EP3030938B1 - Regulator system for mechanical watch - Google Patents

Regulator system for mechanical watch Download PDF

Info

Publication number
EP3030938B1
EP3030938B1 EP14741892.5A EP14741892A EP3030938B1 EP 3030938 B1 EP3030938 B1 EP 3030938B1 EP 14741892 A EP14741892 A EP 14741892A EP 3030938 B1 EP3030938 B1 EP 3030938B1
Authority
EP
European Patent Office
Prior art keywords
resonator
tuning fork
regulator system
wheel
escapement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14741892.5A
Other languages
German (de)
French (fr)
Other versions
EP3030938A2 (en
Inventor
Jean-Pierre Mignot
Jean-Jacques Born
Rudolf Dinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP3030938A2 publication Critical patent/EP3030938A2/en
Application granted granted Critical
Publication of EP3030938B1 publication Critical patent/EP3030938B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/104Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/104Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel
    • G04C3/105Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel pawl and ratched-wheel being magnetically coupled
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements

Definitions

  • the present invention relates to the regulating system of a mechanical timepiece.
  • regulating system or regulating organ is meant two separate devices: the resonator and the escapement.
  • the resonator is the organ producing a periodic movement which constitutes the time base of the timepiece.
  • Well-known resonators are pendulums oscillating under the effect of gravitation, balance wheels forming with the associated hairspring a mechanical resonator oscillating around the shaft of the balance wheel and tuning forks oscillating by elastic deformation of their structure.
  • the best known realization of tuning forks is the tuning fork used in music, the one produced in greatest number however is the resonator made of crystalline quartz used as a time base for electronic watches.
  • the escapement is the connecting element between the gear train of the timepiece and the resonator.
  • the escapement has two functions. First, it must transmit to the resonator the energy necessary to maintain its oscillation. This function is normally performed by a mechanism transmitting to the resonator energy from the last wheel of the gear (hereafter called the escapement wheel). In addition to transmitting the energy supplying the resonator, the escapement must control the speed of progress of the gear train and synchronize it with the oscillation of the resonator. This second function is normally carried out by a part of the escapement mechanism which engages in the teeth of the escape wheel and only allows the active tooth to pass when the resonator has oscillated.
  • a major disadvantage of contact with the resonator involving friction is the fact of disturbing the movement of the resonator with forces which are not of the so-called “elastic” type of forces. This means that the resonator is disturbed with forces influencing its natural frequency. This disturbance influences the horological performances of the piece. It is easily understood that the disturbance of the movement of the resonator depends on the magnitude of the interaction of the escapement with the resonator. As the escapement wheel is driven by the gear train and the latter by the mainspring, the chronometric error created by the contact between the escapement mechanism and the resonator depends on the state of the mainspring. : the chronometric error is different if the barrel spring is very tight compared to the situation of a watch where the barrel spring is almost completely relaxed. This chronometric error is well known to specialists under the name of isochronism error.
  • EP 1 967 919 B1 describes a coaxial escapement improving the conditions for transmitting energy between the escapement wheel and the resonator.
  • this type of escapement is an improvement over the Swiss lever escapement, it cannot avoid sliding contacts and therefore cannot avoid the friction losses mentioned above.
  • Friction losses can, however, be avoided if the transmission of energy by mechanical contact is replaced by a transmission without contact, for example by magnetic or electrostatic forces. These obviously have no friction losses.
  • An escapement where the mechanical contacts are replaced by magnets is called a magnetic escapement.
  • Magnetic escapements have been known for a very long time.
  • HS Baker was the first to file a patent (US) for a magnetic escapement in 1927, followed by CF Clifford (1938) and R. Straumann in 1941.
  • US patent
  • the resonator is a tuning fork shaped resonator in its shape similar to the tuning forks known from music.
  • the tuning fork resonator has indeed a large number of advantages compared to the spiral balance wheel resonator. Firstly, it does not need bearings and therefore its quality factor is not degraded by friction in the bearings (its losses by oscillation are lower) and the tuning fork resonator does not need lubrication likely to request regular watch services. It is also well known that the tuning fork resonator provides much better chronometric performance than a balance-spring resonator.
  • Max Hetzel and the Bulova company are at the origin of wristwatches equipped with tuning fork-shaped resonators, his patent was filed in 1953, and the technology used is described for example in the document US 2,971,323 .
  • Three producers have marketed more than six million watches according to the principles described in this document; the company Bulova with the product called “Accutron”, the company Citizen with the product called “HiSonic” and the company Ebauches SA with a product called “Swissonic 100” or “Mosaba”. The three products, however, were not mechanical watches.
  • the tuning fork resonator was in fact driven and maintained in oscillation by an electronic circuit supplying electrical impulses to two coils located opposite of magnets attached to the ends of the arms of the tuning fork similar to the product of the aforementioned Junghans company.
  • the cog was driven by the tuning fork by means of a ratchet mechanism attached to one of the branches.
  • the energy for the operation of the watch came from the power supply of the transistor driver circuit of the tuning fork. They were indeed electric or electronic watches.
  • These products demonstrated the superior chronometric performance of a resonator in the form of a tuning fork compared to a balance-spring resonator: their rate accuracy was better than that of a watch fitted with a balance-spring resonator. It is also well known that the rate precision of an electronic quartz watch is much higher than that of a mechanical watch. This is also due to the stability of the quartz tuning fork resonator regulating the operation of these products.
  • EP 2 466 401 A1 shows the tuning fork with two magnets (one magnet on each arm) similar to the aforementioned tuning fork watches.
  • the escapement function is performed according to this document by an escapement wheel carrying a multitude of magnets located between the arms of the tuning fork and in such a way that the magnets of the tuning fork are opposite a pair of wheel magnets exhaust as shown in the figure 1 of this request.
  • the operation of the magnetic escapement according to EP 2 466 401 A1 is described in this document and is here only briefly summarized for the description of the invention which is the subject of the present application.
  • a resonator is characterized by the fact that its vibration amplitude becomes very large when it is excited at its own resonant frequency and this is also the case with the tuning fork resonator described in the document EP 2 466 401 A1 .
  • the magnets of the tuning fork also exert a tangential force on the magnets of the escape wheel. This tangential force acts in the direction of braking the escapement wheel when it begins to anticipate the speed given by the oscillations of the tuning fork. It is this tangential force which synchronizes the speed of the escapement wheel with the frequency of the tuning fork and thereby controls the rate of the watch.
  • the device according to the document EP 2 466 401 A1 has however several disadvantages which are the consequence of the fact that the tuning fork interacts with the escapement wheel so as to produce tangential forces which vary greatly when the wheel advances by one tooth. It is easily understood that the tangential forces acting on the escapement wheel produce a torque which pulls the wheel into the position where the magnets on the wheel and on the tuning fork are opposite and of opposite polarity. This is the position of stable equilibrium. Starting from the position of stable equilibrium and turning the escape wheel p. ex. Clockwise interaction between the magnets on the wheel and on the tuning fork will first create a torque pulling the wheel back into the equilibrium position. This is the case until the magnets of identical polarity are opposite each other.
  • the first consequence is the fact that the escape wheel is blocked by the forces of the magnets when it is stationary. It is easy to understand that, if the magnets of the escape wheel are opposite the magnets of the tuning fork and of opposite polarity, the two pairs of magnets attract each other and the escape wheel remains blocked in this position. This situation occurs each time the train of the watch is stopped, which occurs if the watch is not worn and stops at the end of its power reserve, but also when setting the time when the gear train is stopped for start-up at the precise second. This phenomenon is well known and typical for timepieces provided with a magnetic escapement of the prior art. Timepieces fitted with magnetic escapements of the C.F. Clifford type had sophisticated mechanisms for spinning the escape wheel when the movement was started.
  • the second disadvantage of the system described in EP 2 466 401 A1 is its sensitivity to desynchronization in the event of a shock. Placing magnets on the escape wheel and on the arms of the tuning fork leads to significant forces between the two regulating organs.
  • the mechanical power needed to synchronize a mechanical watch is very small. The mechanical power being given by the product between the tangential force and the speed, it is found that large forces necessarily lead to low speeds. In the case of a rotary motion, they lead to a low escape wheel rotational speed. Wristwatches in particular are subjected to quite violent shocks. If the watch falls on the ground, shocks of several thousand times the terrestrial acceleration are reached. Even in normal use, shocks producing accelerations much higher than Earth's acceleration are common.
  • a shock is not usually not just linear acceleration, the watch normally touches or falls on a corner of the room so the acceleration is a combination of linear acceleration and angular acceleration. If the angular component of the acceleration due to the shock accelerates the escapement wheel to an angular velocity exceeding the speed of synchronization with the tuning fork, the aforementioned synchronization mechanism will no longer work and the escapement wheel continues to accelerate, driven by the gear train and the barrel spring of the watch. In such a case, the watch loses all its chronometric qualities, the hands turn at a much too high speed.
  • the tuning fork resonator is indeed a tuning fork in the shape of an oscillating bar, bent in a U.
  • This type of tuning fork is well known in music and is used to tune instruments. It is known from its application in music that this type of tuning fork transmits its vibration through its rod attached to the middle of the U of the tuning fork. The musician knows well that the sound of the tuning fork is much more audible if the tuning fork is placed on a surface capable of vibrating at its frequency, for example on the lid of the piano.
  • the object of the present invention is to remedy the drawbacks of the magnetic escapements of the prior art by providing a regulating system for a mechanical timepiece based on the magnetic interaction between a resonator and an escapement wheel, such as defined by patent claim 1. This is achieved with a magnetic escapement interacting with the resonator with negligible tangential forces when the resonator is stopped and generally lower so as to allow a sufficiently high rotational speed of the escape wheel to render the timepiece insensitive. to shocks.
  • One of the preferred embodiments of the invention makes it possible to synchronize the escape wheel with the tuning fork resonator at each half-oscillation of the tuning fork resonator, which further increases the resistance to shocks.
  • the tuning fork resonator according to one of the embodiments of the invention has a structure allowing solid embedding ensuring the resistance to shocks of the resonator and of its assembly.
  • FIG. 1 shows the prior art according to the document EP 2 466 401 A1 .
  • the U-shaped tuning fork resonator 1 carries at the end of each branch a permanent magnet 2 oriented so that the magnetic fields created by the magnets are in the same direction.
  • the escape wheel 3 is arranged between the branches of the tuning fork and carries in the example drawn six permanent magnets 4 alternately oriented so as to show the magnets of the tuning fork opposite or identical magnetic poles.
  • the escape wheel also carries the pinion 5 meshing in the gear train of the timepiece.
  • FIG. 1a shows the tangential forces that develop when the escape wheel turns slowly and the resonator is stationary. This is the starting situation of the watch movement.
  • the geometry in figure 1 being symmetrical with respect to a plane through the axis of the wheel and passing through the magnets of the tuning fork, there can be no tangential force.
  • the magnets of opposite polarity attract each other which will produce the forces 7 and 8. It can be seen that the two tangential forces produce a torque on the wheel exhaust which acts in the same direction and against rotation in the direction of arrow 6.
  • figure 1b shows the resulting tangential force (the sum of the two forces 7 and 8 shown in picture 1a ) of the prior art according to the figure 1 as a function of the angle of rotation of the escape wheel 3.
  • the angle of rotation represented corresponds to the advancement of the escape wheel from one position of stable equilibrium to the next.
  • the movement begins with the angle of rotation 0 in the situation drawn in figure 1 .
  • This situation corresponds to the stable equilibrium of the escape wheel and it is indicated by the arrow designated by A.
  • the escape wheel will have made the half of the rotation (denoted by 0.5) and it arrives in the position of unstable equilibrium.
  • FIG 2 shows one of the preferred embodiments of the present invention.
  • the escapement wheel 9 carries a crown of ferromagnetic material 10 provided with internal 11 and external 12 toothing.
  • the escapement wheel meshes with the wheel train of the timepiece by means of the pinion 13.
  • clockwork and its mainspring (barrel spring) are well known and are not shown in the figures.
  • Above the ferromagnetic crown 10 is the tuning fork resonator 14.
  • the tuning fork resonator comprises two branches 16 and 17 attached to a solid base 15.
  • the embodiment drawn schematically in figure 2 is explained in more detail with reference to figures 3 and 4 which show the sections through the structure in the planes AA' and B-B', the view in these sections is in the direction of the arrows in fig.2 .
  • FIG. 3 is a central section through the escape wheel in plane BB' showing the interaction between the ferromagnetic structure and the tuning fork resonator.
  • the hatched surfaces correspond to cut parts of the structure, while the white surfaces are visible surfaces outside the plane of the cut.
  • the two branches of the tuning fork 16 and 17 which can be seen here cut close to their free end carry magnets 18 and 19.
  • the indication “N/S” in the magnets indicates their polarity.
  • the bottom side of the magnets carries pole pieces 20 and 21 which direct the flux magnetic to the ferromagnetic structure 10 of the escape wheel. In the position drawn in the figure 2 And 3 , the right pole piece 21 is opposite a tooth of the ferromagnetic structure while the left pole piece 20 is between two teeth.
  • FIG. 4 shows the central section according to the plane A - A'.
  • the figure shows the mounting of the tuning fork in the cage of the movement 22, this part is normally called “plate” by the person skilled in the art and, in a highly schematic way, the bearing of the escapement wheel.
  • the central section is seen through the escapement wheel, the shaft of the wheel 23 being interrupted in the region of the magnets and the tuning fork to allow the representation of those elements which are outside the plane of the section.
  • the foot of the tuning fork 15 is cut and we see the rigid mounting that the structure of the tuning fork according to the invention allows to achieve.
  • FIG. 2 And 3 show that the embodiment according to the invention causes the tuning fork to interact with the crown made of ferromagnetic material with its external toothing on one arm of the tuning fork (the arm 16) and with the internal toothing on the other arm (the arm 17). It is also noted that the interaction with the ring gear is alternating, when the pole piece of the right arm 17 is opposite a tooth of the ferromagnetic ring gear 10, the pole piece of the other arm 16 is between two teeth.
  • FIG. 5 shows the tangential forces 25 and 26 which develop in the structure according to the invention when the escape wheel rotates in the direction of the arrow 24. It can be seen that by turning the escape wheel clockwise by relative to its position of equilibrium, a pole piece of the tuning fork moves away from one tooth of the ferromagnetic structure while the other approaches. This will produce tangential forces as drawn by arrows 25 and 26 and it will be seen that the two tangential forces produce torques at the escape wheel in opposite directions. As a result, the torques created by the tangential forces cancel each other out.
  • FIG. 6 is a graphical representation of the tangential forces 25 and 26 as a function of the angle of rotation of the escape wheel. It can be seen that the two forces 25 and 26 oppose each other, giving the very weak resultant force, designated 27. If the two magnets have the correct magnetization, the resultant force 27 is zero, the inevitable manufacturing tolerances mean, however, that the two forces 25 and 26 do not compensate each other exactly and this results in the weak force 27 represented in figure 6 . By way of example, if one of the magnets has a magnetization which deviates from the design value by 1%, the force 27 will also have a value corresponding to 1% of the forces 25 or 26 respectively.
  • the wheel rotation scale covers the advancement of the wheel by one tooth, in the situation corresponding to the picture 2 there are 36 teeth, the wheel will have traveled 10° in the designated range of 0 to 1 on the axis of rotation of the wheel.
  • the amplitude of vibration of its arms becomes high and can reach several hundredths of a millimeter.
  • FIG 7 shows the tangential forces acting on the escape wheel when the escape wheel is synchronized to the frequency of the tuning fork resonator.
  • the result shown in figure 7 shows the magnetic forces of the device drawn in picture 2 .
  • the horizontal axis indicates the rotation of the escape wheel by one complete tooth. At the zero position, the tooth is opposite the pole piece as drawn in picture 2 . At positions 5 and -5 the wheel is rotated by half a tooth, the range of rotation shown in the figure 7 corresponds to the rotation of the wheel by one complete tooth.
  • the vertical axis is that of the tangential forces.
  • Curve 28 shows the force exerted by the pole piece on arm 17, curve 29 the negative value of that exerted by the pole piece on arm 16 and curve 30 gives the sum of the two curves.
  • the figure shows the situation when the escape wheel is synchronized with the oscillation of the tuning fork. This condition is met when the escape wheel rotates one tooth in time as the resonator completes one oscillation. It can be seen that the tangential force shown in curve 30, which indicates the sum of the forces of the two arms, is substantially weaker than either of the forces 28 and 29.
  • the tuning fork even when oscillating at high amplitude, is not able to synchronize the escape wheel on its own frequency.
  • the resultant tangential force is in fact weak and it can be seen that it also has positive and negative components which are of close magnitude so that the overall result covering the resultant force during the advancement of a complete tooth will be very weak.
  • the figure 7 shows the situation where the tuning fork resonator vibrates exactly in phase with the rotation of the escape wheel.
  • the tooth of the toothing 11 is exactly opposite the pole piece of the arm 17, when the tuning fork is at its end, separated.
  • the escape wheel which is driven by the mainspring of the timepiece through the gear train, normally tends to spin faster than the tuning fork resonator oscillates. Its movement of the teeth precedes the vibration of the tuning fork.
  • phase shift is measured in °, 0° means no phase shift; at 180° the phase shift corresponds to an advance of half a tooth and at minus 180° the escape wheel would be behind by half a tooth.
  • FIG 8 shows the torque resulting from the interaction between the vibrating tuning fork and the escape wheel as a function of the phase difference between the rotation of the escape wheel and the vibration of the resonator.
  • the tangential forces of the two arms of the tuning fork are multiplied with their corresponding radius to obtain the torque acting on the escape wheel and the vertical axis indicates the sum of the two torques, therefore the resulting torque on the escape wheel.
  • Negative torque values in the figure 8 correspond to a torque which brakes the escapement wheel, positive torque values accelerate the escapement wheel.
  • There figure 8 shows that in the range from 0 to 100° approximately the braking torque acting on the escape wheel increases continuously with the phase shift.
  • the tuning fork resonator according to the invention has a very different shape from a U-shaped tuning fork according to the prior art described in the document EP 2 466 401 A1 .
  • the tuning fork consists of two branches attached to a foot 15 in the form of a solid plate.
  • This geometry has several advantages over the prior art resonator shown in figure 1 . The advantages are the consequence of the movements and deformations in this tuning fork structure.
  • the tuning fork according to figure 2 deforms as if the two arms 16 and 17 were embedded and immobile at their base and oscillate at their free end in a left-right movement in counter phase.
  • the structure drawn in figure 2 is not the only possibility of a resonator satisfying the requirements of a magnetic escapement according to the invention.
  • FIG 9 shows as an example a double tuning fork structure.
  • the double tuning fork structure offers the possibility of attaching masses 31 and 32 to the end of the two additional branches. These masses 31 and 32 can be mounted at an adjustable position and make it possible to adjust the resonance frequency of the double tuning fork.
  • Other methods of adjusting a tuning fork to the chronometric frequency are known from skilled in the art, such as the removal of small amounts of mass at the end of the temples by laser material ablation.
  • provision may also be made to replace the discrete permanent magnets with one or more magnetic layers, typically in a platinum and cobalt alloy (50-50 at.%) or in samarium cobalt.
  • the regulator system of the invention has been described above in connection with the use of magnets and therefore of magnetostatic forces, it is also envisaged according to the invention to replace the discrete magnets or the layer or layers magnetic by electrets and electrostatic forces.
  • the construction of the regulator system is entirely similar and is dimensioned according to the permanent electrostatic fields established between the branches of the resonator and the escapement wheel.
  • electrostatic forces and torques it is possible to use a conductive material either for the branches of the resonator if the escapement wheel is electrified and charged with sufficient energy, or for the escapement wheel. exhaust if it is the branches of the resonator which are electrified and charged, this conductive material is locally polarized.
  • the tuning fork resonator can carry electrets at the end of each arm and the wheel escapement is conductive or electrified locally, on the teeth of the wheel coming opposite the electrets of the resonator, with opposite charges to the electrets of the resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromechanical Clocks (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Electric Clocks (AREA)

Description

La présente invention concerne le système régulateur d'une pièce d'horlogerie mécanique. Par système régulateur ou organe régulateur on entend deux dispositifs distincts : le résonateur et l'échappement.The present invention relates to the regulating system of a mechanical timepiece. By regulating system or regulating organ is meant two separate devices: the resonator and the escapement.

Le résonateur est l'organe produisant un mouvement périodique qui constitue la base de temps de la pièce d'horlogerie. Les résonateurs bien connus sont les pendules oscillant sous l'effet de la gravitation, les balanciers formant avec le spiral associé un résonateur mécanique oscillant autour de l'arbre du balancier et les diapasons oscillant par déformation élastique de leur structure. La réalisation la mieux connue des diapasons est le diapason utilisé dans la musique, celle produite en plus grande nombre est cependant le résonateur fabriqué en quartz cristallin utilisé comme base de temps pour les montres électroniques.The resonator is the organ producing a periodic movement which constitutes the time base of the timepiece. Well-known resonators are pendulums oscillating under the effect of gravitation, balance wheels forming with the associated hairspring a mechanical resonator oscillating around the shaft of the balance wheel and tuning forks oscillating by elastic deformation of their structure. The best known realization of tuning forks is the tuning fork used in music, the one produced in greatest number however is the resonator made of crystalline quartz used as a time base for electronic watches.

L'échappement est l'élément de liaison entre le rouage de la pièce d'horlogerie et le résonateur. L'échappement a deux fonctions. Premièrement il doit transmettre au résonateur l'énergie nécessaire au maintien de son oscillation. Cette fonction est normalement réalisée par un mécanisme transmettant au résonateur de l'énergie provenant de la dernière roue de l'engrenage (ci-après appelée roue d'échappement). En plus de la transmission de l'énergie alimentant le résonateur, l'échappement doit contrôler la vitesse d'avancement du rouage et la synchroniser avec l'oscillation du résonateur. Cette deuxième fonction est normalement réalisée par une partie du mécanisme de l'échappement qui s'engage dans les dents de la roue d'échappement et ne laisse passer la dent active que quand le résonateur a effectué une oscillation. Beaucoup de principes d'échappements sont connus dans l'horlogerie, l'échappement le plus utilisé dans le domaine des montres bracelets est l'échappement à ancre, plus particulièrement l'échappement à ancre suisse qui est cité ici à titre d'exemple seulement. Une description de l'échappement à ancre suisse se trouve par exemple dans le document EP 2 336 832 A2 .The escapement is the connecting element between the gear train of the timepiece and the resonator. The escapement has two functions. First, it must transmit to the resonator the energy necessary to maintain its oscillation. This function is normally performed by a mechanism transmitting to the resonator energy from the last wheel of the gear (hereafter called the escapement wheel). In addition to transmitting the energy supplying the resonator, the escapement must control the speed of progress of the gear train and synchronize it with the oscillation of the resonator. This second function is normally carried out by a part of the escapement mechanism which engages in the teeth of the escape wheel and only allows the active tooth to pass when the resonator has oscillated. Many escapement principles are known in watchmaking, the most widely used escapement in the field of wristwatches is the lever escapement, more particularly the Swiss lever escapement which is cited here by way of example only. A description of the Swiss lever escapement can be found, for example, in the document EP 2 336 832 A2 .

Les échappements mécaniques ne peuvent remplir leurs fonctions qu'au moyen d'un contact mécanique direct avec les dents de la roue d'échappement ainsi qu'avec le résonateur. Dans l'exemple de l'échappement à ancre suisse, l'ancre est en contact avec le résonateur pendant que celui-ci est proche du point d'équilibre et il est presque en permanence en contact avec une des dents de la roue d'échappement. La situation s'aggrave par le fait que, dans un échappement mécanique, les contacts aussi bien avec les dents de la roue d'échappement qu'avec le résonateur sont au moins partiellement accompagnés d'un mouvement glissant entre les deux éléments en contact. Un mouvement glissant implique forcément des pertes de frottement ce qui a plusieurs conséquences néfastes.Mechanical escapements can only perform their functions by means of direct mechanical contact with the teeth of the escape wheel as well as with the resonator. In the example of the Swiss lever escapement, the lever is in contact with the resonator while the latter is close to the point of balance and it is almost permanently in contact with one of the teeth of the wheel. exhaust. The situation is aggravated by the fact that, in a mechanical escapement, the contacts both with the teeth of the escape wheel and with the resonator are at least partially accompanied by a sliding movement between the two elements in contact. A sliding movement necessarily involves losses of friction, which has several harmful consequences.

Un désavantage majeur du contact avec le résonateur impliquant des frottements est le fait de perturber le mouvement du résonateur avec des forces qui ne sont pas du type des forces dites « élastiques ». Ceci signifie que le résonateur est perturbé avec des forces influençant sa fréquence propre. Cette perturbation influence les performances horlogères de la pièce. On comprend facilement que la perturbation du mouvement du résonateur dépend de l'ampleur de l'interaction de l'échappement avec le résonateur. Comme la roue d'échappement est entrainée par le train d'engrenage et celui-ci par le ressort de barillet, l'erreur chronométrique créée par le contact entre le mécanisme d'échappement et le résonateur dépend de l'état du ressort de barillet : l'erreur chronométrique est différente si le ressort de barillet est très tendu par rapport à la situation d'une montre où le ressort de barillet est presque complètement détendu. Cette erreur chronométrique est bien connue des spécialistes sous le nom d'erreur d'isochronisme.A major disadvantage of contact with the resonator involving friction is the fact of disturbing the movement of the resonator with forces which are not of the so-called "elastic" type of forces. This means that the resonator is disturbed with forces influencing its natural frequency. This disturbance influences the horological performances of the piece. It is easily understood that the disturbance of the movement of the resonator depends on the magnitude of the interaction of the escapement with the resonator. As the escapement wheel is driven by the gear train and the latter by the mainspring, the chronometric error created by the contact between the escapement mechanism and the resonator depends on the state of the mainspring. : the chronometric error is different if the barrel spring is very tight compared to the situation of a watch where the barrel spring is almost completely relaxed. This chronometric error is well known to specialists under the name of isochronism error.

En plus de ceci, le mouvement glissant implique des frottements et de ce fait des pertes d'énergie. Afin de réduire les pertes d'énergie par frottement, les éléments en contact sont graissés ou huilés avec grand soin et on utilise des produits de lubrification très poussés. Ceci permet de réduire les pertes par frottement, mais implique cependant que les performances chronométriques deviennent dépendantes de la performance des lubrifiants. Celles-ci varient avec le temps, les lubrifiants se dégradent ou ne restent plus sur la surface à lubrifier. Suite à ce phénomène, les performances de la montre se dégradent et celle-ci doit être nettoyée et à nouveau lubrifiée.In addition to this, sliding motion involves friction and hence energy losses. In order to reduce energy losses by friction, the elements in contact are greased or oiled with great care and very advanced lubricating products are used. This makes it possible to reduce losses by friction, but nevertheless implies that the chronometric performance becomes dependent on the performance of the lubricants. These vary over time, the lubricants degrade or no longer remain on the surface to be lubricated. Following this phenomenon, the performance of the watch deteriorates and it must be cleaned and lubricated again.

Beaucoup de développements ont été faits pour réduire le contact glissant entre le mécanisme de l'échappement et le résonateur. A titre d'exemple EP 1 967 919 B1 décrit un échappement coaxial améliorant les conditions de transmission d'énergie entre la roue échappement et le résonateur. Bien que ce type d'échappement soit une amélioration par rapport à l'échappement à ancre suisse, il ne peut éviter des contacts glissants et il ne peut de ce fait pas éviter les pertes de friction mentionnées plus haut.Many developments have been made to reduce the sliding contact between the escapement mechanism and the resonator. For exemple EP 1 967 919 B1 describes a coaxial escapement improving the conditions for transmitting energy between the escapement wheel and the resonator. Although this type of escapement is an improvement over the Swiss lever escapement, it cannot avoid sliding contacts and therefore cannot avoid the friction losses mentioned above.

Les pertes de friction peuvent cependant être évitées si la transmission d'énergie par contact mécanique est remplacée par une transmission sans contact par exemple par des forces magnétiques ou électrostatiques. Celles-ci n'ont évidemment pas de pertes de frottement. Un échappement où les contacts mécaniques sont remplacés par des aimants est appelé échappement magnétique. Des échappements magnétiques sont connus depuis fort longtemps. H.S. Baker a été le premier à déposer un brevet (U.S.) pour un échappement magnétique en 1927, suivi par C.F. Clifford (1938) et R. Straumann en 1941. Ces développements ont conduit à une réalisation industrielle : la société allemande Junghans a produit un réveil muni d'un échappement magnétique au début des années `60. Une description de cet échappement se trouve dans l'article de C.F. Clifford dans le « Horological Journal » édition avril 1962 . Cet échappement ne remplissait cependant que la moitié des fonctions classiques d'un échappement : il synchronisait la roue d'échappement au mouvement de l'oscillateur, mais l'oscillateur en forme de diapason était entrainé électriquement. Il ne s'agissait donc pas d'un mouvement mécanique, mais plutôt d'une montre (d'un réveil) électromécanique ou électronique. Les performances supérieures des mouvements électroniques à quartz ainsi que leur coût de revient plus bas ont fait perdre tout intérêt à l'échappement magnétique dès les années '70. L'intérêt croissant pour les montres mécaniques est à l'origine de développements récents dans ce domaine ; le document EP 2 466 401 A1 décrit une réalisation qui peut être considérée comme l'état actuel de la technique. Ce document décrit l'ensemble des organes régulateurs d'une montre mécanique, le résonateur et l'échappement. Le résonateur est un résonateur en forme de diapason dans sa forme similaire aux diapasons connus de la musique. Le résonateur diapason a en effet un grand nombre d'avantages par rapport au résonateur balancier spiral. Premièrement, il n'a pas besoin de paliers et de ce fait son facteur de qualité n'est pas dégradé par les frottements dans les paliers (ses pertes par oscillation sont moindres) et le résonateur diapason n'a pas besoin de lubrification susceptible de demander des services réguliers de la montre. Il est bien connu également que le résonateur diapason permet des performances chronométriques bien meilleures qu'un résonateur balancier-spiral. Max Hetzel et la société Bulova sont à l'origine des montres bracelet munis de résonateurs en forme de diapason, son brevet a été déposé en 1953, et la technologie utilisée est décrite par exemple dans le document US 2,971,323 . Trois producteurs ont commercialisé plus de six millions de montres selon les principes décrits dans ce document ; la société Bulova avec le produit appelé « Accutron », la société Citizen avec le produit appelé « HiSonic » et la société Ebauches SA avec un produit appelé « Swissonic 100 » ou « Mosaba ». Les trois produits n'étaient cependant pas des montres mécaniques. Le résonateur diapason était en effet entrainé et maintenu en oscillation par un circuit électronique fournissant des impulsions électriques à deux bobines situées en face d'aimants attachés aux extrémités des branches du diapason similaire au produit de la société Junghans susmentionnée. Le rouage était entrainé par le diapason moyennant un mécanisme de cliquet attaché à une des branches. L'énergie pour le fonctionnement de la montre venait de l'alimentation électrique du circuit d'excitation à transistor du diapason. Il s'agissait effectivement de montres électriques ou électroniques. Ces produits ont démontré les performances chronométriques supérieures d'un résonateur en forme de diapason par rapport à un résonateur balancier - spiral : leur précision de marche était meilleure que celle d'une montre munie d'un résonateur balancier - spiral. Il est bien connu également que la précision de marche d'une montre électronique à quartz est très supérieure à celle d'une montre mécanique. Ceci est également dû à la stabilité du résonateur diapason à quartz régulant la marche de ces produits.Friction losses can, however, be avoided if the transmission of energy by mechanical contact is replaced by a transmission without contact, for example by magnetic or electrostatic forces. These obviously have no friction losses. An escapement where the mechanical contacts are replaced by magnets is called a magnetic escapement. Magnetic escapements have been known for a very long time. HS Baker was the first to file a patent (US) for a magnetic escapement in 1927, followed by CF Clifford (1938) and R. Straumann in 1941. These developments led to an industrial achievement: the German company Junghans produced a alarm clock fitted with a magnetic escapement in the early `60s. A description of this escapement can be found in the article by CF Clifford in the “Horological Journal” April 1962 edition . This exhaust, however, only fulfilled half of the classic functions of an escapement: it synchronized the escapement wheel to the movement of the oscillator, but the tuning fork-shaped oscillator was electrically driven. It was therefore not a mechanical movement, but rather an electromechanical or electronic watch (alarm clock). The superior performance of electronic quartz movements as well as their lower cost caused the magnetic escapement to lose all interest in the 1970s. The growing interest in mechanical watches is behind recent developments in this field; the document EP 2 466 401 A1 describes an embodiment which can be considered as the current state of the art. This document describes all the regulating organs of a mechanical watch, the resonator and the escapement. The resonator is a tuning fork shaped resonator in its shape similar to the tuning forks known from music. The tuning fork resonator has indeed a large number of advantages compared to the spiral balance wheel resonator. Firstly, it does not need bearings and therefore its quality factor is not degraded by friction in the bearings (its losses by oscillation are lower) and the tuning fork resonator does not need lubrication likely to request regular watch services. It is also well known that the tuning fork resonator provides much better chronometric performance than a balance-spring resonator. Max Hetzel and the Bulova company are at the origin of wristwatches equipped with tuning fork-shaped resonators, his patent was filed in 1953, and the technology used is described for example in the document US 2,971,323 . Three producers have marketed more than six million watches according to the principles described in this document; the company Bulova with the product called “Accutron”, the company Citizen with the product called “HiSonic” and the company Ebauches SA with a product called “Swissonic 100” or “Mosaba”. The three products, however, were not mechanical watches. The tuning fork resonator was in fact driven and maintained in oscillation by an electronic circuit supplying electrical impulses to two coils located opposite of magnets attached to the ends of the arms of the tuning fork similar to the product of the aforementioned Junghans company. The cog was driven by the tuning fork by means of a ratchet mechanism attached to one of the branches. The energy for the operation of the watch came from the power supply of the transistor driver circuit of the tuning fork. They were indeed electric or electronic watches. These products demonstrated the superior chronometric performance of a resonator in the form of a tuning fork compared to a balance-spring resonator: their rate accuracy was better than that of a watch fitted with a balance-spring resonator. It is also well known that the rate precision of an electronic quartz watch is much higher than that of a mechanical watch. This is also due to the stability of the quartz tuning fork resonator regulating the operation of these products.

Le choix d'un résonateur diapason est donc judicieux et le document EP 2 466 401 A1 montre le diapason muni de deux aimants (un aimant sur chaque branche) similaire aux montres à diapason susmentionnées. La fonction d'échappement est réalisée selon ce document par une roue d'échappement portant une multitude d'aimants situés entre les branches du diapason et de telle sorte que les aimants du diapason sont en face d'une paire d'aimants de la roue échappement comme représenté dans la figure 1 de la présente demande. Le fonctionnement de l'échappement magnétique selon EP 2 466 401 A1 est décrit dans ce document et n'est ici que brièvement résumé pour la description de l'invention faisant l'objet de la présente demande. On comprend que, si les aimants de la roue d'échappement sont en face des aimants du diapason et ceci avec la bonne polarité (un pôle N est en face d'un pôle S), les branches du diapason sont tirées vers la roue d'échappement, si les aimants sont en face avec polarité identique les branches du diapason sont poussées vers l'extérieur. En rotation, la roue d'échappement va alternativement transmettre une force aux branches du diapason poussant les branches vers l'extérieur puis les tirant vers l'intérieur. On comprend que la rotation de la roue d'échappement va exciter la vibration du diapason. Un résonateur est caractérisé par le fait que son amplitude de vibration devient très grande quand il est excité à sa fréquence de résonance propre et ceci est également le cas avec le résonateur diapason décrit dans le document EP 2 466 401 A1 . Quand la roue d'échappement approche la vitesse de rotation excitant le diapason dans sa fréquence de résonance, son amplitude devient substantiellement plus grande. Comme il va être montré plus tard dans la description détaillée de l'invention, les aimants du diapason exercent également une force tangentielle sur les aimants de la roue d'échappement. Cette force tangentielle agit dans le sens de freiner la roue d'échappement quand elle commence de devancer la vitesse donnée par les oscillations du diapason. C'est cette force tangentielle qui synchronise la vitesse de la roue d'échappement sur la fréquence du diapason et contrôle de ce fait la marche de la montre.The choice of a tuning fork resonator is therefore judicious and the document EP 2 466 401 A1 shows the tuning fork with two magnets (one magnet on each arm) similar to the aforementioned tuning fork watches. The escapement function is performed according to this document by an escapement wheel carrying a multitude of magnets located between the arms of the tuning fork and in such a way that the magnets of the tuning fork are opposite a pair of wheel magnets exhaust as shown in the figure 1 of this request. The operation of the magnetic escapement according to EP 2 466 401 A1 is described in this document and is here only briefly summarized for the description of the invention which is the subject of the present application. It is understood that, if the magnets of the escape wheel are opposite the magnets of the tuning fork and this with the correct polarity (an N pole is opposite an S pole), the branches of the tuning fork are pulled towards the wheel d escapement, if the magnets are opposite each other with identical polarity, the branches of the tuning fork are pushed outwards. In rotation, the escape wheel will alternately transmit a force to the arms of the tuning fork pushing the arms outwards then pulling them inwards. It is understood that the rotation of the escape wheel goes excite the vibration of the tuning fork. A resonator is characterized by the fact that its vibration amplitude becomes very large when it is excited at its own resonant frequency and this is also the case with the tuning fork resonator described in the document EP 2 466 401 A1 . As the escape wheel approaches the speed of rotation exciting the tuning fork into its resonant frequency, its amplitude becomes substantially greater. As will be shown later in the detailed description of the invention, the magnets of the tuning fork also exert a tangential force on the magnets of the escape wheel. This tangential force acts in the direction of braking the escapement wheel when it begins to anticipate the speed given by the oscillations of the tuning fork. It is this tangential force which synchronizes the speed of the escapement wheel with the frequency of the tuning fork and thereby controls the rate of the watch.

Le dispositif selon le document EP 2 466 401 A1 a cependant plusieurs désavantages qui sont la conséquence du fait que le diapason interagit avec la roue d'échappement de sorte à produire des forces tangentielles qui varient fortement quand la roue avance par une dent. On comprend facilement que les forces tangentielles agissant sur la roue d'échappement produisent un couple qui tire la roue dans la position ou les aimants sur la roue et sur le diapason sont en face et de polarité opposée. Celle-ci est la position d'équilibre stable. Partant de la position d'équilibre stable et tournant la roue d'échappement p. ex. dans le sens horaire l'interaction entre les aimants sur la roue et sur le diapason va d'abord créer un couple tirant la roue de retour dans la position d'équilibre. Ceci est le cas jusqu'à ce que les aimants de polarité identique soient en face. Dans cette situation, la disposition des aimants est à nouveau symétrique et il n'y a plus de forces tangentielles donc aucun couple sur la roue d'échappement. Cette position est la position d'équilibre instable de la roue. Si la roue d'échappement continue de tourner dans le même sens un couple tirant la roue vers la prochaine position d'équilibre stable se développe. On constate que les forces tangentielles exercées sur la roue d'échappement par le système décrit en EP 2 466 401 A1 varient très fortement quand la roue avance d'une position d'équilibre stable à la prochaine. Cette situation a plusieurs désavantages significatifs.The device according to the document EP 2 466 401 A1 has however several disadvantages which are the consequence of the fact that the tuning fork interacts with the escapement wheel so as to produce tangential forces which vary greatly when the wheel advances by one tooth. It is easily understood that the tangential forces acting on the escapement wheel produce a torque which pulls the wheel into the position where the magnets on the wheel and on the tuning fork are opposite and of opposite polarity. This is the position of stable equilibrium. Starting from the position of stable equilibrium and turning the escape wheel p. ex. Clockwise interaction between the magnets on the wheel and on the tuning fork will first create a torque pulling the wheel back into the equilibrium position. This is the case until the magnets of identical polarity are opposite each other. In this situation, the arrangement of the magnets is again symmetrical and there are no longer any tangential forces and therefore no torque on the escape wheel. This position is the unstable equilibrium position of the wheel. If the escape wheel continues to rotate in the same direction a torque pulling the wheel to the next stable equilibrium position develops. It can be seen that the tangential forces exerted on the escape wheel by the system described in EP 2 466 401 A1 vary greatly as the wheel advances from one stable equilibrium position to the next. This situation has several significant disadvantages.

La première conséquence est le fait que la roue d'échappement est bloquée par les forces des aimants quand elle est à l'arrêt. On comprend facilement que, si les aimants de la roue d'échappement sont en face des aimants du diapason et de polarité inverse, les deux paires d'aimants s'attirent et la roue échappement reste bloquée dans cette position. Cette situation arrive à chaque fois que le rouage de la montre est arrêté, ce qui se produit si la montre n'est pas portée et s'arrête à la fin de sa réserve de marche, mais aussi lors des mises à l'heure où l'on stoppe le rouage pour la mise en route à la seconde précise. Ce phénomène est bien connu et typique pour les pièces d'horlogerie munies d'un échappement magnétique de l'art antérieur. Les pièces d'horlogerie munies d'échappements magnétiques du type C.F. Clifford avaient des mécanismes sophistiqués pour lancer la roue d'échappement lors de la mise en route du mouvement.The first consequence is the fact that the escape wheel is blocked by the forces of the magnets when it is stationary. It is easy to understand that, if the magnets of the escape wheel are opposite the magnets of the tuning fork and of opposite polarity, the two pairs of magnets attract each other and the escape wheel remains blocked in this position. This situation occurs each time the train of the watch is stopped, which occurs if the watch is not worn and stops at the end of its power reserve, but also when setting the time when the gear train is stopped for start-up at the precise second. This phenomenon is well known and typical for timepieces provided with a magnetic escapement of the prior art. Timepieces fitted with magnetic escapements of the C.F. Clifford type had sophisticated mechanisms for spinning the escape wheel when the movement was started.

Le deuxième désavantage du système décrit en EP 2 466 401 A1 est sa sensibilité à la désynchronisation en cas de choc. Le fait de placer des aimants sur la roue d'échappement et sur les bras du diapason conduit à des forces importantes entre les deux organes régulateurs. La puissance mécanique nécessaire pour synchroniser une montre mécanique est cependant très petite. La puissance mécanique étant donnée par le produit entre la force tangentielle et la vitesse, on constate que des forces importantes conduisent nécessairement à des vitesses faibles. Dans le cas d'un mouvement rotatif, ils conduisent à une vitesse de rotation de la roue d'échappement basse. Notamment les montres bracelets sont soumises à des chocs assez violents. Si la montre tombe par terre, des chocs de plusieurs milliers de fois l'accélération terrestre sont atteints. Même en utilisation normale, des chocs produisant des accélérations beaucoup plus élevées que l'accélération terrestre sont fréquents. Un choc n'est généralement pas seulement une accélération linéaire, la montre touche ou tombe normalement sur un coin de la pièce de sorte que l'accélération est une combinaison d'une accélération linéaire et d'une accélération angulaire. Si la composante angulaire de l'accélération due au choc accélère la roue d'échappement à une vitesse angulaire dépassant la vitesse de synchronisation avec le diapason, le mécanisme de synchronisation susmentionné ne fonctionnera plus et la roue d'échappement continue d'accélérer, entrainée par le rouage et le ressort barillet de la montre. Dans un tel cas, la montre perd toutes ses qualités chronométriques, les aiguilles tournent à une vitesse beaucoup trop élevée. Le risque de désynchronisation dans un système selon le document EP 2 466 401 A1 est également élevé parce que la synchronisation entre la roue d'échappement et le mouvement du résonateur diapason se fait aux positions relatives des deux organes où les forces d'attraction sont grandes et ceci n'est le cas qu'une fois par oscillation du résonateur dans la position dessinée en figure 1.The second disadvantage of the system described in EP 2 466 401 A1 is its sensitivity to desynchronization in the event of a shock. Placing magnets on the escape wheel and on the arms of the tuning fork leads to significant forces between the two regulating organs. The mechanical power needed to synchronize a mechanical watch, however, is very small. The mechanical power being given by the product between the tangential force and the speed, it is found that large forces necessarily lead to low speeds. In the case of a rotary motion, they lead to a low escape wheel rotational speed. Wristwatches in particular are subjected to quite violent shocks. If the watch falls on the ground, shocks of several thousand times the terrestrial acceleration are reached. Even in normal use, shocks producing accelerations much higher than Earth's acceleration are common. A shock is not usually not just linear acceleration, the watch normally touches or falls on a corner of the room so the acceleration is a combination of linear acceleration and angular acceleration. If the angular component of the acceleration due to the shock accelerates the escapement wheel to an angular velocity exceeding the speed of synchronization with the tuning fork, the aforementioned synchronization mechanism will no longer work and the escapement wheel continues to accelerate, driven by the gear train and the barrel spring of the watch. In such a case, the watch loses all its chronometric qualities, the hands turn at a much too high speed. The risk of desynchronization in a system according to the document EP 2 466 401 A1 is also high because the synchronization between the escapement wheel and the movement of the tuning fork resonator takes place at the relative positions of the two organs where the forces of attraction are great and this is the case only once per oscillation of the resonator in the position drawn in figure 1 .

Un autre désavantage de la réalisation selon le document EP 2 466401 A1 est lié à la forme du diapason décrit dans ce document. Le résonateur diapason est en effet un diapason en forme d'un barreau oscillant, plié en U. Ce type de diapason est bien connu de la musique et est utilisée pour accorder des instruments. Il est connu de son application dans la musique que ce type de diapason transmet sa vibration par sa tige attachée au milieu du U du diapason. Le musicien sait bien que le son du diapason est bien plus audible si le diapason est posé sur une surface capable de vibrer à sa fréquence, par exemple sur le couvercle du piano. Ceci vient du fait que le diapason transmet son énergie de vibration par sa tige au couvercle du piano qui - considérant sa grande surface - la transmet à l'air comme un haut-parleur. Un résonateur horloger devrait cependant garder son énergie dans la structure résonnante et ne pas la perdre dans la fixation, des pertes dans la fixation dégradent son facteur de qualité et de ce fait ses propriétés chronométriques. La fixation au pied d'un diapason en U est de ce fait très désavantageuse. Le document EP 2 466 401 A1 mentionne le fait que le diapason en U a deux points qui restent immobiles, les points (ou axes) nodaux. Le diapason en U pourrait théoriquement être attaché à son support à ses deux points. Dans les conditions d'une montre bracelet notamment et considérant les grandes accélérations à laquelle elle doit résister, cette solution n'est cependant pas réalisable: soit l'attachement du diapason est effectivement suffisamment petit pour ne pas perturber la vibration du résonateur, auquel cas le dispositif ne résiste pas aux chocs, soit le dispositif résiste aux chocs auquel cas l'attachement est physiquement trop important et il en résulte des pertes d'énergie significatives. Force est de constater que le diapason en U ne permet pas un montage dans le mouvement horloger satisfaisant les conditions exigées de cette application.Another disadvantage of the realization according to the document EP 2 466401 A1 is related to the shape of the tuning fork described in this document. The tuning fork resonator is indeed a tuning fork in the shape of an oscillating bar, bent in a U. This type of tuning fork is well known in music and is used to tune instruments. It is known from its application in music that this type of tuning fork transmits its vibration through its rod attached to the middle of the U of the tuning fork. The musician knows well that the sound of the tuning fork is much more audible if the tuning fork is placed on a surface capable of vibrating at its frequency, for example on the lid of the piano. This is due to the fact that the tuning fork transmits its vibrational energy through its rod to the lid of the piano which - considering its large surface area - transmits it to the air like a loudspeaker. A horological resonator should however keep its energy in the resonant structure and not lose it in the fixing, losses in the fixing degrade its quality factor and therefore its chronometric properties. Attaching a U-shaped tuning fork to the foot is therefore very disadvantageous. The document EP 2 466 401 A1 mentions the fact that the U-shaped tuning fork has two points that remain stationary, the nodal points (or axes). The U-shaped tuning fork could theoretically be attached to its support at its two points. Under the conditions of a wristwatch in particular and considering the great accelerations which it must resist, this solution is however not feasible: either the attachment of the tuning fork is actually small enough not to disturb the vibration of the resonator, in which case the device does not resist shocks, or the device resists shocks in which case the attachment is physically too great and this results in significant energy losses. It is clear that the U-shaped tuning fork does not allow mounting in the watch movement satisfying the conditions required for this application.

D'autres résonateurs horlogers munis d'échappements magnétiques comportant des diapasons sont divulgués dans les documents DE1177077B , GB1128394A et US3208287A .Other horological resonators provided with magnetic escapements comprising tuning forks are disclosed in the documents DE1177077B , GB1128394A And US3208287A .

Le but de la présente invention est de remédier aux inconvénients des échappements magnétiques de l'art antérieur en fournissant un système régulateur d'une pièce d'horlogerie mécanique basé sur l'interaction magnétique entre un résonateur et une roue d'échappement, tel que défini par la revendication 1 du brevet.
Ceci est atteint avec un échappement magnétique interagissant avec le résonateur avec des forces tangentielles négligeables à l'arrêt du résonateur et généralement plus faibles de sorte à permettre une vitesse de rotation de la roue d'échappement suffisamment élevée pour rendre la pièce d'horlogerie insensible aux chocs. Une des formes de réalisation préférées de l'invention permet de synchroniser la roue d'échappement avec le résonateur diapason à chaque demi-oscillation du résonateur diapason ce qui augmente encore la résistance aux chocs. Le résonateur diapason selon une des formes de réalisation de l'invention a une structure permettant un encastrement solide assurant la résistance aux chocs du résonateur et de son montage.
The object of the present invention is to remedy the drawbacks of the magnetic escapements of the prior art by providing a regulating system for a mechanical timepiece based on the magnetic interaction between a resonator and an escapement wheel, such as defined by patent claim 1.
This is achieved with a magnetic escapement interacting with the resonator with negligible tangential forces when the resonator is stopped and generally lower so as to allow a sufficiently high rotational speed of the escape wheel to render the timepiece insensitive. to shocks. One of the preferred embodiments of the invention makes it possible to synchronize the escape wheel with the tuning fork resonator at each half-oscillation of the tuning fork resonator, which further increases the resistance to shocks. The tuning fork resonator according to one of the embodiments of the invention has a structure allowing solid embedding ensuring the resistance to shocks of the resonator and of its assembly.

L'invention est expliquée plus en détail en faisant référence aux figures annexées dans lesquels :

  • la figure 1 montre l'art antérieur, notamment le système selon le document EP 2 466 401 A1 ,
  • la figure 1a représente le dispositif selon la figure 1 en rotation et les forces tangentielles agissant sur la roue d'échappement quand le résonateur est à l'arrêt,
  • la figure 1b montre graphiquement les forces tangentielles selon la figure 1a pendant la rotation de la roue d'échappement d'une position d'équilibre à la prochaine,
  • la figure 2 montre le dispositif selon une réalisation préférée de l'invention,
  • la figure 3 montre une coupe à travers le dispositif montré en figure 2 dans le plan B-B',
  • la figure 4 montre une coupe à travers le dispositif de la figure 2 dans le plan A-A',
  • la figure 5 montre les forces tangentielles agissant sur la roue d'échappement dans le dispositif selon la figure 2 quand le résonateur est à l'arrêt,
  • la figure 6 montre graphiquement les forces tangentielles selon la figure 5 agissant sur la roue d'échappement pendant la rotation de la roue par une dent,
  • la figure 7 montre les forces tangentielles sur la roue d'échappement du dispositif selon l'invention quand le diapason vibre à sa fréquence de résonance et synchronise la vitesse de la roue d'échappement,
  • la figure 8 montre le couple produit par les forces tangentielles sur la roue d'échappement du dispositif selon l'invention quand la roue d'échappement est synchronisée sur l'oscillation du résonateur et ceci en fonction du déphasage entre le mouvement d'oscillation du diapason et la rotation de la roue d'échappement,
  • la figure 9 montre le dispositif selon l'invention avec un résonateur double - diapason en forme de H.
The invention is explained in more detail with reference to the appended figures in which:
  • there figure 1 shows the prior art, in particular the system according to the document EP 2 466 401 A1 ,
  • there picture 1a represents the device according to the figure 1 in rotation and the tangential forces acting on the escape wheel when the resonator is stationary,
  • there figure 1b graphically shows the tangential forces according to the picture 1a during the rotation of the escape wheel from one equilibrium position to the next,
  • there figure 2 shows the device according to a preferred embodiment of the invention,
  • there picture 3 shows a cut through the device shown in figure 2 in plane B-B',
  • there figure 4 shows a section through the device of the figure 2 in plane A-A',
  • there figure 5 shows the tangential forces acting on the escape wheel in the device according to the figure 2 when the resonator is stopped,
  • there figure 6 graphically shows the tangential forces according to the figure 5 acting on the escape wheel during wheel rotation by a tooth,
  • there figure 7 shows the tangential forces on the escape wheel of the device according to the invention when the tuning fork vibrates at its resonant frequency and synchronizes the speed of the escape wheel,
  • there figure 8 shows the torque produced by the tangential forces on the escapement wheel of the device according to the invention when the escapement wheel is synchronized with the oscillation of the resonator and this as a function of the phase difference between the oscillation movement of the tuning fork and the rotation of the escape wheel,
  • there figure 9 shows the device according to the invention with a double H-shaped tuning fork resonator.

En faisant référence aux figures l'invention va être expliquée d'une manière détaillée. La figure 1 montre l'art antérieur selon le document EP 2 466 401 A1 . Le résonateur diapason 1 en forme de U porte à l'extrémité de chaque branche un aimant permanent 2 orienté de sorte à ce que les champs magnétiques créés par les aimants soient dans la même direction. La roue d'échappement 3 est disposée entre les branches du diapason et porte dans l'exemple dessiné six aimants permanents 4 alternativement orientés de sorte à montrer aux aimants du diapason des pôles magnétiques opposés ou identiques. La roue d'échappement porte en plus le pignon 5 engrenant dans le rouage de la pièce d'horlogerie.With reference to the figures the invention will be explained in detail. There figure 1 shows the prior art according to the document EP 2 466 401 A1 . The U-shaped tuning fork resonator 1 carries at the end of each branch a permanent magnet 2 oriented so that the magnetic fields created by the magnets are in the same direction. The escape wheel 3 is arranged between the branches of the tuning fork and carries in the example drawn six permanent magnets 4 alternately oriented so as to show the magnets of the tuning fork opposite or identical magnetic poles. The escape wheel also carries the pinion 5 meshing in the gear train of the timepiece.

La figure 1a montre les forces tangentielles qui se développent quand la roue d'échappement tourne lentement et le résonateur est à l'arrêt. Il s'agit de la situation de démarrage du mouvement horloger. La géométrie en figure 1 étant symétrique par rapport à un plan à travers l'axe de la roue et passant par les aimants du diapason, il ne peut pas y avoir de force tangentielle. En tournant la roue d'échappement par exemple dans le sens horaire comme indiquée par la flèche 6, les aimants de polarité opposés s'attirent ce qui produira les forces 7 et 8. On constate que les deux forces tangentielles produisent un couple sur la roue d'échappement qui agit dans le même sens et contre la rotation dans le sens de la flèche 6.There picture 1a shows the tangential forces that develop when the escape wheel turns slowly and the resonator is stationary. This is the starting situation of the watch movement. The geometry in figure 1 being symmetrical with respect to a plane through the axis of the wheel and passing through the magnets of the tuning fork, there can be no tangential force. By turning the escape wheel for example clockwise as indicated by the arrow 6, the magnets of opposite polarity attract each other which will produce the forces 7 and 8. It can be seen that the two tangential forces produce a torque on the wheel exhaust which acts in the same direction and against rotation in the direction of arrow 6.

La figure 1b montre la force tangentielle résultante (la somme des deux forces 7 et 8 montrées en figure 1a) de l'art antérieur selon la figure 1 en fonction de l'angle de rotation de la roue d'échappement 3. L'angle de rotation représenté correspond à l'avancement de la roue d'échappement d'une position d'équilibre stable à la prochaine. Le mouvement commence par l'angle de rotation 0 dans la situation dessinée en figure 1. Cette situation correspond à l'équilibre stable de la roue d'échappement et elle est indiquée par la flèche désignée par A. En tournant comme dessinée en figure 1a vers la position où les aimants de la roue d'échappement sont en face des aimants du diapason mais en polarité identique, la roue d'échappement aura fait la moitié de la rotation (désignée par 0.5) et elle arrive dans la position d'équilibre instable. Cette position est désignée en figure 1b avec la flèche B. Dans cette première moitié du mouvement de rotation la force tangentielle est positive, elle agit contre la rotation de la roue d'échappement. Dès que le point d'équilibre instable B est dépassé, la force tangentielle tire la roue d'échappement dans le sens de la rotation, dans le diagramme en figure 1b ceci se montre par des forces négatives. A la fin de la rotation, à l'angle de rotation désigné par 1, la roue d'échappement sera à nouveau dans la position A, mais elle aura avancé d'un pas. Dans la situation dessinée en figure 1, ce pas correspond à une rotation de 120° de la roue d'échappement.There figure 1b shows the resulting tangential force (the sum of the two forces 7 and 8 shown in picture 1a ) of the prior art according to the figure 1 as a function of the angle of rotation of the escape wheel 3. The angle of rotation represented corresponds to the advancement of the escape wheel from one position of stable equilibrium to the next. The movement begins with the angle of rotation 0 in the situation drawn in figure 1 . This situation corresponds to the stable equilibrium of the escape wheel and it is indicated by the arrow designated by A. By turning as drawn in picture 1a towards the position where the magnets of the escape wheel are opposite the magnets of the tuning fork but in identical polarity, the escape wheel will have made the half of the rotation (denoted by 0.5) and it arrives in the position of unstable equilibrium. This position is designated in figure 1b with arrow B. In this first half of the rotational movement the tangential force is positive, it acts against the rotation of the escape wheel. As soon as the point of unstable equilibrium B is exceeded, the tangential force pulls the escape wheel in the direction of rotation, in the diagram in figure 1b this shows through negative forces. At the end of the rotation, at the angle of rotation denoted by 1, the escape wheel will again be in position A, but it will have advanced one step. In the situation drawn in figure 1 , this step corresponds to a 120° rotation of the escape wheel.

La figure 2 montre une des réalisations préférées de la présente invention. La roue d'échappement 9 porte une couronne en matériau ferromagnétique 10 munie d'une denture intérieure 11 et extérieure 12. La roue d'échappement engrène dans le rouage de la pièce d'horlogerie au moyen du pignon 13. Le rouage de la pièce d'horlogerie ainsi que son ressort moteur (ressort de barillet) sont bien connus et ne sont pas représentés dans les figures. Par-dessus la couronne ferromagnétique 10 se situe le résonateur diapason 14. Le résonateur diapason comporte deux branches 16 et 17 attachés à une base massive 15. La réalisation dessinée schématiquement en figure 2 est expliquée plus en détail en se référant aux figures 3 et 4 qui montrent les coupes à travers la structure dans les plans A-A' et B-B', la vue dans ces coupes est dans la direction des flèches en fig.2.There figure 2 shows one of the preferred embodiments of the present invention. The escapement wheel 9 carries a crown of ferromagnetic material 10 provided with internal 11 and external 12 toothing. The escapement wheel meshes with the wheel train of the timepiece by means of the pinion 13. clockwork and its mainspring (barrel spring) are well known and are not shown in the figures. Above the ferromagnetic crown 10 is the tuning fork resonator 14. The tuning fork resonator comprises two branches 16 and 17 attached to a solid base 15. The embodiment drawn schematically in figure 2 is explained in more detail with reference to figures 3 and 4 which show the sections through the structure in the planes AA' and B-B', the view in these sections is in the direction of the arrows in fig.2 .

La figure 3 est une coupe centrale à travers la roue d'échappement dans le plan B-B' montrant l'interaction entre la structure ferromagnétique et le résonateur diapason. Les surfaces hachurées correspondent à des parties coupées de la structure, tandis que les surfaces blanches sont des surfaces visibles en dehors du plan de la coupe. Les deux branches du diapason 16 et 17 qu'on voit ici coupées proche de leur extrémité libre portent des aimants 18 et 19. L'indication « N/S » dans les aimants indique leur polarité. Le côté inférieur des aimants porte les pièces polaires 20 et 21 qui dirigent le flux magnétique vers la structure ferromagnétique 10 de la roue d'échappement. Dans la position dessinée dans les figures 2 et 3, la pièce polaire droite 21 est en face d'une dent de la structure ferromagnétique tandis que la pièce polaire gauche 20 est entre deux dents.There picture 3 is a central section through the escape wheel in plane BB' showing the interaction between the ferromagnetic structure and the tuning fork resonator. The hatched surfaces correspond to cut parts of the structure, while the white surfaces are visible surfaces outside the plane of the cut. The two branches of the tuning fork 16 and 17 which can be seen here cut close to their free end carry magnets 18 and 19. The indication “N/S” in the magnets indicates their polarity. The bottom side of the magnets carries pole pieces 20 and 21 which direct the flux magnetic to the ferromagnetic structure 10 of the escape wheel. In the position drawn in the figure 2 And 3 , the right pole piece 21 is opposite a tooth of the ferromagnetic structure while the left pole piece 20 is between two teeth.

La figure 4 montre la coupe centrale selon le plan A - A'. La figure montre le montage du diapason dans la cage du mouvement 22, cette pièce est normalement appelée « platine » par l'homme du métier et, d'une manière fortement schématisée, le palier de la roue d'échappement. On voit la coupe centrale à travers la roue d'échappement, l'arbre de la roue 23 étant interrompu dans la région des aimants et du diapason pour permettre la représentation de ces éléments qui sont en dehors du plan de la coupe. Le pied du diapason 15 est coupé et on s'aperçoit du montage rigide que la structure du diapason selon l'invention permet de réaliser.There figure 4 shows the central section according to the plane A - A'. The figure shows the mounting of the tuning fork in the cage of the movement 22, this part is normally called "plate" by the person skilled in the art and, in a highly schematic way, the bearing of the escapement wheel. The central section is seen through the escapement wheel, the shaft of the wheel 23 being interrupted in the region of the magnets and the tuning fork to allow the representation of those elements which are outside the plane of the section. The foot of the tuning fork 15 is cut and we see the rigid mounting that the structure of the tuning fork according to the invention allows to achieve.

Faisant référence aux figures, le fonctionnement des organes régulateurs selon l'invention va maintenant être décrit en détail. Les figures 2 et 3 montrent que la réalisation selon l'invention fait interagir le diapason avec la couronne en matériau ferromagnétique avec sa denture extérieure sur un bras du diapason (le bras 16) et avec la denture intérieure sur l'autre bras (le bras 17). On constate également que l'interaction avec la couronne dentée est alternante, quand la pièce polaire du bras droit 17 est en face d'une dent de la couronne ferromagnétique 10, la pièce polaire de l'autre bras 16 est entre deux dents. Il est bien connu qu'une pièce en matériau ferromagnétique se fait attirer par un aimant et on constate que la rotation de la roue d'échappement produira des forces agissant dans le sens radial et variant selon la position angulaire relative entre les dents de la couronne ferromagnétique et les pièces polaires du diapason. Le diapason étant une structure capable de vibrer et d'entrer en résonance va se faire exciter par la rotation de la roue d'échappement même si la roue d'échappement ne porte pas des aimants comme c'est le cas de l'art antérieur.Referring to the figures, the operation of the regulating members according to the invention will now be described in detail. THE figure 2 And 3 show that the embodiment according to the invention causes the tuning fork to interact with the crown made of ferromagnetic material with its external toothing on one arm of the tuning fork (the arm 16) and with the internal toothing on the other arm (the arm 17). It is also noted that the interaction with the ring gear is alternating, when the pole piece of the right arm 17 is opposite a tooth of the ferromagnetic ring gear 10, the pole piece of the other arm 16 is between two teeth. It is well known that a piece of ferromagnetic material is attracted by a magnet and it is found that the rotation of the escape wheel will produce forces acting in the radial direction and varying according to the relative angular position between the teeth of the crown ferromagnetic and the pole pieces of the tuning fork. The tuning fork being a structure capable of vibrating and entering into resonance will be excited by the rotation of the escapement wheel even if the escapement wheel does not carry magnets as is the case in the prior art .

La figure 5 montre les forces tangentielles 25 et 26 qui se développent dans la structure selon l'invention quand la roue d'échappement tourne dans le sens de la flèche 24. On s'aperçoit qu'en tournant la roue d'échappement dans le sens horaire par rapport à sa position d'équilibre une pièce polaire du diapason s'éloigne d'une dent de la structure ferromagnétique tandis que l'autre s'approche. Ceci produira des forces tangentielles comme dessinées par les flèches 25 et 26 et on constate que les deux forces tangentielles produisent des couples à la roue d'échappement de sens opposé. De ce fait les couples créés par les forces tangentielles s'annulent mutuellement.There figure 5 shows the tangential forces 25 and 26 which develop in the structure according to the invention when the escape wheel rotates in the direction of the arrow 24. It can be seen that by turning the escape wheel clockwise by relative to its position of equilibrium, a pole piece of the tuning fork moves away from one tooth of the ferromagnetic structure while the other approaches. This will produce tangential forces as drawn by arrows 25 and 26 and it will be seen that the two tangential forces produce torques at the escape wheel in opposite directions. As a result, the torques created by the tangential forces cancel each other out.

La figure 6 est une représentation graphique des forces tangentielles 25 et 26 en fonction de l'angle de rotation de la roue d'échappement. On constate que les deux forces 25 et 26 s'opposent donnant la force résultante très faible, désignée 27. Si les deux aimants ont une aimantation correcte la force résultante 27 est nulle, les tolérances de fabrication inévitables font cependant que les deux forces 25 et 26 ne se compensent pas exactement et il en résulte la faible force 27 représentée en figure 6. A titre d'exemple, si un des aimants a une aimantation qui dévie de la valeur de conception par 1 %, la force 27 aura également une valeur correspondante à 1 % des forces 25 ou 26 respectivement. On constate que le système selon l'invention permet de réduire la force tangentielle résultante d'une manière très importante par rapport à l'art antérieur. L'échelle de rotation de la roue couvre l'avancement de la roue par une dent, dans la situation correspondante à la figure 2 il y a 36 dents, la roue aura parcouru 10° dans la plage désignée de 0 à 1 sur l'axe de rotation de la roue.There figure 6 is a graphical representation of the tangential forces 25 and 26 as a function of the angle of rotation of the escape wheel. It can be seen that the two forces 25 and 26 oppose each other, giving the very weak resultant force, designated 27. If the two magnets have the correct magnetization, the resultant force 27 is zero, the inevitable manufacturing tolerances mean, however, that the two forces 25 and 26 do not compensate each other exactly and this results in the weak force 27 represented in figure 6 . By way of example, if one of the magnets has a magnetization which deviates from the design value by 1%, the force 27 will also have a value corresponding to 1% of the forces 25 or 26 respectively. It can be seen that the system according to the invention makes it possible to reduce the resulting tangential force very significantly compared to the prior art. The wheel rotation scale covers the advancement of the wheel by one tooth, in the situation corresponding to the picture 2 there are 36 teeth, the wheel will have traveled 10° in the designated range of 0 to 1 on the axis of rotation of the wheel.

La situation dessinée en figure 6 est valable pour une vitesse de rotation de la roue d'échappement loin de la résonance, typiquement au démarrage de la roue et on s'aperçoit que la force tangentielle résultante 27 est très faible, théoriquement même nulle. Ceci permet à la pièce d'horlogerie de se mettre en marche sans dispositif auxiliaire de lancement, ce qui rend le mécanisme des organes régulateurs de la pièce considérablement plus simple et plus fiable.The situation drawn in figure 6 is valid for a speed of rotation of the escape wheel far from resonance, typically when the wheel starts, and it is seen that the resulting tangential force 27 is very low, theoretically even zero. This allows the timepiece to start without an auxiliary starting device, which makes the mechanism of the regulating organs of the room considerably simpler and more reliable.

Si la vitesse de rotation de la roue d'échappement approche la valeur produisant au diapason une excitation à sa fréquence de résonance, l'amplitude de vibration de ses bras devient élevée et peut atteindre plusieurs centièmes de millimètres. Plus l'amplitude de vibration du diapason est élevée, plus l'interaction entre le diapason oscillant et la roue d'échappement tournante va créer des forces tangentielles élevées, forçant la roue à tourner de manière synchrone avec le mouvement du résonateur diapason. On a en effet trouvé que les forces tangentielles augmentent plus que linéairement avec l'amplitude de vibration du diapason. En comparaison avec les forces illustrées en figure 6, les forces tangentielles deviennent plus de vingt fois plus grandes si le diapason est en résonance.If the speed of rotation of the escape wheel approaches the value producing in tune an excitation at its resonant frequency, the amplitude of vibration of its arms becomes high and can reach several hundredths of a millimeter. The higher the vibration amplitude of the tuning fork, the more the interaction between the oscillating tuning fork and the rotating escape wheel will create high tangential forces, forcing the wheel to rotate synchronously with the movement of the tuning fork resonator. It has indeed been found that the tangential forces increase more than linearly with the vibration amplitude of the tuning fork. In comparison with the forces illustrated in figure 6 , the tangential forces become more than twenty times greater if the tuning fork is in resonance.

La figure 7 montre les forces tangentielles agissant sur la roue d'échappement quand la roue d'échappement est synchronisée sur la fréquence du résonateur diapason. Le résultat illustré en figure 7 montre les forces magnétiques du dispositif dessiné en figure 2. L'axe horizontal indique la rotation de la roue d'échappement par une dent complète. A la position zéro, la dent est en face de la pièce polaire comme dessiné en figure 2. Aux positions 5 et -5, la roue est tournée par une demi-dent, la plage de rotation illustrée dans la figure 7 correspond à la rotation de la roue par une dent complète. L'axe vertical est celui des forces tangentielles. La courbe 28 montre la force exercée par la pièce polaire au bras 17, la courbe 29 la valeur négative de celle exercée par la pièce polaire au bras 16 et la courbe 30 donne la somme des deux courbes. La figure montre la situation quand la roue d'échappement est synchronisée sur l'oscillation du diapason. Cette condition est remplie quand la roue d'échappement tourne d'une dent dans le temps que le résonateur accomplit une oscillation. On constate que la force tangentielle montrée dans la courbe 30, qui indique la somme des forces des deux bras, est substantiellement plus faible que l'une ou l'autre des forces 28 et 29. On pourrait déduire de la figure 7 que le diapason, même en oscillant à grande amplitude, n'est pas à même de synchroniser la roue d'échappement sur sa fréquence propre. La force tangentielle résultante est en effet faible et on s'aperçoit qu'elle a en plus des composantes positives et négatives qui sont de grandeur proche de sorte que le résultat global couvrant la force résultante pendant l'avancement d'une dent complète sera très faible. Ceci vient du fait que la figure 7 montre la situation où le résonateur diapason vibre exactement en phase avec la rotation de la roue d'échappement. Par ceci, on entend que la dent de la denture 11 est exactement en face de la pièce polaire du bras 17, quand le diapason est à son extrémité, écarté. Dans cette situation, il n'y a effectivement pas de transfert d'énergie entre le résonateur et la roue d'échappement. Ce cas n'a cependant qu'un intérêt pour l'explication du mécanisme de synchronisation, en réalité il n'existe pas. La roue d'échappement, qui est entrainée par le ressort de barillet de la pièce d'horlogerie à travers le rouage à normalement tendance à tourner plus vite que le résonateur diapason oscille. Son mouvement des dents devance la vibration du diapason. L'homme du métier appelle l'avance de la roue son déphasage par rapport au mouvement du diapason. Le déphasage est mesuré en °, 0° signifie qu'il n'y a aucun déphasage ; à 180° le déphasage correspond à une avance d'une demi-dent et à moins 180° la roue d'échappement serait en retard d'une demi-dent.There figure 7 shows the tangential forces acting on the escape wheel when the escape wheel is synchronized to the frequency of the tuning fork resonator. The result shown in figure 7 shows the magnetic forces of the device drawn in picture 2 . The horizontal axis indicates the rotation of the escape wheel by one complete tooth. At the zero position, the tooth is opposite the pole piece as drawn in picture 2 . At positions 5 and -5 the wheel is rotated by half a tooth, the range of rotation shown in the figure 7 corresponds to the rotation of the wheel by one complete tooth. The vertical axis is that of the tangential forces. Curve 28 shows the force exerted by the pole piece on arm 17, curve 29 the negative value of that exerted by the pole piece on arm 16 and curve 30 gives the sum of the two curves. The figure shows the situation when the escape wheel is synchronized with the oscillation of the tuning fork. This condition is met when the escape wheel rotates one tooth in time as the resonator completes one oscillation. It can be seen that the tangential force shown in curve 30, which indicates the sum of the forces of the two arms, is substantially weaker than either of the forces 28 and 29. One could deduce from the figure 7 that the tuning fork, even when oscillating at high amplitude, is not able to synchronize the escape wheel on its own frequency. The resultant tangential force is in fact weak and it can be seen that it also has positive and negative components which are of close magnitude so that the overall result covering the resultant force during the advancement of a complete tooth will be very weak. This comes from the fact that the figure 7 shows the situation where the tuning fork resonator vibrates exactly in phase with the rotation of the escape wheel. By this is meant that the tooth of the toothing 11 is exactly opposite the pole piece of the arm 17, when the tuning fork is at its end, separated. In this situation, there is effectively no transfer of energy between the resonator and the escape wheel. However, this case is only of interest for the explanation of the synchronization mechanism, in reality it does not exist. The escape wheel, which is driven by the mainspring of the timepiece through the gear train, normally tends to spin faster than the tuning fork resonator oscillates. Its movement of the teeth precedes the vibration of the tuning fork. A person skilled in the art calls the advance of the wheel its phase shift with respect to the movement of the tuning fork. Phase shift is measured in °, 0° means no phase shift; at 180° the phase shift corresponds to an advance of half a tooth and at minus 180° the escape wheel would be behind by half a tooth.

La figure 8 montre le couple résultant de l'interaction entre le diapason vibrant et la roue d'échappement en fonction du déphasage entre la rotation de la roue d'échappement et la vibration du résonateur. Les forces tangentielles des deux bras du diapason sont multipliées avec leur rayon correspondant pour qu'on obtienne le couple agissant sur la roue d'échappement et l'axe vertical indique la somme des deux couples donc le couple résultant sur la roue d'échappement. Des valeurs négatives de couple dans la figure 8 correspondent à un couple qui freine la roue d'échappement, des valeurs positives de couple accélèrent la roue d'échappement. La figure 8 montre que dans la plage de 0 à 100 ° environ le couple de freinage agissant sur la roue d'échappement augmente continuellement avec le déphasage. Ceci signifie que, plus que le couple d'entrainement de la roue d'échappement est grand, plus la roue d'échappement sera déphasée par rapport au mouvement du diapason. Au contraire, s'il n'y a plus de couple entrainant la roue d'échappement, le déphasage tombe à zéro. Ce cas arrive quand le ressort barillet est à la fin de sa réserve de marche et la pièce d'horlogerie s'arrête. La figure 8 montre clairement que la vitesse de rotation de la roue d'échappement est synchronisée sur la fréquence du diapason pour autant que le ressort barillet arrive à entrainer la pièce d'horlogerie. Le déphasage des deux mouvements synchronisés détermine le couple freinant la roue d'échappement et la synchronise sur la fréquence du résonateur diapason.There figure 8 shows the torque resulting from the interaction between the vibrating tuning fork and the escape wheel as a function of the phase difference between the rotation of the escape wheel and the vibration of the resonator. The tangential forces of the two arms of the tuning fork are multiplied with their corresponding radius to obtain the torque acting on the escape wheel and the vertical axis indicates the sum of the two torques, therefore the resulting torque on the escape wheel. Negative torque values in the figure 8 correspond to a torque which brakes the escapement wheel, positive torque values accelerate the escapement wheel. There figure 8 shows that in the range from 0 to 100° approximately the braking torque acting on the escape wheel increases continuously with the phase shift. This means that the greater the driving torque of the escape wheel, the more the escape wheel will be out of phase with respect to the movement of the tuning fork. On the contrary, if there is no more torque driving the escapement wheel, the phase shift drops to zero. This case happens when the mainspring is at the end of its power reserve and the timepiece stops. There figure 8 clearly shows that the speed of rotation of the escape wheel is synchronized with the frequency of the tuning fork insofar as the barrel spring succeeds in driving the timepiece. The phase shift of the two synchronized movements determines the torque braking the escapement wheel and synchronizes it to the frequency of the tuning fork resonator.

La figure 8 correspond à la situation d'un résonateur vibrant avec une amplitude fixe. Tel n'est cependant pas le cas. Si le résonateur freine la roue d'échappement, il y a nécessairement un transfert d'énergie de la roue au résonateur. L'énergie transférée au résonateur diapason augmentera son amplitude de vibration jusqu'à ce que les pertes d'énergie du résonateur, dues par exemple au frottement dans l'air de ses branches, soient à nouveau égales à l'apport d'énergie provenant de la roue d'échappement. Le résonateur ne pouvant ni créer ni perdre de l'énergie doit en effet toujours vibrer à une amplitude conduisant à l'égalité de l'énergie apportée par la roue d'échappement et l'énergie perdue dans les frottements et autres pertes. Comme les pertes augmentent avec l'amplitude de vibration, on s'aperçoit que l'amplitude de vibration doit augmenter si l'énergie (le couple) transmise au résonateur augmente.There figure 8 corresponds to the situation of a vibrating resonator with a fixed amplitude. This is however not the case. If the resonator brakes the escapement wheel, there is necessarily a transfer of energy from the wheel to the resonator. The energy transferred to the tuning fork resonator will increase its amplitude of vibration until the energy losses of the resonator, due for example to the friction in the air of its branches, are again equal to the contribution of energy coming from of the escape wheel. The resonator being able to neither create nor lose energy must in fact always vibrate at an amplitude leading to the equality of the energy supplied by the escape wheel and the energy lost in friction and other losses. As the losses increase with the vibration amplitude, we see that the vibration amplitude must increase if the energy (the torque) transmitted to the resonator increases.

Plus l'amplitude de vibration devient grande, plus le freinage au même déphasage devient important. Bien que la plage de fonctionnement de l'échappement selon l'invention comme représenté en figure 8 soit déjà assez grande et bien suffisante pour une application pratique, la physique du système montre que le domaine de fonctionnement est en effet bien plus grand encore.The greater the vibration amplitude becomes, the greater the braking at the same phase shift becomes. Although the operating range of the escapement according to the invention as shown in figure 8 is already large enough and quite sufficient for a practical application, the physics of the system shows that the operating domain is indeed much larger.

Le résonateur diapason selon l'invention a une forme très différente d'un diapason en U selon l'art antérieur décrit dans le document EP 2 466 401 A1 . Comme représenté en figure 2, le diapason est constitué de deux branches attachées à un pied 15 en forme d'une plaque massive. Cette géométrie a plusieurs avantages par rapport au résonateur de l'art antérieur montré en figure 1. Les avantages sont la conséquence des mouvements et déformations dans cette structure de diapason. Le diapason selon la figure 2 se déforme comme si les deux bras 16 et 17 étaient encastrés et immobiles à leur base et oscillent à leur bout libre dans un mouvement gauche - droite en contre phase. On constate que ce mouvement des bras est en première approximation dépourvu de mouvements dans le sens de la longueur du diapason. Le pied 15 du diapason ne se déplace donc pas, il subit les contraintes provenant des bras en oscillation. Ces contraintes déforment le pied 15 à proximité des bases des bras du diapason, elles s'atténuent cependant très vite et fortement vers la base du pied. Ceci offre la possibilité d'un assemblage simple et massif dans la zone inférieure du pied 15, par exemple par des vis comme dessiné en figure 2. On obtient de ce fait un résonateur diapason avec peu de pertes d'énergie de vibration dans l'encastrement et simultanément un montage massif satisfaisant les exigences de résistance aux chocs d'un mouvement horloger.The tuning fork resonator according to the invention has a very different shape from a U-shaped tuning fork according to the prior art described in the document EP 2 466 401 A1 . As depicted in figure 2 , the tuning fork consists of two branches attached to a foot 15 in the form of a solid plate. This geometry has several advantages over the prior art resonator shown in figure 1 . The advantages are the consequence of the movements and deformations in this tuning fork structure. The tuning fork according to figure 2 deforms as if the two arms 16 and 17 were embedded and immobile at their base and oscillate at their free end in a left-right movement in counter phase. It can be seen that this movement of the arms is in a first approximation devoid of movements in the direction of the length of the tuning fork. The foot 15 of the tuning fork therefore does not move, it undergoes the stresses coming from the oscillating arms. These stresses deform the foot 15 close to the bases of the arms of the tuning fork, they are however attenuated very quickly and strongly towards the base of the foot. This offers the possibility of a simple and solid assembly in the lower zone of the foot 15, for example by screws as drawn in picture 2 . This results in a tuning fork resonator with little loss of vibration energy in the recess and simultaneously a solid assembly satisfying the shock resistance requirements of a watch movement.

La structure dessinée en figure 2 n'est pas la seule possibilité d'un résonateur satisfaisant les exigences d'un échappement magnétique selon l'invention. La figure 9 montre à titre d'exemple une structure en double diapason. La structure en double diapason offre la possibilité d'attacher des masses 31 et 32 au bout des deux branches additionnelles. Ces masses 31 et 32 peuvent être montées à une position ajustable et permettent d'ajuster la fréquence de résonance du double diapason. D'autres méthodes d'ajustage à la fréquence chronométrique d'un diapason sont connues de l'homme du métier comme par exemple l'enlèvement de petites quantités de masse au bout des branches par une ablation de matière au laser.The structure drawn in figure 2 is not the only possibility of a resonator satisfying the requirements of a magnetic escapement according to the invention. There figure 9 shows as an example a double tuning fork structure. The double tuning fork structure offers the possibility of attaching masses 31 and 32 to the end of the two additional branches. These masses 31 and 32 can be mounted at an adjustable position and make it possible to adjust the resonance frequency of the double tuning fork. Other methods of adjusting a tuning fork to the chronometric frequency are known from skilled in the art, such as the removal of small amounts of mass at the end of the temples by laser material ablation.

Il va de soi que l'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits et que diverses modifications et variantes simples peuvent être envisagées par l'homme du métier sans sortir du cadre de l'invention tel que défini par les revendications annexées.It goes without saying that the invention is not limited to the embodiments which have just been described and that various modifications and simple variants can be envisaged by those skilled in the art without departing from the scope of the invention as defined. by the appended claims.

Il va notamment de soi que l'on peut prévoir un blindage du système régulateur de l'invention et en particulier de la roue d'échappement pour limiter voire éliminer l'influence des champs magnétiques extérieurs sur le fonctionnement du système. Typiquement on peut envisager deux flasques réalisés en un matériau ferromagnétique disposés de part et d'autre de la roue d'échappement.It goes without saying in particular that it is possible to provide shielding of the regulator system of the invention and in particular of the escape wheel to limit or even eliminate the influence of external magnetic fields on the operation of the system. Typically one can consider two flanges made of a ferromagnetic material arranged on either side of the escape wheel.

Selon une autre variante, on peut également prévoir de remplacer les aimants permanents discrets par une ou plusieurs couches magnétiques, typiquement en alliage de platine et de cobalt (50-50 at.%) ou en samarium cobalt.According to another variant, provision may also be made to replace the discrete permanent magnets with one or more magnetic layers, typically in a platinum and cobalt alloy (50-50 at.%) or in samarium cobalt.

En outre bien que le système régulateur de l'invention ait été décrit ci-dessus en liaison avec l'utilisation d'aimants et donc de forces magnétostatiques, il est également envisagé selon l'invention de remplacer les aimants discrets ou la ou les couches magnétiques par des électrets et des forces électrostatiques. La construction du système régulateur est entièrement similaire et est dimensionnée en fonction des champs électrostatiques permanents établis entre les branches du résonateur et la roue d'échappement. En somme, dans ce mode faisant appel à des forces et couples électrostatiques, il est possible d'utiliser un matériau conducteur soit pour les branches du résonateur si la roue d'échappement est électrisée et chargée avec une énergie suffisante, soit pour la roue d'échappement si ce sont les branches du résonateur qui sont électrisées et chargées, ce matériau conducteur est polarisé localement. Typiquement le résonateur diapason peut porter des électrets à l'extrémité de chaque bras et la roue d'échappement est conductrice ou électrisée localement, sur le les dents de la roue venant en regard des électrets du résonateur, avec des charges opposées aux électrets du résonateur.Furthermore, although the regulator system of the invention has been described above in connection with the use of magnets and therefore of magnetostatic forces, it is also envisaged according to the invention to replace the discrete magnets or the layer or layers magnetic by electrets and electrostatic forces. The construction of the regulator system is entirely similar and is dimensioned according to the permanent electrostatic fields established between the branches of the resonator and the escapement wheel. In short, in this mode using electrostatic forces and torques, it is possible to use a conductive material either for the branches of the resonator if the escapement wheel is electrified and charged with sufficient energy, or for the escapement wheel. exhaust if it is the branches of the resonator which are electrified and charged, this conductive material is locally polarized. Typically the tuning fork resonator can carry electrets at the end of each arm and the wheel escapement is conductive or electrified locally, on the teeth of the wheel coming opposite the electrets of the resonator, with opposite charges to the electrets of the resonator.

Claims (9)

  1. A regulator system for a mechanical timepiece based on the magnetic interaction between a resonator (14) and an escapement wheel (9), said interaction creating radial and tangential forces (25, 26) acting on the escapement wheel (9) and generating torques therein, the regulator system comprising:
    a tuning fork resonator (14) provided with two arms each carrying a permanent magnet (18, 19) and wherein the magnetic flux of said magnets (18, 19) is directed towards the outside of the tuning fork at one arm and at the other towards the inside of the tuning fork, and
    an escapement wheel carrying a ferromagnetic structure (10) in the shape of a crown gear, provided with an internal toothing (11) and an external toothing (12) each cooperating magnetically with an arm of said resonator,
    the regulator system is arranged with said internal (11) and external (12) toothing disposed so that if a tooth of said internal toothing is opposite the magnet of one arm of the tuning fork, the magnet located on the other arm of the tuning fork is located between two teeth of said external toothing and vice versa, so that the torques due to said tangential forces act in opposite directions and cancel each other out when the system is started when a torque is applied to the escapement wheel by a driving member while the regulator system is still stationary in its starting position.
  2. The regulator system according to claim 1 characterised in that the escapement wheel (9) interacts with the resonator (14) at each half oscillation of the resonator with substantially equal and opposite tangential forces.
  3. The regulator system according to claim 1 characterised in that the tuning fork (14) is composed of two arms (16, 17) attached to a foot (15) having a section larger than that of the arms.
  4. The regulator system according to claim 1 characterised in that the resonator has the shape of a double H-shaped tuning fork, the central part of which serves as a base for the four arms.
  5. The regulator system according to any one of the preceding claims, characterised in that the resonator carries means for adjustment at the chronometric frequency in the form of adjustable weights (31, 32) disposed on the structure of the resonator or of pads provided to be removed by ablation.
  6. The regulator system according to claim 1 characterised in that the permanent magnet is made in the form of one or more magnetic layers.
  7. The regulator system according to claim 6 characterised in that the magnetic layer(s) are made of a platinum and cobalt alloy.
  8. The regulator system according to one of claims 1 to 2 characterised in that the tuning fork resonator carries electrets on each arm and in that the escapement wheel is conductive or locally electrified with charges opposite to the electrets of the resonator.
  9. A horological movement including a regulator system according to one of the preceding claims.
EP14741892.5A 2013-08-05 2014-07-22 Regulator system for mechanical watch Active EP3030938B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01354/13A CH707471B1 (en) 2013-08-05 2013-08-05 controller system for mechanical watch.
PCT/EP2014/065736 WO2015018636A2 (en) 2013-08-05 2014-07-22 Regulator system for mechanical watch

Publications (2)

Publication Number Publication Date
EP3030938A2 EP3030938A2 (en) 2016-06-15
EP3030938B1 true EP3030938B1 (en) 2023-05-17

Family

ID=51212856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14741892.5A Active EP3030938B1 (en) 2013-08-05 2014-07-22 Regulator system for mechanical watch

Country Status (8)

Country Link
US (1) US10222757B2 (en)
EP (1) EP3030938B1 (en)
JP (1) JP6067936B2 (en)
CN (1) CN105264444B (en)
CH (1) CH707471B1 (en)
HK (1) HK1220519A1 (en)
RU (1) RU2016103696A (en)
WO (1) WO2015018636A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438112B2 (en) * 2014-09-25 2018-12-12 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Interaction between two timer components
USD790416S1 (en) * 2015-03-27 2017-06-27 RB Distribution, Inc. Front wheel drive shift fork
EP3182225B1 (en) * 2015-12-18 2018-08-08 Montres Breguet S.A. Timepiece sequencer mecanism with recess wheel having a reduced mechanical friction
KR102597049B1 (en) * 2016-01-27 2023-11-02 삼성디스플레이 주식회사 Display apparatus having indicator needle
CN105700328B (en) * 2016-04-28 2018-05-15 刘亚楠 Adjustment mechanism when no card degree stem-winder is walked
FR3059792B1 (en) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa DEVICE FOR WATCHMAKING PART, CLOCK MOVEMENT AND TIMEPIECE COMPRISING SUCH A DEVICE
EP3757684A1 (en) * 2019-06-26 2020-12-30 The Swatch Group Research and Development Ltd Inertial mobile for timepiece resonator with device for magnetic interaction insensitive to external magnetic field
EP3767397B1 (en) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Clock movement comprising a rotary element provided with a magnetic structure having a periodic configuration
EP3800511B1 (en) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Pivoting shaft for a regulating organ
EP3839650A1 (en) * 2019-12-18 2021-06-23 ETA SA Manufacture Horlogère Suisse Method for manufacturing at least two mechanical parts
CN112079272B (en) * 2020-08-13 2022-04-08 江苏伟丰建筑安装集团有限公司 Building material transportation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208287A (en) * 1961-10-21 1965-09-28 Jeco Kk Magnetic escapement

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT547049A (en) 1953-06-19
DE1177077B (en) 1961-06-19 1964-08-27 Straumann Inst Ag Magnetic escapement for clockwork
CH405171A (en) * 1962-08-11 1965-09-15 Lavet Marius Jean Time apparatus and method of manufacturing this apparatus
GB1128394A (en) 1966-07-04 1968-09-25 Horstmann Magnetics Ltd Magnetic escapements
CH481412A (en) * 1966-09-26 1969-07-31 Straumann Inst Ag Oscillators for timing devices
DE1673670B2 (en) * 1967-06-27 1972-01-27 Fa Muller Schlenker, 7220 Schwen ningen ELECTRIC CLOCK WITH MAGNETIC DRIVE OF A POLE WHEEL
US3591814A (en) * 1969-06-06 1971-07-06 Clifford Cecil F Compound reed oscillator or filter
DE2033630C3 (en) * 1969-07-23 1975-03-27 Horstmann Clifford Magnetics Ltd., Bath, Somerset (Grossbritannien) Electromechanical oscillator with an oscillating element and a rotor set in rotation by this by means of a magnet system
US3719839A (en) * 1970-03-25 1973-03-06 Y Endo Device for magnetically regulating each stop position of an intermittently rotating output member
US3652955A (en) * 1970-07-30 1972-03-28 Gen Time Corp Electromechanical oscillator using electret coupling
CH594201B5 (en) * 1972-12-13 1977-12-30 Ebauches Sa
CH661403GA3 (en) * 1985-10-02 1987-07-31
ATE363675T1 (en) * 2003-10-01 2007-06-15 Asulab Sa CLOCK WITH A MECHANICAL MOVEMENT COUPLED WITH AN ELECTRONIC REGULATOR
ATE433136T1 (en) 2007-03-09 2009-06-15 Eta Sa Mft Horlogere Suisse ESCAPEMENT WITH TANGENTIAL IMPULSES
CH702187A2 (en) * 2009-11-02 2011-05-13 Lvmh Swiss Mft Sa Regulating element for wristwatch and timepiece including such a regulating organ.
EP2336832B1 (en) 2009-12-21 2020-12-02 Rolex Sa Swiss lever escapement
CH703475B1 (en) * 2010-07-30 2015-06-30 Swatch Group Res & Dev Ltd A method of making a noncontact transmission in a timepiece movement.
EP2450756B1 (en) * 2010-11-04 2015-01-07 Nivarox-FAR S.A. Anti-tripping device for escapement mechanism
EP2466401B1 (en) * 2010-12-15 2013-08-14 Asgalium Unitec SA Magnetic resonator for mechanical timepiece
EP2607969B1 (en) * 2011-12-19 2014-09-17 Nivarox-FAR S.A. Clock movement with low magnetic sensitivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208287A (en) * 1961-10-21 1965-09-28 Jeco Kk Magnetic escapement

Also Published As

Publication number Publication date
US10222757B2 (en) 2019-03-05
JP2016520845A (en) 2016-07-14
RU2016103696A (en) 2017-08-10
CN105264444A (en) 2016-01-20
US20160070235A1 (en) 2016-03-10
JP6067936B2 (en) 2017-01-25
EP3030938A2 (en) 2016-06-15
HK1220519A1 (en) 2017-05-05
WO2015018636A2 (en) 2015-02-12
US20180181072A2 (en) 2018-06-28
CH707471B1 (en) 2014-07-31
WO2015018636A3 (en) 2015-07-16
CN105264444B (en) 2017-08-04

Similar Documents

Publication Publication Date Title
EP3030938B1 (en) Regulator system for mechanical watch
EP2466401B1 (en) Magnetic resonator for mechanical timepiece
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP2990885B1 (en) Mechanical clock movement with magnetic escapement
EP3182216B1 (en) Coupled timepiece oscillators
EP2282240B1 (en) Chronograph module for wristwatch
EP2141555B1 (en) Coupled resonators for timepiece
EP2315082B1 (en) Mechanical movement with regulating organ comprising at least two balances
EP3602206B1 (en) Mechanical timepiece comprising a movement of which the operation is improved by a correction device
WO2018177779A1 (en) Timepiece comprising a mechanical movement improved by a correction device
EP3842876A1 (en) Timepiece fitted with a mechanical movement and a device for correcting the time displayed
CH713636A2 (en) Mechanical timepiece comprising a movement whose progress is improved by a correction device.
EP3140698B1 (en) Tuning fork mechanical oscillator for clock movement
CH707990A1 (en) Mechanical watch movement.
EP2802941B1 (en) Regulating member for a mechanical chronograph
CH713637A2 (en) Timepiece comprising a mechanical movement whose running is improved by a correction device.
WO2018215284A1 (en) Adjustment device for timepiece with isotropic harmonic oscillator having rotating masses and a common return force
CH705967B1 (en) watchmaking mechanism including a regulating device comprising a vibrating oscillator and clock movement comprising such a mechanism.
EP4391347A1 (en) Piezoelectric resonator with flexible guide, in particular for rotary motors in horology
EP4068010A1 (en) Mechanical watch with a device for adjusting its operation by inhibition thereof
CH717000A2 (en) Timepiece fitted with a mechanical movement and a device for correcting a displayed time.
CH713829B1 (en) Regulation device for a timepiece with an isotropic harmonic oscillator having rotating masses and a common restoring force.
CH711408A2 (en) A mechanical watch movement with a movement feedback system.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160307

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210408

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230207

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DINGER, RUDOLF

Inventor name: BORN, JEAN-JACQUES

Inventor name: MIGNOT, JEAN-PIERRE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014086971

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1568641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230517

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1568641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230801

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230917

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 10

Ref country code: DE

Payment date: 20230620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014086971

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230722

26N No opposition filed

Effective date: 20240220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230817

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230517

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731