EP3039726A1 - Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces - Google Patents

Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces

Info

Publication number
EP3039726A1
EP3039726A1 EP14789778.9A EP14789778A EP3039726A1 EP 3039726 A1 EP3039726 A1 EP 3039726A1 EP 14789778 A EP14789778 A EP 14789778A EP 3039726 A1 EP3039726 A1 EP 3039726A1
Authority
EP
European Patent Office
Prior art keywords
substrate
laser
thin
film
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14789778.9A
Other languages
German (de)
English (en)
Inventor
Dirk Herrmann
Stephan MARSCHALL
Patrick Mende
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Apollo Ding Rong Solar Technology Co Ltd
Original Assignee
Beijing Apollo Ding Rong Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Apollo Ding Rong Solar Technology Co Ltd filed Critical Beijing Apollo Ding Rong Solar Technology Co Ltd
Publication of EP3039726A1 publication Critical patent/EP3039726A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for laser structuring of
  • Thin-film solar modules usually have monolithically interconnected thin-film solar cells connected in series.
  • Substrate structure is first a back electrode thin film on the
  • the substrate may be formed as a glass plate with a thickness of, for example, three millimeters and the back-electrode thin-film made of metal, for example of molybdenum with a layer thickness of several hundred nanometers.
  • This back-electrode thin-film is divided into a plurality of adjacent stripes in a first structuring step, which is often also referred to as P1 structuring. Between these strips of the back-electrode thin-film, narrow trenches, typically less than one millimeter in width, are removed, in place of which the back-electrode thin-film has been removed by the P1-structuring step to electrically isolate the individual strips from one another.
  • the P1 structuring step is usually carried out by means of a laser whose beam strikes the back-electrode thin-layer and along it
  • Writing lines evaporate, sublime and / or break off and thus form the so-called P1 trenches.
  • an absorber thin layer is then deposited, which extends over the entire surface over the structured strips and over the intervening P1 -rims.
  • This absorber thin layer can consist of several partial layers and usually has a thickness of less than two micrometers on.
  • the P2 structuring step is followed by a process called the P2 structuring step.
  • the absorber thin layer is removed up to the back electrode thin layer along the so-called P2 trenches adjacent to the covered P1 trenches.
  • a transparent front-side electrode thin film is deposited over the entire area over the absorber thin layer structured with the P2 trenches.
  • the layer package of absorber thin film and front side electrode thin film is removed along so-called P3 trenches down to the back electrode thin film.
  • the P3 trench lies as close as possible to the P2 trench, but the minimum distance between P2 and P3 trench is the finite measurement and
  • the P2 and P3 structuring step is carried out mechanically with the aid of thin needles.
  • the mechanical accuracy in the positioning of the needles is limited in the range of several tenths of a millimeter or requires at higher accuracies disproportionate effort.
  • the back-electrode thin-film layer is affected in such a way that the efficiency of the solar module is reduced.
  • WO 2012/051574 A2 a manufacturing method for thin-film solar modules is known in which in particular the P2 and PS structuring is carried out by means of a laser. This procedure includes the following steps.
  • Thin-film solar cells is arranged
  • Electro-collecting network together form the front electrode structure.
  • These conductive structures usually have layer thicknesses in the range up to 10 ⁇ . This layer thickness is compared to the lower one
  • the present invention is based on the object of an improved method for the laser patterning of thin films on a substrate for to provide the production of monolithically interconnected thin-film solar cells, which overcomes the disadvantages mentioned.
  • the laser beam is irradiated onto the second side of the substrate, falls through the substrate on the metallic remindelektroden Designn Anlagen and laser pulses in the nano-, pico or femtosecond range is set and moved so that along the writing line over
  • the absorber thin film arranged on the metallic back-electrode thin-film layer is blasted off and a laser-influenced metallic back-electrode thin-film remains on the substrate.
  • the range is understood to be greater than one femtosecond to less than 1000 nanoseconds.
  • the invention is based on the surprising knowledge that, given a backside entry of the laser radiation through the substrate sufficiently transparent to the laser radiation, parameter windows exist for the adjustment of the laser radiation in combination with the relative movement between substrate and laser, in which the metallic back-electrode thin-film is largely intact remains, however, all located on the back electrode thin film layers but also layer thicknesses of many microns are removed by the interaction with the laser radiation.
  • the laser radiation used has a wavelength for which the metallic back-electrode thin-film layer is not transparent.
  • Decisive parameter is the temporal and spatial course of the laser energy deposited per unit of volume and time. This depends on parameters such as the wavelength, the pulse duration, the pulse energy, the pulse frequency, the pulse diameter, the beam profile and the relative movement between the laser beam and the substrate.
  • the remaining back-electrode thin-layer influenced by the laser radiation has in the region of
  • Structuring trenches usually lost less than 10%, preferably less than 5% of its layer thickness.
  • the quality of the laser-influenced layer is better in terms of the efficiency of the solar module as the quality of after mechanical P2 or P3 structuring
  • a variant of the method is therefore preferably designed such that a front electrode structure is arranged above the absorber thin layer and in the region of the writing line the absorber thin layer is blasted off together with the front electrode structure located above it.
  • Front electrode structure has one or more thin layers
  • TCO transparent conductive oxide
  • the method is therefore developed so that after moving the
  • Front electrode structure is applied to the structured absorber thin film and then along a laterally offset to the writing line further writing line of the laser beam is irradiated to the second side of the substrate, through the substrate to the metallic
  • the laser structuring method is used for all variants described so far, that a glass substrate is used.
  • the method of laser structuring is preferred
  • CIGS Code Division Multiple Access (CDMA)
  • CIS Code Division Multiple Access
  • Laser structuring applies that the laser wavelength is chosen in the near infrared or in the visible spectral range. Possible laser wavelengths are, for example, 515nm, 532nm, 1030nm, 1047nm, 1053nm, 1060nm, 1064nm, 1080nm and 1150nm. In particular, rare earth doped ones are suitable
  • Particularly clean cut lines are preferably achieved in that the laser beam and / or the substrate is moved in such a way that a spatial overlap of the laser pulses of 10 to 50% along the writing lines is ensured.
  • Another preferred range for the pulse energy of the laser pulses used is advantageously provided that the pulse energy per pulse in the range 1 to 100 ⁇ , preferably in the range 15 to 30 ⁇ is selected.
  • the invention relates to a production method for a
  • Thin-film solar module made of monolithically interconnected thin-film solar cells in the substrate structure with the following steps:
  • Thin-film solar cells with a front encapsulation element Thin-film solar cells with a front encapsulation element
  • the P2 laser structuring step and / or the P3 laser structuring step are carried out according to one of the above-described process variants for laser structuring.
  • Front electrode structure are blasted off the substrate.
  • the enumerated laser parameters of one and the same laser can be adjusted in such a way that unlike P2 to P3
  • Figures 1 to 9 the sequential and purely schematically shown sequence of the layer deposition, structuring and encapsulation for
  • a glass substrate 1 is provided and, as shown in FIG. 2, a back electrode layer, for example in the form of a 100 to 200 nanometer thick molybdenum layer, is sputtered on.
  • a periodic structuring of the back-electrode layer takes place by means of
  • Laser beams L Either the laser beams L are moved by means of an optical system along the substrate 1 and / or the substrate 1 is moved under the stationary laser beam L. As a result, trenches P1 defined in the molybdenum thin-film layer of the back-electrode thin-film layer 2 are formed along the defined by the relative movement between the laser beam L and substrate 1. Then, as shown schematically in FIG.
  • Back electrode thin film 2 an absorber thin film 3 deposited, which extends over the entire surface of the structured stripes and the intervening trenches P1.
  • This absorber thin layer 3 can consist of several partial layers, for example of a CIGS
  • Absorber thin layer 3 is removed to the back electrode thin layer 2 along the trenches P2. This process step takes place again by using a
  • Laser beam L is now from behind first through the glass substrate 1 on the
  • the laser parameters can be suitably adjusted such that, starting from the back-electrode thin-film 2, a shock wave is induced which completely blasts off the absorber thin-film layer 3 lying over the back-electrode thin-film 2, which
  • back electrode thin film 2 itself leaves essentially intact. Microscopically it can be seen that the back-electrode thin-film 2 of
  • Laser beam L has been influenced.
  • the layer thickness usually decreases somewhat, but the loss of material is so small that the remaining metal thin layer of the back electrode thin layer 2 is completely sufficient for the function of the monolithically connected solar module.
  • properties are lower than those of mechanical scratching surfaces
  • an electrode-collecting structure 41 is applied over the transparent front-side electrode film 40 in a step shown in FIG. The
  • Electrode collecting structure 41 consists of a non-transparent, electrically highly conductive network structure, which covers significantly less than 1% of the light incident surface of the solar module. Usually, these network structures are realized as layers with thicknesses of many micrometers.
  • the layered package absorber thin film 3 and front side electrode structure 4 are removed down to the back electrode thin film 2 along trenches P3.
  • This P3 structuring is carried out in the same way as the P2 structuring shown in FIG. 5 by means of laser beams L which pass through the back
  • Glass substrate 1 are irradiated to the back electrode thin film 2.
  • the setting of the laser parameters and the relative movement between the substrate 1 and the laser beam L is in turn selected such that all thin layers lying above the back-electrode thin-film 2 formed of molybdenum and also layers with many micrometers thickness are blasted off. What remains is a sufficiently thick back electrode thin film 2 which is suitable from its microstructure.
  • Front side encapsulation element 5 applied to the light incident side.
  • This front side encapsulation element 5 can be made, for example, from a second Glass plate with an underlying film of EVA (ethylene vinyl acetate) or be formed from a sufficiently weather-stable polymer film.
  • EVA ethylene vinyl acetate
  • the monolithically interconnected thin-film cells are permanently weatherproof encapsulated.
  • a solar module connection device 6 for electrically contacting the series-connected thin-film cells is also mounted on the module. The electrical contacts extending from the solar module connection device 6 through the substrate 1 to the thin-film cells are not shown in FIG.
  • Suitable laser parameters for the described P2 or P3 structuring at laser wavelengths such as 1064 nm and 532 nm are pulse lengths in
  • Picosecond range at pulse energies in the range of 10 to 35 ⁇ , wherein the relative movement is set such that a spatial overlap of two successive pulses in the range of 10 to 50% is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique, comprenant les étapes suivantes : ‑ utilisation d'un laser ayant une longueur d'onde laser, ‑ utilisation d'un substrat (1) ayant une première face et une deuxième face transparente à la longueur d'onde laser, la première face du substrat comportant une couche mince d'électrode arrière (2) métallique et une couche mince de matériau absorbant (3) pour cellules solaires à couches minces étant disposée sur la couche mince d'électrode arrière (2) métallique, ‑ exposition du substrat à un faisceau laser (L), ‑ déplacement du faisceau laser (L) le long d'une ligne d'écriture sur le substrat (1) et/ou déplacement du substrat (1) par rapport au faisceau laser (L) le long d'une ligne d'écriture. Selon l'invention, le faisceau laser (L) est appliqué sur la deuxième face du substrat (1), il traverse le substrat (1) pour venir frapper la couche mince d'électrode arrière (2) métallique et il est ajusté à des durée d'impulsions laser de l'ordre de la nano-, pico‑ ou femtoseconde et déplacé de façon à éliminer la couche mince de matériau absorbant (3) disposée par dessus la couche mince d'électrode arrière (2) métallique le long de la ligne d'écriture et à laisser sur le substrat une couche mince d'électrode arrière (2) métallique influencée par le laser.
EP14789778.9A 2013-08-30 2014-08-28 Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces Withdrawn EP3039726A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013109480.5A DE102013109480A1 (de) 2013-08-30 2013-08-30 Verfahren zur Laser-Strukturierung von Dünnschichten auf einem Substrat für die Herstellung monolithisch verschalteter Dünnschichtsolarzellen und Herstellungsverfahren für ein Dünnschichtsolarmodul
PCT/DE2014/100309 WO2015027997A1 (fr) 2013-08-30 2014-08-28 Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces

Publications (1)

Publication Number Publication Date
EP3039726A1 true EP3039726A1 (fr) 2016-07-06

Family

ID=51798948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789778.9A Withdrawn EP3039726A1 (fr) 2013-08-30 2014-08-28 Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces

Country Status (7)

Country Link
US (1) US20160211395A1 (fr)
EP (1) EP3039726A1 (fr)
JP (1) JP2016529724A (fr)
KR (1) KR101790457B1 (fr)
CN (1) CN106030827B (fr)
DE (1) DE102013109480A1 (fr)
WO (1) WO2015027997A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115030A1 (de) * 2015-09-08 2017-03-09 Von Ardenne Gmbh Verfahren zum Entfernen einer Schicht von einem Substrat und dessen Verwendung
DE102018005010A1 (de) * 2017-07-13 2019-01-17 Wika Alexander Wiegand Se & Co. Kg Transfer und Aufschmelzen von Schichten
CN109273607A (zh) * 2018-11-05 2019-01-25 武汉理工大学 一种利用飞秒激光制备柔性大面积钙钛矿太阳能电池组件的方法
CN109273608B (zh) * 2018-11-05 2021-01-19 武汉理工大学 一种半透明钙钛矿太阳能电池及其制备方法
EP3764405A1 (fr) * 2019-07-10 2021-01-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Procédé de fabrication d'un produit photovoltaïque en couches minces
CN111463315B (zh) * 2019-08-26 2021-08-20 杭州纤纳光电科技有限公司 一种太阳能电池切割钝化一体化加工方法及其太阳能电池
CN111341918B (zh) * 2020-03-06 2022-02-01 电子科技大学 一种光电探测器阵列制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227188A (ja) * 2011-04-15 2012-11-15 Kataoka Seisakusho:Kk 薄膜太陽電池の製造方法、レーザ加工機
DE102011103481A1 (de) * 2011-06-03 2012-12-06 Leibniz-Institut für Oberflächenmodifizierung e.V. Selektives Abtragen dünner Schichten mittels gepulster Laserstrahlung zur Dünnschichtstrukturierung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4064340B2 (ja) * 2003-12-25 2008-03-19 昭和シェル石油株式会社 集積型薄膜太陽電池の製造方法
US8399331B2 (en) * 2007-10-06 2013-03-19 Solexel Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
DE102008006166A1 (de) * 2008-01-26 2009-07-30 Schott Solar Gmbh Verfahren zur Herstellung eines photovoltaischen Moduls
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
JP2010251428A (ja) * 2009-04-13 2010-11-04 Mitsubishi Heavy Ind Ltd 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置
JP4773543B2 (ja) * 2009-04-17 2011-09-14 昭和シェル石油株式会社 エッジスペースを備えた太陽電池モジュール
DE102009056572B4 (de) * 2009-12-01 2014-10-23 Manz Automation Ag Verfahren zum zumindest bereichsweisen Entfernen einer Schicht eines Schichtenstapels
CN102082198B (zh) * 2010-09-30 2012-11-21 深圳市创益科技发展有限公司 一种高功率低电压硅基薄膜太阳能电池及其制造方法
US8048706B1 (en) * 2010-10-14 2011-11-01 Miasole Ablative scribing of solar cell structures
US20120094425A1 (en) 2010-10-14 2012-04-19 Miasole Ablative scribing of solar cell structures
JP2012114398A (ja) * 2010-11-05 2012-06-14 Kataoka Seisakusho:Kk 薄膜太陽電池の製造方法、レーザ加工機、薄膜太陽電池製造装置
JP2012209346A (ja) * 2011-03-29 2012-10-25 Kyocera Corp 光電変換モジュール
DE102011017807A1 (de) * 2011-04-29 2012-10-31 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum laserinduzierten Entfernen von Bereichen von Schichten eines Schichtenstapels
US8642884B2 (en) * 2011-09-09 2014-02-04 International Business Machines Corporation Heat treatment process and photovoltaic device based on said process
CN104396015A (zh) * 2012-05-03 2015-03-04 内克西斯公司 激光蚀刻薄层的堆叠用于光伏电池的连接

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227188A (ja) * 2011-04-15 2012-11-15 Kataoka Seisakusho:Kk 薄膜太陽電池の製造方法、レーザ加工機
DE102011103481A1 (de) * 2011-06-03 2012-12-06 Leibniz-Institut für Oberflächenmodifizierung e.V. Selektives Abtragen dünner Schichten mittels gepulster Laserstrahlung zur Dünnschichtstrukturierung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREAS BURN ET AL: "Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses", PROCEEDINGS OF SPIE, vol. 8243, 9 February 2012 (2012-02-09), 1000 20th St. Bellingham WA 98225-6705 USA, pages 824318, XP055659501, ISSN: 0277-786X, ISBN: 978-1-5106-2687-4, DOI: 10.1117/12.906919 *
See also references of WO2015027997A1 *

Also Published As

Publication number Publication date
WO2015027997A1 (fr) 2015-03-05
DE102013109480A1 (de) 2015-03-05
KR101790457B1 (ko) 2017-11-20
JP2016529724A (ja) 2016-09-23
CN106030827B (zh) 2018-03-23
CN106030827A (zh) 2016-10-12
KR20160048102A (ko) 2016-05-03
US20160211395A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
EP3039726A1 (fr) Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces
DE4324318C1 (de) Verfahren zur Serienverschaltung einer integrierten Dünnfilmsolarzellenanordnung
EP1166358A1 (fr) Dispositif et procede permettant de retirer des couches minces recouvrant un materiau support
DE102009041941A1 (de) Dünnschichttyp-Solarzelle und Verfahren zum Herstellen derselben
DE3121350A1 (de) "verfahren zum herstellen einer sonnenbatterie"
EP2168177A2 (fr) Module de piles solaires à couche mince et son procédé de fabrication
DE102013105426A1 (de) Verfahren zum Laserritzen einer Solarzelle
EP2507834B1 (fr) Procédé pour enlever au moins dans certaines zones une couche d'un empilement de couches
DE19713215A1 (de) Solarzelle mit texturierter TCO-Schicht sowie Verfahren zur Herstellung einer solchen TCO-Schicht für eine solche Solarzelle
DE102008006166A1 (de) Verfahren zur Herstellung eines photovoltaischen Moduls
EP2058870A2 (fr) Mise en contact et connexion de module de cellules solaires à couche fine sur des supports polymères
DE112010001893T5 (de) Solarzellenmodul, versehen mit einem Kantenabstand
DE102010005970A1 (de) Verfahren zur Herstellung eines photovoltaischen Dünnschichtmoduls
EP3039725A1 (fr) Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation
WO2012163351A1 (fr) Enlèvement sélectif de couches minces au moyen de rayonnement laser pulsé pour structurer des couches minces
DE102010036893B4 (de) Herstellungsverfahren einer Halbleitervorrichtung
DE10326505B4 (de) Laserritzen von Dünnschichthalbleiterbauelementen
DE102012214253A1 (de) Laserbasiertes Verfahren und Bearbeitungstisch zur Metallisierung der Rückseite eines Halbleiterbauelements
DE102019122637A1 (de) Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle
DE112017003349T5 (de) Laserverfahren zur folienbasierten metallisierung von solarzellen
EP2806995B1 (fr) Procédé de fabrication d'un système multicouche structuré utilisant un faisceau de travail avec des interferences propres
DE102009055675B4 (de) Photovoltaik-Modulstruktur für die Dünnschichtphotovoltaik mit einer elektrischen Leitungsverbindung und Verfahren zur Herstellung der elektrischen Leitungsverbindung
EP2105241A2 (fr) Procédé de structuration de la couche d'électrodes frontales en oxyde de zinc d'un module photovoltaïque
DE102012017483A1 (de) Verfahren zur Laserstrukturierung von dünnen Schichtsystemen
DE102014216792A1 (de) Verfahren zum Erzeugen einer transparenten Elektrode eines optoelektronischen Bauelementes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200609