EP3000817B1 - Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition - Google Patents

Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition Download PDF

Info

Publication number
EP3000817B1
EP3000817B1 EP13888412.7A EP13888412A EP3000817B1 EP 3000817 B1 EP3000817 B1 EP 3000817B1 EP 13888412 A EP13888412 A EP 13888412A EP 3000817 B1 EP3000817 B1 EP 3000817B1
Authority
EP
European Patent Office
Prior art keywords
carbon number
radical
chemical formula
halogen
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13888412.7A
Other languages
German (de)
English (en)
Other versions
EP3000817A4 (fr
EP3000817A1 (fr
Inventor
Young Shil DO
Choong Hoon Lee
Seung Hwan Jung
Don Ho Kum
Sang Eun Park
Hae Woong Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of EP3000817A1 publication Critical patent/EP3000817A1/fr
Publication of EP3000817A4 publication Critical patent/EP3000817A4/fr
Application granted granted Critical
Publication of EP3000817B1 publication Critical patent/EP3000817B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/03Multinuclear procatalyst, i.e. containing two or more metals, being different or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to a catalyst composition, and a method for preparing the same, and a method for preparing polyolefin using the same. More specifically, the present invention relates to a catalyst composition comprising a dinuclear metallocene compound with a novel structure, which can prepare polyolefin with high molecular weight, a method for preparing the same, and a method for preparing polyolefin using the same.
  • a metallocene catalyst is a single-site catalyst having one kind of an active site, and it has advantages in that the molecular weight distribution of the produced polymer is narrow, and that the molecular weight, stereoregularity, crystallinity, particularly reactivity of comonomers may be greatly controlled according to the structure of the catalyst and the ligand.
  • polyolefin polymerized using a metallocene catalyst has narrow molecular weight distribution, and if applied for some products, productivity is remarkably decreased due to extrusion load and the like, rendering site application difficult, and thus, there have been many attempts to control the molecular weight distribution of polyolefin
  • US 5,032,562 describes a method of preparing a polymerization catalyst by supporting two different transition metal catalysts on one carrier. This is a method of producing bimodal distribution polymer by supporting a titanium (Ti)-based Ziegler Natta catalyst producing high molecular weight and a zirconium (Zr)-based metallocene catalyst producing low molecular weight on one carrier, however, it has disadvantages in that the supporting process is complicated, and the morphology of polymer becomes worse due to a cocatalyst.
  • Korean Patent Application No. 2003-12308 discloses a method of controlling molecular weight distribution by supporting a dinuclear metallocene catalyst and a mononuclear metallocene catalyst on a carrier together with an activator and polymerizing while changing the combination of catalysts in the reactor.
  • this method has a limitation in simultaneously realizing the properties of each catalyst, and has a disadvantage in that a metallocene catalyst part is dissociated in the carrier component of the final catalyst, thus causing fouling of a reactor.
  • a catalyst composition comprising a novel dinuclear metallocene compound, which can prepare polyolefin having high molecular weight with high activity.
  • One aspect of the invention provides a catalyst composition comprising a dinuclear metallocene compound represented by the following Chemical Formula 1; and at least one cocatalyst compound selected from the group consisting of a compound represented by the following Chemical Formula 2, a compound represented by the following Chemical Formula 3, and a compound represented by the following Chemical Formula 4: in the Chemical Formula 1,
  • the present invention also provides a method for preparing a catalyst composition comprising the steps of contacting a dinuclear metallocene compound represented by the Chemical Formula 1 with a compound represented by the Chemical Formula 2 and/or a compound represented by the Chemical Formula 3 to obtain a mixture; and adding a compound represented by the Chemical Formula 4 to the mixture.
  • the present invention also provides a method for preparing poyolefin, comprising the step of polymerizing at least one kind of olefin monomers, in the presence of the catalyst composition.
  • the dinuclear metallocene compound included in the catalyst composition according to the present invention is a dinuclear metallocene compound with a novel structure, and, unlike a single-site catalyst, has high accessibility to a substrate, and thus, can provide a multi-site catalyst with high activity.
  • polyolefin having high molecular weight can be produced.
  • each constructional element is formed “on” or “above” each construction element, it means that each constructional element is formed directly on each constructional element, or that other constructional elements may be additionally formed between the layers or on the object or substrate.
  • the catalyst composition of the present invention comprises a dinuclear metallocene compound represented by the following Chemical Formula 1. in the Chemical Formula 1,
  • R1 to R7 are independently hydrogen, an alkyl group having a carbon number of 1 to 20, or an aryl group having a carbon number of 6 to 20, or two or more adjacent radicals of R1 to R7 may be linked each other to form one or more aliphatic ring, or aromatic ring, but the present invention is not limited thereto.
  • CY may be a pentagonal or hexagonal aliphatic or aromatic ring containing nitrogen, unsubstituted or substituted with an alkyl group having a carbon number of 1 to 20, but the present invention is not limited thereto.
  • M may be titanium (Ti), zirconium (Zr), or hafnium (Hf), and X1 may be halogen or an alkyl group having a carbon number of 1 to 20, but the present invention is not limited thereto.
  • Examples of the dinuclear metallocene compound represented by the Chemical Formula 1 include the following compounds, but are not limited thereto.
  • the dinuclear metallocene compound represented by the Chemical Formula 1 may be synthesized, for example, by mixing a metallocene compound with a diol compound, as shown in the following Equation, and then, stirring for a certain time, but is not limited thereto.
  • the dinuclear metallocene compound represented by the Chemical Formula 1 includes a structure wherein two single metallocene compounds respectively bridged with a phenylene group having a cyclic amido group introduced therein are crosslinked by alkylenedioxy (-O-(CH 2 )-(CH 2 )n-(CH 2 )-O-).
  • two metal centers are connected by a diether chain functioning as a linker, to reduce unnecessary interactions between the metals, thus affording stable catalytic activity and easiness of structural deformation, and unlike a single-site catalyst, the compound has high accessibility to a substrate and thus exhibits high activity.
  • the dinuclear metallocene compound as a catalyst for polymerization or copolymerization of polyolefin, polyolefin having high molecular weight and wide molecular weight distribution can be produced with high activity.
  • various substituents may be introduced into the cyclopentadienyl and the cyclic amido ring such as quinoline or indoline, which ultimately enables easy controlling of electronic, steric environment around the metals. Namely, by using the compound with the above structure, the structure and the properties and the like of prepared olefin polymer may be easily controlled.
  • the dinuclear metallocene compound represented by the Chemical Formula 1 may be used to prepare polyolefin polymer, and particularly, it may produce polyolefin having high molecular weight with high activity.
  • the catalyst composition according to the present invention may further comprise at least one cocatalyst compound selected from the group consisting of a compound represented by the following Chemical Formula 2, a compound represented by the following Chemical Formula 3, and a compound represented by the following Chemical Formula 4, in addition to the dinuclear metallocene compound of the Chemical Formula 1.
  • [Chemical Formula 2] -[Al(R 8 )-O]c- in the Chemical Formula 2 R 8 is a halogen radical, a hydrocarbyl radical having a carbon number of 1 to 20, or a hydrocarbyl radical having a carbon number of 1 to 20 substituted with halogen, and c is an integer equal to or greater than 2
  • [Chemical Formula3] D(R 9 ) 3 in the Chemical Formula 3 D is aluminum or boron
  • R 9 is hydrocarbyl having a carbon number of 1 to 20 or hydrocarbyl having a carbon number of 1 to 20 substituted with halogen
  • L is neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 atom
  • A's may be identical to or different from each other, and are independently halogen having a hydrogen valence of 1 or
  • Examples of the compound represented by the Chemical Formula 2 may include methylaluminoxane (MAO), ethylaluminoxane, isobutylaluminoxane, butylaluminoxane, and the like.
  • MAO methylaluminoxane
  • ethylaluminoxane ethylaluminoxane
  • isobutylaluminoxane butylaluminoxane
  • Examples of the alkyl metal compound represented by the Chemical Formula 3 may include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, dimethylisobutylaluminum, dimethylethylaluminum, diethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tricyclopentylaluminum, tripentylaluminum, triisopentylaluminum, trihexylaluminum, ethyldimethylaluminum, methyldiethylaluminum, triphenylaluminum, tri-p-tollylaluminum, dimethylaluminum methoxide, dimethylaluminum ethoxide, trimethylboron, triethylrobon, triisobutylboron, tripropylboron,
  • Examples of the compound represented by the Chemical Formula 4 may include triethylammoniumtetraphenylboron, tributylammoniumtetraphenylboron, trimethylammoniumtetraphenylboron, tripropylammoniumtetraphenylboron, trimethylammoniumtetra(p-tollyl)boron, tripropylammoniumtetra(p-tollyl)boron, triethylammoniumtetra(o,p-dimethylphenyl)boron, trimethylammoniumtetra(o,p-dimethylphenyl)boron, tributylammoniumtetra(p-trifluoromethylphenyl)boron, trimethylammoniumtetra(p-trifluoromethylphenyl)boron, tributylammoniumtetrapentafluorophenylboron, N,N-diethylaniliniumtetraphenylboron,
  • the present invention also provides a method for preparing the catalyst composition.
  • the following methods may be used.
  • the method comprises the steps of contacting a dinuclear metallocene compound of the Chemical Formula 1 with a compound of the Chemical Formula 2 and/or a compound of the Chemical Formula 3 to obtain a mixture; and adding a compound of the Chemical Formula 4 to the mixture.
  • the method comprises the step of contacting a dinuclear metallocene compound of the Chemical Formula 1 with a compound of the Chemical Formula 2 to prepare a catalyst composition.
  • the method comprises the step of contacting a dinuclear metallocene compound of the Chemical Formula 1 with a compound of the Chemical Formula 4 to prepare a catalyst composition.
  • the mole ratio of the dinuclear metallocene compound of the Chemical Formula 1 to the metal included in the compound of the Chemical Formula 2 and/or the compound of the Chemical Formula 3 may be preferably 1:2 to 1:5,000, more preferably, 1:5 to 1:1,000, most preferably 1:10 to 1:500.
  • the mole ratio of the dinuclear metallocene compound of the Chemical Formula 1 to the metal included in the compound of the Chemical Formula 4 may be preferably 1:1 to 1:25, more preferably 1:1 to 1:10.
  • the amount of the compound of the Chemical Formula 2 and the compound of the Chemical Formula 3 per 1 mole of the dinuclear metallocene compound of the Chemical Formula 1 is less than 2 moles, the amount of alkylating agent may be too small and thus alkylation of the metal compound may not be completely progressed. And, if the amount of the compound of the Chemical Formula 2 and the compound of the Chemical Formula 3 per 1 mole of the dinuclear metallocene compound of the Chemical Formula 1 is greater than 5,000 moles, although alkylation of the metal compound is achieved, activation of the alkylated metal compound may not be completed achieved due to side reactions between the excessive amount of remaining alkylating agent and the activator of the Chemical Formula 4.
  • the amount of the activator may be relatively small, and thus, activation of the metal compound may not be completely achieved to decrease activity of the produced catalyst composition, and if the amount of the compound of the Chemical Formula 4 per 1 mole of the dinuclear metallocene compound of the Chemical Formula 1 is greater than 25 moles, although activation of the metal compound is completely achieved, due to excessive amount of remaining activator, unit cost of the catalyst composition may not be economical or purity of the produced polymer may decrease.
  • the mole ratio of the dinuclear metallocene compound of the Chemical Formula 1 to the compound of the Chemical Formula 2 is preferably 1:10 to 1:10,000, more preferably 1:100 to 1:5,000, and most preferably 1:500 to 1:2,000.
  • the amount of the compound of the Chemical Formula 2 per 1 mole of the dinucelar metallocene compound of the Chemical Formula 1 is less than 10 moles, the amount of the activator may be relatively small, and thus, activation of the metal compound may not be completely achieved to decrease activity of the catalyst composition, and if the amount of the compound of the Chemical Formula 2 per 1 mole of the dinucelar metallocene compound of the Chemical Formula 1 is greater than 10,000 moles, due to the excessive amount of remaining activator, unit cost of the catalyst composition may not be economical or purity of the produced polymer may decrease.
  • the mole ratio of the dinuclear metallocene compound of the Chemical Formula 1 to the compound of the Chemical Formula 4 is preferably 1:1 to 1:25, more preferably 1:1 to 1:10, and most preferably 1:2 to 1:5.
  • hydrocarbon based solvents such as pentane, hexane, heptane and the like, or aromatic solvents such as benzene, toluene and the like may be used, but not limited thereto, and all the solvents used in the technical field may be used.
  • the dinuclear metallocene compounds of the Chemical Formula 1 and the cocatalysts may be supported in silica or alumina.
  • the present invention also provides a method for preparing polyolefin using the catalyst composition.
  • the method for preparing polyolefin according to the present invention comprises the step of polymerizing at least one kind of olefin monomers, in the presence of the catalyst composition.
  • the preparation method of polyolefin may be conducted by contacting the catalyst composition with monomers. According to the preparation method of polyolefin of the present invention, olefin homopolymer or olefin copolymer may be provided.
  • most preferable polymerization process using the catalyst composition is a solution process. If the catalyst composition is used together with an inorganic support such as silica, it can be applied for a slurry or gas phase process.
  • the catalyst composition may be dissolved or diluted in a C5-C12 aliphatic hydrocarbon solvent, for example, pentane, hexane, heptane, nonane, decane and isomers thereof, an aromatic hydrocarbon solvent such as toluene and benzene, or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene, and the like, which are suitable for olefin polymerization, and be injected.
  • a C5-C12 aliphatic hydrocarbon solvent for example, pentane, hexane, heptane, nonane, decane and isomers thereof, an aromatic hydrocarbon solvent such as toluene and benzene, or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene, and the like, which are suitable for olefin polymerization, and be injected.
  • the solvent is be treated with a
  • olefin monomers that can be polymerized using the dinuclear metallocene compound and the cocatalyst may include ethylene, alpha-olefin, cyclic olefin and the like, and diene olefin monomers or triene olefin monomers and the like, which have two or more double bonds may also be polymerized.
  • Specific exampels of the monomers may include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-eicosens, norbornene, norbornadiene, ethylnorbornene, phenylnorbornene, vinylnorbornene, dicylcopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-hexadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, and the like, and two or more kinds thereof may be mixed and copolymerized.
  • the olefin polymer is a copolymer of ethylene and other comonomers
  • the comonomer constituting the copolymer may be preferably at least one selected from the group consisting of propylene, 1-butene, 1-hexene and 4-methyl-1-pentene, and 1-octene.
  • monomers having large steric hindrance such as ethylene and 1-octene may also be copolymerized using the catalyst composition, wherein by using a dinuclear metallocene compound, electronic and steric environment around a metal may be easily controlled, and ultimately, the structure and the properties and the like of the produced polyolefin may be controlled.
  • a reactor used in the preparation method of polyolefin according to the present invention may be preferably a continuously stirred tank reactor (CSTR) or a continuous flow reactor (PFR). It is preferable that two or more of the reactors are arranged in series or in a row. And, it is preferable that the preparation method further comprises a separator for continuously separating solvents and non-reacted monomers from a reaction mixture.
  • CSTR continuously stirred tank reactor
  • PFR continuous flow reactor
  • the preparation method of polyolefin according to the present invention is conducted by a continuous solution polymerization process, it may consist of a catalytic process, a polymerization process, a solvent separation process and a recovery process, which will be explained below in detail.
  • the catalyst composition according to the present invention may be dissolved or diluted in a C5-C12 aliphatic or aromatic solvent unsubstituted or substituted with halogen, which is suitable for olefin polymerization, and be injected.
  • a C5-C12 aliphatic or aromatic solvent unsubstituted or substituted with halogen, which is suitable for olefin polymerization
  • an aliphatic hydrocarbon solvent such as pentane, hexane, heptane, nonane, decane, and isomers thereof
  • an aromatic hydrocarbon solvent such as toluene, xylene and benzene
  • a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene, and the like may be used.
  • the solvent is treated with a small amount of alkylaluminum and the like, thereby removing a small amount of water or air and the like, which acts as a catalyst poison, and an excessive amount of a cocatalyst may be used.
  • a polymerization process is progressed by introducing a catalyst composition comprising a dinuclear metallocene compound of the Chemical Formula 1 and a cocatalyst and at least one kind of olefin monomers in a reactor.
  • a catalyst composition comprising a dinuclear metallocene compound of the Chemical Formula 1 and a cocatalyst and at least one kind of olefin monomers in a reactor.
  • a solvent is introduced in the reactor.
  • solution polymerization a mixed solution of a solvent, a catalyst composition and monomers exist inside a reactor.
  • the mole ratio of monomers to solvent should be suitable for dissolving raw material before the reaction and polymer produced after the reaction.
  • the mole ratio of monomers to solvent may be 10:1 to 1:10,000, preferably 5:1 to 1:100, most preferably 1:1 to 1:20. If the mole ratio is less than 10:1, the amount of solvents may be too small, and thus, viscosity of fluid may increase to cause problems in terms of polymer transfer, and if the mole ratio is greater than 1:10,000, the amount of the solvent may be more than is necessary, thus increasing facilities and energy cost and the like due to purification and recycle of the solvent.
  • the solvent is introduced into the reactor at a temperature of -40°C to 150°C using a heater or a refrigerator, and thereby, a polymerization reaction begins with the monomers and the catalyst composition. If the temperature of the solvent is less than -40°C, although differs according to the reaction amount, in general, the temperature of the solvent is too low, and thus, reaction temperature may drop together, rendering it difficult to control the temperature, and if it is greater than 150°C, the temperature of the solvent is too high, thus rendering it difficult to remove reaction heat.
  • a feed mixture may be passed without additional pumping between the reactor arrangement, a pressure dropping device and a separator.
  • the internal temperature of the reactor i.e., polymerization temperature suitable for the present invention is -15°C to 300°C, preferably 50°C to 200°C, most preferably 50°C to 150°C. If the internal temperature is less than -15°C, productivity may decrease due to low reaction speed, and if it is greater than 300°C, due to side reactions, discoloration problem such as polymer carbonization and generation of impurities may be caused.
  • the internal pressure of the reactor suitable for the present invention is 1 bar to 300 bar, preferably 30 to 200 bar, most preferably 30 to 50 bar. If the internal pressure is less than 1bar, productivity may decrease due to low reaction speed, and the solvent may be vaporized, and if it is greater than 300 bar, the cost of equipment such as device cost due to high pressure may increase.
  • the polymer produced in the reactor is maintained in the solvent at a concentration less than 20wt%, and after a short residence time, is transferred to a first solvent separation process for solvent removal.
  • the residence time of the produced polymer in the reactor may be 1 minute to 10 hours, preferably 3 minutes to 1 hour, most preferably 5 minutes to 30 minutes. If the residence time is less than 3 minutes, due to the short residence time, productivity may decrease and catalyst may be lost, thus increasing preparation cost, and if it is greater than 1 hour, due to reaction for more than optimum active period of a catalyst, a reactor may become large, thus increasing the cost of equipment.
  • a solvent separation process is conducted. For example, the temperature of a polymer solution transferred from a reactor is raised to about 200°C to about 230°C through a heater, and then, the pressure is dropped while passing through a pressure dropping device, and non-reacted raw material and the solvent are vaporized in a first separator.
  • the pressure inside the separator may be 1 to 30 bar, preferably 1 to 10 bar, most preferably 3 to 8 bar.
  • the temperature inside the separator may be 150°C to 250°C, preferably 170°C to 230°C, most preferably 180°C to 230°C.
  • the pressure inside the separator is less than 1 bar, polymer content may increase, thus causing a problem in terms of transfer, and if it is greater than 30 bar, it may be difficult to separate the solvent used in the polymerization process.
  • the temperature inside the separator is less than 150°C, the viscosity of copolymer and a mixture thereof may increase, thus causing a problem in terms of transfer, and if it is greater than 250°C, degeneration may occur due to the high temperature, thus causing carbonization and the resulting discoloration of polymer.
  • the solvent vaporized in the separator may be recycled to a condensed reactor in overhead system.
  • a polymer solution concentrated to 65% may be obtained, which is transferred to a second separator by a transfer pump through a heater, and a separation process for the remaining solvent is conducted in a second separator.
  • a heat stabilizer is introduced, and simultaneously, in order to inhibit the reaction of polymer due to the remaining activity of activated substance existing in the polymer solution, a reaction inhibitor is introduced into the heater together with the heat stabilizer.
  • the remaining solvent in the polymer solution introduced into the second separator is finally removed completely by a vacuum pump, and after passing through a coolant and a cutter, granulated polymer may be obtained.
  • the solvent vaporized in the second separation process and other non-reacted monomers may be sent to a recovery process, and purified and reused.
  • the organic solvent introduced together with raw material in the polymerization process may be recycled to the polymerization process together with non-reacted raw material in the first solvent separation process.
  • the solvent recovered in the second solvent separation process is purified in a recovery process and reused, because the incorporation of a reaction inhibitor may cause pollution and moisture acting as a catalyst poison may be contained in the solvent in a large quantity due to steam supply in a vacuum pump.
  • the polyolefin prepared by the preparation method of the present invention may have melt index(I 2 ) of about 0.1 to about 2.5 g/10min, preferably about 0.1 to about 2 g/10min. And, the melting point(Tm) of the polyolefin may be about 20 to about 60°C, preferably about 40 to about 50°C.
  • a compound of the above structural formula was prepared according to the method described in Example 7 of US 20070025158A1 .
  • ethylene pressure 35 bar
  • a catalyst composition was injected into the reactor using high pressure argon gas to progress copolymerization for 10 minutes.
  • the remaining ethylene gas was taken out and the polymer solution was added to an excessive amount of ethanol to induce precipitation.
  • the precipitated polymer was washed with ethanol and acetone each two or three times, and dried in a 80°C vacuum oven for more than 12 hours, and then, the properties were measured.
  • ethylene (0.84 kg/h) was introduced into the autoclave reactor, and the same temperature was maintained for more than 30 minutes and then copolymerization was progressed for 8 minutes in a continuous process to obtain copolymer.
  • the remaining ethylene gas was taken out, and the polymer solution was dried in a 80°C vacuum oven for more than 12 hours, and then, the properties were measured.
  • ethylene (0.83 kg/h) was introduced into the autoclave reactor, and the same temperature was maintained for more than 30 minutes and then copolymerization was progressed for 8 hours in a continuous process to obtain copolymer.
  • the remaining ethylene gas was taken out, and the polymer solution was dried in a 80°C vacuum oven for more than 12 hours, and then, the properties were measured.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 1, except that 0.5 ⁇ mol of the compound of Preparation Example 2 was introduced instead of the compound of Preparation Example 1 in Example 1.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 2, except that the compound of Preparation Example 2 (0.5 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 2.
  • Ethylene-1-butene copolymer was prepared by the same method as Experimental Example 3, except that the compound of Preparation Example 2 (0.5 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 3.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 1, except that 0.5 ⁇ mol of the compound of Preparation Example 3 was introduced instead of the compound of Preparation Example 1 in Example 1.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 2, except that the compound of Preparation Example 3 (0.5 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 2.
  • Ethylene-1-butene copolymer was prepared by the same method as Example 3, except that the compound of Preparation Example 3 (0.5 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 3.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 1, except that 1.0 ⁇ mol of the compound of Comparative Preparation Example 1 was introduced instead of the compound of Preparation Example 1 in Example 1.
  • Ethylene-1-octene copolymer was prepared by the same method as Example 2, except that the compound of Comparative Preparation Example 1 (1.0 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 2.
  • Ethylene-1-butene copolymer was prepared by the same method as Example 3, except that the compound of Comparative Preparation Example 1 (1.0 ⁇ mol/min) was introduced instead of the compound of Preparation Example 1 in Example 3.
  • Example 1 Comparative Example 1 Catalyst compound Preparation Example 1 Comparative Preparation Example 1 Reaction temperature(unit: °C) 120 120 Catalyst compound(unit: ⁇ mol) 0.5 1.0 Al(cocatalyst):Ti(catalyst compound) mole ratio 10 10 1-octene introduction amount (unit: mmol) 6.4 6.4 Activity (unit: kgPOE/mmol hr) 76 75 Melt index I 2 (unit: g/10min) 1.12 2.56 Melt index I 10 (unit: g/10min) 11.2 29.9
  • Example 2 Comparative Example 2 Catalyst compound Preparation Example 1 Comparative Preparation Example 1 Reaction temperature(unit: °C) 150 150 Catalyst compound(unit: ⁇ mol/min) 0.5 1.0 Al(cocatalyst):Ti(catalyst compound) mole ratio 50 50 1-octene introduction amount (unit: mmol) 760 760 Yield (unit: g/h) 1024.2 966.0 Activity (unit: kgPE/mmol Ti hr) 48.8 32.2 Melt index I 2 (unit: g/10min) 4.21 3.34 Density (unit: g/ml) 0.869 0.868 Tm (unit: °C) 50.7 51.5
  • the dinuclear metallocene compound of the present invention has a structure wherein single metallocene compounds are connected by a diether chain, unnecessary interactions between the metals may be minimized to afford stable catalytic activity, and thus, it has high activity and can prepare polyolefin having high molecular weight compared to mononuclear metallocene catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Claims (9)

  1. Composition de catalyseur comprenant :
    un composé métallocène dinucléaire représenté par la formule chimique 1 suivante ; et
    au moins un composé co-catalyseur choisi dans le groupe consistant en un composé représenté par la formule chimique 2 suivante, un composé représenté par la formule chimique 3 suivante et un composé représenté par la formule chimique 4 suivante :
    Figure imgb0019
    dans la formule chimique 1,
    R1 à R4 peuvent être identiques ou différents les uns des autres, et sont indépendamment de l'hydrogène ; un radical halogène ; un radical alkyle ayant un nombre de carbones de 1 à 20 ; un radical alcényle ayant un nombre de carbones de 2 à 20 ; un radical silyle ; un radical aryle ayant un nombre de carbones de 6 à 20; un radical alkylaryle ayant un nombre de carbones de 7 à 20; ou un radical arylalkyle ayant un nombre de carbones de 7 à 20 ; et deux radicaux adjacents ou plus de R1 à R4 peuvent être liés ensemble pour former un cycle aliphatique ou un cycle aromatique ;
    R5 à R7 peuvent être identiques ou différents les uns des autres, et sont indépendamment de l'hydrogène ; un radical halogène ; un radical alkyle ayant un nombre de carbones de 1 à 20; un radical alcényle ayant un nombre de carbones de 2 à 20 ; un radical aryle ayant un nombre de carbones de 6 à 20 ; un radical alkylaryle ayant un nombre de carbones de 7 à 20 ; un radical arylalkyle ayant un nombre de carbones de 7 à 20; un radical alcoxy ayant un nombre de carbones de 1 à 20 ; un radical aryloxy ayant un nombre de carbones de 6 à 20 ; ou un radical amido ; et deux radicaux adjacents ou plus de R5 à R7 peuvent être liés ensemble pour former un cycle aliphatique ou un cycle aromatique ;
    CY est un cycle aliphatique ou aromatique contenant de l'azote, et peut être non substitué ou substitué par un halogène, un radical alkyle ou aryle ayant un nombre de carbones de 1 à 20 et, s'il possède de multiples substituants, deux substituants ou plus peuvent être liés ensemble pour former un cycle aliphatique ou aromatique ;
    M est un métal de transition du groupe 4 ;
    X1 est un radical halogène; un radical alkyle ayant un nombre de carbones de 1 à 20 ; un radical alcényle ayant un nombre de carbones de 2 à 20 ; un radical aryle ayant un nombre de carbones de 6 à 20; un radical alkylaryle ayant un nombre de carbones de 7 à 20; un radical arylalkyle ayant un nombre de carbones de 7 à 20 ; un radical alkylamido ayant un nombre de carbones de 1 à 20; un radical arylamido ayant un nombre de carbones de 6 à 20 ; ou un radical alkylidène ayant un nombre de carbones de 1 à 20 ; et
    n est un nombre entier de 0 à 10.

            [Formule chimique 2]     -[Al(R8)-O]c-

    dans la formule chimique 2, R8 est un radical halogène, un radical hydrocarbyle ayant un nombre de carbones de 1 à 20 ou un radical hydrocarbyle ayant un nombre de carbones de 1 à 20 substitué par un halogène, et c un nombre entier égal ou supérieur à 2,

            [Formule chimique 3]     D(R9)3

    dans la formule chimique 3,
    D est l'aluminium ou le bore, R9 est un hydrocarbyle ayant un nombre de carbone de 1 à 20 ou un hydrocarbyle ayant un nombre de carbone de 1 à 20 substitué par un halogène,

            [Formule chimique 4]     [L-H]+[ZA4]- ou [L]+[ZA4]-

    dans la formule chimique 4,
    L est un acide de Lewis neutre ou cationique, H est un atome d'hydrogène, Z est un atome du groupe 13, les A peuvent être identiques ou différents les uns des autres, et sont indépendamment un halogène ayant une valence d'hydrogène de 1 ou plus, un hydrocarbure ayant un nombre de carbones de 1 à 20, un groupe aryle ayant un nombre de carbones de 6 à 20 non substitué ou substitué par un groupe alcoxy ou phénoxy, ou un groupe alkyle ayant un nombre de carbones de 1 à 20.
  2. Composition de catalyseur selon la revendication 1, dans laquelle, dans la formule chimique 1, R1 à R7 représentent indépendamment de l'hydrogène, un groupe alkyle ayant un nombre de carbones de 1 à 20, ou un groupe aryle ayant un nombre de carbones de 6 à 20, et CY est un cycle aliphatique ou aromatique pentagonal ou hexagonal contenant de l'azote, non substitué ou substitué par un groupe alkyle ayant un nombre de carbones de 1 à 20, M est le titane (Ti), le zirconium (Zr) ou le hafnium (Hf), et X1 est un halogène ou un groupe alkyle ayant un nombre de carbones de 1 à 20.
  3. Composition de catalyseur selon la revendication 1, dans laquelle le composé de la formule chimique 1 est représenté par les structures suivantes :
    Figure imgb0020
    Figure imgb0021
  4. Procédé de préparation d'une composition de catalyseur selon la revendication 1, comprenant les étapes consistant à :
    mettre en contact un composé métallocène dinucléaire représenté par la formule chimique 1 suivante avec un composé représenté par la formule chimique 2 suivante et/ou un composé représenté par la formule chimique 3 suivante afin d'obtenir un mélange ; et
    ajouter un composé représenté par la formule chimique 4 suivante au mélange :
    Figure imgb0022
    dans la formule chimique 1,
    R1 à R4 peuvent être identiques ou différents les uns des autres, et sont indépendamment de l'hydrogène ; un radical halogène ; un radical alkyle ayant un nombre de carbones de 1 à 20 ; un radical alcényle ayant un nombre de carbones de 2 à 20; un radical silyle; un radical aryle ayant un nombre de carbones de 6 à 20; un radical alkylaryle ayant un nombre de carbones de 7 à 20; ou un radical arylalkyle ayant un nombre de carbones de 7 à 20 ; et deux radicaux adjacents ou plus de R1 à R4 peuvent être liés ensemble pour former un cycle aliphatique ou un cycle aromatique ;
    R5 à R7 peuvent être identiques ou différents les uns des autres, et sont indépendamment de l'hydrogène; un radical halogène ; un radical alkyle ayant un nombre de carbones de 1 à 20 ; un radical alcényle ayant un nombre de carbones de 2 à 20 ; un radical aryle ayant un nombre de carbones de 6 à 20 ; un radical alkylaryle ayant un nombre de carbones de 7 à 20 ; un radical arylalkyle ayant un nombre de carbones de 7 à 20 ; un radical alcoxy ayant un nombre de carbones de 1 à 20 ; un radical aryloxy ayant un nombre de carbones de 6 à 20 ; ou un radical amido ; et deux ou plusieurs radicaux adjacents ou plus de R5 à R7 peuvent être liés ensemble pour former un cycle aliphatique ou un cycle aromatique ;
    CY est un cycle aliphatique ou aromatique contenant de l'azote, et peut être non substitué ou substitué par un halogène, un radical alkyle ou aryle ayant un nombre de carbones de 1 à 20 et, s'il possède de multiples substituants, deux substituants ou plus peuvent être liés ensemble pour former un cycle aliphatique ou aromatique ;
    M est un métal de transition du groupe 4 ;
    X1 est un radical halogène ; un radical alkyle ayant un nombre de carbones de 1 à 20 ; un radical alcényle ayant un nombre de carbones de 2 à 20 ; un radical aryle ayant un nombre de carbones de 6 à 20; un radical alkylaryle ayant un nombre de carbones de 7 à 20 ; un radical arylalkyle ayant un nombre de carbones de 7 à 20 ; un radical alkylamido ayant un nombre de carbones de 1 à 20 ; un radical arylamido ayant un nombre de carbones de 6 à 20 ; ou un radical alkylidène ayant un nombre de carbones de 1 à 20 ; et
    n est un nombre entier de 0 à 10.

            [Formule chimique 2]     -[Al(R8)-O]c-

    dans la formule chimique 2, R8 est un radical halogène, un radical hydrocarbyle ayant un nombre de carbones de 1 à 20, ou un radical hydrocarbyle ayant un nombre de carbones de 1 à 20, substitué par un halogène, et c est un nombre entier égal ou supérieur à 2,

            [Formule chimique 3]     D(R9)3

    dans la formule chimique 3,
    D est l'aluminium ou le bore, R9 est un hydrocarbyle ayant un nombre de carbone de 1 à 20 ou un hydrocarbyle ayant un nombre de carbone de 1 à 20 substitué par un halogène,

            [Formule chimique 4]     [L-H]+[ZA4]- or [L]+[ZA4]-

    dans la formule chimique 4,
    L est un acide de Lewis neutre ou cationique, H est un atome d'hydrogène, Z est un atome du groupe 13, les A peuvent être identiques ou différents les uns des autres et sont indépendamment un halogène ayant une valence d'hydrogène de 1 ou plus, un hydrocarbure ayant un nombre de carbone de 1 à 20, un groupe aryle ayant un nombre de carbones de 6 à 20 non substitué ou substitué par un groupe alcoxy ou phénoxy, ou un groupe alkyle ayant un nombre de carbones de 1 à 20.
  5. Procédé de préparation d'une composition de catalyseur selon la revendication 4, dans lequel le ratio molaire du composé métallocène dinucléaire représenté par la formule chimique 1 par rapport au composé représenté par la formule chimique 2 et/ou au composé représenté par la formule chimique 3 est de 1:2 à 1:5000, et le rapport molaire du composé métallocène dinucléaire représenté par la formule chimique 1 par rapport au composé représenté par la formule chimique 4 est de 1:1 à 1:25.
  6. Procédé de préparation de polyoléfine, comprenant l'étape de polymérisation d'au moins un type de monomères oléfiniques, en présence de la composition de catalyseur selon la revendication 1.
  7. Procédé de préparation de polyoléfine selon la revendication 6, dans lequel la polymérisation de monomères oléfiniques est conduite à une température de -15 à 300°C et sous une pression de 1 à 300 bars.
  8. Procédé de préparation de polyoléfine selon la revendication 6, dans lequel le monomère oléfinique est au moins choisi dans le groupe consistant en le butène-1, le pentène-1, l'hexène-1, le 4-méthyl-1-pentène, l'octène-1, le décène-1, le dodécène-1, le tétradécène-1, l'hexadécène-1, l'octadécène-1, l'eicosène-1, et un mélange de ceux-ci.
  9. Procédé de préparation de polyoléfine selon la revendication 6, dans lequel la polyoléfine a un indice de fusion (I2) de 0,1 à 2,5 g/10 min.
EP13888412.7A 2013-06-25 2013-12-27 Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition Active EP3000817B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130073044 2013-06-25
PCT/KR2013/012315 WO2014208851A1 (fr) 2013-06-25 2013-12-27 Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition

Publications (3)

Publication Number Publication Date
EP3000817A1 EP3000817A1 (fr) 2016-03-30
EP3000817A4 EP3000817A4 (fr) 2017-03-08
EP3000817B1 true EP3000817B1 (fr) 2017-11-15

Family

ID=52474780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13888412.7A Active EP3000817B1 (fr) 2013-06-25 2013-12-27 Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition

Country Status (5)

Country Link
US (1) US9725531B2 (fr)
EP (1) EP3000817B1 (fr)
KR (1) KR101588813B1 (fr)
CN (1) CN105308059B (fr)
WO (1) WO2014208851A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434752B2 (en) 2013-06-25 2016-09-06 Lg Chem, Ltd. Dinuclear metallocene compound, and a method for preparing the same
CN111116678B (zh) * 2018-10-30 2022-06-14 中国石油化工股份有限公司 双核茂金属化合物及其制备方法和应用
CN113549277A (zh) * 2020-04-24 2021-10-26 中国石油化工股份有限公司 含有聚丙烯共聚物的组合物、聚丙烯共聚物材料及其制备方法和应用
CN113549278A (zh) * 2020-04-24 2021-10-26 中国石油化工股份有限公司 含有成核剂的聚丙烯组合物、聚丙烯材料及其制备方法和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
EP1015462B1 (fr) 1997-09-15 2002-08-28 The Dow Chemical Company Complexes bimetalliques et catalyseurs de polymerisation obtenus a partir de ceux-ci
US6228790B1 (en) 1998-06-29 2001-05-08 Industrial Technology Research Institute Dinuclear metallocene catalyst for preparing high molecular weight olefin polymer
KR100288272B1 (ko) 1998-10-13 2001-05-02 유현식 올레핀 중합용 신규 메탈로센 촉매 및 제조방법
US6288254B1 (en) * 1999-06-17 2001-09-11 Industrial Technology Research Institute Bimetallic metallocene catalyst for preparing olefin polymer
KR20030012308A (ko) 2001-07-31 2003-02-12 주식회사 예스아이비 배팅형 복권 시스템 및 배팅 방법
KR20040076965A (ko) 2003-02-27 2004-09-04 호남석유화학 주식회사 올레핀 중합용 담지 다중핵 메탈로센 촉매 및 이의 제조방법
KR100706252B1 (ko) 2005-07-27 2007-04-12 삼성전자주식회사 노어 플래시 메모리 장치 및 그것의 프로그램 방법
KR100874032B1 (ko) 2006-02-01 2008-12-17 주식회사 엘지화학 전이 금속 화합물을 포함하는 촉매 조성물 및 이를 이용한올레핀 중합
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
KR100999592B1 (ko) 2007-02-15 2010-12-08 주식회사 엘지화학 새로운 시클로펜타디에닐 리간드를 갖는 4족 전이금속화합물, 이의 제조방법 및 이를 이용한 올레핀계 중합체의제조방법
KR100963762B1 (ko) 2007-05-28 2010-06-14 주식회사 엘지화학 새로운 이핵 전이금속 화합물 및 이의 제조 방법
KR101071400B1 (ko) 2007-12-14 2011-10-07 주식회사 엘지화학 혼성 담지 메탈로센 촉매, 이의 제조 방법 및 혼성 담지메탈로센 촉매를 이용한 폴리올레핀의 제조방법
WO2010068045A2 (fr) 2008-12-11 2010-06-17 주식회사 엘지화학 Catalyseur métallocène mixte sur support, son procédé de préparation, et méthode de préparation de polymères de polyoléfine utilisant ce catalyseur
KR101366215B1 (ko) 2010-09-16 2014-02-21 주식회사 엘지화학 폴리 올레핀의 제조방법
US20120071615A1 (en) * 2010-09-14 2012-03-22 Lg Chem, Ltd. Bi-Nuclear Metallocene Compound and the Preparation Method of Polyolefin Using the Same
US9434752B2 (en) 2013-06-25 2016-09-06 Lg Chem, Ltd. Dinuclear metallocene compound, and a method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20150000813A (ko) 2015-01-05
EP3000817A4 (fr) 2017-03-08
CN105308059A (zh) 2016-02-03
US20160130372A1 (en) 2016-05-12
US9725531B2 (en) 2017-08-08
KR101588813B1 (ko) 2016-01-27
CN105308059B (zh) 2018-05-18
WO2014208851A1 (fr) 2014-12-31
EP3000817A1 (fr) 2016-03-30

Similar Documents

Publication Publication Date Title
KR101066969B1 (ko) 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법
EP3219718B1 (fr) Composé ligand, composé métal de transition, et composition catalyseur contenant les composés
WO2008140205A1 (fr) Copolymère d'éthylène et d'alpha-oléfine
EP2147027A2 (fr) Copolymère d'alpha-oléfines d'éthylène, ramifié, à chaîne longue
KR101774615B1 (ko) 인덴기를 갖는 메탈로센형 촉매 및 이를 이용한 올레핀 중합체의 제조방법
EP3000817B1 (fr) Composition catalytique, procédé d'élaboration de ladite composition, et procédé de synthèse de polyoléfines utilisant ladite composition
KR101722138B1 (ko) 신규한 리간드 화합물, 메탈로센 화합물 및 이를 이용하는 올레핀계 중합체의 제조방법
EP2998308B1 (fr) Composé de métallocène binucléé et son procédé de préparation
KR100874027B1 (ko) 이핵 전이금속 화합물을 포함하는 촉매 조성물을 이용한올레핀의 중합 공정
EP3064504B1 (fr) Composé de ligand, composé de métallocène et procédé de préparation d'un polymère oléfinique faisant appel à eux
EP3783004B1 (fr) Composé à base de métal de transition, composition catalytique le comprenant et procédé de préparation de polymère l'utilisant
KR100964501B1 (ko) 이중 조성 분포를 가지는 에틸렌과 α-올레핀의 엘라스토머공중합체
KR100853433B1 (ko) 전이금속 화합물을 포함하는 촉매 조성물 및 이를 이용하는올레핀 중합체의 제조 방법
KR101739164B1 (ko) 다이아민 기반의 포스트 메탈로센형 전이금속 촉매
EP3663306B1 (fr) Composé ligand, composé de métal de transition et composition de catalyseur le contenant
EP3524612B1 (fr) Composé de ligand, composé de métal de transition, et composition de catalyseur comprenant le composé de métal de transition
KR101684647B1 (ko) 이핵 메탈로센 화합물, 이를 포함하는 촉매 조성물, 및 이를 이용한 폴리올레핀의 제조방법
KR20100070674A (ko) 새로운 씨클로펜타다이에논 리간드를 포함하는 4족 전이금속 화합물
KR101725949B1 (ko) 티오펜을 중심으로 하는 포스트 메탈로센 촉매
KR101773649B1 (ko) 트라이덴테이트 구조의 리간드를 포함하는 포스트 메탈로센 촉매
KR101563268B1 (ko) 포스트 메탈로센형 유기 금속 화합물 및 이의 제조방법
KR101725945B1 (ko) 아미노 퀴놀린 골격을 가지는 포스트 메탈로센 촉매
KR20100037441A (ko) 금속 화합물 및 이를 이용한 올레핀 중합체의 제조방법
KR20140070418A (ko) 포스트 메탈로센형 리간드 화합물, 이의 제조방법, 유기 금속 화합물 및 이의 제조방법
KR20150048462A (ko) 아닐린 유도체와 시클로펜타디엔 유도체가 결합된 형태의 촉매 및 이를 이용한 올레핀 중합체의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170203

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 10/00 20060101ALI20170130BHEP

Ipc: C07F 17/00 20060101AFI20170130BHEP

17Q First examination report despatched

Effective date: 20170302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013029653

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C07F0017000000

Ipc: C08F0010000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C07F 17/00 20060101ALI20170720BHEP

Ipc: C08F 10/00 20060101AFI20170720BHEP

Ipc: C08F 4/6592 20060101ALI20170720BHEP

INTG Intention to grant announced

Effective date: 20170807

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171005

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 946205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013029653

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 946205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013029653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

26N No opposition filed

Effective date: 20180817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231121

Year of fee payment: 11

Ref country code: DE

Payment date: 20231120

Year of fee payment: 11