EP2802941B1 - Regulating member for a mechanical chronograph - Google Patents

Regulating member for a mechanical chronograph Download PDF

Info

Publication number
EP2802941B1
EP2802941B1 EP13700144.2A EP13700144A EP2802941B1 EP 2802941 B1 EP2802941 B1 EP 2802941B1 EP 13700144 A EP13700144 A EP 13700144A EP 2802941 B1 EP2802941 B1 EP 2802941B1
Authority
EP
European Patent Office
Prior art keywords
anchor
regulating member
member according
flexible beam
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13700144.2A
Other languages
German (de)
French (fr)
Other versions
EP2802941A1 (en
Inventor
Guy Semon
Gaylord De La Marliere
Jean-Charles Rousset
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LVMH Swiss Manufactures SA
Original Assignee
LVMH Swiss Manufactures SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LVMH Swiss Manufactures SA filed Critical LVMH Swiss Manufactures SA
Publication of EP2802941A1 publication Critical patent/EP2802941A1/en
Application granted granted Critical
Publication of EP2802941B1 publication Critical patent/EP2802941B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/02Time pieces of which the clockwork is visible partly or wholly
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F7/00Apparatus for measuring unknown time intervals by non-electric means
    • G04F7/04Apparatus for measuring unknown time intervals by non-electric means using a mechanical oscillator
    • G04F7/08Watches or clocks with stop devices, e.g. chronograph
    • G04F7/0866Special arrangements
    • G04F7/0895Special arrangements with a separate barrel for the chronograph functions

Definitions

  • the present invention relates to an escapement for a horological movement, and in particular a mechanical regulating member with an escapement capable of sustaining and counting isochronous oscillations of a vibrating oscillator.
  • the present invention relates to high frequency mechanical chronographs enabling time periods of measurement with a resolution better than 1/1000 th of a second, and having a vibrating oscillator with a frequency equal to or greater to a few tens of Hz, for example a frequency equal to or greater than 1 kHz.
  • the regulating member of the invention can also operate at lower frequencies, from a few tens of Hz.
  • measuring and counting time to count an interval of time, for example a second, it is necessary to know how to divide it into equal fractions, for example in tenths or hundredths.
  • chronographs which make it possible to interpolate the whole fractions of time counted, in order to improve the displayed resolution.
  • chronographs equipped with a 5Hz oscillator which display, by interpolation, durations of less than a tenth of a second; one could also without further imagine chronographs fitted with a 50Hz oscillator, for example, and capable of displaying times with a resolution of one thousandth of a second.
  • the interpolation can for example be carried out by determining the angular position of a hand, of a gear train, of the balance, or of the axis of the balance, for example by means of a cam rotating at each alternation with the balance and whose angular position determines the fraction of alternation in which we are at each instant.
  • Such interpolation is in no way capable of counting or displaying the precise interval.
  • the incident energy which feeds the regulator in a traditional mechanical watch is done by means of a discontinuous system, the anchor wheel and the anchor.
  • an escapement stops then accelerates at each alternation to communicate energy to the regulator. It is therefore necessary each time to "relaunch" the escape wheel, as well as the entire cog train which also stops and then restarts at each alternation.
  • the overall inertia of this system induces a limit in the acceleration that the anchor wheel can receive and therefore in the energy transmitted.
  • a conventional sprung balance system, associated with a given mechanical transmission chain therefore has a frequency limit and corollary a limit in operating time.
  • the chosen oscillation frequency is usually a compromise between the resolution requirements of the chronograph and the desire to maintain a high power reserve for the display of the current time.
  • the most widely used regulating organs include a spring-balance type oscillator and an anchor escapement. These devices, widely described in the technical literature, most often have oscillation frequencies of 4 or 5 Hz, ie 28,800 or 36,000 vibrations / hour.
  • the conventional spiral regulator is no longer suitable for constituting standards useful for measuring precise time or as soon as frequencies of the order of 500 to 800 are exceeded. Hz because it loses precision and consumes too much energy. Moreover, its overall inertia and its dynamic behavior are not suitable for high frequency oscillation.
  • Regulating members based for example on tuning forks are already known in the state of the art.
  • the website “http://www.electric-clocks.nl/clocks/animations/AnimationT-Breguet.htm” describes a clock possibly developed by Louis Institut Clico Breguet, in which one of the branches of a tuning fork is excited by the anchor of an escapement.
  • the oscillation frequency decreases rapidly as the branches lengthen. Simple calculations show, however, that long lengths are necessary in order to obtain oscillation frequencies compatible with the operation of movements. mechanical.
  • the tuning fork described in the aforementioned website vibrates at 100Hz, which is already considered a very high frequency in mechanical watchmaking. This frequency, however, requires a very large tuning fork, which can barely be integrated into a pendulum, but would be impossible to place in a wristwatch.
  • a shorter tuning fork would produce an unnecessarily high frequency, causing excessively rapid oscillation of the anchor, anchor wheel and movement, and therefore significant energy loss, reduced power reserve and excessive wear. pieces.
  • tuning forks in mechanical watchmaking has remained essentially confined to clocks, or to electric watches in which the high frequency of oscillation of the tuning forks can be useful.
  • the use of tuning forks in movements for mechanical watches is generally considered inappropriate.
  • CH442153 or similar GB1138818 describe a timepiece movement comprising a tuning fork coupled or mechanically connected to an anchor mounted on an oscillating blade.
  • This system makes it possible to vibrate the blade and therefore the anchor at a frequency lower than that of the tuning fork, which can therefore be more easily miniaturized.
  • this document does not indicate whether the minimum dimensions that can be obtained are compatible with a wristwatch.
  • FR1505656 describes a movement for a pendulum comprising an anchor fitted with paddles and which oscillates perpendicular to the plane of the escape wheel.
  • US6775582 describes a movement with an elastic connection of the escape wheel.
  • An object of the present invention is to provide an escapement making it possible to maintain and count very high frequency oscillations as well as a clockwork mechanism using such an escapement. According to the invention, these aims are achieved in particular by means of the subject of the appended claims.
  • the oscillation frequency of this regulating member depends not only on the characteristics of the vibrating oscillator (blade or tuning fork), but also on the flexibility of the anchor beam.
  • the coupling between the vibrating oscillator and the flexible beam of the anchor makes it possible to reduce the oscillation frequency of the escapement.
  • a vibrating blade or a tuning fork with dimensions compatible with a wristwatch can be used in the regulating organ.
  • the vibrating oscillator is intended for a mechanical chronograph.
  • a high oscillation frequency is useful as it allows times to be counted with high resolution.
  • chronographs are generally used to measure relatively short durations, so that the loss of power reserve and The wear of the movement that a high frequency could cause is less of a problem.
  • the elastic blade is connected to the flexible beam of the anchor by a mechanical connector, which may include an arm.
  • the coupling between the elastic blade and the flexible beam of the anchor is thus made through an arm which has its own flexibility, and which thus contributes to reducing or determining the frequency of oscillation of the system.
  • the anchors usually used in conventional watch escapements have two arms which carry the paddles and are integral with a beam, sometimes called a rod.
  • the oscillation frequency is determined above all by the sprung balance assembly and an attempt is made to avoid any disturbance caused by the anchor on this frequency.
  • the rod of conventional escapement anchors is as rigid as possible, taking into account the constraints of mass (which must be reduced to reduce losses) and the minimum length of the anchor. No particular measure is taken to increase the flexibility of the anchor rod, so that its influence can be completely neglected when calculating the oscillation frequency of the balance-spring-escapement assembly.
  • the flexibility of the beam (or rod) of the anchor is used, instead of being reduced until it becomes negligible. Therefore, voluntary measures are taken to increase the flexibility of this beam.
  • the section of the beam, and in particular its width (in the plane of the escape wheel), is reduced compared to a conventional anchor, in order to reduce its rigidity at constant length.
  • the length of the flexible beam is increased, which gives it a deliberately increased flexibility.
  • the beam is therefore longer than in a classic Swiss lever escapement anchor.
  • the length of the flexible beam is at least twice as great as the maximum width of the anchor at the arms.
  • the maximum width of the flexible beam is less than one twentieth of its length, advantageously less than one thirtieth of its length.
  • the anchor contributes for at least 1%, advantageously for at least 5%, for example for at least 10%, to the frequency of oscillation at the level of the escape wheel; that is, using a hypothetical perfectly rigid beam, instead of this flexible beam, would produce a regulating member oscillating at a frequency varying by at least 1%, preferably 5%, for example 10 %, compared to the oscillation frequency obtained by this flexible beam.
  • the movement comprises a dual chain with a first regulating member, a first gear train and a first barrel (not shown) intended for measuring the current time, and a second regulating member, a second gear train and a second barrel.
  • 32 intended for chronography.
  • the oscillation frequency of the second regulating organ is greater than the oscillation frequency of the first regulating organ, in order to guarantee a necessary and sufficient power reserve for the chain dedicated to the display of the hour, and a very fine resolution for the measurement of durations by the chronograph.
  • the regulating organ of the chronograph comprises an escape wheel 60 with a predetermined number of protruding teeth having a precise geometry 63, preferably more than 25 teeth, for example 40 teeth.
  • the high number of teeth reduces the pitch between the teeth and thus makes it possible to reduce the angular distance traveled by the escape wheel 60 at each alternation, thus reducing the amount of energy required for each alternation, and to increase the frequency. of oscillation.
  • This geometry and this number of teeth make it possible to quickly accelerate the anchor wheel and therefore to communicate energy as frequently as possible to the regulating member. Instead of completely stopping the anchor wheel at each cycle, this geometry slows it down at the end of the pulse.
  • the cycle requires a very short pulse angle and as such allows a large number of teeth.
  • the duration of a cycle is very short and it is during this period that the wheel must be accelerated to create sufficient kinetic energy. This escapement is therefore characterized by very high accelerations.
  • the beam oscillator thus produced consumes significantly less energy than a conventional spiral oscillator, typically at least two times less than a conventional oscillator.
  • the anchor 80 of the chronograph comprises two arms intended to engage with the teeth of the escape wheel 60, secured to a flexible beam, also called a rod, 90.
  • a flexible beam also called a rod, 90.
  • the length of the flexible beam 90, as well as its section and the material chosen gives it a voluntary flexibility; advantageously, the beam is therefore longer than in a conventional Swiss lever escapement anchor.
  • the anchor therefore itself constitutes an oscillating element.
  • the voluntary oscillations of the flexible beam (or rod) determine the resonant frequency of the coupled oscillator system consisting of the anchor and the vibrating blade 100.
  • the anchor pivots and deforms voluntarily at each alternation around the axis 91, which may be provided with a bearing of a ball or stone bearing.
  • the anchor is preferably devoid of paddles, in view of the speed of rotation of the escape wheel and the quantity of energy transmitted at each pulse; the production of sapphire or ceramic pallets would be complex and would considerably weigh down the anchor.
  • the fork includes notches (or projections) 83a-83b not very prominent, with precise geometry, allowing the anchor to disengage from the teeth of the escape wheel with a rotation of very low amplitude.
  • the rest surfaces 83a-83b could be made by stone or ceramic pallets.
  • the escapement thus comprises an anchor 80 which oscillates around the point of articulation 93 with a very low oscillation angle, of the order of 4-5 ° for example. The cycle thus generated is different from the cycle of a conventional Swiss lever escapement.
  • the anchor 80 in this example does not include either stinger or peg.
  • the articulation 93 at the end of the anchor 80 connects the anchor in an articulated manner to an arm 95.
  • the other end of the arm 95 is connected to the free end of a vibrating blade 100.
  • the arm 95 is mounted almost perpendicular to the vibrating blade 100, so that the transverse vibrations of the vibrating blade 100 are transmitted to the arm 95 and to the flexible beam 90 of the anchor.
  • the axis of rotation 91 of the anchor being fixed, the arm 95 and the flexible beam 90 bend or unfold around the articulation 93 at each alternation.
  • Non-perpendicular assemblies can also be considered. Furthermore, it is also possible to produce systems in which the vibrating blade 100, the arm 95 and / or the anchor extend in planes different from each other.
  • the first end 103 of the vibrating blade is fixed relative to the plate.
  • the first fixed end of the vibrating blade 100 is screwed onto the plate by means of the screw 101, other fixing means can be provided.
  • a device 102 allows the assembly to be tuned by generating a preload: in the embodiment illustrated, this device comprises an eccentric 102 also screwed onto the plate and which can be rotated to apply a preload force to the vibrating blade 100; by turning this eccentric, the stress force applied to the vibrating blade is modified, and the resonant frequency of the vibrating blade and / or its coupling with the arm 95 is modified.
  • connection between the vibrating blade 100 and the arm 95 constitutes a single pivot and a slide. simple, allowing possible rotation and sliding between the two elements; the vibrating blade 100 fits into the arm. Any connection allowing the desired relative movement between the vibrating blade and the arm or coupler can be used, so as to avoid bracing of the arm 95 or of the vibrating blade 100 due to stresses exerted on this connection.
  • the beam 90 of the anchor thus acts as an exciter
  • the arm 95 constitutes a connecting beam, or connector, to transmit this excitation to the blade 100 (or oscillator) and make it vibrate or oscillate around its point of rest.
  • Other types of exciters including a magnetic exciter exerting a time varying magnetic field, can be used to vibrate the vibrating plate 100.
  • the escape wheel 60 is driven by a source of mechanical energy, for example one or more barrels 32 shown schematically on the figure. figure 6 , by means of a multiplier gear 35.
  • the surfaces 81a and 81b of the anchor 80 alternately receive a mechanical pulse from the teeth 63 of the escape wheel 60, thus determining isochronous oscillations of the vibrating blade 100 connected to the anchor 80.
  • the escape wheel 60 advances by one tooth at each alternation of said oscillations.
  • the mechanical power available at the escape wheel 60 is not constant but, in a known manner, decreases with the rate of the watch. From a maximum value, corresponding to the barrel completely reassembled, the power is gradually reduced during the relaxation of the barrel. Consequently, the amount of energy transmitted to the anchor 80 with each impulse given by the anchor wheel decreases with the load of the barrel.
  • the movement comprises means to guarantee that the moment transmitted to the anchor at each pulse is substantially constant, whatever the load on the barrel, at least during an operating range of the barrel sufficient to measure the times for which the chronograph is designed.
  • the barrel is modified so as to deliver a constant torque.
  • the barrel may include means for limiting the range of use in an area in which the torque supplied is substantially constant, by artificially reducing the running time of the chronograph.
  • a barrel that can theoretically perform 7 to 10 revolutions in order to ensure a large power reserve can thus be limited and prevented from relaxing beyond one revolution, or less than one revolution, in order to guarantee that within this authorized range the torque supplied is as constant as possible.
  • the barrel may be associated with a rocket or with another equivalent element to regulate the torque transmitted to the gear train 35.
  • the escape wheel 60 and / or the fork of the anchor 80 are modified in their geometry so as to transmit to the anchor a moment of impulse which is substantially independent of the engine torque transmitted to the escape wheel by the gear train 35.
  • the geometry of the anchor receiving tooth is calculated so that a variation in torque at the anchor wheel will cause a variation in speed and therefore a linear contact zone between a point of contact at maximum speed and a point of contact at minimum speed. Whatever the point of contact, the moment will be constant by geometric variation of the lever arm.
  • This third embodiment can be combined with the first and / or the second embodiment above.
  • the figures 4a-4e show phases of the action of the escapement of the regulating member according to this third embodiment of the invention.
  • the figure 4a corresponds to the end of the fall, and to the start of the impulse on the exit surface 81b of the anchor 80.
  • the rotation of the escape wheel 60 continues until the tip of the tooth 63 in contact with the anchor not butting against the rest notch 83b, as shown in the figure 4b . In this rest position on the outlet, the rotation of the escape wheel 60 is interrupted by the notch 83b on the fork of the anchor 80.
  • the pulse phases precede rest phases, while in most escapements used in wristwatches, the rest phases are followed by impulse phases, and impulse phases precede falls.
  • the point of first contact between a tooth 26 and an impulse surface 81a-b of the anchor 80 is not fixed, but varies according to the speed of rotation of the escape wheel 60, and therefore the power transmitted by the cog.
  • This aspect is illustrated on figure 6 .
  • contact between tooth 63 and the impulse surface occurs at point 86a.
  • acceleration of escape wheel 60 is limited, fall time increases, and contact occurs at point 81b, below.
  • the displacement of this point of contact has the effect of modifying both the moment of impulse transmitted to the anchor 80, and / or the duration during which a moment is transmitted.
  • the moment of impulse transmitted to the anchor is thus substantially independent of the speed of rotation of the escape wheel.
  • a rapidly rotating escape wheel exerts a large force on the anchor 80 during the impulse, but at a point 86a close to the center of rotation of the anchor.
  • An escape wheel driven by a less tensioned barrel reaches the anchor with less energy, but exerts the impulse force at a point farther from the center of rotation of the anchor. This results in an impulse moment transmitted to the anchor which is substantially constant.
  • the shape of the impulse surfaces 81a and 81b is optimized to ensure this constant impulse moment.
  • these pulse surfaces are curved, eg cycloid, preferably and eg brachistochrone.
  • the impulse surfaces are formed by straight line segments.
  • the release of the tooth 63 can take place before that it does not reach the notch of rest.
  • the pulse phase is followed by a drop phase without stopping the escape wheel 60.
  • the escape wheel does not start from a rest condition, but already has a non-zero speed of rotation, and will be able to reach the rest notch (of the other arm of the anchor) despite the reduced available power, or at least to come closer to it.
  • the very slow escape wheel does not come up against the rest notch until after a greater number of alternations, for example after three, four or more alternations. This characteristic, obtained in particular thanks to the not very prominent notches 83a-83b and to the geometer of the teeth 63, avoids completely stopping an escape wheel which has too little energy, and allows it to continue its acceleration during several successive alternations. .
  • the regulating member of the invention therefore comprises, in addition to the normal operating regime, with a rest phase for each alternation, an operating regime at reduced power, in which there is a rest phase every two, three or N alternations. In the reduced power mode, the operation of the regulating organ remains regular.
  • the figure 7 shows the angular distance ⁇ traveled by the escape wheel 60 as a function of time.
  • Line 200 shows the "ideal"rate; the escape wheel rotates at a constant speed.
  • Curve 201 shows a curve corresponding to a conventional escapement, and to the escapement of the invention in its normal operating regime, in which the escape wheel is stopped at each alternation by the anchor, then accelerates again to 'to the next rest point during the next alternation.
  • Curve 202 shows the angular distance traveled by the escape wheel of the invention in an operating speed at reduced power; during certain cycles, the anchor releases the escape wheel before stopping it, which allows the wheel to continue its acceleration during one or more successive alternations.
  • the excitation of the oscillations of the vibrating blade 100 is better when the beam 90 of the anchor is itself flexible, and has a mass concentrated at its end.
  • the flexibility of the beam makes it possible to transmit vibratory energy to the blade 100 without stopping the oscillation.
  • the mass is constituted by the hinge joint 93 itself.
  • the connection between the flexible beam 90 of the anchor and the vibrating blade 100 is provided by an arm (or connector) 95.
  • This arrangement therefore constitutes a system of oscillators coupled between the vibrating blade 100 and the flexible beam 90 of the anchor. It is also possible to provide an arm 95 (or connector) provided with a certain flexibility to allow it to oscillate. In this case, the arrangement therefore constitutes a system with three oscillators 100, 95, 90 coupled.
  • the small mass can also constitute an additional tuning device. This device can for example be peelable or automatically ablated by means of a laser (automatic tuning, etc.).
  • the inertia of the anchor 80 and of the arm 95, and the coupling between the vibrations of the blade 100 and those of the flexible beam 90 modify the dynamics of the compound system.
  • the natural frequencies of oscillation are generally not calculable with analytical methods, but can be obtained by known numerical simulation methods and also depend on the prestress applied to the blade 100. We can obtain oscillation frequencies of 1 kHz or higher.
  • the anchor 80, the flexible beam 90 of the anchor, the arm 95 and the blade 100 are made in one piece.
  • the system can be completely flexible and devoid of joints.
  • the anchor 80, the flexible beam 90 of the anchor and the arm 95 and / or the blade 100 can be produced by micromachining processes, for example from a silicon wafer by an ionic etching process. reactive (DRIE) or by any other suitable process. Silicon can be coated a layer of silicon oxide to compensate for the influence of temperature.
  • DRIE reactive etching
  • the anchor 80, the flexible beam 90 of the anchor and the arm 95 and / or the blade 100 can be made of metal, preferably a metal whose elastic and dimensional qualities do not depend on the temperature, such as than the elinvar.
  • the present invention also relates to a method for adjusting the oscillation frequency of a regulating member as described above.
  • Several adjustment methods can be implemented independently of each other, or combined with each other.
  • the oscillation frequency can also be adjusted by varying the length of the vibrating portion of the flexible blade 100, for example by varying the embedding depth of the flexible blade.
  • a micrometric screw can be provided for this purpose.
  • the oscillation frequency can also be modified by modifying the mass of the oscillating blade, or preferably a mass along or at the end of the anchor, for example the mass 93 forming the articulation with the arm 95.
  • the variation in mass can for example be obtained by laser micromachining of mass 93 to correct the resonant frequency of the oscillating member.
  • External elements for example removable or movable masses, can be added to or moved along vibrating mass 100, arm 95 and / or anchor 80 to change the frequency. External magnets can also be moved to exert a controlled influence on the vibrating blade 100.
  • the escape wheel 60 is elastically coupled to the barrel or to the energy source 32.
  • a spiral spring 65 is interposed between the escape wheel 60 and the pinion 37 forming part of the gear train and coaxial with the escape wheel.
  • This spiral spring stores the energy transmitted by the barrel through the gear train even when the escape wheel is blocked by the anchor and it cannot turn; as soon as the escape wheel is released following an oscillation of the anchor, the energy stored by the balance spring 65 is almost instantaneously released and transmitted to the escape wheel 60 which thus accelerates immediately.
  • this acceleration is not slowed down by the inertia of the cog.
  • This device makes it possible to overcome the inertia of the cog train, a major obstacle to the great accelerations of the escape wheel.
  • the acceleration of the wheel 60 is limited essentially by its own inertia.
  • the escape wheel 60 will preferably be made so as to reduce its moment of inertia. It is preferably made of steel or of a light material, for example of silicon, of an Ni-P alloy, or of titanium, or of an alloy containing titanium.
  • the hairspring 65 therefore tightens during each resting phase of the anchor 80, then suddenly relaxes during release. It therefore oscillates at each alternation, like a balance spring in a conventional regulating organ. However, unlike a conventional regulating member, this hairspring does not directly determine the cycles of the escapement which are here determined by the vibrating blade. This spring is calculated specifically according to the mechanical power available at the anchor wheel, the inertias present and the speeds required on the anchor wheel.
  • the hairspring 65 also makes it possible to damp the shocks associated with the alternation between pulse phases and rest phases. This way, even if the rotation escape wheel is jerky, gear 35 and barrel 32 rotate with approximately constant speed, and fuel efficiency is improved.
  • An elastic coupling between the escape wheel and the gear train can also be obtained by means of an elastic element other than a spiral spring, for example another type of spring. Furthermore, an elastic coupling could also be provided at another location in the gear train between the barrel and the escape wheel, for example upstream of the pinion 37 on the escape shaft.
  • the illustrated adjustment member oscillates at a high frequency (preferably greater than 50Hz, typically greater than 500Hz, for example 1000Hz) therefore requires power which results, as with any chronograph, in a limited power reserve. Since the primary objective is to produce a precise instrument, care will be taken to guarantee a power reserve adapted to the duration of the time interval during which we are able to guarantee the target decimal chronometrically.
  • This regulating member is therefore above all intended to regulate a chronograph used for limited periods, for example periods of less than a few hours, typically periods of a few minutes or corresponding for example to the typical duration of a sports event.
  • a vibrating blade at 1000 Hz associated with the escapement of the invention makes it possible to reach or exceed the power reserve of a 500 Hz chronograph based on a hairspring, this which shows that at constant available energy, the efficiency, in terms of energy spent by alternation, is at least twice as high.
  • the high frequency regulating organ is thus stopped most of the time, except when the chronograph is in use.
  • a launcher (not shown) is advantageously provided to set the vibrating blade into vibration when the user presses the START key of the chronograph. In one embodiment, this launcher acts by applying a pulse directly to the vibrating blade.
  • the launcher acts by applying a brief pulse to mass 93 at the joint between the arm. 95 and the anchor 80, so as to constrain this articulation and thus to exert a traction or a push on the free end of the vibrating blade which thus begins to oscillate.
  • the same launcher can be used when the user presses the STOP key to block the regulating member, for example by pressing the joint 93 thus preventing the anchor 80 from oscillating.
  • the movement advantageously comprises openings making it possible to see the vibrating blade 100, the arm 95 and / or the anchor 90.
  • the movement also makes it possible to see the hairspring 65.
  • the movement can be integrated into a watch which makes it possible to see the through the dial one or more of the elements 90, 95, 100 and / or 65.
  • Such an opening through the movement and the dial also makes it possible to hear the very characteristic noise of the oscillations of the regulating organ, for example the noise created by oscillations between 500 and 2000 Hz.

Description

Domaine techniqueTechnical area

La présente invention concerne un échappement pour un mouvement horloger, et notamment un organe réglant mécanique avec un échappement capable d'entretenir et compter des oscillations isochrones d'un oscillateur vibrant.The present invention relates to an escapement for a horological movement, and in particular a mechanical regulating member with an escapement capable of sustaining and counting isochronous oscillations of a vibrating oscillator.

Dans un mode de réalisation, la présente invention se rapporte à des chronographes mécaniques à très haute fréquence permettant la mesure de périodes de temps avec une résolution meilleure que le 1/1000ème de seconde, et ayant un oscillateur vibrant avec une fréquence égale ou supérieure à quelques dizaines de Hz, par exemple une fréquence égale ou supérieure à 1 kHz. Cependant, l'organe réglant de l'invention peut fonctionner également à des fréquences plus basses, à partir de quelques dizaine de Hz.In one embodiment, the present invention relates to high frequency mechanical chronographs enabling time periods of measurement with a resolution better than 1/1000 th of a second, and having a vibrating oscillator with a frequency equal to or greater to a few tens of Hz, for example a frequency equal to or greater than 1 kHz. However, the regulating member of the invention can also operate at lower frequencies, from a few tens of Hz.

Etat de la techniqueState of the art

La mesure précise du temps sur une période donnée revient à additionner les N premières fractions entières de temps comptées sur la période. Il convient de faire un distinguo entre mesurer et compter le temps : pour compter un intervalle de temps, par exemple une seconde, il faut savoir le partager en fractions égales, par exemple en dixièmes ou en centièmes.The precise measurement of time over a given period amounts to adding the N first whole fractions of time counted over the period. A distinction should be made between measuring and counting time: to count an interval of time, for example a second, it is necessary to know how to divide it into equal fractions, for example in tenths or hundredths.

Ainsi, il n'est pas possible de compter moins qu'une unité de mesure sans la découper plus finement. Pour mesurer directement, il faut relever la position d'une aiguille dont le déplacement est le résultat d'un comptage.Thus, it is not possible to count less than a unit of measurement without cutting it more finely. To measure directly, the position of a needle whose movement is the result of a count must be noted.

Il existe certes des chronographes permettant d'interpoler les fractions entières de temps comptées, afin d'améliorer la résolution affichée. Par exemple, il existe des chronographes munis d'un oscillateur à 5Hz qui affichent par interpolation des durées inférieures au dixième de seconde ; on pourrait aussi sans autre imaginer des chronographes munis d'un oscillateur à 50Hz, par exemple, et capables d'afficher des durées avec une résolution du millième de seconde. L'interpolation peut par exemple être effectuée en déterminant la position angulaire d'une aiguille, d'un rouage, du balancier, ou de l'axe du balancier, par exemple au moyen d'une came tournant à chaque alternance avec le balancier et dont la position angulaire détermine la fraction d'alternance dans laquelle on se trouve à chaque instant. Une telle interpolation n'est en aucun cas capable de compter ou d'afficher l'intervalle précis.There are certainly chronographs which make it possible to interpolate the whole fractions of time counted, in order to improve the displayed resolution. For example, there are chronographs equipped with a 5Hz oscillator which display, by interpolation, durations of less than a tenth of a second; one could also without further imagine chronographs fitted with a 50Hz oscillator, for example, and capable of displaying times with a resolution of one thousandth of a second. The interpolation can for example be carried out by determining the angular position of a hand, of a gear train, of the balance, or of the axis of the balance, for example by means of a cam rotating at each alternation with the balance and whose angular position determines the fraction of alternation in which we are at each instant. Such interpolation is in no way capable of counting or displaying the precise interval.

La mesure mécanique précise de périodes de temps requiert donc un oscillateur ayant une fréquence propre correspondante à la résolution que l'on souhaite obtenir, ainsi qu'un échappement capable d'entretenir ces oscillations sans en perturber l'isochronisme, et de le compter. En augmentant la fréquence d'oscillation, on améliore la résolution temporelle, ce qui permet de distinguer des intervalles de durée très proches. Une résolution temporelle améliorée est surtout utile pour des chronographes, pour lesquels une résolution temporelle de l'ordre du centième de seconde est parfois souhaitée. Une fréquence d'oscillation élevée engendre cependant une consommation énergétique notamment au niveau de l'échappement, ce qui réduit la réserve de marche de la montre.The precise mechanical measurement of periods of time therefore requires an oscillator having a natural frequency corresponding to the resolution that one wishes to obtain, as well as an escapement capable of sustaining these oscillations without disturbing their isochronism, and of counting it. By increasing the frequency of oscillation, the temporal resolution is improved, which makes it possible to distinguish very close intervals of duration. Improved temporal resolution is especially useful for chronographs, for which a temporal resolution of the order of a hundredth of a second is sometimes desired. A high oscillation frequency, however, generates energy consumption, particularly at the level of the escapement, which reduces the power reserve of the watch.

D'autre part, l'énergie incidente qui alimente le régulateur dans une montre mécanique traditionnelle se fait au moyen d'un système discontinu, la roue d'ancre et l'ancre. Traditionnellement, un échappement s'arrête puis accélère à chaque alternance pour communiquer l'énergie au régulateur. Il faut donc à chaque fois « relancer » la roue d'échappement, ainsi que tout le train de rouage qui lui aussi s'arrête puis redémarre à chaque alternance. L'inertie globale de ce système induit une limite dans l'accélération que peut recevoir la roue d'ancre et donc de l'énergie transmise. Un système classique à balancier-spiral, associé à une chaîne de transmission mécanique donnée, possède donc une limite en fréquence et corolairement une limite en durée de fonctionnement.On the other hand, the incident energy which feeds the regulator in a traditional mechanical watch is done by means of a discontinuous system, the anchor wheel and the anchor. Traditionally, an escapement stops then accelerates at each alternation to communicate energy to the regulator. It is therefore necessary each time to "relaunch" the escape wheel, as well as the entire cog train which also stops and then restarts at each alternation. The overall inertia of this system induces a limit in the acceleration that the anchor wheel can receive and therefore in the energy transmitted. A conventional sprung balance system, associated with a given mechanical transmission chain, therefore has a frequency limit and corollary a limit in operating time.

Pour cette raison, la fréquence d'oscillation choisie est habituellement un compromis entre les exigences de résolution du chronographe et la volonté de maintenir une réserve de marche élevée pour l'affichage du temps courant.For this reason, the chosen oscillation frequency is usually a compromise between the resolution requirements of the chronograph and the desire to maintain a high power reserve for the display of the current time.

Les organes réglants les plus répandus comportent un oscillateur de type balancier-spiral, et un échappement à ancre. Ces dispositifs, largement décrits dans la littérature technique, ont le plus souvent des fréquences d'oscillation de 4 ou 5 Hz, soit 28'800 ou 36'000 alternances/heure.The most widely used regulating organs include a spring-balance type oscillator and an anchor escapement. These devices, widely described in the technical literature, most often have oscillation frequencies of 4 or 5 Hz, ie 28,800 or 36,000 vibrations / hour.

On connait des chronographes mécaniques à plus haute fréquence, par exemple pulsant à 360'000 alternances/heure, et capables de mesurer le 100ème de seconde. La demande de brevet US20110164477 décrit une montre bracelet avec un premier organe réglant à basse fréquence pour le comptage du temps, et un second organe réglant à 360'000 alternances par heure pour le chronographe au 1/100ème de seconde. Le calibre 360 de la déposante, puis la montre Carrera Mikrograph présentés par la déposante exploitent cette construction. Le 'Mikrotimer 1000' développé par la déposante, parvient à mesurer mécaniquement le 1000ème de seconde grâce à un oscillateur comprenant un spiral à très haute rigidité et un organe réglant sans balancier, à faible moment d'inertie, donnant lieu à 3'600'000 alternances par heure.There are known mechanical chronographs higher frequency, e.g. pulsing 360'000 / hour, and capable of measuring the 100 th of a second. The patent application US20110164477 describes a wristwatch with a first low frequency regulating device for counting the time, and a second regulating member to 360'000 oscillations per hour for the chronograph 1/100 second. The applicant's caliber 360, then the Carrera Mikrograph watch presented by the applicant, exploit this construction. The 'Mikrotimer 1000' developed by the applicant manages to mechanically measure the 1000th of a second thanks to an oscillator comprising a very high stiffness balance spring and a regulating member without balance, with low moment of inertia, giving rise to 3,600 '000 vibrations per hour.

On ne connaît pas, cependant, des oscillateurs et échappements mécaniques plus rapides, permettant une résolution encore supérieure. Il y a donc un besoin de mesurer des durées chronométrées avec une résolution égale ou supérieure aux résolutions connues.We do not know, however, faster oscillators and mechanical escapements, allowing an even higher resolution. There is therefore a need to measure timed times with a resolution equal to or greater than known resolutions.

Il a été constaté dans le cadre de l'invention que le régulateur à spiral classique n'est plus adapté pour constituer des étalons utiles à la mesure du temps précis ou dès que l'on dépasse des fréquences de l'ordre de 500 à 800 Hz, car il perd en précision et est trop énergivore. Par ailleurs son inertie globale et son comportement dynamique ne conviennent pas à une oscillation à haute fréquence.It has been observed in the context of the invention that the conventional spiral regulator is no longer suitable for constituting standards useful for measuring precise time or as soon as frequencies of the order of 500 to 800 are exceeded. Hz because it loses precision and consumes too much energy. Moreover, its overall inertia and its dynamic behavior are not suitable for high frequency oscillation.

Une des difficultés rencontrées dans la réalisation d'organes réglant de plus en plus rapide est liée à l'augmentation de l'énergie requise pour leur fonctionnement. Dans les échappements de type conventionnel, en effet, la roue d'échappement ainsi que tout le rouage qui l'entraîne sont soumis à une alternance de phases d'accélération et de phases de repos, ce qui occasionne une forte déperdition d'énergie, ce qui réduit énormément la réserve de marche de la montre. Il y a donc un besoin d'un organe réglant pour montres capable d'entretenir des oscillations isochrones plus rapides que les dispositifs connus, avec une meilleure efficacité énergétique.One of the difficulties encountered in the production of increasingly rapid regulating organs is linked to the increase in the energy required for their operation. In conventional type exhausts, in fact, the escape wheel as well as all the gear train which drives it are subjected to an alternation of acceleration phases and rest phases, which causes a high loss of energy, which greatly reduces the power reserve of the watch. There is therefore a need for a regulating member for watches capable of maintaining isochronous oscillations faster than the known devices, with better energy efficiency.

On connait déjà dans l'état de la technique des organes réglants basés par exemple sur des diapasons. Le site web « http://www.electric-clocks.nl/clocks/animations/AnimationT-Breguet.htm » décrit une horloge peut-être développée par Louis François Clément Breguet, dans laquelle une des branches d'un diapason est excitée par l'ancre d'un échappement.Regulating members based for example on tuning forks are already known in the state of the art. The website “http://www.electric-clocks.nl/clocks/animations/AnimationT-Breguet.htm” describes a clock possibly developed by Louis François Clément Breguet, in which one of the branches of a tuning fork is excited by the anchor of an escapement.

La fréquence f d'oscillation d'un diapason avec des branches cylindriques varie selon la formule : f = R l 2 πE ρ

Figure imgb0001
où :

  • f est la fréquence fondamentale de vibration du diapason en hertz ;
  • R est le rayon des branches, en mètres ;
  • l est la longueur des branches, en mètres ;
  • E est le module d'Young du matériau dont est fait le diapason en pascals ;
  • ρ est la masse volumique du matériau dont est fait le diapason, en kg/m2 .
The oscillation frequency f of a tuning fork with cylindrical branches varies according to the formula: f = R l 2 πE ρ
Figure imgb0001
or :
  • f is the fundamental vibrating frequency of the tuning fork in hertz;
  • R is the radius of the branches, in meters;
  • l is the length of the branches, in meters;
  • E is the Young's modulus of the material of which the pascal tuning fork is made;
  • ρ is the density of the material the tuning fork is made of, in kg / m2.

Par conséquent, la fréquence d'oscillation décroit rapidement lorsque les branches s'allongent. De simples calculs montrent cependant que des longueurs importantes sont nécessaires afin d'obtenir des fréquences d'oscillation compatibles avec le fonctionnement de mouvements mécaniques. Par exemple, le diapason décrit dans le site web précité vibre à 100Hz, ce qui est déjà considéré comme une fréquence très élevée en horlogerie mécanique. Cette fréquence nécessite cependant un diapason de très grande taille, qui peut tout juste être intégré dans une pendule, mais serait impossible à placer dans une montre-bracelet. Un diapason plus court produirait une fréquence inutilement élevée, engendrant une oscillation excessivement rapide de l'ancre, de la roue d'ancre et du mouvement, et donc une déperdition d'énergie importante, une baisse de la réserve de marche et une usure excessive des pièces.Therefore, the oscillation frequency decreases rapidly as the branches lengthen. Simple calculations show, however, that long lengths are necessary in order to obtain oscillation frequencies compatible with the operation of movements. mechanical. For example, the tuning fork described in the aforementioned website vibrates at 100Hz, which is already considered a very high frequency in mechanical watchmaking. This frequency, however, requires a very large tuning fork, which can barely be integrated into a pendulum, but would be impossible to place in a wristwatch. A shorter tuning fork would produce an unnecessarily high frequency, causing excessively rapid oscillation of the anchor, anchor wheel and movement, and therefore significant energy loss, reduced power reserve and excessive wear. pieces.

Pour toutes ces raisons, l'usage de diapasons en horlogerie mécanique est resté essentiellement confiné à des pendules, ou à des montres électriques dans lesquelles la fréquence d'oscillation élevée des diapasons peut être utile. En revanche, l'usage de diapasons dans des mouvements pour montres mécaniques est généralement considéré comme inapproprié.For all these reasons, the use of tuning forks in mechanical watchmaking has remained essentially confined to clocks, or to electric watches in which the high frequency of oscillation of the tuning forks can be useful. On the other hand, the use of tuning forks in movements for mechanical watches is generally considered inappropriate.

CH442153 ou de façon similaire GB1138818 décrivent un mouvement d'horlogerie comportant un diapason couplé ou connecté mécaniquement à une ancre montée sur une lame oscillante. Ce système permet de faire vibrer la lame et donc l'ancre à une fréquence inférieure à celle du diapason, qui peut donc être plus facilement miniaturisé. Ce document n'indique cependant pas si les dimensions minimales qui peuvent être obtenues sont compatibles avec une montre bracelet. CH442153 or similar GB1138818 describe a timepiece movement comprising a tuning fork coupled or mechanically connected to an anchor mounted on an oscillating blade. This system makes it possible to vibrate the blade and therefore the anchor at a frequency lower than that of the tuning fork, which can therefore be more easily miniaturized. However, this document does not indicate whether the minimum dimensions that can be obtained are compatible with a wristwatch.

FR1505656 décrit un mouvement pour pendulette comportant une ancre munie de palettes et qui oscille perpendiculairement au plan de la roue d'échappement. FR1505656 describes a movement for a pendulum comprising an anchor fitted with paddles and which oscillates perpendicular to the plane of the escape wheel.

US6775582 décrit un mouvement avec une connexion élastique de la roue d'échappement. US6775582 describes a movement with an elastic connection of the escape wheel.

Bref résumé de l'inventionBrief summary of the invention

Un but de la présente invention est de proposer un échappement permettant d'entretenir et compter des oscillations à très haute fréquence ainsi qu'un mécanisme d'horlogerie exploitant un tel échappement. Selon l'invention, ces buts sont atteints notamment au moyen de l'objet des revendications annexées.An object of the present invention is to provide an escapement making it possible to maintain and count very high frequency oscillations as well as a clockwork mechanism using such an escapement. According to the invention, these aims are achieved in particular by means of the subject of the appended claims.

En particulier, ces buts sont atteints au moyen d'un organe réglant tel que défini dans la revendication indépendante 1. Des réalisations préférées sont définies dans les revendications dépendantes.In particular, these objects are achieved by means of a regulating member as defined in independent claim 1. Preferred embodiments are defined in the dependent claims.

Ainsi, la fréquence d'oscillation de cet organe réglant dépend non seulement des caractéristiques de l'oscillateur vibrant (lame ou diapason), mais aussi de la flexibilité de la poutre de l'ancre.Thus, the oscillation frequency of this regulating member depends not only on the characteristics of the vibrating oscillator (blade or tuning fork), but also on the flexibility of the anchor beam.

Le couplage entre l'oscillateur vibrant et la poutre flexible de l'ancre permet de réduire la fréquence d'oscillation de l'échappement. Ainsi, même une lame vibrante ou un diapason avec des dimensions compatibles avec une montre-bracelet peut être utilisée dans l'organe réglant.The coupling between the vibrating oscillator and the flexible beam of the anchor makes it possible to reduce the oscillation frequency of the escapement. Thus, even a vibrating blade or a tuning fork with dimensions compatible with a wristwatch can be used in the regulating organ.

Par ailleurs, l'oscillateur vibrant est destiné à un chronographe mécanique. Dans un chronographe mécanique, une fréquence d'oscillation élevée est utile, car elle permet de compter des durées avec une résolution élevée. Par ailleurs, les chronographes sont généralement utilisés pour mesurer des durées relativement brèves, en sorte que la perte de réserve de marche et l'usure du mouvement que pourrait occasionner une fréquence élevée s'avèrent moins problématiques.Moreover, the vibrating oscillator is intended for a mechanical chronograph. In a mechanical chronograph, a high oscillation frequency is useful as it allows times to be counted with high resolution. On the other hand, chronographs are generally used to measure relatively short durations, so that the loss of power reserve and The wear of the movement that a high frequency could cause is less of a problem.

Dans un mode de réalisation préférentiel, la lame élastique est reliée à la poutre flexible de l'ancre par un connecteur mécanique, qui peut comporter un bras. Le couplage entre la lame élastique et la poutre flexible de l'ancre se fait ainsi au travers d'un bras qui possède sa propre flexibilité, et qui contribue ainsi à réduire ou à déterminer la fréquence d'oscillation du système.In a preferred embodiment, the elastic blade is connected to the flexible beam of the anchor by a mechanical connector, which may include an arm. The coupling between the elastic blade and the flexible beam of the anchor is thus made through an arm which has its own flexibility, and which thus contributes to reducing or determining the frequency of oscillation of the system.

Les ancres habituellement utilisées dans les échappements horlogers conventionnels comportent deux bras qui portent les palettes et sont solidaires d'une poutre, parfois appelée baguette. La fréquence d'oscillation est déterminée avant tout par l'ensemble balancier-spiral et on cherche à éviter toute perturbation occasionnée par l'ancre sur cette fréquence. Pour cette raison, la baguette des ancres d'échappements conventionnels est aussi rigide que possible, en tenant compte des contraintes de masse (qui doit être réduite pour réduire les pertes) et de la longueur minimale de l'ancre. Aucune mesure particulière n'est prise pour augmenter la flexibilité de la baguette de l'ancre, en sorte que son influence peut être complètement négligée lorsque l'on calcule la fréquence d'oscillation de l'ensemble balancier-spiral-échappement.The anchors usually used in conventional watch escapements have two arms which carry the paddles and are integral with a beam, sometimes called a rod. The oscillation frequency is determined above all by the sprung balance assembly and an attempt is made to avoid any disturbance caused by the anchor on this frequency. For this reason, the rod of conventional escapement anchors is as rigid as possible, taking into account the constraints of mass (which must be reduced to reduce losses) and the minimum length of the anchor. No particular measure is taken to increase the flexibility of the anchor rod, so that its influence can be completely neglected when calculating the oscillation frequency of the balance-spring-escapement assembly.

Selon l'invention, la flexibilité de la poutre (ou baguette) de l'ancre est utilisée, au lieu d'être réduite jusqu'à devenir négligeable. Par conséquent, des mesures volontaires sont prises pour augmenter la flexibilité de cette poutre.According to the invention, the flexibility of the beam (or rod) of the anchor is used, instead of being reduced until it becomes negligible. Therefore, voluntary measures are taken to increase the flexibility of this beam.

Dans un mode de réalisation, la section de la poutre, et notamment sa largeur (dans le plan de la roue d'échappement), sont réduites par rapport à une ancre conventionnelle, afin de réduire sa rigidité à longueur constante.In one embodiment, the section of the beam, and in particular its width (in the plane of the escape wheel), is reduced compared to a conventional anchor, in order to reduce its rigidity at constant length.

Afin d'éviter une section trop faible, et un risque de fragilité, la longueur de la poutre flexible est augmentée, ce qui lui donne une flexibilité volontairement accrue. Avantageusement, la poutre est donc plus longue que dans une ancre d'échappement à ancre suisse classique. Dans un mode de réalisation, la longueur de la poutre flexible est au moins deux fois plus grande que la largeur maximale de l'ancre au niveau des bras.In order to avoid a too small section, and a risk of fragility, the length of the flexible beam is increased, which gives it a deliberately increased flexibility. Advantageously, the beam is therefore longer than in a classic Swiss lever escapement anchor. In one embodiment, the length of the flexible beam is at least twice as great as the maximum width of the anchor at the arms.

En combinant ces deux mesures, on obtient donc une ancre munie d'une poutre dans laquelle le rapport entre la largeur et la longueur est nettement plus petit que dans les ancres conventionnelles. Dans un mode de réalisation, la largeur maximale de la poutre flexible est inférieure à un vingtième de sa longueur, avantageusement inférieur à un trentième de sa longueur.By combining these two measurements, we therefore obtain an anchor fitted with a beam in which the ratio between the width and the length is markedly smaller than in conventional anchors. In one embodiment, the maximum width of the flexible beam is less than one twentieth of its length, advantageously less than one thirtieth of its length.

Ces différentes mesures permettent de réaliser une ancre munie d'une poutre flexible, c'est-à-dire une poutre dont la flexibilité contribue de manière significative à la fréquence d'oscillation de la roue d'échappement. Dans une mode de réalisation avantageux, l'ancre contribue pour au moins 1%, avantageusement pour au moins 5%, par exemple pour au moins 10%, à la fréquence d'oscillation au niveau de la roue d'échappement; c'est-à-dire que l'utilisation d'une poutre hypothétique parfaitement rigide, au lieu de cette poutre flexible, produirait un organe réglant oscillant à une fréquence variant d'au moins 1%, de préférence 5%, par exemple 10%, par rapport à la fréquence d'oscillation obtenue grâce à cette poutre flexible.These various measures make it possible to produce an anchor fitted with a flexible beam, that is to say a beam whose flexibility contributes significantly to the oscillation frequency of the escape wheel. In an advantageous embodiment, the anchor contributes for at least 1%, advantageously for at least 5%, for example for at least 10%, to the frequency of oscillation at the level of the escape wheel; that is, using a hypothetical perfectly rigid beam, instead of this flexible beam, would produce a regulating member oscillating at a frequency varying by at least 1%, preferably 5%, for example 10 %, compared to the oscillation frequency obtained by this flexible beam.

Toutes ces mesures permettent donc de réaliser un organe réglant pour chronographe mécanique basé sur un diapason, ou sur une lame vibrante, et donc de s'affranchir à la fois des problèmes connus des spiraux, et des limitations des diapasons.All these measurements therefore make it possible to produce a regulating organ for a mechanical chronograph based on a tuning fork, or on a vibrating blade, and therefore to overcome both the known problems of balance springs and the limitations of tuning forks.

Brève description des figuresBrief description of the figures

Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • La figure 1 illustre un mouvement d'horlogerie comprenant un organe réglant selon un aspect de l'invention.
  • La figure 2 montre l'organe réglant de l'invention dans le mouvement de la figure 1, et
  • La figure 3 représente le même organe réglant en vue explosée.
  • Les figures 4a-4e montrent des phases de l'action de l'échappement de l'organe réglant de l'invention.
  • La figure 5 illustre schématiquement une chaîne de transmission comprenant un barillet, un rouage multiplicateur, et un organe réglant selon un aspect de l'invention.
  • La figure 6 montre la position du point de début de l'impulsion sur la surface d'impulsion de l'ancre de l'organe réglant de l'invention.
  • La figure 7 montre la distance angulaire θ parcourue par la roue d'échappement en fonction du temps.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • The figure 1 illustrates a timepiece movement comprising a regulating member according to one aspect of the invention.
  • The figure 2 shows the regulating organ of the invention in the movement of the figure 1 , and
  • The figure 3 represents the same regulating organ in exploded view.
  • The figures 4a-4e show phases of the action of the exhaust of the regulating member of the invention.
  • The figure 5 schematically illustrates a transmission chain comprising a barrel, a multiplier gear, and an adjusting member according to one aspect of the invention.
  • The figure 6 shows the position of the start point of the pulse on the pulse surface of the anchor of the regulating member of the invention.
  • The figure 7 shows the angular distance θ traveled by the escape wheel as a function of time.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

Un mode de réalisation de l'organe réglant de l'invention est illustré, de façon simplifiée, sur les figures 1 et 2. Dans cet exemple, le mouvement comporte une chaîne duale avec un premier organe réglant, un premier rouage et un premier barillet (non représentés) destinés à la mesure de l'heure courante, et un deuxième organe réglant, un deuxième rouage et un deuxième barillet 32 destinés à la chronographie. La fréquence d'oscillation du deuxième organe réglant est supérieure à la fréquence d'oscillation du premier organe réglant, afin de garantir une réserve de marche nécessaire et suffisante pour la chaîne consacrée à l'affichage de l'heure, et une résolution très fine pour la mesure de durées par le chronographe.An embodiment of the regulating member of the invention is illustrated, in a simplified manner, on the figures 1 and 2 . In this example, the movement comprises a dual chain with a first regulating member, a first gear train and a first barrel (not shown) intended for measuring the current time, and a second regulating member, a second gear train and a second barrel. 32 intended for chronography. The oscillation frequency of the second regulating organ is greater than the oscillation frequency of the first regulating organ, in order to guarantee a necessary and sufficient power reserve for the chain dedicated to the display of the hour, and a very fine resolution for the measurement of durations by the chronograph.

L'organe réglant du chronographe comporte une roue d'échappement 60 avec un nombre prédéterminé de dents saillantes ayant une géométrie précise 63, de préférence plus de 25 dents, par exemple 40 dents. Le nombre de dents élevé réduit le pas entre les dents et permet ainsi de réduire la distance angulaire parcourue par la roue d'échappement 60 à chaque alternance, de diminuer ainsi la quantité d'énergie nécessaire à chaque alternance, et d'augmenter la fréquence d'oscillation.The regulating organ of the chronograph comprises an escape wheel 60 with a predetermined number of protruding teeth having a precise geometry 63, preferably more than 25 teeth, for example 40 teeth. The high number of teeth reduces the pitch between the teeth and thus makes it possible to reduce the angular distance traveled by the escape wheel 60 at each alternation, thus reducing the amount of energy required for each alternation, and to increase the frequency. of oscillation.

Cette géométrie et ce nombre de dents permettent d'accélérer rapidement la roue d'ancre et donc de communiquer le plus fréquemment possible de l'énergie à l'organe réglant. Au lieu d'arrêter complètement la roue d'ancre à chaque cycle, cette géométrie permet de la ralentir en fin d'impulsion. Le cycle requière un angle d'impulsion très court et à ce titre autorise un grand nombre de dents. La durée d'un cycle est très faible et c'est pendant cette durée que l'on doit accélérer la roue pour créer une énergie cinétique suffisante. Cet échappement se caractérise donc par des accélérations très grandes. L'oscillateur à poutre ainsi réalisé consomme sensiblement moins d'énergie qu'un oscillateur à spiral classique, typiquement au moins deux fois moins qu'un oscillateur classique.This geometry and this number of teeth make it possible to quickly accelerate the anchor wheel and therefore to communicate energy as frequently as possible to the regulating member. Instead of completely stopping the anchor wheel at each cycle, this geometry slows it down at the end of the pulse. The cycle requires a very short pulse angle and as such allows a large number of teeth. The duration of a cycle is very short and it is during this period that the wheel must be accelerated to create sufficient kinetic energy. This escapement is therefore characterized by very high accelerations. The beam oscillator thus produced consumes significantly less energy than a conventional spiral oscillator, typically at least two times less than a conventional oscillator.

L'ancre 80 du chronographe comprend deux bras destinés à s'engager avec les dents de la roue d'échappement 60, solidaire d'une poutre flexible, dite aussi baguette, 90. La longueur de la poutre flexible 90, ainsi que sa section et le matériau choisi, lui donne une flexibilité volontaire ; avantageusement, la poutre est donc plus longue que dans une ancre d'échappement à ancre suisse classique. L'ancre constitue donc elle-même un élément oscillant. Les oscillations volontaires de la poutre flexible (ou baguette) déterminent la fréquence de résonance du système d'oscillateur couplé constitué de l'ancre et de la lame vibrante 100.The anchor 80 of the chronograph comprises two arms intended to engage with the teeth of the escape wheel 60, secured to a flexible beam, also called a rod, 90. The length of the flexible beam 90, as well as its section and the material chosen gives it a voluntary flexibility; advantageously, the beam is therefore longer than in a conventional Swiss lever escapement anchor. The anchor therefore itself constitutes an oscillating element. The voluntary oscillations of the flexible beam (or rod) determine the resonant frequency of the coupled oscillator system consisting of the anchor and the vibrating blade 100.

L'ancre pivote et se déforme volontairement à chaque alternance autour de l'axe 91, qui peut être muni d'un palier d'un roulement à bille ou empierré.The anchor pivots and deforms voluntarily at each alternation around the axis 91, which may be provided with a bearing of a ball or stone bearing.

L'ancre est préférablement dépourvue de palettes, au vu de la vitesse de rotation de la roue d'échappement et de la quantité d'énergie transmise à chaque impulsion ; la réalisation de palettes en saphir ou en céramique serait complexe et alourdirait considérablement l'ancre. À la place, la fourchette comporte des crans (ou saillies) 83a-83b peu proéminents, à la géométrie précise, permettant à l'ancre de se dégager des dents de la roue d'échappement avec une rotation de très faible amplitude. Dans une variante, toutefois, les surfaces de repos 83a-83b pourraient être réalisées par des palettes en pierre ou en céramique. Selon une caractéristique de l'invention, l'échappement comporte ainsi une ancre 80 qui oscille autour du point d'articulation 93 avec un angle d'oscillation très faible, de l'ordre de 4-5° par exemple. Le cycle ainsi généré est différent du cycle d'un échappement à ancre suisse conventionnel.The anchor is preferably devoid of paddles, in view of the speed of rotation of the escape wheel and the quantity of energy transmitted at each pulse; the production of sapphire or ceramic pallets would be complex and would considerably weigh down the anchor. Instead, the fork includes notches (or projections) 83a-83b not very prominent, with precise geometry, allowing the anchor to disengage from the teeth of the escape wheel with a rotation of very low amplitude. In an alternative, however, the rest surfaces 83a-83b could be made by stone or ceramic pallets. According to one characteristic of the invention, the escapement thus comprises an anchor 80 which oscillates around the point of articulation 93 with a very low oscillation angle, of the order of 4-5 ° for example. The cycle thus generated is different from the cycle of a conventional Swiss lever escapement.

L'ancre 80 ne comporte dans cet exemple ni dard, ni cheville. L'articulation 93 à l'extrémité de l'ancre 80 relie l'ancre de manière articulée à un bras 95. L'autre extrémité du bras 95 est liée à l'extrémité libre d'une lame vibrante 100. Dans cet exemple non limitatif, le bras 95 est monté de manière presque perpendiculaire à la lame vibrante 100, en sorte que les vibrations transversales de la lame vibrante 100 sont transmises au bras 95 et à la poutre flexible 90 de l'ancre. L'axe de rotation 91 de l'ancre étant fixe, le bras 95 et la poutre flexible 90 se plient ou se déplient autour de l'articulation 93 à chaque alternance.The anchor 80 in this example does not include either stinger or peg. The articulation 93 at the end of the anchor 80 connects the anchor in an articulated manner to an arm 95. The other end of the arm 95 is connected to the free end of a vibrating blade 100. In this example no Limitingly, the arm 95 is mounted almost perpendicular to the vibrating blade 100, so that the transverse vibrations of the vibrating blade 100 are transmitted to the arm 95 and to the flexible beam 90 of the anchor. The axis of rotation 91 of the anchor being fixed, the arm 95 and the flexible beam 90 bend or unfold around the articulation 93 at each alternation.

Des montages non perpendiculaires peuvent aussi être envisagés. Par ailleurs, il est aussi possible de réaliser des systèmes dans lesquels la lame vibrante 100, le bras 95 et/ou l'ancre s'étendent dans des plans différents les uns des autres.Non-perpendicular assemblies can also be considered. Furthermore, it is also possible to produce systems in which the vibrating blade 100, the arm 95 and / or the anchor extend in planes different from each other.

La première extrémité 103 de la lame vibrante est fixe par rapport à la platine. Dans cet exemple, la première extrémité fixe de la lame vibrante 100 est vissée sur la platine au moyen de la vis 101, d'autres moyens de fixation pouvant être prévus. Un dispositif 102 permet d'accorder l'ensemble en générant une précontrainte : dans la forme d'exécution illustrée, ce dispositif comporte excentrique 102 également vissé sur la platine et qui peut être tourné pour appliquer une force de précontrainte sur la lame vibrante 100 ; en tournant cet excentrique, on modifie la force de contrainte appliquée sur la lame vibrante, et on modifie la fréquence de résonance de la lame vibrante et/ou son couplage avec le bras 95.The first end 103 of the vibrating blade is fixed relative to the plate. In this example, the first fixed end of the vibrating blade 100 is screwed onto the plate by means of the screw 101, other fixing means can be provided. A device 102 allows the assembly to be tuned by generating a preload: in the embodiment illustrated, this device comprises an eccentric 102 also screwed onto the plate and which can be rotated to apply a preload force to the vibrating blade 100; by turning this eccentric, the stress force applied to the vibrating blade is modified, and the resonant frequency of the vibrating blade and / or its coupling with the arm 95 is modified.

Les vibrations de l'extrémité libre de la lame vibrante 100 sont transmises à l'ancre 90 au travers du bras 95. Dans une forme d'exécution, la liaison entre la lame vibrante 100 et le bras 95 constitue un pivot simple et une glissière simple, permettant une rotation possible et un glissement entre les deux éléments; la lame vibrante 100 rentre dans le bras. Toute liaison permettant le mouvement relatif désiré entre la lame vibrante et le bras ou coupleur peut être utilisée, de manière à éviter un arc-boutement du bras 95 ou de la lame vibrante 100 en raison de contraintes exercées sur cette liaison.The vibrations of the free end of the vibrating blade 100 are transmitted to the anchor 90 through the arm 95. In one embodiment, the connection between the vibrating blade 100 and the arm 95 constitutes a single pivot and a slide. simple, allowing possible rotation and sliding between the two elements; the vibrating blade 100 fits into the arm. Any connection allowing the desired relative movement between the vibrating blade and the arm or coupler can be used, so as to avoid bracing of the arm 95 or of the vibrating blade 100 due to stresses exerted on this connection.

La poutre 90 de l'ancre joue ainsi le rôle d'excitateur, le bras 95 constitue une poutre de liaison, ou connecteur, pour transmettre cette excitation à la lame 100 (ou oscillateur) et la faire vibrer ou osciller autour de son point de repos. D'autres types d'excitateurs, y compris un excitateur magnétique exerçant un champ magnétique variable dans le temps, peuvent être employés pour faire vibrer la lame vibrante 100.The beam 90 of the anchor thus acts as an exciter, the arm 95 constitutes a connecting beam, or connector, to transmit this excitation to the blade 100 (or oscillator) and make it vibrate or oscillate around its point of rest. Other types of exciters, including a magnetic exciter exerting a time varying magnetic field, can be used to vibrate the vibrating plate 100.

La roue d'échappement 60 est entraînée par une source d'énergie mécanique, par exemple un ou plusieurs barillets 32 représentés schématiquement sur la figure 6, par l'intermédiaire d'un rouage multiplicateur 35. Les surfaces 81a et 81b de l'ancre 80 reçoivent de façon alternée une impulsion mécanique des dents 63 de la roue d'échappement 60, déterminant ainsi des oscillations isochrones de la lame vibrante 100 connectée à l'ancre 80. La roue d'échappement 60 avance d'une dent à chaque alternance desdites oscillations.The escape wheel 60 is driven by a source of mechanical energy, for example one or more barrels 32 shown schematically on the figure. figure 6 , by means of a multiplier gear 35. The surfaces 81a and 81b of the anchor 80 alternately receive a mechanical pulse from the teeth 63 of the escape wheel 60, thus determining isochronous oscillations of the vibrating blade 100 connected to the anchor 80. The escape wheel 60 advances by one tooth at each alternation of said oscillations.

La puissance mécanique disponible à la roue d'échappement 60 n'est pas constante mais, de façon connue, décroit avec la marche de la montre. A partir d'une valeur maximale, correspondant au barillet complètement remonté, la puissance se réduit progressivement au cours de la détente du barillet. Par conséquent, la quantité d'énergie transmise à l'ancre 80 à chaque impulsion donnée par la roue d'ancre décroit avec la charge du barillet.The mechanical power available at the escape wheel 60 is not constant but, in a known manner, decreases with the rate of the watch. From a maximum value, corresponding to the barrel completely reassembled, the power is gradually reduced during the relaxation of the barrel. Consequently, the amount of energy transmitted to the anchor 80 with each impulse given by the anchor wheel decreases with the load of the barrel.

Afin de maintenir une amplitude constante des oscillations de la lame vibrante 100, et donc un fonctionnement isochrone, le mouvement comporte des moyens pour garantir que le moment transmis à l'ancre à chaque impulsion soit sensiblement constant, quel que soit la charge du barillet, au moins pendant une plage de fonctionnement du barillet suffisante pour mesurer les durées pour lesquelles le chronographe est conçu.In order to maintain a constant amplitude of the oscillations of the vibrating blade 100, and therefore an isochronous operation, the movement comprises means to guarantee that the moment transmitted to the anchor at each pulse is substantially constant, whatever the load on the barrel, at least during an operating range of the barrel sufficient to measure the times for which the chronograph is designed.

Dans un premier mode de réalisation, le barillet est modifié de manière à délivrer un couple constant. Par exemple, le barillet peut comporter des moyens pour limiter la plage d'utilisation dans une zone dans laquelle le couple fourni est sensiblement constant, en réduisant artificiellement la durée de marche du chronographe. Un barillet pouvant théoriquement effectuer 7 à 10 tours afin d'assurer une réserve de marche importante pourra ainsi être limité et empêché de se détendre au-delà d'un tour, ou moins d'un tour, afin de garantir que dans cette plage autorisée le couple fourni soit aussi constant que possible.In a first embodiment, the barrel is modified so as to deliver a constant torque. For example, the barrel may include means for limiting the range of use in an area in which the torque supplied is substantially constant, by artificially reducing the running time of the chronograph. A barrel that can theoretically perform 7 to 10 revolutions in order to ensure a large power reserve can thus be limited and prevented from relaxing beyond one revolution, or less than one revolution, in order to guarantee that within this authorized range the torque supplied is as constant as possible.

Dans un deuxième mode de réalisation, qui peut aussi être combiné avec le premier mode de réalisation ci-dessus, le barillet peut être associé à une fusée ou à un autre élément équivalent pour régulariser le couple transmis au rouage 35.In a second embodiment, which can also be combined with the first embodiment above, the barrel may be associated with a rocket or with another equivalent element to regulate the torque transmitted to the gear train 35.

Dans un troisième mode de réalisation, la roue d'échappement 60 et/ou la fourchette de l'ancre 80 sont modifiés dans leur géométrie de manière à transmettre à l'ancre un moment d'impulsion qui soit sensiblement indépendant du couple moteur transmis à la roue d'échappement par le rouage 35. La géométrie de la dent réceptrice de l'ancre est calculée de telle sorte qu'une variation de couple à la roue d'ancre entrainera une variation de vitesse et donc une zone de contact linéaire comprise entre un point de contact à vitesse maxi et un point de contact à vitesse mini. Quel que soit le point de contact, le moment sera constant par variation géométrique du bras de levier. Ce troisième mode de réalisation peut être combiné au premier et/ou au deuxième mode de réalisation ci-dessus.In a third embodiment, the escape wheel 60 and / or the fork of the anchor 80 are modified in their geometry so as to transmit to the anchor a moment of impulse which is substantially independent of the engine torque transmitted to the escape wheel by the gear train 35. The geometry of the anchor receiving tooth is calculated so that a variation in torque at the anchor wheel will cause a variation in speed and therefore a linear contact zone between a point of contact at maximum speed and a point of contact at minimum speed. Whatever the point of contact, the moment will be constant by geometric variation of the lever arm. This third embodiment can be combined with the first and / or the second embodiment above.

Les figures 4a-4e montrent des phases de l'action de l'échappement de l'organe réglant selon ce troisième mode de réalisation de l'invention. La figure 4a correspond à la fin de la chute, et au début de l'impulsion sur la surface de sortie 81b de l'ancre 80. La rotation de la roue d'échappement 60 se poursuit jusqu'à que la pointe de la dent 63 en contact avec l'ancre ne bute contre le cran de repos 83b, comme il est montré sur la figure 4b. Dans cette position de repos sur la sortie, la rotation de la roue d'échappement 60 est interrompue par le cran 83b sur la fourchette de l'ancre 80.The figures 4a-4e show phases of the action of the escapement of the regulating member according to this third embodiment of the invention. The figure 4a corresponds to the end of the fall, and to the start of the impulse on the exit surface 81b of the anchor 80. The rotation of the escape wheel 60 continues until the tip of the tooth 63 in contact with the anchor not butting against the rest notch 83b, as shown in the figure 4b . In this rest position on the outlet, the rotation of the escape wheel 60 is interrupted by the notch 83b on the fork of the anchor 80.

L'oscillation de l'ancre 80 sous l'effet des vibrations de la lame vibrante 100 conduit au dégagement de la dent 63 et à la libération de la roue d'échappement 60. Il s'en suit une phase de chute, jusqu'à l'instant, visible sur la figure 4c, où une autre dent 63 de la roue 60 entre en contact avec l'autre surface d'impulsion 81a du bras d'entrée de l'ancre 80.The oscillation of the anchor 80 under the effect of the vibrations of the vibrating blade 100 leads to the release of the tooth 63 and to the release of the escape wheel 60. A fall phase follows, until at the moment, visible on the figure 4c , where another tooth 63 of the wheel 60 contacts the other impulse surface 81a of the input arm of the anchor 80.

La rotation de la roue 60 se poursuit pendant la phase d'impulsion sur la surface d'impulsion d'entrée 81a, jusqu'à que la dent 63 ne parvienne au cran de repos 83a, comme représenté sur la figure 4d. Cette phase de repos dure jusqu'à l'instant du dégagement, visible sur la figure 4e, qui donne lieu à une nouvelle phase de chute et au début d'un autre cycle.The rotation of the wheel 60 continues during the pulse phase on the input pulse surface 81a, until the tooth 63 reaches the rest notch 83a, as shown in the figure. figure 4d . This rest phase lasts until the moment of release, visible on the figure 4e , which gives rise to a new phase of fall and the start of another cycle.

Ainsi, dans l'échappement selon l'invention, les phases d'impulsion précèdent des phases de repos, tandis que dans la plupart des échappements utilisés dans des montres bracelet, les phases de repos sont suivies de phases d'impulsion, et les phases d'impulsion précèdent les chutes.Thus, in the escapement according to the invention, the pulse phases precede rest phases, while in most escapements used in wristwatches, the rest phases are followed by impulse phases, and impulse phases precede falls.

Selon un mode de réalisation préféré de l'invention, le point de premier contact entre une dent 26 et une surface d'impulsion 81a-b de l'ancre 80 n'est pas fixe, mais varie en fonction de la vitesse de rotation de la roue d'échappement 60, et donc de la puissance transmise par le rouage. Cet aspect est illustré sur la figure 6. Lorsque le barillet 32 est complètement armé, le contact entre la dent 63 et la surface d'impulsion se produit au point 86a. Avec une puissance réduite, l'accélération de la roue d'échappement 60 est limitée, le temps de chute augmente, et le contact a lieu au point 81b, plus bas. Le déplacement de ce point de contact a pour effet de modifier à la fois le moment d'impulsion transmis à l'ancre 80, et/ou la durée pendant laquelle un moment est transmis. Avantageusement, le moment d'impulsion transmis à l'ancre est ainsi sensiblement indépendant de la vitesse de rotation de la roue d'échappement. Une roue d'échappement qui tourne rapidement exerce lors de l'impulsion une force importante sur l'ancre 80, mais en un point 86a proche du centre de rotation de l'ancre. Une roue d'échappement entraînée par un barillet moins tendu atteint l'ancre avec moins d'énergie, mais exerce la force d'impulsion en un point plus éloigné du centre de rotation de l'ancre. Il en résulte un moment d'impulsion transmis à l'ancre sensiblement constant.According to a preferred embodiment of the invention, the point of first contact between a tooth 26 and an impulse surface 81a-b of the anchor 80 is not fixed, but varies according to the speed of rotation of the escape wheel 60, and therefore the power transmitted by the cog. This aspect is illustrated on figure 6 . When barrel 32 is fully cocked, contact between tooth 63 and the impulse surface occurs at point 86a. With reduced power, acceleration of escape wheel 60 is limited, fall time increases, and contact occurs at point 81b, below. The displacement of this point of contact has the effect of modifying both the moment of impulse transmitted to the anchor 80, and / or the duration during which a moment is transmitted. Advantageously, the moment of impulse transmitted to the anchor is thus substantially independent of the speed of rotation of the escape wheel. A rapidly rotating escape wheel exerts a large force on the anchor 80 during the impulse, but at a point 86a close to the center of rotation of the anchor. An escape wheel driven by a less tensioned barrel reaches the anchor with less energy, but exerts the impulse force at a point farther from the center of rotation of the anchor. This results in an impulse moment transmitted to the anchor which is substantially constant.

La forme des surfaces d'impulsion 81a et 81b est optimisée pour garantir ce moment d'impulsion constant. Dans un mode de réalisation, ces surfaces d'impulsion sont courbes, par exemple en cycloïde, de préférence et par exemple, en brachistochrone. Dans un autre mode de réalisation moins optimal mais plus simple à réaliser, les surfaces d'impulsion sont constituées par des segments de droites.The shape of the impulse surfaces 81a and 81b is optimized to ensure this constant impulse moment. In one embodiment, these pulse surfaces are curved, eg cycloid, preferably and eg brachistochrone. In another less optimal but simpler embodiment, the impulse surfaces are formed by straight line segments.

Selon un aspect important de l'invention, si la puissance disponible à l'échappement est insuffisante, par exemple lorsque le barillet est insuffisamment armé, le dégagement de la dent 63 peut avoir lieu avant que celle-ci ne parvienne au cran de repos. En ce cas, la phase d'impulsion est suivie d'une phase de chute sans arrêt de la roue d'échappement 60. Lors de l'alternance suivante, la roue d'échappement ne démarre pas d'une condition de repos, mais possède déjà une vitesse de rotation non nulle, et pourra parvenir à toucher le cran de repos (de l'autre bras de l'ancre) en dépit de la puissance disponible réduite, ou du moins à s'en approcher davantage. Il est aussi possible que la roue d'échappement très ralentie ne bute contre le cran de repos qu'après un nombre supérieur d'alternances, par exemple après trois, quatre ou d'avantage d'alternances. Cette caractéristique, obtenue notamment grâce aux crans 83a-83b peu proéminents et à la géomètre des dents 63, évite d'arrêter complètement une roue d'échappement qui possède trop peu d'énergie, et lui permet de poursuivre son accélération pendant plusieurs alternances successives.According to an important aspect of the invention, if the power available at the exhaust is insufficient, for example when the barrel is insufficiently armed, the release of the tooth 63 can take place before that it does not reach the notch of rest. In this case, the pulse phase is followed by a drop phase without stopping the escape wheel 60. During the next alternation, the escape wheel does not start from a rest condition, but already has a non-zero speed of rotation, and will be able to reach the rest notch (of the other arm of the anchor) despite the reduced available power, or at least to come closer to it. It is also possible that the very slow escape wheel does not come up against the rest notch until after a greater number of alternations, for example after three, four or more alternations. This characteristic, obtained in particular thanks to the not very prominent notches 83a-83b and to the geometer of the teeth 63, avoids completely stopping an escape wheel which has too little energy, and allows it to continue its acceleration during several successive alternations. .

L'organe réglant de l'invention comporte donc, en plus du régime de fonctionnement normal, avec une phase de repos pour chaque alternance, un régime de fonctionnement à puissance réduite, dans lequel on a une phase de repos chaque deux, trois ou N alternances. Dans le régime à puissance réduite, la marche de l'organe réglant reste régulière.The regulating member of the invention therefore comprises, in addition to the normal operating regime, with a rest phase for each alternation, an operating regime at reduced power, in which there is a rest phase every two, three or N alternations. In the reduced power mode, the operation of the regulating organ remains regular.

La figure 7 montre la distance angulaire θ parcourue par la roue d'échappement 60 en fonction du temps. La droite 200 montre la marche « idéale » ; la roue d'échappement tourne à une vitesse constante. La courbe 201 montre une courbe correspondant à un échappement classique, et à l'échappement de l'invention dans son régime de fonctionnement normal, dans lequel la roue d'échappement est arrêtée à chaque alternance par l'ancre, puis accélère à nouveau jusqu'au prochain point de repos lors de l'alternance suivante. La courbe 202 montre la distance angulaire parcourue par la roue d'échappement de l'invention dans un régime de fonctionnement à puissance réduite ; lors de certains cycles, l'ancre libère la roue d'échappement avant de l'arrêter, ce qui permet à la roue de poursuivre son accélération pendant une ou plusieurs alternances successives.The figure 7 shows the angular distance θ traveled by the escape wheel 60 as a function of time. Line 200 shows the "ideal"rate; the escape wheel rotates at a constant speed. Curve 201 shows a curve corresponding to a conventional escapement, and to the escapement of the invention in its normal operating regime, in which the escape wheel is stopped at each alternation by the anchor, then accelerates again to 'to the next rest point during the next alternation. Curve 202 shows the angular distance traveled by the escape wheel of the invention in an operating speed at reduced power; during certain cycles, the anchor releases the escape wheel before stopping it, which allows the wheel to continue its acceleration during one or more successive alternations.

On a constaté que l'excitation des oscillations de la lame vibrante 100 est meilleure lorsque la poutre 90 de l'ancre est elle-même flexible, et présente une masse concentrée à son extrémité. La flexibilité de la poutre permet de transmettre l'énergie vibratoire à la lame 100 sans arrêter l'oscillation. Dans l'exemple représenté sur la figure 1 la masse est constituée par l'articulation à charnière 93 elle-même. La liaison entre la poutre flexible 90 de l'ancre et la lame vibrante 100 est assurée par un bras (ou connecteur) 95. Cet arrangement constitue donc un système d'oscillateurs couplés entre la lame vibrante 100 et la poutre flexible 90 de l'ancre. Il est aussi possible de prévoir un bras 95 (ou connecteur) pourvu d'une certaine flexibilité pour lui permettre d'osciller. Dans ce cas, l'arrangement constitue donc un système avec trois oscillateurs 100, 95, 90 couplés. La petite masse peut aussi constituer un dispositif d'accordage supplémentaire. Ce dispositif peut par exemple être pelable ou automatiquement ablaté au moyen d'un laser (accordage automatique...).It has been found that the excitation of the oscillations of the vibrating blade 100 is better when the beam 90 of the anchor is itself flexible, and has a mass concentrated at its end. The flexibility of the beam makes it possible to transmit vibratory energy to the blade 100 without stopping the oscillation. In the example shown in figure 1 the mass is constituted by the hinge joint 93 itself. The connection between the flexible beam 90 of the anchor and the vibrating blade 100 is provided by an arm (or connector) 95. This arrangement therefore constitutes a system of oscillators coupled between the vibrating blade 100 and the flexible beam 90 of the anchor. It is also possible to provide an arm 95 (or connector) provided with a certain flexibility to allow it to oscillate. In this case, the arrangement therefore constitutes a system with three oscillators 100, 95, 90 coupled. The small mass can also constitute an additional tuning device. This device can for example be peelable or automatically ablated by means of a laser (automatic tuning, etc.).

On comprend bien que l'inertie de l'ancre 80 et du bras 95, et le couplage entre les vibrations de la lame 100 et celles de la poutre flexible 90 modifient la dynamique du système composé. Les fréquences propres d'oscillation ne sont en général pas calculables avec des méthodes analytiques, mais peuvent être obtenue par des procédés de simulation numérique connus et dépendent aussi de la précontrainte appliquée à la lame 100. On peut obtenir des fréquences d'oscillation de 1 kHz ou supérieures.It is well understood that the inertia of the anchor 80 and of the arm 95, and the coupling between the vibrations of the blade 100 and those of the flexible beam 90 modify the dynamics of the compound system. The natural frequencies of oscillation are generally not calculable with analytical methods, but can be obtained by known numerical simulation methods and also depend on the prestress applied to the blade 100. We can obtain oscillation frequencies of 1 kHz or higher.

Dans une variante, l'ancre 80, la poutre flexible 90 de l'ancre, le bras 95 et la lame 100 sont réalisés en une seule pièce. Dans cette variante, le système peut être complètement flexible et dépourvu d'articulations.In a variant, the anchor 80, the flexible beam 90 of the anchor, the arm 95 and the blade 100 are made in one piece. In this variant, the system can be completely flexible and devoid of joints.

L'ancre 80, la poutre flexible 90 de l'ancre et le bras 95 et/ou la lame 100 peuvent être réalisés par des procédés de micro-usinage, par exemple à partir d'une plaque de silicium par un procédé de gravure ionique réactive (DRIE) ou par tout autre procédé idoine. Le silicium peut être recouvert d'une couche d'oxyde de silicium afin de compenser l'influence de la température.The anchor 80, the flexible beam 90 of the anchor and the arm 95 and / or the blade 100 can be produced by micromachining processes, for example from a silicon wafer by an ionic etching process. reactive (DRIE) or by any other suitable process. Silicon can be coated a layer of silicon oxide to compensate for the influence of temperature.

Dans une variante, l'ancre 80, la poutre flexible 90 de l'ancre et le bras 95 et/ou la lame 100 peuvent être réalisée en métal, préférablement un métal dont les qualités élastique et dimensionnelles ne dépendent pas de la température, tel que l'elinvar.In a variant, the anchor 80, the flexible beam 90 of the anchor and the arm 95 and / or the blade 100 can be made of metal, preferably a metal whose elastic and dimensional qualities do not depend on the temperature, such as than the elinvar.

La présente invention concerne aussi un procédé d'ajustage de la fréquence d'oscillation d'un organe réglant tel que décrit plus haut. Plusieurs procédés d'ajustage peuvent être mis en œuvre indépendamment les uns des autres, ou combinés entre eux.The present invention also relates to a method for adjusting the oscillation frequency of a regulating member as described above. Several adjustment methods can be implemented independently of each other, or combined with each other.

Comme mentionné plus haut, en tournant l'excentrique 102 près de l'extrémité fixe 103 de la lame vibrante 100, on modifie la force de contrainte appliquée sur cette lame ce qui permet de modifier la fréquence du système.As mentioned above, by turning the eccentric 102 near the fixed end 103 of the vibrating blade 100, the stress force applied to this blade is modified, which makes it possible to modify the frequency of the system.

La fréquence d'oscillation peut aussi être ajustée en variant la longueur de la portion vibrante de la lame flexible 100, par exemple en variant la profondeur d'encastrement de la lame flexible. Une vis micrométrique peut être prévue à cet effet.The oscillation frequency can also be adjusted by varying the length of the vibrating portion of the flexible blade 100, for example by varying the embedding depth of the flexible blade. A micrometric screw can be provided for this purpose.

La fréquence d'oscillation peut aussi être modifiée en modifiant la masse de la lame oscillante, ou de préférence une masse le long de ou à l'extrémité de l'ancre, par exemple la masse 93 formant l'articulation avec le bras 95. La variation de masse peut par exemple être obtenue par micro-usinage laser de la masse 93 pour corriger la fréquence de résonance de l'organe oscillant.The oscillation frequency can also be modified by modifying the mass of the oscillating blade, or preferably a mass along or at the end of the anchor, for example the mass 93 forming the articulation with the arm 95. The variation in mass can for example be obtained by laser micromachining of mass 93 to correct the resonant frequency of the oscillating member.

Des éléments externes, par exemple des masses amovibles ou déplaçables, peuvent être ajoutés à ou déplacés le long de la masse vibrante 100, au bras 95 et/ou à l'ancre 80 pour modifier la fréquence. Des aimants externes peuvent aussi être déplacés pour exercer une influence maîtrisée sur la lame vibrante 100.External elements, for example removable or movable masses, can be added to or moved along vibrating mass 100, arm 95 and / or anchor 80 to change the frequency. External magnets can also be moved to exert a controlled influence on the vibrating blade 100.

Selon un autre aspect de l'invention, la roue d'échappement 60 est couplée élastiquement au barillet ou à la source d'énergie 32. Dans l'exemple de réalisation illustré sur la figure 1, un ressort spiral 65 est interposé entre la roue d'échappement 60 et le pignon 37 faisant partie du rouage et coaxial à la roue d'échappement. Ce ressort spiral emmagasine l'énergie transmise par le barillet au travers du rouage même lorsque la roue d'échappement est bloquée par l'ancre et qu'elle ne peut pas tourner ; dès que la roue d'échappement est libérée suite à une oscillation de l'ancre, l'énergie emmagasinée par le spiral 65 est quasi instantanément libérée et transmise à la roue d'échappement 60 qui accélère ainsi immédiatement. En outre, cette accélération n'est pas freinée par l'inertie du rouage. Ce dispositif permet de s'affranchir de l'inertie du train de rouage, obstacle majeur aux grandes accélérations de la roue d'échappement. L'accélération de la roue 60 est limitée essentiellement par sa propre inertie.According to another aspect of the invention, the escape wheel 60 is elastically coupled to the barrel or to the energy source 32. In the embodiment illustrated in FIG. figure 1 , a spiral spring 65 is interposed between the escape wheel 60 and the pinion 37 forming part of the gear train and coaxial with the escape wheel. This spiral spring stores the energy transmitted by the barrel through the gear train even when the escape wheel is blocked by the anchor and it cannot turn; as soon as the escape wheel is released following an oscillation of the anchor, the energy stored by the balance spring 65 is almost instantaneously released and transmitted to the escape wheel 60 which thus accelerates immediately. In addition, this acceleration is not slowed down by the inertia of the cog. This device makes it possible to overcome the inertia of the cog train, a major obstacle to the great accelerations of the escape wheel. The acceleration of the wheel 60 is limited essentially by its own inertia.

La roue d'échappement 60 sera préférablement réalisée de façon à réduire son moment d'inertie. Elle est préférablement fabriquée en acier ou en un matériau léger, par exemple en Silicium, en un alliage Ni-P, ou en Titane, ou en un alliage contenant du Titane.The escape wheel 60 will preferably be made so as to reduce its moment of inertia. It is preferably made of steel or of a light material, for example of silicon, of an Ni-P alloy, or of titanium, or of an alloy containing titanium.

Le spiral 65 se tend donc pendant chaque phase de repos de l'ancre 80, puis se détend brusquement lors de la libération. Il oscille donc à chaque alternance, comme un spiral dans un organe réglant classique. Toutefois, au contraire d'un organe réglant classique, ce spiral ne détermine pas directement les cycles de l'échappement qui sont ici déterminés par la lame vibrante. Ce ressort est calculé spécifiquement en fonction de la puissance mécanique disponible à la roue d'ancre, des inerties en présence et des vitesses requises sur la roue d'ancre.The hairspring 65 therefore tightens during each resting phase of the anchor 80, then suddenly relaxes during release. It therefore oscillates at each alternation, like a balance spring in a conventional regulating organ. However, unlike a conventional regulating member, this hairspring does not directly determine the cycles of the escapement which are here determined by the vibrating blade. This spring is calculated specifically according to the mechanical power available at the anchor wheel, the inertias present and the speeds required on the anchor wheel.

Le spiral 65 permet en outre d'amortir les chocs liés à l'alternance entre phases d'impulsion et phases de repos. De cette façon, même si la rotation de la roue d'échappement est saccadée, le rouage 35 et le barillet 32 tournent avec une vitesse à peu près constante, et le rendement énergétique est amélioré.The hairspring 65 also makes it possible to damp the shocks associated with the alternation between pulse phases and rest phases. This way, even if the rotation escape wheel is jerky, gear 35 and barrel 32 rotate with approximately constant speed, and fuel efficiency is improved.

Un couplage élastique entre la roue d'échappement et le rouage peut aussi être obtenu au moyen d'un élément élastique autre qu'un ressort spiral, par exemple un autre type de ressort. Par ailleurs, un couplage élastique pourrait aussi être prévu à un autre endroit dans le rouage entre le barillet et la roue d'échappement, par exemple en amont du pignon 37 sur l'axe d'échappement.An elastic coupling between the escape wheel and the gear train can also be obtained by means of an elastic element other than a spiral spring, for example another type of spring. Furthermore, an elastic coupling could also be provided at another location in the gear train between the barrel and the escape wheel, for example upstream of the pinion 37 on the escape shaft.

L'organe de réglage illustré oscille à une fréquence élevée (de préférence supérieure à 50Hz, typiquement supérieure à 500Hz, par exemple 1000Hz) nécessite une puissance en conséquence qui entraîne, comme sur tout chronographe, une réserve de marche limitée. Puisque l'objectif premier est de réaliser un instrument précis on aura souci de garantir une réserve de marche adaptée à la durée de l'intervalle de temps pendant lequel on est capable de garantir chronométriquement la décimale visée. Cet organe réglant est donc avant tout destiné à réguler un chronographe employé pendant des durées limitées, par exemple des durées inférieures à quelques heures, typiquement des durées de quelques minutes ou correspondant par exemple à la durée typique d'une épreuve sportive. Des tests et des simulations ont démontré que l'usage d'une lame vibrante à 1000 Hz associée à l'échappement de l'invention permet d'atteindre ou dépasser la réserve de marche d'un chronographe à 500Hz basé sur un spiral, ce qui démontre qu'à énergie disponible constante, le rendement, en terme d'énergie dépensée par alternance, est au moins deux fois supérieur. L'organe réglant haute fréquence est ainsi arrêté la plupart du temps, sauf lorsque le chronographe est employé. Afin d'assurer un démarrage instantané de l'organe réglant, un lanceur non illustré est avantageusement prévu pour mettre la lame vibrante en vibration lorsque l'utilisateur appuie sur la touche START du chronographe. Dans un mode de réalisation, ce lanceur agit en appliquant une impulsion directement sur la lame vibrante. Dans un autre mode de réalisation, le lanceur agit en appliquant une brève impulsion sur la masse 93 à l'articulation entre le bras 95 et l'ancre 80, de manière à contraindre cette articulation et à exercer ainsi une traction ou une poussée sur l'extrémité libre de la lame vibrante qui se met ainsi à osciller. Le même lanceur peut être employé lorsque l'utilisateur appuie sur la touche STOP pour bloquer l'organe réglant, par exemple en appuyant sur l'articulation 93 en empêchant ainsi l'ancre 80 d'osciller.The illustrated adjustment member oscillates at a high frequency (preferably greater than 50Hz, typically greater than 500Hz, for example 1000Hz) therefore requires power which results, as with any chronograph, in a limited power reserve. Since the primary objective is to produce a precise instrument, care will be taken to guarantee a power reserve adapted to the duration of the time interval during which we are able to guarantee the target decimal chronometrically. This regulating member is therefore above all intended to regulate a chronograph used for limited periods, for example periods of less than a few hours, typically periods of a few minutes or corresponding for example to the typical duration of a sports event. Tests and simulations have shown that the use of a vibrating blade at 1000 Hz associated with the escapement of the invention makes it possible to reach or exceed the power reserve of a 500 Hz chronograph based on a hairspring, this which shows that at constant available energy, the efficiency, in terms of energy spent by alternation, is at least twice as high. The high frequency regulating organ is thus stopped most of the time, except when the chronograph is in use. In order to ensure instantaneous start-up of the regulating member, a launcher (not shown) is advantageously provided to set the vibrating blade into vibration when the user presses the START key of the chronograph. In one embodiment, this launcher acts by applying a pulse directly to the vibrating blade. In another embodiment, the launcher acts by applying a brief pulse to mass 93 at the joint between the arm. 95 and the anchor 80, so as to constrain this articulation and thus to exert a traction or a push on the free end of the vibrating blade which thus begins to oscillate. The same launcher can be used when the user presses the STOP key to block the regulating member, for example by pressing the joint 93 thus preventing the anchor 80 from oscillating.

Le mouvement comporte avantageusement des ouvertures permettant de voir la lame vibrante 100, le bras 95 et/ou l'ancre 90. Avantageusement, le mouvement permet aussi de voir le spiral 65. Le mouvement peut être intégré dans une montre qui permet de voir au travers du cadran un ou plusieurs des éléments 90, 95, 100 et/ou 65. Une telle ouverture à travers le mouvement et le cadran permet aussi d'entendre le bruit très caractéristique des oscillations de l'organe réglant, par exemple le bruit créé par des oscillations entre 500 et 2000 Hz.The movement advantageously comprises openings making it possible to see the vibrating blade 100, the arm 95 and / or the anchor 90. Advantageously, the movement also makes it possible to see the hairspring 65. The movement can be integrated into a watch which makes it possible to see the through the dial one or more of the elements 90, 95, 100 and / or 65. Such an opening through the movement and the dial also makes it possible to hear the very characteristic noise of the oscillations of the regulating organ, for example the noise created by oscillations between 500 and 2000 Hz.

Numéros de référence employés sur les figuresReference numbers used in figures

3232
barilletbarrel
3535
rouagecog
3737
Pignon sur l'axe de la roue d'échappementPinion on the axle of the escape wheel
6060
roue d'échappementescape wheel
6363
dent de la roue d'échappementescape wheel tooth
6565
couplage élastique, spiralelastic coupling, hairspring
8080
ancreanchor
81a,b81a, b
surfaces d'impulsionimpulse surfaces
83a,b83a, b
crans de reposrest stops
86a, b86a, b
point de début de l'impulsionpulse start point
9090
poutre (baguette) de l'ancre flexibleflexible anchor beam (rod)
9191
axe de l'ancreanchor axis
9393
articulation d'ancreanchor joint
9595
brasarms
100100
lame vibrantevibrating blade
101101
point de fixation de la lame vibranteattachment point of the vibrating blade
102102
excentriqueeccentric
103103
extrémité fixe de la lame vibrantefixed end of the vibrating blade

Claims (17)

  1. Regulating member for a mechanical chronograph movement comprising a vibrating oscillator (100) including a tuning-fork or a vibrating blade (100) mechanically connected to an anchor (80) having impulse surfaces (81a, 81b) alternately receiving a mechanical impulse from teeth (63) of an escapement wheel (60), so as to maintain isochronous oscillations of said vibrating oscillator, and to advance said escapement wheel (60) by one tooth with each alternation of said oscillations, a barrel (32) driving said escapement wheel through a gear (35),
    said vibrating oscillator (100) comprising an end (103) fixed with respect to a plate and a free end,
    the anchor (80) comprising a flexible beam (90) having a first end and a second end, and two arms integral with said first end of said flexible beam (90),
    characterized in that
    the free end of said vibrating oscillator (100) is connected to the second end of said flexible beam (90) so that the vibrations of the free end of the vibrating oscillator (100) are transmitted through this connection to the flexible beam (90) and so that the vibrations of the flexible beam (90) are transmitted through this connection to the vibrating oscillator (100).
  2. Regulating member according to claim 1, wherein said flexible beam (90) comprises a concentrated mass at its second end.
  3. Regulating member according to one of claims 1 or 2, wherein said vibrating oscillator (100) comprises an elastic blade attached to one end.
  4. Regulating member according to claim 3, comprising an arm (95) as a mechanical connector for connecting said elastic blade to the flexible beam (90) of said anchor.
  5. Regulating member according to claim 4, wherein said arm (95) is connected to the flexible beam (90) of the anchor by a joint.
  6. Regulating member according to one of claims 1 to 5, wherein the length of the flexible beam is at least twice as long as the maximum width of the anchor at said arms.
  7. Regulating member according to one of claims 1 to 6, wherein the ratio of the width of the beam to its length is less than 1/20.
  8. Regulating member according to claims 1 to 6 in which a flexibility of the anchor contributes at least 1 %, advantageously at least 5 %, for example at least 10 %, to the frequency of oscillation at the escapement wheel, i.e. the use of a hypothetical fully rigid beam, instead of said flexible beam, would produce a regulating member oscillating at a frequency varying by at least 1%, preferably 5%, e.g. 10%, relative to the frequency of oscillation obtained by said flexible beam.
  9. Regulating member according to one of claims 4 to 8, wherein said anchor (80), said flexible beam (90) of the anchor, said arm (95) and said elastic blade (100) are made in one piece.
  10. Regulating member according to one of claims 4 to 9, wherein said anchor (80), said flexible beam (90) and said arm (95) are made from a single silicon wafer.
  11. Regulating member according to one of claims 1 to 10, wherein said elastic blade (100) is made of elinvar.
  12. Regulating member according to any one of claims 1 to 11, wherein said pulse surfaces (81a, 81b) are curved.
  13. Regulating member according to any one of claims 1 to 11, wherein said pulse surfaces (81a, 81b) are straight.
  14. Regulating member according to any one of claims 1 to 13, wherein said escapement wheel has more than 25 teeth.
  15. Regulating member according to any one of claims 1 to 14, wherein said isochronous oscillations have a frequency of not less than 1 kHz.
  16. Regulating member according to claim 1 to 15, wherein the point of first contact between the teeth (63) and the pulse surfaces (81a, 81b) moves along the pulse surface in accordance with the power of the barrel (32).
  17. Chronograph comprising a regulating member according to one of claims 1 to 16.
EP13700144.2A 2012-01-09 2013-01-08 Regulating member for a mechanical chronograph Active EP2802941B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00034/12A CH705971A1 (en) 2012-01-09 2012-01-09 Regulating organ to watch or chronograph.
PCT/EP2013/050233 WO2013104632A1 (en) 2012-01-09 2013-01-08 Regulating member for a mechanical chronograph

Publications (2)

Publication Number Publication Date
EP2802941A1 EP2802941A1 (en) 2014-11-19
EP2802941B1 true EP2802941B1 (en) 2020-10-21

Family

ID=47553061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13700144.2A Active EP2802941B1 (en) 2012-01-09 2013-01-08 Regulating member for a mechanical chronograph

Country Status (3)

Country Link
EP (1) EP2802941B1 (en)
CH (1) CH705971A1 (en)
WO (1) WO2013104632A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH714992A9 (en) * 2019-01-24 2020-01-15 Csem Centre Suisse Delectronique Et De Microtechnique Sa Mechanical watch regulator.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US675582A (en) * 1900-09-12 1901-06-04 Irving H Trowbridge Clock-train.
CH442153A (en) * 1965-08-13 1967-03-31 Golay Bernard Sa Clockwork movement
CH1685665A4 (en) * 1965-12-07 1968-02-29
US6775582B2 (en) 2001-02-21 2004-08-10 Siemens Aktiengesellschaft Data processing system and device for implementing cohesive, decentralized and dynamic management of a technical process
DE60225779T2 (en) 2002-02-01 2009-06-18 Tag Heuer S.A. Device with movement and chronograph module
EP2574994A1 (en) * 2011-09-29 2013-04-03 Asgalium Unitec SA Resonator with tuning fork for mechanical timepiece movement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH705971A1 (en) 2013-07-15
EP2802941A1 (en) 2014-11-19
WO2013104632A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP3545370A2 (en) Rotary resonator with a flexible guide system based on a detached lever escapement
EP2132604B1 (en) Tourbillon movement for timepiece
CH707471B1 (en) controller system for mechanical watch.
CH709328B1 (en) Escapement, timepiece movement and timepiece.
EP2613205A2 (en) Regulating mechanism for watch or chronograph
EP2802941B1 (en) Regulating member for a mechanical chronograph
CH705967B1 (en) watchmaking mechanism including a regulating device comprising a vibrating oscillator and clock movement comprising such a mechanism.
EP2689295B1 (en) Regulating member for a mechanical wristwatch
EP2309344B1 (en) Method for changing the oscillatory frequency of a timepiece movement
CH705970A1 (en) Regulating element for use in e.g. clockwork of wristwatch, has escape wheel driven by barrel through gear train and comprising forty teeth, where vibrating oscillator of clockwork is mechanically connected to anchor
CH714361A2 (en) Flexible guided rotary resonator serviced by a free anchor escapement.
CH713530A2 (en) Exhaust, timepiece movement and timepiece.
CH705968A1 (en) Chronograph or clockwork for wrist watch, has vibration oscillator comprising tuning fork/vibrating blade mechanically connected to anchor, and barrel driving escape wheel by gear train, where wheel is elastically coupled to energy source
CH705969B1 (en) Regulating organ for a watch movement.
EP2802944B1 (en) Watch movement comprising a tourbillon for a chronograph
CH709755A2 (en) clockwork mechanism with a tuning fork resonator.
CH717575A2 (en) Clock movement comprising an inertial mass resonator with flexible guidance and an escapement mechanism.
CH717573A2 (en) Clock movement comprising an inertial mass resonator with flexible guidance and an escapement mechanism.
EP2689296B1 (en) Mechanical movement for a chronograph watch
CH717579A2 (en) Clock movement comprising an inertial mass resonator and an escapement mechanism.
CH717576A2 (en) Clock movement comprising an inertial mass resonator with flexible guidance and an escapement mechanism.
CH717580A2 (en) Clock movement comprising an inertial mass resonator and an escapement mechanism.
CH717577A2 (en) Clock movement comprising an inertial mass resonator and an escapement mechanism.
CH717572A2 (en) Clock movement comprising an inertial mass resonator with flexible guidance and an escapement mechanism.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200527

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROUSSET, JEAN-CHARLES

Inventor name: DE LA MARLIERE, GAYLORD

Inventor name: SEMON, GUY

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200911

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013073427

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1326436

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: P&TS SA, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1326436

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201021

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013073427

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013073427

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

26N No opposition filed

Effective date: 20210722

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230111

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021