EP2765251B1 - Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments - Google Patents

Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments Download PDF

Info

Publication number
EP2765251B1
EP2765251B1 EP13000724.8A EP13000724A EP2765251B1 EP 2765251 B1 EP2765251 B1 EP 2765251B1 EP 13000724 A EP13000724 A EP 13000724A EP 2765251 B1 EP2765251 B1 EP 2765251B1
Authority
EP
European Patent Office
Prior art keywords
thermal insulation
adhesive composition
insulation composite
capillary
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13000724.8A
Other languages
German (de)
English (en)
Other versions
EP2765251A1 (fr
Inventor
Thomas Lohmann
Björn Bethmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAW SE
Original Assignee
DAW SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAW SE filed Critical DAW SE
Priority to EP13000724.8A priority Critical patent/EP2765251B1/fr
Publication of EP2765251A1 publication Critical patent/EP2765251A1/fr
Application granted granted Critical
Publication of EP2765251B1 publication Critical patent/EP2765251B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7675Insulating linings for the interior face of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres

Definitions

  • the present invention relates to a plate-shaped thermal insulation composite. Furthermore, the invention relates to a thermal insulation composite area, in particular thermal insulation panel area, comprising thermal insulation composite or thermal insulation boards, as well as methods for producing thermal insulation joints, in particular thermal insulation panels. Moreover, the invention relates to the use of thermal insulation joints, in particular thermal insulation panels, for the thermal insulation of buildings.
  • Vapor-proof internal insulation has the disadvantage that it can easily be damaged in small repairs or installations and no longer fulfill their task.
  • the moisture balance of a building exterior wall, in particular impact rain wall can be noticeably affected by an internal insulation to the detriment. Because a building facade absorbs water in the course of a year, which causes no damage as long as the damp masonry in the summer can dry inside. After attaching a vapor-tight inner insulation this is no longer possible. Moisture accumulates behind the insulation material and the masonry becomes continuously wet. This increases the risk of mildew and the risk of frost damage. Structural damage can no longer be ruled out.
  • Capillary-active internal insulation does not use a vapor barrier.
  • the above-described disadvantages occur in such internal insulation regularly not or only attenuated, depending on the quality of the inner insulation.
  • homogeneous open-pore mineral plates are used for capillary-active internal insulation. These include calcium silicate boards such as the commercially available product Calsitherm, mineral insulating materials which contain perlite as a filler, for example the product Tectem, and the aerated concrete Multipor. In this context, also on the DE 197 23 426 C1 and the DE 10 2010 005 361 A1 directed.
  • the essential common feature of these insulation boards is that the homogeneous material must simultaneously fulfill the two functions of thermal insulation and capillary conductivity, thus it is inevitably only a compromise dar.
  • These plates generally have a density of about 120 to 300 kg / m 3 at a Thermal conductivity (dry) from approx. 0.045 to 0.065 W / mK.
  • capillary-active interior insulation slabs of blown cork as in the DE 10 2007 025303 A1 described, used, which have been filled through the entire plate cavities under vacuum with modified clay. While the first material is responsible for the thermal insulation (cork), the other material (clay) is used for capillary conductivity.
  • the bulk density of the filled cork plate is 120 to 150 kg / m 3 with a thermal conductivity (dry) between 0.04 to 0.06 W / mK.
  • EP 2 447 431 A2 serves a plate of expanded polystyrene whose individual prefoamed balls are still largely round and have adopted little of the usual polyhedra in polystyrene plates, as responsible for the thermal insulation component.
  • This plate is traversed by continuous and partially connected cavities, which, similar to in DE 10 2007 025 303 A1 were filled under vacuum with a lime / cement-based composition as a capillary-conductive material.
  • An essential feature of the above-described embodiment of insulation boards is that in Basically, two individual anisotropic scaffolds, one in charge of thermal insulation and one for capillary conductivity, are placed one inside the other. As a result, there is no preferred direction for either the heat or the capillary.
  • insulation boards such as EP 86 681 B1 can be seen, also have a checkerboard-like arranged Dämmplattenabête, which are connected via capillary-active cuboid webs.
  • Insulating boards with cuboidal capillary conductive webs are also found in the DE 10 2010 044 791 A1 and DE 10 2010 044 789 A1 disclosed.
  • the webs are made of calcium silicate, the insulation boards are vacuum insulation panels and aluminum-foamed rigid polyurethane foam.
  • Insulating materials as in the DE 197 23 426 C1 and DE 10 2010 005 361 A1 disclosed, are relatively heavy and have significantly poorer insulation properties in the dry state than the usual insulation for the outer insulation (such as EPS, PU or PF). Due to their high density and the required due to the only moderate thermal insulation higher plate thickness for a comparable energy savings and resource consumption in the above-mentioned insulation materials is high. In addition, these insulating materials are generally hardly mechanically loadable, which is reflected in the often small plate dimensions that must be applied in practice. It is not uncommon in the creation of a insulated inner wall to breakouts and breaks, especially on plate corners, which are then often filled with mortar, but which has no heat-insulating properties, thus representing a thermal bridge. Due to the manufacturing process, cracks and bubbles can not be ruled out over a large area. In these areas, the capillary is interrupted.
  • Insulating materials as in the WO 92/10624 generally do not use small amounts of capillary conductive material. This gives away valuable space for the heat-insulating component. Also, the production of these insulation materials is often not trivial. In addition, the mechanical complexity is high. Due to the required vacuum, the systems can fill only small sized blocks with the capillary active material.
  • the DE 102 46 587 A1 refers to a stiffened mineral wool plate with dimensions: height from 10mm to 200mm (z-direction), width from 625mm to 2000mm (x-direction) and length from 1000mm to infinitely long (y-direction).
  • the stiffened plate is cut into strips (y / z or x / z plane).
  • Glue gypsum, cement mortar, plastic, resin or bituminous glue
  • the present invention was therefore based on the object to provide insulation materials that overcome the disadvantages of the prior art and in particular allow a building interior insulation, which is structurally easy to implement and at the same time minimizes the risk of thermal bridges or completely excludes, and although without relying on a vapor barrier. It is a further object of the present invention to provide internal insulation which is inexpensive and which minimizes or eliminates the problem of condensation and / or the problem of mold growth. Furthermore, the invention was based on the object to provide insulating materials or insulating materials available, which are characterized by a good bending strength.
  • the invention was based on the object to make insulating materials or plates available that do not form marks.
  • the object of the invention was further, site-specific, fast to be laid large slab dimensions to enable and provide site-specific stability.
  • the object of the invention was also to provide an easily grindable surface to allow the removal of bumps after sticking the insulation boards on the inside of the outer wall comfortably.
  • the thermal insulation composite has a first side and an opposite second side and comprises at least two Dämmmaterialiseren each having a length, height and width extension and with an edge profile or surface at least partially along the length and width extent, these adjacent Dämmmaterialiseren along adjoining edge courses are glued to at least one binder-containing adhesive composition, which from this Composition formed adhesive layer in the cured state is capillary active and extends at least in sections from the first page to the second page.
  • the curing after a period of, preferably a maximum, three days at 20 ° C and a relative humidity of 90%, or preferably also above it, regularly advanced so far that the capillary conductive properties have already set and that preferably the mechanical strength is sufficient for further processing. In general, such curing has often occurred after 24 hours.
  • the terms capillary-conducting and capillary-active are always used synonymously here.
  • the capillary-active adhesive layers may preferably have a thickness of, for example, 0.2 mm to 3 mm and particularly preferably 0.3 mm to 1.2 mm.
  • thermal insulation composite On the first and / or the second side of the thermal insulation composite according to the invention, in particular thermal insulation panels, take the adhesive layers in the sum in a particularly preferred embodiment, only about 0.1 to 5%, preferably 0.5 to 3% and particularly preferably 1.0 to 1.5%, the total area of the respective side surface. In this way it can be ensured that the original insulating material, ie the foam product, loses only a few milliwatts per meter and Kelvin of insulation performance.
  • a further advantage of the thermal insulation composite according to the invention is also to be seen in the fact that it is possible in one embodiment that the volume of kapillarleitschreiber adhesive layer, based on the total volume of the thermal insulation composite is not more than 1 vol .-%.
  • the effect of the invention sets.
  • the thermal conductivity of the actual material is not or hardly appreciably affected by the adhesive layer. It is of advantage that the narrow capillary active adhesive layers do not serve as thermal bridges and that Moreover, in the use phase, these adhesive layers not on the surface, for example in the form of a darkening sign off, and not even if only a very thin plaster is used.
  • At least two adjacent, in particular all, insulating material units are formed from or comprise foam products.
  • foam products are preferred. Suitable foam products may be selected from the group consisting of foam glass, expanded styrene polymers, especially expanded polystyrene, expanded polypropylene, elastomeric foam, polyisocyanurate foam, polyethylene foam, phenolic foam, rigid polyurethane foam, urea-formaldehyde resin foam, hydrophobicized silica, hydrophobized aerogels, extruded styrenic polymers, especially extruded polystyrene foam, expanded Cork or any mixtures thereof.
  • heat insulation composites according to the invention to those variants in which at least two, in particular adjacent Dämmmaterialiseren, in particular all Dämmmaterialiseren, expanded styrene polymers, in particular expanded polystyrene, rigid polyurethane foam and / or phenolic resin foam comprise or consist thereof.
  • the heat insulation composite preferably have a cuboid, e.g. plate-shaped, or a cube-shaped basic shape.
  • thermal insulation composites are plate-shaped and accordingly constitute a thermal insulation board, in particular comprising a first and an opposite second side.
  • binder-containing adhesive compositions which contain as binders, in particular exclusively, mineral binders. Particularly good results are obtained even if the binder-containing adhesive composition contains no fillers. In such an embodiment, the capillary-conductive action exhibited by the adhesive layer formed from the adhesive composition in the cured state is particularly pronounced.
  • Suitable mineral binders include or consist in particular of hydrate and / or hydraulic binders and are preferably selected from the group consisting of cement, lime, gypsum, high alumina cement, water glass or any mixtures thereof.
  • the adhesive layers according to the invention are characterized in the cured state in that they are wettable with water, in particular a substantially complete wettability with water is present.
  • Particularly suitable cured capillary-active adhesive layers and / or the mineral binders used for this purpose preferably have a contact angle (also called contact angle or wetting angle) with water in the range of 0 ° to less than 90 °, more preferably of 0 ° or nearly 0 °. Accordingly, in one embodiment, these materials have capillary activity, as known, for example, from the calcium silicate plates known in the art.
  • Suitable materials which may also be added to the adhesive composition include, for example, activated alumina, clay minerals such as bentonites and atapulgites, zeolites, superabsorbents, rheology aids or any mixtures of these components.
  • the binder-containing adhesive composition hygroscopic salts are added in order to increase the kapillarêtden effect.
  • a homogenization of the water transportability is in particular also by combining two or more different kapillarleitfounde materials as part of the adhesive composition together.
  • such an embodiment is of particular advantage, in which the capillary-active material with the coarser pores to the outer wall and the capillary-active material with the finer pores to the interior are present within the adhesive layer of the thermal insulation composite according to the invention.
  • the two embodiments outlined above can also be combined.
  • a suitable useable capillary-conductive binder-containing adhesive preferably has a bulk density in the range of from 0.1 to 2.0 kg / l, and more preferably from 0.5 to 1.5 kg / l.
  • the binder-containing adhesive composition advantageously contains the, preferably hydraulic and / or hydrate, binders and water in a ratio that achieves the dry densities described above.
  • the adhesive composition forms coherent pores, preferably with a diameter of 100 nm and below.
  • inventive thermal insulation composites have proved to be particularly advantageous in which the adhesive layer in the cured state capillaries having an average diameter less than or equal to 100 nm, in particular less than or equal to 80 nm, and more preferably less than or equal to 50 nm.
  • the binder-containing adhesive composition contains at least one fibrous material, in particular plastic fibers, natural fibers, mineral fibers, e.g. Basalt ceramic and / or glass fibers, or any mixtures thereof.
  • fibrous material in particular plastic fibers, natural fibers, mineral fibers, e.g. Basalt ceramic and / or glass fibers, or any mixtures thereof.
  • fibers additionally or alternatively also hollow fibers and / or nanotubes come into consideration. The latter have the advantage that they can also participate in capillary transport.
  • fiber mats or fabrics integrated into the adhesive layer incorporated or placed.
  • the application of adhesive compositions can, for example, also take place successively.
  • the fibers have a length in the range of 2 to 40 mm, in particular in the range of 4 to 20 mm, and particularly preferably in the range of 8 to 15 mm. It is particularly preferred that the average length of the fibers at a maximum of 16 mm, in particular at a maximum of 12 mm and more preferably at a maximum of 8 mm.
  • a reinforcement, elasticization and / or reduction of the shrinkage of the adhesive layers can be achieved.
  • fibers can also be sprinkled or inflated onto the freshly applied adhesive layer.
  • thermal insulation composites are particularly suitable in which the adhesive layer in the cured state has a maximum thickness of 2.0 mm, in particular 1.5 mm and particularly preferably 1.0 mm.
  • the binder-containing adhesive composition provides a capillary-conductive (adhesive) layer and, on the other hand, it ensures the bonding of the insulation material units to one another.
  • the average width of the Dämmmaterialiseren and / or the edge profiles in the range of 10 mm to 200 mm, in particular range from 20 mm to 160 mm and preferably range from 40 mm to 140 mm.
  • thermo insulation composite according to the invention solve the problems underlying the invention in a particularly satisfactory manner, in which the first side, in particular in the area extending from the first side to the second side adhesive layer, at least in sections, in particular completely, with at least one capillary provided first coating material, which is at least partially capillary active connected with at least one adhesive layer.
  • thermoplastic material in which, alternatively or additionally, the second side, in particular in the region of the adhesive layer extending from the first side to the second side, at least in sections, in particular completely, provided with at least one capillary-active second coating material, which is at least partially capillary-actively connected to at least one adhesive layer.
  • first and the second coating material are substantially identical, in particular with regard to composition and / or thickness of the application of these coating materials.
  • the first and / or the second coating material comprise or are formed from the binder-containing adhesive composition.
  • such a design variant of a thermal insulation composite according to the invention is advantageous in which the first side is provided substantially over the whole area with the first coating material and / or the second side is provided substantially over the entire area with the second coating material.
  • the first and / or second coating is only a few tenths of a millimeter thick.
  • the supply and discharge of possibly accumulating water to the capillary-active adhesive strip can be significantly improved.
  • the first coating material has a smaller thickness spaced apart from the adhesive layer than in the region, in particular in the direction of the extension, the adhesive layer and / or the second coating material spaced from the adhesive layer has a smaller thickness than in the area, in particular in the direction of the extension, the adhesive layer.
  • the first coating material or the first coating application which is provided for the coating of the first side, ie the moist or condensation side of the thermal insulation composite, but may not with the second coating material or the second coating order, for the coating of the second Side, ie the dry side or the interior facing side of the thermal insulation composite is provided, match.
  • First as well as second coating material or coating application can also be formed from a plurality of different, each capillary-active components or include these. It is also possible to carry out the first and / or second coating material or the first and / or second coating application in two or more layers, wherein the respective layers are formed from or comprise different capillary active materials.
  • a particularly expedient thermal insulation composite according to the invention is also characterized in that at least two adjacent adhesive layers, in particular all adhesive layers, extend at least in sections substantially parallel to one another.
  • the adhesive layers can be aligned in an advantageous manner so that they extend substantially horizontally after attachment to the building wall.
  • An advantage of this substantially horizontal arrangement of, in particular adjacent, adhesive layers is that, e.g. to a selective moisture attack behind the insulation board, the liquid flows down because of gravity and in this case meets a capillary conductive adhesive layer. Moisture can not spread nationwide in this arrangement.
  • the adhesive layers can also be made with non-uniform thickness.
  • heat insulation composites according to the invention are also advantageous, in particular also with regard to an increased capillary activity, in which the thickness of the adhesive layer is directed from the first side to the second side, ie. toward the interior side, in particular continuously, increases.
  • the thermal insulation composite according to the invention preferably represents a thermal insulation panel, in particular an internal thermal insulation panel, preferably with a polygonal basic shape, in particular selected from square, rectangular, triangular basic shapes.
  • the at least one adhesive layer, in particular all adhesive layers, of the thermal insulation composite according to the invention extend along the, in particular entire, longitudinal extent thereof.
  • thermal insulation composite area in particular thermal insulation panel area comprising at least two, in particular a plurality of inventive thermal insulation joints, in particular thermal insulation panels, each having a first and an opposite second side and an at least partially circumferential, connecting the first and the second side edge surface with a length and width extension, wherein adjacent fauxdämmverbünde, in particular thermal insulation panels, at least in sections along their edge surfaces, in particular flush, are adjacent.
  • thermal insulation composite area and / or thermal insulation panel area comprising at least two, in particular a plurality of, thermal insulation panels and / or, in particular inventive, thermal insulation composites each having a first and an opposite second side and an at least partially circumferential , the first and the second side connecting edge surface with a length and width extent, wherein adjacent thermal insulation composites or plates at least partially along their edge surfaces with at least one binder-containing adhesive composition, in particular flush, are glued together, wherein the adhesive layer formed from this composition in the cured State is capillary active and at least partially extends from the first page to the second page.
  • the thermal insulation boards or composites represent a foam product, in particular containing or formed from foam glass, expanded styrene polymers, in particular expanded polystyrene, expanded polypropylene, elastomer foam, Polyisocyanuratschaum, polyethylene foam, phenolic resin foam, rigid polyurethane foam, urea-formaldehyde resin foam, hydrophobized silica, hydrophobized aerogels, extruded styrenic polymers, in particular extruded polystyrene foam, expanded cork or any mixtures thereof.
  • expanded styrene polymers in particular expanded polystyrene, expanded polypropylene, elastomer foam, Polyisocyanuratschaum, polyethylene foam, phenolic resin foam, rigid polyurethane foam, urea-formaldehyde resin foam, hydrophobized silica, hydrophobized aerogels, extruded styrenic polymers, in particular extrude
  • At least one inventive thermal insulation composite preferably in the form of a thermal insulation board, is present.
  • Particular preference is given exclusively or almost exclusively to thermal insulation composites according to the invention, in particular in the form of thermal insulation panels.
  • thermal insulation panels have a polygonal basic shape, in particular selected from square, rectangular and triangular basic shapes.
  • the thermal insulation composites or thermal insulation panels according to the invention and the thermal insulation composite areas according to the invention are suitably used for the thermal insulation of buildings, in particular on the inside of the outer walls of buildings.
  • the separation, in particular the cutting, of the sandwich block in step h) or h ') is done in such a way that i) the glued together base plates are separated transversely to the orientation of the front and back sides or ii ) the glued together base plates in each case in the direction of the Vorderzur back, or vice versa, isolated.
  • Suitable embodiments of the method according to the invention are also distinguished by providing the front side of the thermal insulation composite, at least in sections, in particular in the region of the adhesive layer extending from the front side to the back side, in particular completely, with at least one capillary-active first coating material which is at least partially capillary-actively connected with at least one, in particular a plurality of adhesive layers.
  • the back of the thermal insulation composite is provided with at least one capillary-active second coating material, in particular in the area of the adhesive layer extending from the front side to the rear side.
  • the at least partially capillary active is connected to at least one, in particular a plurality of adhesive layers.
  • first and the second coating material are substantially identical, in particular with regard to the composition and / or thickness of the application of these coating materials.
  • the binder-containing adhesive composition and / or the first coating material and / or the second coating material are applied by brushing, rolling, knife coating, spraying, pouring and / or spraying. In this way, it is possible to reliably and repeatably regularly apply a very thin adhesive layer or a very thin, nevertheless functional first or second coating.
  • a preferred embodiment of the method according to the invention is also distinguished by the fact that at least one, in particular a plurality of non-immediately adjacent, preferably substantially every next but one, obtained by separation from the ingot base plates, preferably while maintaining in their sequence of each neighboring base plates, after the separation and before the bonding of the, in particular adjacent, base plates about the axis of the longitudinal extent and / or about the axis of the width extension and / or about the axis of the height extent, preferably about the axis of the longitudinal extent, by 180 °.
  • the object underlying the invention is also achieved by the thermal insulation composite obtained according to this process variant, in particular thermal insulation panels.
  • An advantage of the method according to the invention also arises in particular when the separation takes place by means of hot wire cutting.
  • the resulting surfaces are sealed and do not absorb water. These are just those surfaces that later surround the capillary-conductive adhesive layers. After coating with the water-applied, in particular hydraulic, binder-containing adhesive composition, this mass does not lose any water to the surrounding material and can harden in the desired manner. Thus, neither the strength nor the pore content of the capillary-conductive material are adversely affected, as would be the case in the case of absorbent surfaces.
  • the invention also encompasses the use of the thermal insulation composites according to the invention, in particular thermal insulation panels, the thermal insulation composite areas according to the invention, in particular the thermal insulation panel areas, for the thermal insulation of buildings, in particular of exterior walls, particularly preferably on the inside of these exterior walls.
  • a polystyrene particulate foam block is wrapped with strips of oscillating hot wires, e.g. with the dimensions (1000 mm) x (20 to 150 mm) x (insulation thickness) cut. Subsequently, these strips are glued together again with the capillary-active binder-containing adhesive composition.
  • the capillary-active adhesive layers may preferably have a thickness of e.g. 0.2 mm to 3 mm and more preferably from 0.3 mm to 1.2 mm. In this way you can, for example, again, at least approximately, the usual Baustellenparty conference an insulation board of 500 mm x 1000 mm x Dämmdicke receive.
  • the stripe width, i. the width of the edge profile is according to the invention preferably 20 mm to 150 mm and more preferably 50 mm to 100 mm.
  • the insulation board may be coated on one or both sides with a capillary-conductive material, preferably with the material of the binder-containing adhesive composition.
  • the adhesive layer can also be designed with non-uniform thickness. Rather, it is advantageous if their thickness increases toward the interior side.
  • a homogenization of the water transportability is in particular also by combining two or more different mineral binder or kapillarleitpointe materials as part of the adhesive composition together.
  • cement and gypsum may be present simultaneously, optionally supplemented by lime and / or high-alumina cement.
  • such an embodiment is of particular advantage, in which the capillary-active material or the cured adhesive layer with the coarser pores to the outer wall and the capillary active material or the cured adhesive layer with the finer pores to the interior inside at least one adhesive layer of the thermal insulation composite according to the invention.
  • the two embodiments outlined above can also be combined.
  • the cross-section of the adhesive layer preferably removed, for example 5 mm, starting from the interior-side plate surface, remain on the plate surface so narrow remaining adhesive strip that the problem of capturing temperature differences occurs completely in the background. In this Area near the plate surface, the transported water can already partially evaporate through the insulation board.
  • thermal insulation composites in particular thermal insulation panels, according to the invention, one can stabilize the profile of the adhesive layers by special shapes. In this way, the bending strength can be increased by a factor of 1.5 to 2, for example.
  • a process according to the invention can proceed as follows: An expanded polystyrene foam block with a volume of several cubic meters is singulated in the hot-wire process.
  • the one-sided coating with the liquid binder-containing adhesive composition by knife coating, brushing, rolling, spraying, knife coating and / or spraying.
  • the adhesive composition contains fibers. Additionally or alternatively, fibers can also be sprinkled or inflated onto the freshly applied adhesive layer. In this procedure, it is advantageous that there are no procedural restrictions with respect to fiber length and / or fiber quantity. As a result, unusually high fiber concentrations are possible. The longer the fibers are, the more the shrinkage which can occur during the curing of the adhesive composition can be suppressed.
  • the fibers can have coarse capillarity and thus round off the pore structure of the capillary-conductive adhesive layer to the top.
  • fibers are hollow fibers and / or nanotubes and / or natural fibers such as cellulose fibers or cotton, or optionally also wood particles, which may also participate in capillary transport. If different capillary-conductive materials are to be used, the order can be carried out, for example, successively.
  • the single-sided coated panels are then rejoined into a block.
  • the size of this block may differ from the original shape of the foamed block, allowing for low-bleed choice of various board dimensions.
  • a trimming cut eg by hot wire or band saw, can follow. This is followed by the cutting of the desired plate thicknesses and optionally a final trimming and singulation of the plates. These Depending on the model, they can then be coated on one or both sides or be packaged without coating.
  • the coating material for the first and / or second side or the binder-containing adhesive composition for the adhesive layers is preferably selected so that it can be applied without heat or drying to e.g. hardened a Hordewagen. This allows the coated plates to be packed immediately.
  • This result is almost independent of the thickness or average thickness of the adhesive layers.
  • the average thickness of these adhesive layers can vary in the range of, for example, 0.25 mm to 1.0 mm, without a temperature difference greater than 1 ° C is obtained.
  • Computer simulations have confirmed that with an average thickness of the adhesive layer of 0.25 mm and a width or depth of the thermal insulation composite of 30 mm, a temperature difference of 0.3 ° C between the surface temperature of the adhesive layer and the surface temperature in the Center of the surface of a Dämmmaterialiser results.
  • results for in the DE 10 21 00 44 791 A1 and DE 10 20 10 44 789 A1 disclosed thermal insulation panels, where always a wide cylinder of capillary active material of, for example, 20 mm is used, a temperature difference between the temperature at the surface of this capillary active material and the temperature of the insulating material of more than 2 ° C determined.
  • a section of such a thermal insulation composite according to the invention with the dimensions 200 ⁇ 200 ⁇ 60 mm, which has two substantially parallel adhesive layers with an average thickness of not more than 1 mm immersed in a vessel with water at an immersion depth of about 5 mm.
  • the front and the back of the thermal insulation composite with the capillary active Material of the adhesive layer is coated with a thickness not exceeding 1 mm on average.
  • the edges of the plate as well as the vessel itself were, in the areas where no thermal insulation board was present, sealed or covered. In this way, water could evaporate only via capillary over the thermal insulation composite panel.
  • the experimental setup was in a climatic room at a controlled temperature of 23 ° C and a controlled humidity of 50%. Furthermore, there was an air movement of approx. 0.1 m / s in the climatic room.
  • the vessel containing water and the thermal insulation board were on a scale.
  • Corresponding experiments were carried out with a commercial calcium silicate board and with an insulating panel made of cellular concrete.
  • thermal insulation composite according to the invention meets the requirements of a building interior insulation satisfy.
  • the heat energy stored in the insulating material units can be used to evaporate the water passing through the adhesive layer on the side facing the interior of a building, in particular if a surface of the thermal insulation composite facing this side capillary-active coating is present.
  • FIG. 1 schematically shows the structure of a building exterior wall 2, which has on its inner side 4 a heat-bonding area 6 according to the invention.
  • the thermal insulation composite area 6 is formed from a plurality of flush to each other over their edge surfaces (in their length and width extent) mounted thermal insulation composites 8 in the form of thermal insulation boards, which are glued to the inside of the building exterior wall 2 with an adhesive 9.
  • the thermal insulation composites 8 have in each case been produced from a multiplicity of essentially cuboid insulating material units 10, which are connected to one another via adjacent, in the present case in each case parallel, capillary-active cured adhesive layers 12.
  • the composite thermal insulation area 6 can, as in FIG. 1 shown to be covered on the inside with a conventional plaster layer 11.
  • adjacent thermal insulation composites 8 may also be glued over their edge surfaces with the binder-containing adhesive composition.
  • FIG. 2 schematically shows an alternative embodiment of a thermal insulation composite 8 according to the invention in the form of a thermal insulation panel formed from a total of 5 Dämmmaterialiseren 10, in substantially parallelepiped shape, which via their adjacent edge courses (in length (L) and width (B)) by means of the cured adhesive layer 12 together are connected.
  • the insulation material units have a length (L), width (B) and height extension (H).
  • the adhesive layer 12 is not performed in a constant thickness, but the thickness increases towards the interior side towards when the thermal insulation composite 8 is used as internal insulation. In this way, the water transportability of the inside of the outer wall of the building to the interior can be made uniform.
  • FIG. 3 shows a schematic representation of a thermal insulation composite according to the invention 8, formed from five substantially cuboid Dämmmaterialiseren 10, which are connected to each other via their mutually facing edge courses (in length (L) and width (B)) by means of a capillary conductive cured adhesive layer 12.
  • the thermal insulation composite according to FIG. 3 are the capillary active pores of the adhesive layer 12, when the thermal insulation composite is used as internal insulation, to the inside of the building exterior wall facing side on average larger than the pores of the cured adhesive layer in the interior of the side facing the thermal insulation composite. In this way, a homogenization of water transportability through the thermal insulation panel can be achieved.
  • FIG. 4 Such an embodiment is shown schematically, which the above-mentioned specific features of the adhesive layer 12 according to FIGS. 2 and 3 combined.
  • FIG. 5 one takes an embodiment of a thermal insulation composite 8 according to the invention, in which the adhesive layer 12, when the thermal insulation composite is used as internal insulation, in the direction of the interior, ie in the vicinity of the interior facing side of the thermal insulation composite 8 tapers.
  • this taper may begin in the range of five to ten millimeters from the said side.
  • one arrives at a very narrow adhesive layer strip which then remains on the interior of the facing side of the thermal insulation composite 8. This makes it possible to reduce the risk of signing due to temperature differences between the adhesive layer and Dämmmaterialtechniken 10 again. Such temperature-related markings are then no longer to be feared even after prolonged use.
  • the embodiment according to FIG. 6 is essentially the same as the FIG. 5 with the difference that, similar to the embodiment according to FIG. 3 in that the adhesive layer 12 has coarser pores on the side facing the exterior wall of the building than on the side facing the interior.
  • FIG. 7 schematically shows an embodiment of a method according to the invention for the production of thermal insulation joints according to the invention.
  • a polystyrene particle foam block 14 is cut, for example, with height (H) and width (B) oscillating hot wires in strips 16 having dimensions (1,000 mm x 20 to 150 mm) x (insulation thickness), for example (step b )).
  • the base plates 16 are applied on one side with a binder-containing adhesive composition 12, for example by means of coating (step c)) and glued together again (step d)).
  • the reassembled ingot or sandwich block for example by cutting by means of hot wire, isolated along the length (L) and width extension (B) of this ingot (step f)).
  • the thermal insulation composites formed in this step and formed from over-hardened adhesive layers 12/18 Dämmmaterialiseren formed eg can be used as such (8/20) or in smaller sized thermal insulation composites (8) are split (indicated in step g)). Either at this stage of the process or after the subdivision into smaller thermal insulation composites (8), their first or front and / or second or rear side can be provided with a capillary-active coating material (step h)).
  • FIG. 8 shows a preferred embodiment of the method according to the invention for the production of thermal insulation joints according to the invention.
  • the ingot 14 is separated from, for example, polystyrene by means of, for example, hot wires in length (L) and width (B) to form a plurality of adjacent base plates 16 (see b)).
  • these plates 16 are coated on one side with a binder-containing adhesive composition 12/18 (step c)) and glued together again to form a sandwich block (step d)).
  • This can optionally be a one- or two-sided trimming cut to produce smooth edge surfaces (step e)).
  • step f This consisting of glued single plates 16 sandwich or ingot is preferably, as shown in step f), separated from that side in height (H) and width (B) in separate thermal insulation composites 8/20, in the ingot in the respective adhesive layers 12/18 lead.
  • step g individual thermal insulation composites 8/20
  • step h The front and / or back coating of these thermal insulation composites can be made on the process step g) and / or h).
  • FIG. 9 shows a section of a further development of the method according to the invention.
  • at the process stage according to step b), as in FIG. 8 shown at least one, in particular several, not immediately adjacent and preferably each after next (xx) isolated base plate 16 before bonding with the binder-containing adhesive composition with the adjacent base plate in particular by 180 ° with respect to the longitudinal axis of expansion LA and / or about the width extension axis BA and / or about the height extension axis HA is rotated by 180 °.
  • At least one, in particular a plurality, in each case not immediately adjacent, and particularly preferably each after next (xx) base plate is rotated by 180 ° about the longitudinal extension axis LA prior to bonding to the, in particular adjacent, base plate.
  • internal stresses that occur in the sandwich or ingot can be canceled, so that the ultimately resulting thermal insulation composite is relatively stress-free and even with prolonged storage shows no delay.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Claims (23)

  1. Composite d'isolation thermique (8) en forme de plaque pour l'isolation intérieure, présentant une première face et une deuxième face opposée, comprenant au moins deux unités en matériau isolant (10) ayant chacune une longueur, une hauteur et une largeur et avec une extension ou une surface de bordure située au moins en partie le long de la longueur et de la largeur, des unités en matériau isolant (10) adjacentes étant collées le long desdites extensions de bordure adjacentes avec au moins une composition adhésive (12) contenant un liant, appliquée en particulier au pinceau, au rouleau, à la racle, par coulée et/ou par vaporisation, la couche d'adhésif formée par cette composition étant capillairement active en état durci et s'étendant au moins en partie de la première face à la deuxième face, caractérisé en ce qu'au moins deux, en particulier toutes les unités en matériau isolant (10) adjacentes sont constituées de produits en mousse synthétique ou contiennent ceux-ci.
  2. Composite d'isolation thermique (8) selon la revendication 1, caractérisé en ce que lesdites au moins deux unités en matériau isolant (10) forment des unités en matériau isolant (10) parallélépipédiques ou cubiques.
  3. Composite d'isolation thermique (8) selon la revendication 2, caractérisé en ce que les produits en mousse synthétique sont sélectionnés dans le groupe composé de verre cellulaire, de polymères styréniques expansés, en particulier de polystyrène expansé, de mousse élastomère, de mousse de polyisocyanurate, de mousse de polyéthylène, de mousse de résine phénolique, de mousse de polyuréthane rigide, de mousse de résine urée-formaldéhyde, d'acide silicique hydrophobé, d'aérogels hydrophobés, de polymères styréniques extrudés, en particulier de mousse de polystyrène extrudé, de liège expansé ou d'un mélange quelconque de ces composants.
  4. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que la composition adhésive (12) contenant un liant et ne contenant en particulier aucun agent de charge, contient en tant que liant, en particulier un liant exclusivement minéral, en particulier un liant hydraté et/ou hydraulique, sélectionné en particulier dans le groupe composé de ciment, chaux, plâtre, ciment alumineux fondu, verre soluble ou des mélanges quelconques de ceux-ci.
  5. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que la composition adhésive (12) contenant un liant contient au moins un matériau fibreux, en particulier des fibres synthétiques, des fibres naturelles, des fibres minérales telles que fibres de basalte, de céramique et/ou de verre, ou des mélanges quelconques de celles-ci, préférentiellement avec une longueur de fibre moyenne de 16 mm au maximum, en particulier de 12 mm au maximum et préférentiellement de 8 mm au maximum.
  6. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que la couche d'adhésif (12) contient en état durci des capillaires de diamètre moyen inférieur ou égal à 100 nm, en particulier inférieur ou égal à 80 nm et préférentiellement inférieur ou égal à 50 nm.
  7. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que la couche d'adhésif (12) en état durci présente une épaisseur moyenne de 1,0 mm au maximum, en particulier de 0,7 mm au maximum et préférentiellement de 0,5 mm au maximum, et/ou en ce que la couche d'adhésif (12) en état durci présente une épaisseur maximale de 2,0 mm, en particulier de 1,5 mm et préférentiellement de 1,0 mm, et/ou en ce que la largeur moyenne des unités en matériau isolant (10) et/ou des extensions de bordure le long de de la longueur et en largeur est comprise entre 10 mm et 200 min, en particulier entre 20 mm et 160 mm et préférentiellement entre 40 mm et 140 mm.
  8. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce qu'au moins deux unités en matériau isolant (10), en particulier adjacentes, en particulier toutes les unités en matériau isolant (10) comprennent des polymères styréniques expansés, en particulier du polystyrène expansé ou sont formées par ceux-ci.
  9. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que la première face, en particulier au niveau de la couche d'adhésif (12) s'étendant de la première face à la deuxième face, est dotée au moins en partie, en particulier totalement, d'au moins un premier matériau de revêtement capillairement actif, lequel est lié de manière capillairement active, au moins en partie, à au moins une couche d'adhésif (12), et/ou en ce que la deuxième face, en particulier au niveau de la couche d'adhésif (12) s'étendant de la première face à la deuxième face, est dotée au moins en partie, en particulier totalement, d'au moins un deuxième matériau de revêtement capillairement actif, lequel est lié de manière capillairement active, au moins en partie, à au moins une couche d'adhésif (12).
  10. Composite d'isolation thermique (8) selon la revendication 9, caractérisé en ce que le premier et le deuxième matériau de revêtement correspondent sensiblement, en particulier quant à la composition et/ou à l'épaisseur de l'application desdits matériaux de revêtement, et/ou en ce que le premier et/ou le deuxième matériau de revêtement comprennent la composition adhésive (12) contenant un liant ou sont formés par celle-ci.
  11. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que au moins deux couches d'adhésif (12) contiguës, en particulier toutes les couches d'adhésif (12), s'étendant sensiblement parallèlement entre elles, au moins en partie.
  12. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que celui-ci constitue une plaque d'isolation thermique, en particulier une plaque d'isolation thermique intérieure, ayant préférentiellement une forme de base polygonale, sélectionnée en particulier entre des formes de base carrées, rectangulaires, triangulaires.
  13. Composite d'isolation thermique (8) selon l'une des revendications précédentes, caractérisé en ce que ladite au moins une couche d'adhésif (12), en particulier toutes les couches d'adhésif (12), s'étendent sur la longueur, en particulier sur toute la longueur de celui-ci.
  14. Surface de composites d'isolation thermique (6), en particulier surface de plaques d'isolation thermique, comprenant au moins deux, en particulier une pluralité de composites d'isolation thermique (8) selon l'une des revendications 1 à 13, présentant chacun une première et une deuxième face opposée et une extension ou une surface de bordure au moins partiellement périphérique, reliant la première et la deuxième face avec une longueur et une largeur, les composites d'isolation thermique (8) adjacents étant au moins en partie adjacents, en particulier affleurants le long de leurs extensions ou surfaces de bordure.
  15. Surface de composites d'isolation thermique (6) ou surface de plaques d'isolation thermique, comprenant au moins deux, en particulier une pluralité de composites d'isolation thermique (8) selon l'une des revendications 1 à 13, présentant chacun une première et une deuxième face opposée et une extension ou une surface de bordure au moins partiellement périphérique, reliant la première et la deuxième face avec une longueur et une largeur, les composites d'isolation thermique (8) adjacents étant au moins en partie collés l'un à l'autre, en particulier de manière affleurante le long de leurs surfaces de bordure avec au moins une composition adhésive (12) contenant un liant, la couche d'adhésif (12) formée par cette composition étant capillairement active en état durci et s'étendant au moins partiellement de la première face à la deuxième face.
  16. Surface de composites d'isolation thermique (6) ou surface de plaques d'isolation thermique selon la revendication 14 ou la revendication 15, caractérisé en ce que le produit en mousse synthétique des composites d'isolation thermique (8) contient ou est constitué de verre cellulaire, de polymères styréniques expansés, en particulier de polystyrène expansé, de mousse élastomère, de mousse de polyisocyanurate, de mousse de polyéthylène, de mousse de résine phénolique, de mousse de polyuréthane rigide, de mousse de résine urée-formaldéhyde, d'acide silicique hydrophobé, d'aérogels hydrophobés, de polymères styréniques extrudés, en particulier de mousse de polystyrène extrudé, de liège expansé ou d'un mélange quelconque.
  17. Procédé de fabrication d'au moins un composite d'isolation thermique (8) selon l'une des revendications 1 à 13, comprenant les étapes suivantes :
    1) préparation d'au moins deux unités en matériau isolant (10) ayant chacune une longueur, une hauteur et une largeur et avec une extension ou une surface de bordure située au moins en partie le long de la longueur et de la largeur,
    2) préparation d'au moins une composition adhésive (12) contenant un liant, en particulier un liant hydraté et/ou hydraulique, capillairement active en état durci,
    3) application de la composition adhésive (12) contenant un liant et le cas échéant d'au moins un matériau fibreux sur l'extension ou la surface de bordure d'une première unité en matériau isolant (10),
    4) le cas échéant, application de la composition adhésive (12) contenant un liant et, le cas échéant, d'au moins un matériau fibreux sur l'extension ou la surface de bordure d'une deuxième unité en matériau isolant (10),
    5) assemblage de l'extension de bordure de la première unité en matériau isolant (10) comprenant la composition adhésive (12) contenant un liant à l'extension de bordure de la deuxième unité en matériau isolant (10), comprenant elle aussi une composition adhésive (12) contenant un liant, le cas échéant,
    6) durcissement de la composition adhésive (12) contenant un liant comprise entre les unités en matériau isolant (10) assemblées, formant ainsi une couche d'adhésif (12),
    7) le cas échéant, répétition des étapes 3) à 6) avec une troisième, ou une autre unité en matériau isolant (10),
    formant ainsi un composite d'isolation thermique (8) avec une face avant et une face arrière opposée, ladite au moins une couche d'adhésif (12) capillairement active s'étendant en partie de la face avant à la face arrière.
  18. Procédé de fabrication d'au moins un composite d'isolation thermique (8) selon l'une des revendications 1 à 13, comprenant les étapes suivantes, en particulier dans cet ordre :
    a) préparation d'un bloc brut (14) à partir d'au moins un produit en mousse synthétique ayant une longueur, une hauteur et une largeur, en particulier avec une section transversale polygonale, préférentiellement rectangulaire, carrée ou triangulaire,
    b) préparation d'au moins une composition adhésive (12) contenant un liant, en particulier un liant hydraté et/ou hydraulique, capillairement active en état durci,
    c) tronçonnage, en particulier découpe, du bloc brut (14) en longueur et en largueur en au moins deux, en particulier en une pluralité de plaques de base (16), en particulier de dimensions sensiblement unitaires, avec une face avant et une face arrière,
    d) application de la composition adhésive (12) et le cas échéant d'au moins un matériau fibreux sur la face arrière d'une première plaque de base (16),
    e) collage de ladite face arrière avec la face avant d'une deuxième plaque de base (16), en particulier de la plaque de base adjacente lors du tronçonnage, présentant également une composition adhésive (12) contenant un liant le cas échéant et/ou au moins un matériau fibreux le cas échéant,
    f) collage de la face arrière de la deuxième plaque de base (16), comprenant la composition adhésive (12) contenant un liant, avec la face avant d'une troisième plaque de base (16), en particulier de la plaque de base adjacente lors du tronçonnage, comprenant une composition adhésive (12) contenant un liant le cas échéant,
    g) le cas échéant, répétition des étapes e) et f), en particulier à plusieurs reprises, avec d'autres plaques de base (16), en particulier adjacentes lors du tronçonnage, les étapes c), d), e), f) et le cas échéant g) permettant d'obtenir un bloc sandwich ayant une longueur, une hauteur et une largeur correspondant de préférence sensiblement à celles du bloc brut (14),
    h) tronçonnage, en particulier découpe, du bloc sandwich en hauteur et en largueur en au moins deux, en particulier en une pluralité de composites d'isolation thermique (8), en particulier de plaques composites d'isolation thermique, en particulier de dimensions sensiblement unitaires, avec une face avant et une face arrière ;
    ou
    comprenant les étapes suivantes, en particulier dans cet ordre :
    a') préparation d'un bloc brut (14) à partir d'au moins un produit en mousse synthétique ayant une longueur, une hauteur et une largeur, en particulier avec une section transversale polygonale, préférentiellement rectangulaire, carrée ou triangulaire,
    b') préparation d'au moins une composition adhésive (12) contenant un liant, en particulier un liant hydraté et/ou hydraulique, capillairement active en état durci,
    c') tronçonnage, en particulier découpe, du bloc brut (14) en hauteur et en largueur en au moins deux, en particulier en une pluralité de plaques de base (16), en particulier de dimensions sensiblement unitaires, avec une face avant et une face arrière,
    d') application de la composition adhésive (12) et le cas échéant d'au moins un matériau fibreux sur la face arrière d'une première plaque de base (16),
    e') collage de ladite face arrière avec la face avant d'une deuxième plaque de base (16), en particulier de la plaque de base adjacente lors du tronçonnage, présentant également une composition adhésive (12) contenant un liant le cas échéant et/ou au moins un matériau fibreux le cas échéant,
    f') collage de la face arrière de la deuxième plaque de base (16), comprenant la composition adhésive (12) contenant un liant, avec la face avant d'une troisième plaque de base (16), en particulier de la plaque de base adjacente lors du tronçonnage, comprenant une composition adhésive (12) contenant un liant le cas échéant,
    g') le cas échéant, répétition des étapes e') et f), en particulier à plusieurs reprises, avec d'autres plaques de base (16), en particulier adjacentes lors du tronçonnage, les étapes c'), d'), e'), f) et le cas échéant g') permettant d'obtenir un bloc sandwich ayant une longueur, une hauteur et une largeur correspondant de préférence sensiblement à celles du bloc brut (14),
    h') tronçonnage, en particulier découpe, du bloc sandwich en longueur et en largueur en au moins deux, en particulier en une pluralité de composites d'isolation thermique (8), en particulier de plaques composites d'isolation thermique, en particulier de dimensions sensiblement unitaires, avec une face avant et une face arrière.
  19. Procédé selon la revendication 18, caractérisé en ce que le tronçonnage, en particulier la découpe, du bloc sandwich lors de l'étape h) ou h') est exécuté de manière que i) les plaques de base (16) collées l'une à l'autre soient tronçonnées transversalement à l'alignement de la face avant et de la face arrière, ou que ii) les plaques de base (16) collées l'une à l'autre soient tronçonnées chacune dans la direction de la face avant vers la face arrière, ou inversement.
  20. Procédé selon l'une des revendications 17 à 19, caractérisé en ce que la face avant du composite d'isolation thermique (8), en particulier au niveau de la couche d'adhésif (12) s'étendant de la face avant à la face arrière, est dotée au moins en partie, en particulier totalement, d'au moins un premier matériau de revêtement capillairement actif, lequel est lié de manière capillairement active, au moins en partie, à au moins une, en particulier à une pluralité de couches d'adhésif (12), et/ou en ce que la face arrière du composite d'isolation thermique (8), en particulier au niveau de la couche d'adhésif (12) s'étendant de la face avant à la face arrière, est dotée au moins en partie, en particulier totalement, d'au moins un deuxième matériau de revêtement capillairement actif, lequel est lié de manière capillairement active, au moins en partie, à au moins une, en particulier à une pluralité de couches d'adhésif (12).
  21. Procédé selon l'une des revendications 17 à 20, caractérisé en ce que la composition adhésive (12) contenant un liant et/ou le premier matériau de revêtement et/ou le deuxième matériau de revêtement sont appliqués au pinceau, au rouleau, à la racle, par coulée et/ou par vaporisation.
  22. Procédé selon l'une des revendications 18 à 21, caractérisé en ce qu'au moins une, en particulier une pluralité de plaques de base (16) obtenues par tronçonnage du bloc brut (14), non immédiatement adjacentes, de préférence essentiellement en sautant une plaque de base immédiatement adjacente, sont pivotées de 180° autour de l'axe de la longueur et/ou autour de l'axe de la largueur et/ou autour de l'axe de la hauteur, préférentiellement autour de l'axe de la longueur, préférentiellement en conservant la suite des plaques de base (16) adjacentes, après tronçonnage et avant collage des plaques de base (16) en particulier adjacentes.
  23. Utilisation des composites d'isolation thermique (8) (en forme de plaques) selon l'une des revendications 1 à 13 ou de la surface de composites d'isolation thermique (6), en particulier de la surface de plaques d'isolation thermique selon l'une des revendications 14 à 16, pour l'isolation thermique d'immeubles, en particulier de parois extérieures (2), préférentiellement contre la face intérieure (4) desdites parois extérieures (2).
EP13000724.8A 2013-02-12 2013-02-12 Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments Not-in-force EP2765251B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13000724.8A EP2765251B1 (fr) 2013-02-12 2013-02-12 Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13000724.8A EP2765251B1 (fr) 2013-02-12 2013-02-12 Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments

Publications (2)

Publication Number Publication Date
EP2765251A1 EP2765251A1 (fr) 2014-08-13
EP2765251B1 true EP2765251B1 (fr) 2016-12-28

Family

ID=47720269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13000724.8A Not-in-force EP2765251B1 (fr) 2013-02-12 2013-02-12 Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments

Country Status (1)

Country Link
EP (1) EP2765251B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3031992B1 (fr) * 2014-12-10 2018-02-14 Daw Se Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales
EP3045600A1 (fr) * 2015-01-16 2016-07-20 Evonik Degussa GmbH Corps d'isolation thermique comprenant des éléments tensioactifs
DE102022120866A1 (de) 2022-08-18 2024-02-29 Remmers Gmbh Verfahren zur Herstellung eines Wandaufbaus mit einer innenseitigen Dämmung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044709A1 (fr) * 2012-09-22 2014-03-27 Evonik Industries Ag Structure murale pour systèmes d'isolation intérieure comportant des plaques d'isolation thermique avec des écarts de joints variables

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8004361U1 (de) * 1980-02-19 1980-07-17 Rosenberg, Heinrich, 8534 Wilhermsdorf Montageplatte fuer bauwerke
FR2520406A1 (fr) 1982-01-22 1983-07-29 Gachot Jean Revetement thermiquement isolant applique sur les murs de batiments et son procede d'utilisation
WO1992010624A1 (fr) 1990-12-12 1992-06-25 Kenitex S.A. Procede pour fixer une piece sur une surface et application de ce procede pour augmenter le coefficient d'isolation thermique global d'un mur de batiment
DE59700038D1 (de) 1996-07-04 1999-01-07 Hebel Ag Verfahren zur Herstellung einer leichten, offenporigen, mineralischen Dämmplatte
AU2897997A (en) 1997-05-14 1998-12-08 Basf Aktiengesellschaft Expandable styrene polymers containing graphite particles
DE10246587A1 (de) * 2002-10-05 2004-04-15 Viktor Mosebach Versteifte Platte aus Mineralwolle
DE20307608U1 (de) 2003-01-20 2003-08-28 Murjahn Amphibolin Werke Dämmender geschäumter Werkstoff
DE20319109U1 (de) * 2003-12-10 2005-05-12 Knauf Marmorit Gmbh Dämmung für eine Gebäudewand
DE102007025303B4 (de) 2007-05-30 2014-06-26 Haacke Treuhand Gmbh Bauelement für die Innendämmung von Gebäuden und Verfahren zu seiner Herstellung
DE102007040938B4 (de) 2007-08-30 2023-09-21 Remmers Baustofftechnik Gmbh Wandaufbau und Wärmedämmplatte
DE102010005361A1 (de) 2010-01-21 2011-07-28 Veit Dennert KG Baustoffbetriebe, 96132 Mineralischer Formkörper, Verwendung und Verfahren zur Herstellung des mineralischen Formkörpers
DE102010010748B4 (de) * 2010-03-09 2012-12-27 Xella Technologie- Und Forschungsgesellschaft Mbh Außenwandsystem eines Gebäudes
DE102010044789A1 (de) 2010-09-09 2012-03-15 Calsitherm Verwaltungs Gmbh Wärmedämmplatte mit eingelagerten hochwärmedämmenden bemantelten Platten sowie Bausatz dafür
DE102010044791A1 (de) 2010-09-09 2012-03-15 Calsitherm Verwaltungs Gmbh Wärmedämmplatte mit eingelagerten Wärmedämmelementen geringerer Wärmeleitfähigkeit sowie Bausatz dafür
CH704044A1 (de) 2010-11-02 2012-05-15 Swisspor Man Ag Dämmmaterial.
DE102011050830A1 (de) 2011-06-03 2012-12-06 Kirsch Gmbh Innendämmung für Gebäudewände

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044709A1 (fr) * 2012-09-22 2014-03-27 Evonik Industries Ag Structure murale pour systèmes d'isolation intérieure comportant des plaques d'isolation thermique avec des écarts de joints variables

Also Published As

Publication number Publication date
EP2765251A1 (fr) 2014-08-13

Similar Documents

Publication Publication Date Title
DE60035215T2 (de) Wandplatte mit gasbeton enthaltendem kern
EP3083522B1 (fr) Mélange sec de matériau de construction et enduit d'isolation thermique obtenu à partir de ce mélange
DE102013007800B4 (de) Trockenmörtelplatte sowie Verfahren und Verwendung einer Vorrichtung zu deren Herstellung
EP2860319A1 (fr) Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales
DE102007025303B4 (de) Bauelement für die Innendämmung von Gebäuden und Verfahren zu seiner Herstellung
EP2281964A1 (fr) Élement moulé de paroi, de plancher ou de plafond et son procédé de fabrication
WO2012034724A1 (fr) Matériau de construction et élément d'un système de construction et procédé pour les fabriquer
EP2395171B2 (fr) Panneau de construction ainsi que procédé et dispositif de fabrication d'un panneau de construction
CH708688A2 (de) Stabile Formkörper oder Platten als Leichtbaumaterial, zur Wärmedämmung und zur Verwendung als Brandschutz, das Verfahren zur ihrer Herstellung, ihre Verwendung, und ein damit ausgerüstetes Bauwerk.
EP2765251B1 (fr) Composite d'isolation thermique en forme de plaque, et zones de composite d'isolation thermique, en particulier zones de plaque d'isolation thermique, comprenant des composites d'isolation thermique en forme de plaques, procédé de fabrication de composites d'isolation thermique et utilisation de composites d'isolation thermique pour l'isolation thermique de bâtiments
DE102012020841A1 (de) Mineralschaum und Verfahren zur Herstellung desselben
EP2257506B1 (fr) Procédé de fabrication d'un élément de construction en forme de plaque ou de profilé et élément de construction en forme de plaque ou de profilé
EP3109217A1 (fr) Moulures stabiles ou de plaques d'isolation thermique et de protection contre les incendies, le processus pour leur fabrication et leur utilisation ainsi qu'une construction de telles
EP2681171B1 (fr) Plaque multicouche minérale et son procédé de production
EP3031992B1 (fr) Composé d'isolation thermique et zone composite d'isolation thermique ainsi que structure murale comprenant le composé d'isolation thermique ou la zone composite d'isolation thermique et procédé de fabrication de structures murales
WO2013102676A1 (fr) Panneau mural en argile à structure alvéolaire et procédé pour le produire
EP3156383B1 (fr) Procédé de fabrication d'une mousse inorganique
EP0843655A1 (fr) Procede de durcissement rapide de beton leger
DE19743883A1 (de) Verfahren zur Herstellung industriell vorgefertigter Wandelemente und danach hergestelltes Wandelement
EP2386697A2 (fr) Panneaux d'isolation thermique, systèmes d'isolation thermique comprenant ces panneaux d'isolation thermique et procédé de fabrication de tels panneaux d'isolation thermique
DE102005003801A1 (de) Dämmstoffelement und Wärmedämmverbundsystem
DE871506C (de) Nach Art eines Holzfachwerks aufgebaute Fachwerkwand aus Fertigteilen
DE102012024884A1 (de) Bauplatte sowie Verfahren und Vorrichtung zur Herstellung der Bauplatte
AT507897B1 (de) Mauerwerksbaustein und verfahren zur herstellung eines wandaufbaus
EP4019706A1 (fr) Plaque isolante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20150119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 857430

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005865

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170328

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

26N No opposition filed

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170212

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170328

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180219

Year of fee payment: 6

Ref country code: FR

Payment date: 20180223

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013005865

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 857430

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525