of ref document: DE

Effective date: 20120110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240619

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 17