EP3039725A1 - Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation - Google Patents

Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation

Info

Publication number
EP3039725A1
EP3039725A1 EP14789777.1A EP14789777A EP3039725A1 EP 3039725 A1 EP3039725 A1 EP 3039725A1 EP 14789777 A EP14789777 A EP 14789777A EP 3039725 A1 EP3039725 A1 EP 3039725A1
Authority
EP
European Patent Office
Prior art keywords
substrate
thin
thin film
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14789777.1A
Other languages
German (de)
English (en)
Inventor
Ralf HUNGER
Stephan MARSCHALL
Patrick Mende
Andreas KAHN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Apollo Ding Rong Solar Technology Co Ltd
Original Assignee
Beijing Apollo Ding Rong Solar Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Apollo Ding Rong Solar Technology Co Ltd filed Critical Beijing Apollo Ding Rong Solar Technology Co Ltd
Publication of EP3039725A1 publication Critical patent/EP3039725A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for the production of sub-solar modules by electrically insulating insulating trenches in a thin-film solar module and also to a method for producing a thin-film solar module with such isolation trenches.
  • Thin-film solar modules usually have monolithically connected series-connected thin-film solar cells. For the production of monolithic shading is a series of thin films for the front and
  • Isolation trenches are perpendicular to the extension direction of the
  • the isolation trenches can be scratched or generated by means of laser radiation, for example.
  • the production of such insulating trenches by means of laser radiation is known for example from US 4,667,058.
  • the substrate for the laser wavelength transparent substrate is provided with a first side and a second side, wherein the first side of the substrate, the plurality
  • the laser beam is irradiated onto the substrate and the laser beam is moved over the substrate along at least one cutting line and / or the substrate is moved relative to the laser beam to produce at least one isolation trench by means of a relative movement between laser beam and substrate.
  • Structuring method by means of laser radiation is that the melting, evaporation and sublimation of the thin-film materials there is a risk that after condensation and solidification or after resublimation of the thin-film materials on the flanks of the insulation trenches generated can occur short circuits between the electrode layers.
  • an etching step in particular as a plasma etching step, is carried out, which frees the edges of the insulating trenches from residues which could promote a short circuit or shunts.
  • the tools required for the production of insulating trenches by means of mechanical scratching methods are inevitably subject to a mechanical
  • the laser-generated isolation trenches require a subsequent etching step to clean the flanks generated by laser radiation also represent an additional time and cost factor in production.
  • the present invention is based on the object to provide a method for producing sub-solar modules by electrically insulating isolation trenches in a thin-film solar module and a method for producing a thin-film solar module with such isolation trenches, which are significantly cheaper.
  • This object is achieved by a method for producing sub-solar modules with the features of claim 1.
  • the laser beam is irradiated onto the second side of the substrate, falls through the substrate onto the metallic back-electrode thin-film and with laser pulses in the pico or in the
  • Femtosecond region is set in such a way and the relative movement between the laser beam and substrate is carried out such that along the cutting line together with the metallic back electrode thin layer above the arranged absorber thin film and the front electrode structure arranged thereon are blasted from the substrate.
  • the pico and femtosecond ranges are understood to be greater than one femtosecond to less than 1000 picoseconds. This mechanism of action also works if the front electrode structure partially has a layer thickness in the range of several micrometers. This is the case, for example, if the
  • Front electrode structure is formed as a combination of a transparent thin film of a conductive oxide and a mesh-like, thicker layer in the form of an electrode collection structure.
  • the shock wave generated in the region of the laser pulse leads to an explosive detachment of the complete thin-film package, which is located along the direction of movement of the laser-induced shockwave. Because this shockwave starting from the interface
  • Decisive parameter is the temporal and spatial course of the laser energy deposited per unit of volume and time. This depends on
  • Parameters such as the wavelength, the pulse duration, the pulse energy, the
  • Pulse frequency Pulse frequency, the pulse diameter, beam profile and the relative movement between the laser beam and the substrate.
  • the laser wavelength is preferably selected in the near infrared or in the visible spectral range. Possible laser wavelengths are, for example, 515 nm, 532 nm, 1030 nm, 1047 nm, 1053 nm, 1060 nm, 1064 nm, 1080 nm and 1150 nm. In particular, rare-earth-doped solid-state lasers are suitable for. Possible laser wavelengths are therefore their fundamental wavelengths and higher harmonics.
  • a pulsed laser with pulse frequencies in the range of 33.3 to 400 kHz is used. It is advantageous that the laser beam is moved such that a spatial overlap of successive laser pulses of 10 to 95%, preferably 15% to 30% along the cutting lines is ensured.
  • pulse energies per laser pulse are preferably in the range from 5 to 125 ⁇ , preferably in the range 20 to 40 ⁇ used. As pulse lengths, periods of less than 20 picoseconds have proved to be advantageous.
  • the substrate is designed as a glass substrate and has a barrier thin film between the back electrode thin film and the glass substrate, wherein the laser beam is set and the relative movement between laser beam and substrate is carried out such that along the cutting line on a laser-influenced barrier thin film remains the substrate.
  • This barrier thin film is formed, for example, as a silicon oxynitride layer with a thickness of less than 150 nanometers. Microscopic investigations have shown that these barrier thin layers are only slightly influenced by the laser pulses. The remaining barrier film influenced by the laser radiation has usually lost less than 10%, preferably only less than 5%, of its layer thickness in the region of the isolation trenches.
  • the method for the production of sub-solar modules is preferably used when the absorber thin film is formed as a ternary or as a quaternary, for example, from CIGS or CIS semiconductor.
  • the substrate is rectangular with a first edge length and a second edge length, a top edge and a bottom edge, spaced by an amount of 10% to 15% of the first or the second edge length parallel to
  • the isolation trenches are perpendicular to the structuring trenches for the monolithic shading of
  • Edge length arranged thin-film solar cell the first contact cell for the subsequent in the direction of the second edge length parallel switched sub-solar modules is used. Furthermore, a thin-film solar cell arranged parallel to and adjacent to the second edge length serves as the final second contact cell, and the insulating trench also does not cut through this second contact cell, but ends earlier. However, it is also conceivable to electrically isolate all thin-film solar cells from one another with the insulating trenches. The electrical shading of the sub-solar modules then obtained can then be done in hybrid construction.
  • a further isolation trench is produced parallel to the first and second isolation trenches in the middle between the first and the second isolation trench.
  • An advantageous second variant of the method provides that two further isolation trenches are produced parallel to the first and second Isoliergraben between the first and the second Isoliergraben, that the distance between the two further isolation trenches is the same size as the distance between the first and the second isolation trench to each adjacent further isolation trench.
  • overlapping a plurality of adjacent cutting lines is formed.
  • three cutting lines at a distance of 25 to 30 ⁇ be prepared, so that an insulating trench with a line width of 75 to 100 ⁇ is formed.
  • Such an isolation trench causes a sufficiently strong electrical insulation between the thin-film solar cells of the sub-modules.
  • the present invention relates to a method for producing a thin-film solar module constructed of monolithically interconnected thin-film solar cells with sub-solar modules, which are separated by electrically insulating isolation trenches.
  • the method comprises the following steps: - Providing a substrate having a first side and a second side, wherein the first side of the substrate, a plurality of monolithically interconnected thin film solar cells constructed of a metallic
  • Thin-film solar cells with a front encapsulation element Thin-film solar cells with a front encapsulation element
  • Figure 1 a purely schematic representation of a first
  • Embodiment of a thin-film solar module with three horizontal isolation trenches Embodiment of a thin-film solar module with three horizontal isolation trenches
  • Figure 2 a purely schematic representation of a second
  • Embodiment of a thin-film solar module with four horizontal isolation trenches Embodiment of a thin-film solar module with four horizontal isolation trenches
  • FIG. 3 is a schematic, not to scale, sectional view through the solar module of Figure 1 along the line III-III;
  • FIG 4 is a schematic, not to scale section through the solar module of Figure 2 along the line IV- IV and
  • FIG. 1 shows a purely schematic representation of a first embodiment of a thin-film solar module with three horizontal insulating trenches 11, 12, 13. The monolithically interconnected
  • Thin-film solar cells are arranged on a rectangular substrate 1.
  • the substrate 1 has a narrow upper edge, a narrow lower edge and two long longitudinal edges.
  • the thin-film solar cells run as elongated strips at right angles from the region of the narrow upper edge to the region of the parallel narrow lower edge of the solar module.
  • a first isolation trench 11 is located parallel to the narrow upper edge of the solar module at a distance which is approximately 5 to 10% of the dimension of the long longitudinal edge.
  • the second isolation trench 12 is also approximately 5 to 10% of the dimension of the long longitudinal edge spaced from the narrow one
  • a third isolation trench 13 extends parallel to the two remaining isolation trenches 11, 12 in the middle between these two.
  • Each of the three insulating trenches 11, 12, 13 cuts through all the thin-film solar cells except for the outermost two, which are each arranged adjacent to the two long longitudinal edges of the substrate 1. These two outermost thin-film solar cells serve as so-called contact cells, the parallel shading by the
  • Isolation trenches formed sub-solar modules. Between the outer edges of the substrate 1 and the adjacent insulating trenches 11, 12 and between the
  • Isolation trenches 11 and 13 and between the isolation trenches 12 and 13 are sub-solar modules, which are connected in parallel via the two outer contact cells.
  • the circumferential edge deletion of the thin-film solar module which is usually at least one centimeter in size, is likewise not shown here.
  • Figure 2 shows a purely schematic representation of a second embodiment of a thin-film solar module with four horizontal isolation trenches 11, 12, 13,14. Otherwise, the Kantanmene the substrate 1 with those of Figure 1 match. All other explanations regarding FIG. 1 also apply accordingly.
  • In contrast to the first embodiment are two more Insulating trenches 13, 14 equidistant to each other and to the outside arranged first two isolation trenches 11 and 12 are arranged.
  • Figure 3 shows a schematic, not to scale true sectional view through the solar module of Figure 1 along the line III-III.
  • the fault lines bridge the sections of the solar module to the outer edges or the uniform formation of the thin film packages in the region of the inner sub-modules.
  • the sectional view shows starting from the very bottom substrate 1 starting the following structure. On the substrate 1 follows a
  • Barrier thin film 1a for example, on a glass substrate
  • Silicon oxynitride is formed.
  • the barrier thin film 1a is followed by the metallic back electrode thin film 2, followed by the absorbent thin film 3 and the front electrode pattern 4.
  • This front electrode pattern 4 is composed of a front electrode thin film 40 of transparent electrically conductive oxide and an electrode collector structure 41.
  • the electrode collector structure may have a thickness other than the listed thin films be made in the range of many microns.
  • a laser beam L will pass through the substrate 1, which is sufficiently transparent to the laser beam L, with its likewise sufficiently transparent
  • Femtosecond range have a suitable pulse energy and a suitable spatial width and is the relative movement between substrate 1 and
  • the barrier thin layer 1a is only slightly damaged, but the layer package located above it is completely blasted. In this way can be in a few steps the Structuring the monolithically interconnected thin film solar cells in a plurality of parallel interconnected sub-modules realize.
  • FIG. 4 shows a schematic, not to scale representation through the solar module from FIG. 2 along the line IV-IV.
  • the same elements of the layer structure are provided with the same reference numerals. The statements made above apply accordingly.
  • FIG. 5 shows, in a schematic, not to scale, sectional representation, as in further production steps, the structure of sub-modules shown in FIG. 4 by means of an applied layer
  • Front side encapsulation element 5 and a solar module connection device 6 are completed to a permanently weatherproof encapsulated solar module.

Abstract

La présente invention concerne un procédé pour produire des sous-modules solaires par réalisation de tranchées d'isolation dans un module solaire en couches minces, composé de cellules solaires en couches minces interconnectées de manière monolithique, ledit procédé comprenant les étapes suivantes : disposer d'un laser présentant une longueur d'onde laser, disposer d'un substrat (1) transparent à ladite longueur d'onde laser, la première face du substrat (1) présentant une pluralité de cellules solaires en couches minces connectées de manière monolithique, qui se composent d'une couche mince d'électrode de retour (2) métallique, d'une couche mince absorbante (3) disposée sur la couche mince d'électrode de retour (2) métallique et d'une structure d'électrode avant (4) disposée dessus, projeter un faisceau laser (L) sur le substrat, déplacer le faisceau laser (L) pour produire au moins une tranchée d'isolation (11, 12, 13, 14). Selon l'invention, il est prévu de projeter le faisceau laser (L) sur la seconde face du substrat (1), de le faire arriver sur la couche mince d'électrode de retour (2) métallique, à travers le substrat (1), et de l'ajuster avec des impulsions laser situées dans la plage des picosecondes ou dans celle des femtosecondes, de manière à détacher du substrat (1), le long de la ligne de coupe (S), la couche mince absorbante (3) disposée sur la couche mince d'électrode de retour métallique et la structure d'électrode avant (4) disposée sur la couche mince absorbante, conjointement avec la couche mince d'électrode de retour (2) métallique.
EP14789777.1A 2013-08-30 2014-08-28 Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation Withdrawn EP3039725A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013109478.3A DE102013109478A1 (de) 2013-08-30 2013-08-30 Verfahren zur Herstellung von Sub-Solarmodulen durch elektrisch isolierende Isoliergräben in einem Dünnschichtsolarmodul und Verfahren zur Herstellung eines Dünnschichtsolarmoduls mit derartigen Isoliergräben
PCT/DE2014/100308 WO2015027996A1 (fr) 2013-08-30 2014-08-28 Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation

Publications (1)

Publication Number Publication Date
EP3039725A1 true EP3039725A1 (fr) 2016-07-06

Family

ID=51798947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789777.1A Withdrawn EP3039725A1 (fr) 2013-08-30 2014-08-28 Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation

Country Status (4)

Country Link
EP (1) EP3039725A1 (fr)
CN (1) CN105917473B (fr)
DE (1) DE102013109478A1 (fr)
WO (1) WO2015027996A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015115030A1 (de) * 2015-09-08 2017-03-09 Von Ardenne Gmbh Verfahren zum Entfernen einer Schicht von einem Substrat und dessen Verwendung
CN205336179U (zh) * 2016-01-13 2016-06-22 北京铂阳顶荣光伏科技有限公司 便携式太阳能充电器
DE102019006095A1 (de) * 2019-08-29 2021-03-04 Azur Space Solar Power Gmbh Vereinzelungsverfahren zur Vereinzelung einer mehrere Solarzellenstapel umfasssenden Halbleiterscheibe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315096A (en) 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses
US4667058A (en) 1985-07-01 1987-05-19 Solarex Corporation Method of fabricating electrically isolated photovoltaic modules arrayed on a substrate and product obtained thereby
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
DE102009056572B4 (de) * 2009-12-01 2014-10-23 Manz Automation Ag Verfahren zum zumindest bereichsweisen Entfernen einer Schicht eines Schichtenstapels
JP2011129631A (ja) * 2009-12-16 2011-06-30 Showa Shell Sekiyu Kk Cis系薄膜太陽電池の製造方法
JP2012114398A (ja) * 2010-11-05 2012-06-14 Kataoka Seisakusho:Kk 薄膜太陽電池の製造方法、レーザ加工機、薄膜太陽電池製造装置
DE102011017807A1 (de) * 2011-04-29 2012-10-31 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum laserinduzierten Entfernen von Bereichen von Schichten eines Schichtenstapels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015027996A1 *

Also Published As

Publication number Publication date
CN105917473A (zh) 2016-08-31
WO2015027996A1 (fr) 2015-03-05
CN105917473B (zh) 2018-03-02
DE102013109478A1 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
DE4324318C1 (de) Verfahren zur Serienverschaltung einer integrierten Dünnfilmsolarzellenanordnung
DE3121350C2 (de) Verfahren zum Herstellen einer Sonnenbatterie
DE112007000266T5 (de) Solarzelle und Verfahren zur Herstellung derselben
DE112006002716T5 (de) Solarzelle und Verfahren zu deren Herstellung
WO2015027997A1 (fr) Procédé de structuration laser de couches minces sur un substrat afin de fabriquer des cellules solaires à couches minces à interconnexion monolithique et procédé de fabrication d'un module solaire à couches minces
EP2507834B1 (fr) Procédé pour enlever au moins dans certaines zones une couche d'un empilement de couches
DE102009021273A1 (de) Verfahren und Vorrichtung zur Herstellung eines photovoltaischen Dünnschichtmoduls
DE102011104159A1 (de) Verfahren zum elektrischen verbinden mehrerer solarzellen und photovoltaikmodul
DE102012214254A1 (de) Laserbasiertes Verfahren und Bearbeitungstisch zur lokalen Kontaktierung eines Halbleiterbauelements
EP2289107B1 (fr) Cellule solaire et procédé de fabrication
WO2011067338A2 (fr) Cellule solaire, module solaire et procédé de fabrication associé
EP2058870A2 (fr) Mise en contact et connexion de module de cellules solaires à couche fine sur des supports polymères
DE112010001893T5 (de) Solarzellenmodul, versehen mit einem Kantenabstand
WO2015027996A1 (fr) Procédé de production de sous-modules solaires par réalisation de tranchées d'isolation électriquement isolantes dans un module solaire en couches minces et procédé de production d'un module solaire en couches minces doté de telles tranchées d'isolation
DE102010005970A1 (de) Verfahren zur Herstellung eines photovoltaischen Dünnschichtmoduls
DE102011115581B4 (de) Verfahren zur Herstellung einer Solarzelle
DE10326505B4 (de) Laserritzen von Dünnschichthalbleiterbauelementen
EP3493274A1 (fr) Module solaire à couche mince à résistance shunt améliorée
DE102009055675B4 (de) Photovoltaik-Modulstruktur für die Dünnschichtphotovoltaik mit einer elektrischen Leitungsverbindung und Verfahren zur Herstellung der elektrischen Leitungsverbindung
DE102019122637B4 (de) Verfahren zur Herstellung einer metallischen Kontaktierungsstruktur einer photovoltaischen Solarzelle
DE112017003349T5 (de) Laserverfahren zur folienbasierten metallisierung von solarzellen
EP2352171A1 (fr) Arrangement des cellules solaires, panneau solaire en couche mince et méthode de fabrication
DE102008015807A1 (de) Verfahren zur Strukturierung der Zinkoxid-Frontelektrodenschicht eines photovoltaischen Moduls
DE102014216792A1 (de) Verfahren zum Erzeugen einer transparenten Elektrode eines optoelektronischen Bauelementes
DE102012017483A1 (de) Verfahren zur Laserstrukturierung von dünnen Schichtsystemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160324

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200623