EP3031992B1 - Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales - Google Patents

Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales Download PDF

Info

Publication number
EP3031992B1
EP3031992B1 EP14197257.0A EP14197257A EP3031992B1 EP 3031992 B1 EP3031992 B1 EP 3031992B1 EP 14197257 A EP14197257 A EP 14197257A EP 3031992 B1 EP3031992 B1 EP 3031992B1
Authority
EP
European Patent Office
Prior art keywords
capillary
thermal insulation
conductive
coating
insulation composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14197257.0A
Other languages
German (de)
English (en)
Other versions
EP3031992A1 (fr
Inventor
Thomas Lohmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAW SE
Original Assignee
DAW SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAW SE filed Critical DAW SE
Priority to EP14197257.0A priority Critical patent/EP3031992B1/fr
Publication of EP3031992A1 publication Critical patent/EP3031992A1/fr
Application granted granted Critical
Publication of EP3031992B1 publication Critical patent/EP3031992B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • E04B1/7645Exterior insulation of exterior walls with ventilation means for the insulation

Definitions

  • the present invention relates to a thermal insulation composite, in particular a plate-shaped thermal insulation composite. Furthermore, the invention relates to a thermal insulation composite area, in particular thermal insulation panel area comprising thermal insulation composite or thermal insulation panels. The invention also relates to a wall structure, comprising at least one thermal insulation composite or a composite thermal insulation compound. Finally, the invention relates to a method for the production of wall structures.
  • Vapor-proof internal insulation has the disadvantage that it can easily be damaged in small repairs or installations and no longer fulfill their task.
  • the moisture balance of a building exterior wall, In particular impact rain wall can be noticeably influenced by an internal insulation to the detriment. Because a building facade absorbs water in the course of a year, which causes no damage as long as the damp masonry in the summer can dry inside. After attaching a vapor-tight inner insulation this is no longer possible. Moisture accumulates behind the insulation material and the masonry becomes continuously wet. This increases the risk of mildew and the risk of frost damage. Structural damage can no longer be ruled out.
  • Capillary-active internal insulation does not use a vapor barrier.
  • the above-described disadvantages occur in such internal insulation regularly not or only attenuated, depending on the quality of the inner insulation.
  • homogeneous open-pore mineral plates are used for capillary-active internal insulation. These include calcium silicate boards such as the commercially available product Calsitherm, mineral insulating materials which contain perlite filler, for example the product Tectem, and the aerated concrete Multipor. In this context, also on the DE 197 23 426 C1 and the DE 10 2010 005 361 A1 directed.
  • the essential common feature of these insulation boards is that the homogeneous material must simultaneously fulfill the two functions of thermal insulation and capillary conductivity, thus it is inevitably only a compromise dar.
  • These plates generally have a density of about 120 to 300 kg / m 3 at a Thermal conductivity (dry) from approx. 0.045 to 0.065 W / mK.
  • capillary-active interior insulation slabs of blown cork as in the DE 10 2007 025303 A1 described, used, which have been filled through the entire plate cavities under vacuum with modified clay. While the first material is responsible for the thermal insulation (cork), the other material (clay) is used for capillary conductivity.
  • the bulk density of the filled cork plate is 120 to 150 kg / m 3 with a thermal conductivity (dry) between 0.04 to 0.06 W / mK. Desired are regularly better thermal insulation.
  • EP 2 447 431 A2 serves a plate of expanded polystyrene whose individual prefoamed balls are still largely round and little of the usual polyhedron shape have adopted in polystyrene plates, as responsible for the thermal insulation component.
  • This plate is traversed by continuous and partially connected cavities, which, similar to in DE 10 2007 025 303 A1 were filled under vacuum with a lime / cement-based composition as a capillary-conductive material.
  • An essential feature of the above-described embodiment of insulation boards is that basically two individual anisotropic frameworks, one responsible for the thermal insulation and one for the capillary conductivity, are placed inside each other. As a result, there is no preferred direction for either the heat or the capillary.
  • insulation boards such as EP 86 681 B1 can be seen, also have a checkerboard-like arranged Dämmplattenabête, which are connected via capillary-active cuboid webs.
  • Insulating boards with cuboidal capillary conductive webs are also found in the DE 10 2010 044 791 A1 and DE 10 2010 044 789 A1 disclosed.
  • the webs are made of calcium silicate, the insulation boards are vacuum insulation panels and aluminum-foamed rigid polyurethane foam.
  • An insulation board is provided with through holes, which are to be filled after attachment to the wall with Kapillarleitschreibem material. Insulating boards filled with capillary active material through holes are also in the DE 10 2007 040 938 A1 . EP 2 183 099 A1 . DE 10 2007 040 938 and DE 10 2011 050 830 A1 described.
  • This type of coating on both sides brings in particular when introducing larger amounts of liquid or moisture on the building exterior wall in the described capillary active insulation board, the risk of staining or the sign of capillary conductive passages or the marking of the capillary conductive joints of this capillary conductive insulation board on the visible side, for example on one on the capillary conductive coating of the insulation board applied top coat or applied to this coating paint, eg due to local liquid passage and / or by dew water accumulation, with it.
  • Insulating materials as in the DE 197 23 426 C1 and DE 10 2010 005 361 A1 disclosed, are relatively heavy and have significantly poorer insulation properties in the dry state than the usual insulation for the outer insulation (such as EPS, PU or PF). Due to their high density and the required due to the only moderate thermal insulation higher plate thickness for a comparable energy savings and resource consumption in the above-mentioned insulation materials is high. In addition, these insulating materials are generally hardly mechanically loadable, which is reflected in the often small plate dimensions that must be applied in practice. It is not uncommon in the creation of a insulated inner wall to breakouts and breaks, especially on plate corners, which are then often filled with mortar, but which has no heat-insulating properties, thus representing a thermal bridge. Due to the manufacturing process, cracks and bubbles can not be ruled out over a large area. In these areas, the capillary is interrupted.
  • Insulating materials as in the WO 92/10624 generally do not use small amounts of capillary conductive material. This gives away valuable space for the heat-insulating component. Also, the production of these insulation materials is often not trivial. In addition, the mechanical complexity is high. Due to the required vacuum, the systems can fill only small sized blocks with the capillary active material.
  • an insulation panel is disclosed with a functional layer, wherein the functional layer extends in a plane of the plate and forms a first edge of the insulation plate.
  • This known has an oblique course to an orthogonal to the plate plane.
  • Adjacent insulation boards, each with a complementary oblique edge course, should contribute to a better thermal insulation performance of the thermal insulation composite formed from these insulation boards.
  • the complementary against each other adjacent, sloping edges of adjacent insulation boards may be provided with a capillary active material along the entire edge profile and in this way connect the functional layers together for the purpose of moisture transport.
  • the present invention was therefore based on the object to provide insulating materials that overcome the disadvantages of the prior art and in particular allow a building interior insulation that is structurally easy to implement and at the same time minimizes the risk of thermal bridge or completely excludes, and although without relying on a vapor barrier. It is a further object of the present invention to provide internal insulation which is inexpensive and which minimizes or eliminates the problem of condensation and / or the problem of mold growth. Furthermore, the invention was based on the object to provide insulating materials or insulating materials available, which are characterized by a good bending strength.
  • An object of the invention was also site-specific, fast to be laid large To allow plate dimensions and to provide site-specific stability.
  • the object of the invention was also to provide an easily grindable surface to allow the removal of bumps after sticking the insulation boards on the inside of the outer wall comfortably.
  • the object of the present invention to provide insulating materials for internal insulation that form on the visible side no marks and that do not tend to form moisture stains or lines or saline efflorescence and with which at the same time the problem of condensation and the problem of Mold formation minimized or can be eliminated without having to make significant concessions in the thermal insulation properties at the same time.
  • a thermal insulation composite in particular plate-shaped Wännedämmverbund, with a first side, in particular wet or condensation side, and an opposite second side, in particular drying or interior side, comprising at least one insulation material unit and therein and at least one segment extending continuously from the first side to the second side between two adjacent insulation material units, the at least one segment ending from the first side towards the second side ending in a capillary end terminating before reaching the second side , is filled with capillary conductive material to form a capillary conductive portion of the segment, such that liquid is transferable through the capillary conductive portion by capillary conduction from the first side to the capillary lead termination.
  • the segment extending from the first to the second side or the segments extending from the first to the second side of the thermal insulation composite according to the invention can accordingly be subdivided into a capillary-conducting or capillary-conducting section, i. a portion which is filled with capillary conductive material and is transferred by the liquid from the first side of the thermal insulation composite to capillary line termination by capillary conduit and another portion extending from said capillary conduit termination to the second side of the thermal insulation composite and which is not capillary conductive or kapillarêtdem material is filled, so that a transport of liquid through the segment from the first to the second side takes place only by Kapillar effetsab gleich by capillary and from this Kapillar effetsab gleich to the second side of the thermal insulation composite and possibly also substantially not or at least not predominantly by capillary, but by diffusion.
  • the liquid to be transported here is water or aqueous systems, as used in building walls, e.g. incurred as dew, condensation or driving rainwater.
  • the distance from the Kapillar einsab gleich to the second side is greater than 3 mm and is in particular in the range of 5 to 15 mm.
  • the section of the segment from the capillary line termination to the second side contains diffusion-active material, which in particular is not or predominantly capillary-conductive. While moisture transport from the first side to the capillary end of the capillary conductive portion of the segment is by capillary conduction, this wicking is continued from the capillary end toward the second side by diffusion. In this way, it is possible to prevent signs or damp spots on the interior side exit points of the.
  • thermal insulation composites according to the invention are characterized in that the second side at least in the region of at least one segment extending from the first side to the second side, in particular in the region of all segments, partially or completely, in particular completely, with at least one first diffusion-active coating is provided and that the one or more capillary line terminations of the capillary conductive portions and the first diffusion-active coating are not in contact.
  • the first diffusion-active coating can be capillary-conductive or non-capillary-conductive.
  • the coating is preferably formed from or containing a first hydrophobic or hydrophobized coating material.
  • the thermal insulation composite according to the invention comprises at least two, in particular cuboidal or cube-shaped, Dämmmaterialiseren each having a length, height and width extension and with an edge profile or surface at least in sections along the length and width dimension, said adjacent Dämmmaterialiseren along the abutting or mutually facing edge courses are glued together with at least one, in particular by means of brushing, rolling, knife coating, casting and / or spraying, binder-containing adhesive composition to form the at least one capillary conductive portion of the segment, wherein from this Adhesive composition formed in the cured state is kapillarleitschreib and starting from the first side in the direction of the second side to the Kapillar einsab gleich, before Errei Chen the second side ends, extends and preferably wherein at least two adjacent adhesive layers, in particular all Adhesive layers, at least partially substantially parallel to each other.
  • the capillary-active adhesive layers may preferably have a thickness of e.g. 0.2 mm to 3 mm and more preferably from 0.3 mm to 1.2 mm.
  • thermal insulation panels take the adhesive layers in the sum in a particularly preferred embodiment, only about 0.1 to 5%, preferably 0.5 to 3% and particularly preferably 1.0 to 1.5%, the total area of the respective side surface. In this way it can be ensured that the original insulating material, i. the foam product and / or the pulp, only a few milliwatts per meter and Kelvin loses in insulation performance.
  • a further advantage of the thermal insulation composite according to the invention is also to be seen in the fact that it is possible in one embodiment that the volume of kapillarleitschreiber adhesive layer, based on the total volume of the thermal insulation composite is not more than 1 vol .-%. Even with these small volume fractions and even at volume fractions below 1%, the effect of the invention sets.
  • the thermal conductivity of the actual material is not or hardly appreciably affected by the adhesive layer.
  • the narrow capillary-active adhesive layers do not serve as thermal bridges.
  • thermal insulation composites or insulation panels according to the invention is liquid, which is initially by capillary over the capillary conductive portions of the segments or the capillary conductive adhesive layers through the at least one insulation material unit from the first side to the Kapillar einsab gleich, which is spaced from the opposite second side passes , then by diffusion of the second side and in particular a first diffusion-active coating present there supplied and discharged through this diffusion-active coating wide area by means of diffusion in the direction of the interior.
  • a thermal insulation composite within the meaning of the present invention should also already be a thermal insulation panel, for example made of foamed plastic material, such as EPS, which is provided with at least one capillary conductive portion of at least one segment from the first side to the capillary line termination. Accordingly, the term composite is intended to express that in addition to at least one insulating material unit, at least one segment with a capillary-conductive section containing capillary-conductive material has to be present.
  • foamed plastic material such as EPS
  • a diffusion-active coating is to be understood as meaning a coating in which the moisture transport is completely or essentially completely by means of diffusion, but not by means of capillary conduction.
  • moisture transport by means of capillary conduction thus plays no or at most an insignificant, subordinate role. Accordingly, the first (and / or second and / or third) diffusion-active coating is not or substantially non-capillary conductive.
  • the terms capillary-conductive and capillary-active are always used synonymously here.
  • At least one Dämmmaterialiser preferably at least two adjacent and particularly preferably all Dämmmaterialiseren of fiber materials and / or foam products, in particular foam products, are formed or comprise.
  • Suitable fibrous materials may be selected from the group consisting of mineral wool, plastic fibers, hydrophobically finished wood fibers, especially soft wood fibers, hemp fibers, wood wool, cotton and cellulose fibers or components thereof or any mixtures thereof.
  • foam products are preferred. Suitable foam products may be selected from the group consisting of foam glass, expanded styrene polymers, especially expanded polystyrene, expanded polypropylene, elastomeric foam, polyisocyanurate foam, polyethylene foam, phenolic foam, rigid polyurethane foam, urea-formaldehyde resin foam, hydrophobicized silica, hydrophobized aerogels, extruded styrenic polymers, especially extruded polystyrene foam, expanded Cork or any mixtures thereof.
  • At least one Dämmmaterialiser in particular the at least two, preferably adjacent Dämmmaterialiseren and more preferably all Dämmmaterialiseren, expanded or extruded styrenic polymers, in particular expanded or extruded polystyrene include or consist of.
  • the heat insulation composite preferably have a cuboid, e.g. plate-shaped, or a cube-shaped basic shape.
  • thermal insulation composites are plate-shaped and accordingly constitute a thermal insulation board, in particular comprising a first and an opposite second side.
  • capillary-conductive materials for the capillary-conductive section of a segment and adhesive-containing adhesive compositions for the adhesive layer which contain as binder, in particular exclusively, mineral binders.
  • Particularly good results also occur when the capillary-conductive material or the binder-containing adhesive composition contains no fillers.
  • the capillary-conductive action exhibited by the segment formed from the capillary-conductive material and / or the adhesive layer formed from the adhesive composition in the cured state is particularly pronounced.
  • Suitable mineral binders include or consist in particular of hydrate and / or hydraulic binders and are preferably selected from the group consisting of cement, lime, gypsum, high alumina cement, water glass or any mixtures thereof.
  • the adhesive layers of the invention or the capillary conductive materials of the segment are characterized in the cured state in that they are wettable with water, in particular a substantially complete wettability with water is present.
  • Particularly suitable cured capillary-active adhesive layers or capillary-conductive materials and / or the mineral binders used for this purpose preferably have a contact angle (also called contact angle or wetting angle) with water in the range of 0 ° to less than 90 °, more preferably of 0 ° or nearly 0 °.
  • these materials have capillary activity, as known, for example, from the calcium silicate plates known in the art.
  • Suitable materials which may also be added to the adhesive composition (s) of the segment include, for example, activated alumina, clay minerals such as bentonites and atapulgites, zeolites, superabsorbents, rheology aids or any mixtures of these components.
  • the binder-containing adhesive composition and / or the capillary-conductive materials of the segment hygroscopic salts are added in order to increase the capillary-conducting effect.
  • a homogenization of the water transportability is in particular also by using two or more different capillary conductive materials as a component the adhesive composition or materials for the capillary conductive portion of a segment combined.
  • such an embodiment is of particular advantage, in which the capillary-active material with the coarser pores to the outer wall and the capillary-active material with the finer pores to the interior are present within the adhesive layer of the thermal insulation composite according to the invention.
  • the two embodiments outlined above can also be combined.
  • a suitable useable capillary-conductive binder-containing adhesive material or capillary conductive material for the capillary-conductive portion of a segment preferably has a bulk density in the range of 0.1 to 2.0 kg / l, and more preferably 0.5 to 1.5 kg / l.
  • the binder-containing adhesive composition or capillary-conductive material for the capillary-conductive section advantageously contains the, preferably hydraulic and / or hydric, binders and water in a ratio such that the dry densities described above are achieved.
  • the binder-containing adhesive composition or the capillary-conductive material for the capillary-conductive section contains at least one fiber material, in particular plastic fibers, natural fibers, mineral fibers, e.g. Basalt ceramic and / or glass fibers, or any mixtures thereof.
  • fibers additionally or alternatively also hollow fibers and / or nanotubes come into consideration. The latter have the advantage that they can also participate in capillary transport.
  • fiber mats or fabrics integrated into the adhesive layer incorporated or placed.
  • the application of adhesive compositions can, for example, also take place successively.
  • the fibers have, for example, a length in the range from 2 to 40 mm, in particular in the range from 4 to 20 mm, and particularly preferably in the range from 8 to 15 mm. It is particularly preferred that the average length of the fibers is at most 16 mm, in particular at a maximum of 12 mm and particularly preferably at a maximum of 8 mm.
  • the capillary conductive material of the capillary conductive portion of a segment and / or the binder-containing adhesive composition at least one fiber material, in particular plastic fibers, natural fibers, mineral fiber, eg basalt, ceramic and / or glass fibers, or any mixtures thereof, preferably with an average Length of the fibers of not more than 16 mm, in particular of not more than 12 mm and particularly preferably of not more than 8 mm.
  • the fiber material can be used to reinforce, elastify and / or reduce the shrinkage of the adhesive layers or of the capillary-conductive sections. Additionally or alternatively, fibers can also be sprinkled or inflated onto the freshly applied adhesive layer.
  • cement is preferably used as the main component.
  • thermal insulation composites are particularly suitable in which the adhesive layer in the cured state has a maximum thickness of 2.0 mm, in particular 1.5 mm and particularly preferably 1.0 mm.
  • the binder-containing adhesive composition provides a capillary-conductive (adhesive) layer and, on the other hand, it ensures the bonding of the insulation material units to one another.
  • the average width of the Dämmmaterialiseren and / or the edge profiles in the range of 10 mm to 200 mm, in particular range from 20 mm to 160 mm and preferably range from 40 mm to 140 mm.
  • Such embodiments of the thermal insulation composite according to the invention solve the problems underlying the invention in a particularly satisfactory manner, in which the first side at least in the region of extending from the first side to the second side capillary conductive portion of at least one segment, in sections or completely, in particular completely, is provided with at least one first capillary-conductive coating of one or at least one first capillary-conductive coating material or sections or completely, in particular completely, with at least one second diffusion-active coating of a second or containing at least a second hydrophobic or hydrophobic coating material and wherein the kapillarleitfixede section at least one Segment and the first capillary conductive coating or the second diffusion-active coating in contact with each other.
  • the first side in particular in the region of the adhesive layer extending from the first side to the second side, is provided, at least in sections, in particular completely, with at least one capillary-active first coating material to form a first capillary-active coating, which is at least partially capillary-actively connected with at least one adhesive layer or at least one capillary-active segment.
  • such a design variant of a thermal insulation composite according to the invention is advantageous in which the first side is substantially over the entire area provided with the first capillary conductive coating material to form the first capillary conductive coating and / or the second side substantially over the entire surface with the first hydrophobic or hydrophobic coating material is provided under formation of the first diffusion-active coating.
  • first and the second hydrophobic or hydrophobized coating material are substantially identical, in particular with regard to composition and / or thickness of the application of these coating materials, and / or that the first capillary conductive coating material comprises or is formed from the binder - containing adhesive composition or the capillary conductive material of the capillary conductive portion of a segment and / or the capillary conductive material of the capillary conductive portion of the segment or
  • the segments and the binder-containing adhesive composition are substantially the same.
  • the first and / or second capillary-conductive coating is only a few tenths of a millimeter thick.
  • the supply and discharge of possibly accumulating water to the capillary-active adhesive strip can be significantly improved.
  • the first capillary-conductive coating has a smaller thickness at a distance from the adhesive layer than in the region, in particular in the direction of the extension, of the adhesive layer.
  • a particularly expedient thermal insulation composite according to the invention is also characterized in that at least two adjacent adhesive layers, in particular all adhesive layers, extend at least in sections substantially parallel to one another.
  • the adhesive layers can be aligned in an advantageous manner so that they extend substantially horizontally after attachment to the building wall.
  • An advantage of this substantially horizontal arrangement of, in particular adjacent, adhesive layers is that, e.g. to a selective moisture attack behind the insulation board, the liquid flows down because of gravity and in this case meets a capillary conductive adhesive layer. Moisture can not spread nationwide in this arrangement.
  • the adhesive layers can not with be made of constant thickness.
  • such heat insulation composites according to the invention are also advantageous, in particular also with regard to increased capillary activity, in which the thickness of the adhesive layer increases from the first side to the second side, ie towards the interior side, in particular continuously.
  • the thermal insulation composite according to the invention preferably represents a thermal insulation panel, in particular an internal thermal insulation panel, preferably with a polygonal basic shape, in particular selected from square, rectangular, triangular basic shapes.
  • the at least one adhesive layer, in particular all adhesive layers, of the thermal insulation composite according to the invention extend along the, in particular entire, longitudinal extent thereof.
  • the thermal insulation composite according to the invention also has at least one adhesive detent layer applied to the first diffusion-active coating.
  • the inventive thermal insulation composite also has at least one diffusion-active plaster coating, in particular top coat, preferably silicate-based, on the primer layer or on the first diffusion-active coating.
  • the thermal insulation composite according to the invention further comprises at least one diffusion-active color coating, in particular comprising a silicate or silicate dispersion paint.
  • the inventive thermal insulation composite furthermore has at least one reinforcing fabric present on or in the first diffusion-active coating, preferably partially or completely embedded in this coating, in particular based on glass fibers.
  • the inventive thermal insulation composite also has at least one first capillary-conductive coating from or containing the at least one third diffusion-active coating or at least one second capillary-conductive coating, in particular in the form of an adhesive layer on the first side first capillary conductive coating material.
  • the first capillary-conductive coating material or the first capillary-conductive coating application which is responsible for the first capillary-conductive coating of the first side, i. the moist or condensation side of the thermal insulation composite is provided, but may not coincide with the second capillary conductive coating material or the second capillary conductive coating order for the second capillary conductive coating.
  • First as well as second coating material or coating application can also be formed from or comprise a plurality of different, each capillary-active components. It is also possible to carry out the first and / or second capillary-conductive coating material or the first and / or second capillary-conductive coating application in two or more layers, wherein the respective layers are formed from or comprise different capillary-active materials.
  • first and second capillary conductive coating material e.g. resort to plaster containing mineral binders such as cement, gypsum or high-alumina cement.
  • the curing of the capillary conductive material for the capillary conductive portion of a segment and / or the first and / or second capillary conductive coating material is after a time of, preferably at most, three days at 20 ° C and a relative humidity of 90%, or preferably also above, so far advanced that the capillary conductive properties have already set and that preferably the mechanical strength is sufficient for further processing. In general, such curing has often occurred after 24 hours.
  • first, second, and / or third diffusion-active coating may be substantially coincident in their compositions.
  • the hydrophobic or hydrophobic coating material of the first, second and / or third diffusion-active coating preferably comprises at least one hydrophobizing agent, in particular fatty alcohols and / or fatty acids and / or fatty acid esters and / or fatty acid salts or their derivatives or any mixtures thereof, in particular in an amount in the range of 0.05 wt .-% to 3.0 wt .-%, based on the dry mass of coating material.
  • Suitable hydrophobizing agents include e.g. Stearates such as zinc stearate.
  • the hydrophobized coating material for the first, second and third diffusion-active coatings can also be achieved by using conventional plaster known to the person skilled in the art containing mineral binders such as cement, gypsum or high-alumina cement with the previously mentioned hydrophobizing agent, for example the salt or ester a fatty acid such as stearic acid.
  • mineral binders such as cement, gypsum or high-alumina cement
  • hydrophobizing agent for example the salt or ester a fatty acid such as stearic acid.
  • a dämmverbundareal, especially equipped with a plurality of inventive thermal insulation joints, in particular thermal insulation panels, each having a first and an opposite second side and an at least partially circulating, the first and the second side connecting edge profile or surface with a length and width extension, wherein adjacent thermal insulation composites, in particular thermal insulation panels, at least in sections along their edge courses or surfaces, in particular flush, are adjacent.
  • a wall structure comprising a building wall with an outer side and an opposite inner side, in particular the outer wall of the building, and on the inside at least one according to the invention Heat insulation composite or at least one inventive thermal insulation composite area, wherein the first side of the thermal insulation composite or the composite thermal insulation composite is disposed facing the inside.
  • the first side of the thermal insulation composite or the composite thermal insulation composite sections or completely, in particular completely, with the at least one first kapillarleitporten coating of or containing at least a first kapillarleitqes coating material or with the at least one second diffusion-active coating of a second or containing at least one second hydrophobic or hydrophobic coating material is provided.
  • This can also be connected to the inside of the building wall of the wall structure according to the invention, for example as an adhesive or adhesive layer.
  • wall structures according to the invention which further comprise sections or completely, in particular completely, at least a third diffusion-active coating of a third or containing at least a third hydrophobic or hydrophobic coating material, the building wall, in particular the inside, with the at least one first capillary conductive coating from one or at least connects a first capillary conductive coating material.
  • This third diffusion-active coating material acts in this case as an adhesive for the thermal bond, with which it is attached to the building wall.
  • the thermal insulation panels or composites of the wall structure represent a foam product, in particular containing or formed of foam glass, expanded styrene polymers, in particular expanded polystyrene, expanded polypropylene, elastomer foam, Polyisocyanuratschaum, polyethylene foam, phenolic resin foam, polyurethane foam, urea-formaldehyde resin foam, hydrophobicized silica, hydrophobicized aerogels, extruded styrenic polymers, in particular extruded polystyrene foam, expanded cork or any mixtures thereof. Particular preference is given to using extruded styrene polymers, in particular extruded polystyrene foam.
  • thermal insulation composites or thermal insulation panels according to the invention and the thermal insulation composite areas according to the invention are suitably used for the thermal insulation of buildings, in particular on the inside of the outer walls of buildings.
  • the thermal insulation composite precursor product in particular the plate-shaped thermal insulation composite precursor product, at least two, in particular cuboid or cube-shaped Dämmmaterialiseren each having a length, height and width dimension and with an edge profile or surface at least in sections along the Length and width extent, wherein adjacent Dämmmaterialiseren along the abutting or mutually facing edge courses with at least one, in particular by means of brushing, rolling, knife coating, pouring and / or spraying applied, binder-containing adhesive composition with the formation of the at least one capillary conductive portion in the form of an adhesive layer partially or completely glued together, wherein the adhesive layer formed from this adhesive composition in the cured state is kapillarleitschreib and starting from the first side in the direction of the second side to the Kapillar einsab gleich, the before reaching the second side ends, extends and preferably at least two adjacent adhesive layers, in particular all adhesive layers, at least partially extend substantially parallel to each other.
  • the thermal insulation composite precursor product or the plate-shaped thermal insulation composite precursor product differ substantially from the thermal insulation composite according to the invention in that it does not yet have a first diffusion-active coating made of a first hydrophobic or hydrophobicized coating material.
  • the invention also encompasses the use of the thermal insulation composites according to the invention, in particular thermal insulation panels, the thermal insulation composite areas according to the invention, in particular the thermal insulation panel areas, for the thermal insulation of buildings, in particular of exterior walls, particularly preferably on the inside of these exterior walls.
  • a polystyrene particle foam block is cut with oscillating hot wires into strips, eg with the dimensions (1000 mm) x (20 to 150 mm) x (insulation thickness). Subsequently, these strips are glued together again with the capillary-active binder-containing adhesive composition.
  • the capillary-active adhesive layers may preferably have a thickness of, for example, 0.2 mm to 3 mm and particularly preferably 0.3 mm to 1.2 mm. In this way you can, for example, again, at least approximately, the usual Baustellenparty conference an insulation board of 500 mm x 1000 mm x Dämmdicke receive.
  • the strip width, ie the width of the edge profile is according to the invention preferably 20 mm to 150 mm and particularly preferably 50 mm to 100 mm.
  • the insulation board is coated on one side with a capillary conductive material, for example with the material of the binder-containing adhesive composition.
  • the adhesive layer can also be designed with non-uniform thickness. Rather, it is advantageous if their thickness increases toward the interior side.
  • a homogenization of the water transportability is in particular also by combining two or more different mineral binder or kapillarleitpointe materials as part of the adhesive composition together.
  • cement and gypsum may be present simultaneously, optionally supplemented by lime and / or high-alumina cement.
  • such an embodiment is of particular advantage, in which the capillary-active material or the cured adhesive layer with the coarser pores to the outer wall and the capillary active material or the cured adhesive layer with the finer pores to the interior inside at least one adhesive layer of the thermal insulation composite according to the invention.
  • the two embodiments outlined above can also be combined.
  • a taper of the cross-section of the adhesive layer preferably removed, e.g. 5 mm, starting from the interior-side plate surface, remain on the plate surface so narrow remaining adhesive strip that the problem of taking away temperature differences completely in the background. In this area near the plate surface, the transported water can already partially evaporate through the insulation board.
  • thermal insulation composites in particular thermal insulation panels, according to the invention, one can stabilize the profile of the adhesive layers by special shapes. In this way, the bending strength can be increased by a factor of 1.5 to 2, for example.
  • a process for the production of thermal insulation joints can take place as follows: An expanded polystyrene foam block with a volume of several cubic meters is separated in the hot-wire process into insulating material units with a first and an opposite second side.
  • the one-sided coating of the edge surface connecting the first and second side with the liquid binder-containing adhesive composition by means of doctoring, brushing, casting, rolling, spraying, knife coating and / or spraying.
  • the adhesive composition is to be applied in a manner such that a strip of the edge surface adjacent to the second side, i. to the visible side remains free. Consequently, the material of the adhesive composition is deposited on the edge surface only from the first side to a distance from the second side.
  • a strip 5 to 10 mm wide that extends to the second side may remain free of adhesive composition.
  • the adhesive composition contains fibers.
  • fibers can also be sprinkled or inflated onto the freshly applied adhesive layer.
  • the adhesive composition contains fibers.
  • fibers can also be sprinkled or inflated onto the freshly applied adhesive layer.
  • the fibers it is advantageous that there are no procedural restrictions with respect to fiber length and / or fiber quantity.
  • unusually high fiber concentrations are possible.
  • the fabric or fleece can have coarse capillarity and thus round off the pore structure of the capillary-conductive adhesive layer to the top.
  • fibers are hollow fibers and / or nanotubes and / or natural fibers such as cellulose fibers or cotton, or optionally also wood particles, which may also participate in capillary transport. If different capillary-conductive materials are to be used, the order can be carried out, for example, successively.
  • the single-sided coated panels are then rejoined into a block.
  • the size of this block may differ from the original shape of the foamed block, allowing for low-bleed choice of various board dimensions.
  • a trimming cut e.g. by hot wire or band saw, follow. This is followed by the cutting of the desired plate thicknesses and optionally a final trimming and singulation of the plates. Depending on the model, these can then be coated on one or both sides or packaged without coating.
  • the first side coating material i. the condensed water side, or binder-containing adhesive composition for the adhesive layers is preferably chosen such that it can be applied without heat or drying to e.g. hardened a Hordewagen. This allows the coated plates to be packed immediately.
  • a hydrophobic coating As part of the completion or the attachment of the thermal insulation composite as internal insulation can be applied to form the diffusion-active coating on the second side of the thermal insulation units a hydrophobic coating. This coating is not in contact with the capillary conductive material of the adhesive layers.
  • a reinforcing fabric is preferably incorporated.
  • adjacent fabric webs are preferably embedded overlapping in said flush.
  • a so-called top coat can be applied. In this case, preference is likewise given to using a diffusion-active coating material.
  • an additional color can be applied. This can also be applied directly to the aforementioned flush.
  • the heat energy stored in the insulation material units can be used to evaporate the water emerging at the capillary line termination of the capillary-conductive adhesive layers in the direction of the side facing the interior of a building. That is, the water emerging from the capillary-conductive adhesive layers at the respective capillary line terminations is transported by diffusion to the diffusion-active, for example, hydrophobized layer and from there into the interior.
  • a further advantage of the thermal insulation composite according to the invention is that on the side on which the first diffusion-active coating is present (second side or visible side) it also regularly when introducing larger amounts of liquid or moisture on the building exterior wall in the described capillary active insulation board or far less pronounced (than For example, in a kapillarleitchange equipped insulation board in which the kapillarleitfixede segment or the kapillarleitore adhesive layer extending from the first to the second side) to form moisture stains comes or kapillarleitfahigen adhesive layers or segments by the Dä mmmaterial in the direction of the second, ie visible side, not or far less pronounced on this visible side sign off. Also, it comes at these points not or far less pronounced to so-called salt efflorescence.
  • FIG. 1 shows schematically a thermal insulation composite according to the invention 1 with a building outer wall zuwendbaren first side 2 and an interior zuwendbaren second side 4.
  • the thermal insulation composite 1 is composed of a plurality of thermal insulation units 6, the respective edge surfaces 8 face each other. Between these edge surfaces 8, a capillary-conductive adhesive layer 10 is provided for connecting the thermal insulation units 6. This extends from the first side 2 to a Kapillar einsab gleich 12, which is spaced from the second side 4. On the first side 2 there is a capillary-conductive coating 14, which is in contact with the adhesive layers 10. On the other hand, the diffusion-active coating 16 present on the second side 4 is not in contact with the capillary-conductive adhesive layer 10.
  • capillary line termination 12 is spaced from this coating 16, so that the transport of moisture from this capillary line termination 12 to the coating 16 by means of diffusion and not by means of diffusion Capillary line takes place.
  • the free portion 18, which no longer has capillary conductive material may be filled with a diffusion active material (not shown) or may remain free.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Finishing Walls (AREA)

Claims (15)

  1. Composé d'isolation thermique (1), notamment composé d'isolation thermique (1) en forme de plaque, présentant un premier côté (2), plus particulièrement un côté dit humide ou de condensation, et un deuxième côté (4) à l'opposé, plus particulièrement un côté dit sec ou intérieur, comprenant au moins une unité de matériau isolant et à l'intérieur et/ou entre deux unités adjacentes de matériau isolant au moins un segment, qui s'étend en continu du premier côté (2) jusqu'au deuxième côté, caractérisé en ce que ledit au moins un segment est rempli de matériau conducteur par capillarité en partant du premier côté (2) en direction du deuxième côté jusqu'à une terminaison de conduite capillaire (12), qui s'arrête avant d'atteindre le deuxième côté, afin de former une portion du segment conductrice par capillarité, de sorte que le liquide puisse être transféré à travers la portion conductrice par capillarité à partir du premier côté (2) jusqu'à la terminaison de conduite capillaire (12) au moyen du transport par capillarité.
  2. Composé d'isolation thermique (1) selon la revendication 1, caractérisé en ce que la distance entre la terminaison de conduite capillaire et le deuxième côté soit supérieure à 3 mm, notamment comprise entre 5 et 15 mm, et/ou en ce que la portion du segment à partir de la terminaison de conduite capillaire jusqu'au deuxième côté contient du matériau actif de diffusion, qui est ou n'est pas essentiellement conducteur par capillarité.
  3. Composé d'isolation thermique (1) selon la revendication 1 ou 2, caractérisé en ce que le deuxième côté est pourvu, partiellement ou complètement, notamment complètement, d'au moins un premier revêtement (16) actif de diffusion, au moins dans la zone dudit au moins un segment qui s'étend du premier côté (2) jusqu'au deuxième côté, notamment dans la zone de tous les segments, et en ce que la ou les terminaisons de conduite capillaire des portions conductrices par capillarité et le premier revêtement actif de diffusion ne sont pas en contact l'un avec l'autre.
  4. Composé d'isolation thermique (1) selon la revendication 3, caractérisé en ce que le premier revêtement actif de diffusion est ou n'est pas conducteur par capillarité, et est notamment formé de ou contient un premier matériau de revêtement hydrophobe ou rendu hydrophobe.
  5. Composé d'isolation thermique (1) selon l'une des revendications précédentes, comprenant au moins deux unités de matériau isolant, notamment de forme parallélépipédique ou cubique, ayant chacune une étendue en longueur, en hauteur et en largeur et présentant un profil de bords ou une surface de bord au moins partiellement le long de l'étendue en longueur et en largeur, dans lequel les unités de matériau isolant adjacentes sont collées au moyen d'au moins une composition adhésive comprenant un liant, notamment appliqué par peinture, au rouleau, par raclage, par coulée et/ou par pulvérisation, ensemble le long des profils de bords en contact les uns avec les autres ou disposés face à face, afin de former la portion conductrice par capillarité d'au moins un segment, dans lequel la couche adhésive formée au moyen de ladite composition adhésive est, à l'état durci, conductrice par capillarité et s'étend à partir du premier côté (2) en direction du deuxième côté jusqu'à la terminaison de conduite capillaire, qui s'arrête avant d'atteindre le deuxième côté, et dans lequel, de préférence au moins deux couches adhésives (10) adjacentes, et plus particulièrement l'intégralité des couches adhésives, sont au moins partiellement et essentiellement parallèles entre elles.
  6. Composé d'isolation thermique (1) selon l'une des revendications précédentes, caractérisé en ce qu'au moins une unité de matériau isolant, de préférence au moins deux unités adjacentes et, mieux encore, l'intégralité des unités de matériau isolant sont formées de ou contiennent de la matière fibreuse et/ou des produits en mousse, notamment des polymères styréniques expansés, comme par exemple du polystyrène expansé ou extrudé.
  7. Composé d'isolation thermique (1) selon l'une des revendications précédentes, caractérisé en ce que le premier côté (2), au moins dans la zone dudit au moins un segment qui s'étend du premier côté (2) jusqu'au deuxième côté, est pourvu, partiellement ou complètement, notamment complètement, d'au moins un premier revêtement conducteur par capillarité composé de ou contenant au moins un premier matériau de revêtement conducteur par capillarité, ou est pourvu, partiellement ou complètement, notamment complètement, d'au moins un deuxième revêtement actif de diffusion composé de ou contenant au moins un deuxième matériau de revêtement hydrophobe ou rendu hydrophobe et dans lequel la portion conductrice par capillarité d'au moins un segment et le premier revêtement conducteur par capillarité ou le deuxième revêtement actif de diffusion sont en contact l'un avec l'autre.
  8. Composé d'isolation thermique (1) selon l'une des revendications précédentes, caractérisé par au moins une couche d'agent adhésif appliquée sur le premier revêtement actif de diffusion et/ou par au moins un revêtement d'enduit actif de diffusion, notamment un revêtement de la couche extérieure de l'enduit, de préférence à base de silicate, sur la couche d'agent adhésif ou sur le premier revêtement actif de diffusion, et/ou par au moins un revêtement coloré actif de diffusion, comprenant notamment une peinture aux silicates ou une peinture de dispersion aux silicates et/ou par au moins un tissu d'armature, notamment à base de fibres de verre, présent à la surface ou à l'intérieur du premier revêtement actif de diffusion, de préférence encastré partiellement ou complètement dans ledit revêtement.
  9. Composé d'isolation thermique (1) selon l'une des revendications précédentes, caractérisé par au moins un troisième revêtement actif de diffusion composé de ou contenant au moins un troisième matériau de revêtement hydrophobe ou rendu hydrophobe sur ledit au moins un premier revêtement conducteur par capillarité présent sur le premier côté (2) et composé de ou contenant le premier matériau de revêtement conducteur par capillarité ou caractérisé par au moins un deuxième revêtement (14) conducteur par capillarité, notamment sous forme d'une couche adhésive sur ledit au moins un premier revêtement conducteur par capillarité présent sur le premier côté (2) et composé de ou contenant le premier matériau de revêtement conducteur par capillarité.
  10. Composé d'isolation thermique (1) selon l'une des revendications précédentes, caractérisé en ce que le matériau de revêtement hydrophobe ou rendu hydrophobe du premier, du deuxième et/ou du troisième revêtement actif de diffusion comprend au moins un agent d'hydrophobisation, notamment des alcools gras ou des acides gras ou des esters d'acide gras ou des sels d'acide gras ou leurs dérivés ou des mélanges quelconques de ceux-ci, notamment dans une proportion comprise entre 0,05 et 3,0 % en masse par rapport à la masse sèche du matériau de revêtement.
  11. Zone composite d'isolation thermique, notamment une zone de plaque d'isolation thermique, comprenant au moins deux, notamment une pluralité de composés d'isolation thermique, notamment des plaques d'isolation thermique, selon l'une des revendications 1 à 10, ayant chacune un premier côté et un deuxième côté à l'opposé ainsi qu'un profil de bords ou une surface de bord s'étendant au moins partiellement autour des composés, reliant le premier (2) et le deuxième côté et présentant une étendue de longueur et de largeur, dans laquelle les composés d'isolation thermique adjacents, notamment les plaques d'isolation thermique, sont adjacents, et sont notamment au même niveau, au moins partiellement le long de leurs profils de bords ou de leurs surfaces de bord.
  12. Structure murale, comprenant un mur de bâtiment avec un extérieur et une paroi intérieure opposée, notamment un mur extérieur de bâtiment et, sur la paroi intérieure, au moins un composé d'isolation thermique (1) selon l'une des revendications 1 à 10 ou au moins une zone composite d'isolation thermique selon la revendication 11, dans laquelle le premier côté (2) du composé d'isolation thermique ou de la zone composite d'isolation thermique est placé face à la paroi intérieure.
  13. Structure murale selon la revendication 12, caractérisé en ce que le premier côté (2) du composé d'isolation thermique ou de la zone composite d'isolation thermique est, partiellement ou complètement, notamment complètement, pourvu dudit au moins un premier revêtement conducteur par capillarité composé de ou contenant au moins un premier matériau de revêtement conducteur par capillarité ou pourvu dudit au moins un deuxième revêtement actif de diffusion formé d'un deuxième ou contenant au moins un deuxième matériau de revêtement hydrophobe ou rendu hydrophobe, de préférence en formant une liaison avec la paroi intérieure du mur de bâtiment.
  14. Procédé de fabrication d'au moins une structure murale selon la revendication 12 ou 13, comprenant les étapes suivantes :
    montage d'un produit précurseur de composé d'isolation thermique, notamment un produit précurseur de composé d'isolation thermique en forme de plaque, avec un premier côté (2), plus particulièrement un côté dit humide ou de condensation, et un deuxième côté à l'opposé, plus particulièrement un côté dit sec ou intérieur, comprenant au moins une unité de matériau isolant et au moins un segment, qui s'étend en continu du premier côté (2) au deuxième côté, dans lequel le segment est rempli de matériau conducteur par capillarité en partant du premier côté (2) en direction du deuxième côté jusqu'à une terminaison de conduite capillaire, qui s'arrête avant d'atteindre le deuxième côté, afin de former une portion du segment conductrice par capillarité, de sorte que le liquide puisse être transféré à travers la portion conductrice par capillarité à partir du premier côté (2) jusqu'à la terminaison de conduite capillaire au moyen du transport par capillarité,
    par l'intermédiaire d'au moins un matériau de revêtement conducteur par capillarité afin de former au moins un revêtement partiellement ou complètement, notamment complètement, conducteur par capillarité, dans lequel ledit revêtement est en contact avec la ou les portions conductrices par capillarité,
    sur le mur de bâtiment, notamment la paroi intérieure du mur extérieur de bâtiment,
    ou
    montage d'un produit précurseur de composé d'isolation thermique, notamment un produit précurseur de composé d'isolation thermique en forme de plaque, avec un premier côté (2), plus particulièrement un côté dit humide ou de condensation, et un deuxième côté à l'opposé, plus particulièrement un côté dit sec ou intérieur, comprenant au moins une unité de matériau isolant et au moins un segment,
    qui s'étend en continu du premier côté (2) au deuxième côté,
    dans lequel le segment est rempli de matériau conducteur par capillarité en partant du premier côté (2) en direction du deuxième côté jusqu'à une terminaison de conduite capillaire, qui s'arrête avant d'atteindre le deuxième côté, afin de former une portion du segment conductrice par capillarité, de sorte que le liquide puisse être transféré à travers la portion conductrice par capillarité à partir du premier côté (2) jusqu'à la terminaison de conduite capillaire au moyen du transport par capillarité, et avec ledit au moins un premier revêtement conducteur par capillarité composé de ou contenant au moins le premier matériau de revêtement conducteur par capillarité sur le premier côté (2), qui est en contact avec la ou les portions conductrices par capillarité des segments via le premier côté (2) par l'intermédiaire d'au moins un matériau de revêtement conducteur par capillarité pour former au moins un revêtement qui est, partiellement ou complètement, notamment complètement, conducteur par capillarité ou par l'intermédiaire du deuxième matériau de revêtement hydrophobe ou rendu hydrophobe pour former le deuxième revêtement actif de diffusion sur le mur de bâtiment, notamment sur la paroi intérieure du mur extérieur de bâtiment, et
    montage dudit au moins un premier revêtement actif de diffusion composé de ou contenant le premier matériau de revêtement hydrophobe ou rendu hydrophobe sur le deuxième côté, dans lequel la portion conductrice par capillarité du ou des segments, notamment de tous les segments, n'est pas en contact avec le premier revêtement actif de diffusion.
  15. Procédé selon la revendication 14, caractérisé en ce que le produit précurseur de composé d'isolation thermique, notamment le produit précurseur de composé d'isolation thermique en forme de plaque, comprend au moins deux unités de matériau isolant, notamment de forme parallélépipédique ou cubique, ayant chacune une étendue en longueur, en hauteur et en largeur et présentant un profil de bords ou une surface de bord au moins partiellement le long de l'étendue en longueur et en largeur, dans lequel les unités de matériau isolant adjacentes sont collées, au moyen d'au moins une composition adhésive comprenant un liant, notamment appliquée par peinture, au rouleau, par raclage, par coulée et/ou par pulvérisation, ensemble le long des profils de bords en contact les uns avec les autres ou disposés face à face, afin de former la ou les portions conductrices par capillarité sous forme d'une couche adhésive, dans lequel la couche adhésive formée au moyen de ladite composition adhésive est, à l'état durci, conductrice par capillarité et s'étend à partir du premier côté (2) en direction du deuxième côté (4) jusqu'à la terminaison de conduite capillaire, qui s'arrête avant d'atteindre le deuxième côté, et dans lequel, de préférence au moins deux couches adhésives adjacentes, et plus particulièrement l'intégralité des couches adhésives, sont au moins partiellement et essentiellement parallèles entre elles.
EP14197257.0A 2014-12-10 2014-12-10 Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales Not-in-force EP3031992B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14197257.0A EP3031992B1 (fr) 2014-12-10 2014-12-10 Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14197257.0A EP3031992B1 (fr) 2014-12-10 2014-12-10 Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales

Publications (2)

Publication Number Publication Date
EP3031992A1 EP3031992A1 (fr) 2016-06-15
EP3031992B1 true EP3031992B1 (fr) 2018-02-14

Family

ID=52146087

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14197257.0A Not-in-force EP3031992B1 (fr) 2014-12-10 2014-12-10 Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales

Country Status (1)

Country Link
EP (1) EP3031992B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112260A1 (de) 2018-05-22 2019-11-28 Saint-Gobain Isover G+H Ag Wärmedämmelement, Bauwerkskonstruktion sowie Verfahren zur Vermeidung von Feuchteschäden an einem Bauwerk

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2520406A1 (fr) 1982-01-22 1983-07-29 Gachot Jean Revetement thermiquement isolant applique sur les murs de batiments et son procede d'utilisation
WO1992010624A1 (fr) 1990-12-12 1992-06-25 Kenitex S.A. Procede pour fixer une piece sur une surface et application de ce procede pour augmenter le coefficient d'isolation thermique global d'un mur de batiment
JP2559643B2 (ja) * 1991-02-20 1996-12-04 保啓 森 コンクリート構造物用止水板
ATE173723T1 (de) 1996-07-04 1998-12-15 Hebel Ag Verfahren zur herstellung einer leichten, offenporigen, mineralischen dämmplatte
ATE196158T1 (de) 1997-05-14 2000-09-15 Basf Ag Graphitpartikel enthaltende expandierbare styrolpolymerisate
AT413291B (de) * 1999-06-01 2006-01-15 Austrotherm Gesmbh Dämmsystem für gebäudedecken
AT5634U1 (de) * 2001-06-28 2002-09-25 Austyrol Daemmstoffe Ges M B H Wärmedämmung von wänden und/oder decken von gebäuden
DE10246587A1 (de) * 2002-10-05 2004-04-15 Viktor Mosebach Versteifte Platte aus Mineralwolle
DE20307608U1 (de) 2003-01-20 2003-08-28 Deutsche Amphibolin-Werke von Robert Murjahn Stiftung & Co KG, 64372 Ober-Ramstadt Dämmender geschäumter Werkstoff
DE102007025303B4 (de) 2007-05-30 2014-06-26 Haacke Treuhand Gmbh Bauelement für die Innendämmung von Gebäuden und Verfahren zu seiner Herstellung
DE102007040938B4 (de) 2007-08-30 2023-09-21 Remmers Baustofftechnik Gmbh Wandaufbau und Wärmedämmplatte
DE102008046444A1 (de) * 2008-09-09 2010-03-11 Evonik Röhm Gmbh Fassadenplatte, System und Verfahren zur Energiegewinnung
DE102010005361A1 (de) 2010-01-21 2011-07-28 Veit Dennert KG Baustoffbetriebe, 96132 Mineralischer Formkörper, Verwendung und Verfahren zur Herstellung des mineralischen Formkörpers
DE102010044791A1 (de) 2010-09-09 2012-03-15 Calsitherm Verwaltungs Gmbh Wärmedämmplatte mit eingelagerten Wärmedämmelementen geringerer Wärmeleitfähigkeit sowie Bausatz dafür
DE102010044789A1 (de) 2010-09-09 2012-03-15 Calsitherm Verwaltungs Gmbh Wärmedämmplatte mit eingelagerten hochwärmedämmenden bemantelten Platten sowie Bausatz dafür
CH704044A1 (de) 2010-11-02 2012-05-15 Swisspor Man Ag Dämmmaterial.
DE102011050830A1 (de) 2011-06-03 2012-12-06 Kirsch Gmbh Innendämmung für Gebäudewände
DE102011109661A1 (de) * 2011-08-08 2013-02-14 Wilfried Höckels Dämmstoffplatte, Anordnung und Verfahren zum Ausrüsten eines Bauwerks
EP2898154B1 (fr) * 2012-09-22 2020-11-04 Evonik Operations GmbH Structure murale avec un système d'isolation intérieure comportant des plaques d'isolation thermique avec des écarts de joints variables
EP2765251B1 (fr) * 2013-02-12 2016-12-28 Daw Se Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3031992A1 (fr) 2016-06-15

Similar Documents

Publication Publication Date Title
DE102007040938B4 (de) Wandaufbau und Wärmedämmplatte
EP2860319A1 (fr) Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales
WO2015090615A1 (fr) Mélange sec de matériau de construction et enduit d'isolation thermique résultant
EP2726680B1 (fr) Construction de façade pour l'isolation thermique et l'habillage de parois de bâtiments, et procédé de fabrication d'une telle construction de façade
EP3249135A1 (fr) Élément de mur isolant
EP1088945B1 (fr) Elément d'isolation d'une façade
DE19508318C2 (de) Fliesenelement und Verfahren zu seiner Herstellung
DE9410265U1 (de) Mehrschichtige Wand in Holzrahmen-Bauweise, hieraus aufgebautes Holzrahmenbauteil, sowie hiermit errichtetes Haus, insbesondere Niedrigenergiehaus
EP2257506B1 (fr) Procédé de fabrication d'un élément de construction en forme de plaque ou de profilé et élément de construction en forme de plaque ou de profilé
EP2765251B1 (fr) Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments
DE19728184A1 (de) Multifunktionale Mineralfaserplatte, Verfahren zu deren Herstellung und deren Verwendung
DE3519752C2 (de) Mineralfaserprodukt als Dämmplatte oder Dämmbahn
AT405204B (de) Wandplatte sowie verfahren zur herstellung einer wandplatte
EP3031992B1 (fr) Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales
EP2758610B1 (fr) Méthode pour fabriquer un panneau de construction
DE102006019796A1 (de) Mauerwerksandwichelement und Verfahren zu seiner Herstellung
EP3587699B1 (fr) Paroi extérieure
DE19839295C2 (de) Wärmedämmverbundsystem und Verfahren zum Herstellen eines Wärmeverbundsystems
EP1835082A2 (fr) Procédé de fabrication d'une couche extérieure étanche
EP1559844B1 (fr) Element d' isolation et système composite d' isolation thermique
EP0625088B1 (fr) Procede de fabrication de panneaux sandwich
DE102009038773B4 (de) Innendämmpaneel mit einem hydrophilen, porösen Grundkörper
EP2386697A2 (fr) Panneaux d'isolation thermique, systèmes d'isolation thermique comprenant ces panneaux d'isolation thermique et procédé de fabrication de tels panneaux d'isolation thermique
DE19743883A1 (de) Verfahren zur Herstellung industriell vorgefertigter Wandelemente und danach hergestelltes Wandelement
EP1247916B1 (fr) Elément isolant, en particulier plaque isolante en fibres de bois

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007244

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 969918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014007244

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014007244

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181210

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141210

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 969918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525