EP2990141B1 - Herstellungsverfahren für TiAl-Bauteile - Google Patents

Herstellungsverfahren für TiAl-Bauteile Download PDF

Info

Publication number
EP2990141B1
EP2990141B1 EP14182981.2A EP14182981A EP2990141B1 EP 2990141 B1 EP2990141 B1 EP 2990141B1 EP 14182981 A EP14182981 A EP 14182981A EP 2990141 B1 EP2990141 B1 EP 2990141B1
Authority
EP
European Patent Office
Prior art keywords
capsule
powder
component
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14182981.2A
Other languages
English (en)
French (fr)
Other versions
EP2990141A1 (de
Inventor
Martin Schloffer
Wilfried Smarsly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to ES14182981T priority Critical patent/ES2728527T3/es
Priority to EP14182981.2A priority patent/EP2990141B1/de
Priority to US14/838,802 priority patent/US10029309B2/en
Publication of EP2990141A1 publication Critical patent/EP2990141A1/de
Application granted granted Critical
Publication of EP2990141B1 publication Critical patent/EP2990141B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing a component, in particular a component for a turbomachine, such as an aircraft engine, from a high temperature material, in particular a TiAl alloy.
  • turbomachinery For the operation of turbomachinery special materials for certain components are required due to the conditions of use of the components used in some high temperatures, aggressive environments and high forces acting, which are optimally adapted both by their chemical composition and by their microstructure to the intended use.
  • Alloys based on intermetallic titanium aluminide compounds are used in the construction of turbomachinery, such as stationary gas turbines or aircraft engines, for example as a material for rotor blades, since they have the mechanical properties required for the application and additionally have a low specific weight. so that the use of such alloys can increase the efficiency of stationary gas turbines and aircraft engines. Accordingly, there are already a large number of TiAl alloys and processes for producing corresponding components thereof.
  • Components made of TiAl alloys can be produced similarly to comparable components from other high - temperature alloys, for example based on Ni, Fe or Co, both by melt metallurgy and powder metallurgy.
  • the alloy used to make the component is provided in the form of a melt and is poured off in a mold.
  • the cast material must usually be subjected to suitable forming and / or heat treatments to destroy the cast structure and to set a desired microstructure of the material.
  • the corresponding component can then be brought into the desired shape by suitable post-processing, for example by machining, mechanical processing or electrochemical machining.
  • the manufacturing steps additionally or alternatively to the individual steps of the fusion metallurgical production include the use of powder materials in order to produce a desired composition of the material, for example by mechanical alloying.
  • An example of the production of a TiAl alloy article using powder materials is shown in U.S.P. US 5,424,027 described.
  • HIP hot isostatic pressing
  • the corresponding method should be simple and reliable feasible and can be set reproducibly suitable microstructures in high-temperature alloys and in particular TiAl alloys that provide the necessary properties, especially for components of turbomachinery.
  • a component in particular a component for a turbomachine, such as a stationary gas turbine or an aircraft engine, from a TiAl alloy by first producing a powder of the desired alloy, filling this powder into a capsule is whose shape largely corresponds to the shape of the component to be manufactured, and hot isostatically press these capsules with the filled powder and subjected to a heat treatment, so that after removal of the capsule and the post-processing of the component to produce the final contour by material removal the finished component ,
  • a near-net shape capsule which takes into account or approximates the shape of the component to be produced, elaborate rework can be avoided by removing a large volume of excess material by removing material, so that the use of materials and the associated effort can be reduced.
  • the close-to-net shape of the capsule therefore only has to take into account the subsequent processing steps in which, however, no extensive change in shape of the component takes place, as would be the case, for example, with a required hot forming. For example, only a slight oversize to the final shape or contour of the component to be produced can be provided, which variations due to production in hot isostatic pressing, heat treatment or removal the capsule takes into account so that the desired shape of the component can be obtained by the subsequent material removal.
  • the production method described above can be used in particular for TiAl alloys and in particular highly alloyed TiAl alloys and / or TiAl alloys with high Al contents, for example with Al contents of more than 30 at.% Al, in particular more than 45 at.% Al , preferably more than 50 at.% And up to 60 at.% Al or more are used, since in these alloys, the formation of finely divided precipitates and a fine-grained, homogeneous microstructure with the present method is to achieve low.
  • various starting materials may be used, such as powder of the individual elements to be alloyed or powder or powder of master alloys to be recycled, that is, alloys comprising parts of the later alloy composition.
  • the starting materials can be pressed into compacts, which can then be used for melting the alloy.
  • the melting of the alloy can be carried out by single or multiple plasma arc melting (PAM), vacuum arc melting (VAR) or vacuum induction melting (VIM).
  • PAM plasma arc melting
  • VAR vacuum arc melting
  • VIM vacuum induction melting
  • the powder can directly from the corresponding melt or after reflowing after an intermediate casting of the melt from a molten bath or from a meanwhile poured ingot can be produced by spraying.
  • the vacuum inert gas atomization (VIG), the plasma melting induction induction atomization (PIGA) or the electrode induction gas atomization (EIGA) can be used.
  • the powder may also be subjected to an additional purification process, for example, to reduce the oxygen occupancy of the powder surface and thus to reduce the oxygen contamination of the material used for component manufacturing and to reduce or eliminate organic and / or inorganic impurities.
  • the powder particles can be processed to set a spherical particle shape and / or to influence the size of the particles (grain size). For example, this can be done in a plasma cleaning process in which the powder particles are introduced into a plasma so that contaminants can be removed and the surface shape of the particles can approach a spherical shape.
  • the produced powder can be classified according to the particle size and one or more powder fractions can be selected for the further production of the component. Fractionation may be carried out before or after the purification process, with purification prior to fractionation being preferred, as the size of the particles may be altered by plasma purification.
  • the fractionation may be carried out by various known methods, and in particular, a two-stage fractionation is possible wherein e.g. First, a prefractionation takes place by means of a centrifuge, and then, in a second step, a main fraction is produced by sieving and / or sifting. For the production of a fine-grained TiAl material, in particular powder fractions with average or maximum particle sizes ⁇ 125 ⁇ m in diameter or corresponding to the maximum extent can be selected.
  • the capsule into which the powder is filled for the subsequent hot isostatic pressing can be made of a sheet of a material similar to the powder, in particular of the base material of the powder used, that is, for example, an alloy having the same main constituent.
  • the capsule may be formed with, for example, 1 to 3 mm, preferably 2 to 3 mm, wall thickness of titanium or a titanium alloy.
  • the capsule can be formed from at least two mold parts, which can be connected together to close the capsule, for example by welding under inert gas.
  • the molded parts of the capsule can be formed from deep-drawn sheets of the corresponding capsule material, so that a contour of the capsule which is similar to the shape of the component to be produced can be produced in a simple manner.
  • the contour or shape of the capsule can be formed with a certain allowance, which takes into account the shape changes in the subsequent hot isostatic pressing and the heat treatments or allows a subsequent post-processing by material removal, which gives the possibility of the exact desired shape of the To produce component.
  • the filling of the powder in the capsule can be done under inert gas, so as to further reduce the burden of contamination.
  • the filling of the powder into the capsule can take place directly after the cleaning under vacuum or inert gas, so that the powder is no longer exposed to the ambient atmosphere.
  • the filled but not yet sealed capsule - or alternatively the powder prior to filling into the capsule - can be subjected to a heat treatment under vacuum (cleaning heat treatment) to effect further purification of the powder material by evaporation or outgassing.
  • a heat treatment under vacuum cleaning heat treatment
  • the heat treatment at a temperature in the range of 200 ° C to 500 ° C, preferably between 440 ° C and 460 ° C under vacuum with a pressure ⁇ 10 -3 mbar, in particular ⁇ 10 -5 mbar above the powder can be performed.
  • the oxygen content in the production of a component made of a TiAl alloy can be reduced to a range of ⁇ 600 ppm.
  • the cooling of the surface of the capsule with the filled powder after the cleaning heat treatment can at a cooling rate of 25 ° C / min to 35 ° C / min, preferably at 30 ° C / min up to a temperature of 120 ° C or below, in particular 100 ° C, are carried out under vacuum, wherein subsequently the closure of the capsule can be done for example by welding under inert gas. Rapid cooling can improve the prevailing vacuum, allowing lower pressures to be generated and cleaning of the powder can be further improved. For example, the vacuum can improve from 10 -3 mbar to 10 -4 mbar.
  • the powder in the capsule may be densified by mechanical stimulation such as vibration, vibration, tapping or the like.
  • the capsule can still be open or closed, wherein in an open capsule, the mechanical compression can be carried out under vacuum.
  • the thus prepared capsule can be hot isostatically pressed at temperatures in the range of 1100 ° C to 1400 ° C, especially 1150 ° C to 1300 ° C at a pressure of 100 to 250 MPa for a period of two to six hours, so that a compacted Material block in a near-net shape of the component results.
  • the shape close to the final contour can be chosen such that the manufactured component meets the requirements of the production of net - shape components or near - net - shape components.
  • the hot isostatically pressed capsule may have an oversize of the finished component of 0.5 mm to 5 mm, in particular 0.5 mm or 1 mm to 2 mm (net shape) or 2 mm to 5 mm (near net shape) plus the respective have corresponding capsule thickness.
  • the capsule After the hot isostatic pressing, the capsule is subjected to a multi-stage heat treatment in which solution annealing, high-temperature annealing and aging annealing are performed in this order according to the powder material used.
  • solution annealing is carried out at a temperature up to 1400 ° C for 15 to 45 minutes.
  • the high-temperature annealing is carried out at a temperature of 1100 ° C to 1300 ° C and an aging annealing is carried out at a temperature of 850 ° C to 1100 ° C for six to one hundred hours.
  • the heating and / or cooling rates for the heat treatment can be selected as a function of the size and / or the shape of the component, whereby, for example, relatively lower heating and / or cooling rates are selected for larger components, while for small components greater heating and / or or cooling rates can be realized. In addition, you can the heating and / or cooling rates are determined so that as far as possible no distortion of the component takes place.
  • the capsule is removed, for example by chemical pickling, electrochemical machining, blasting with particles, in particular with plastic granules and / or machining, such as milling or grinding. Thereafter, the post-processing of the outer shape (contour) of the component by mechanical, spannabariade processing, in particular by milling, grinding, polishing, etc. and / or electrochemical machining done.
  • Various functional layers can be applied to the component produced in this way, for example wear protection layers, corrosion protection layers, oxidation protection layers and the like.
  • the component and / or the material or the material of which the component is made can be characterized, in particular by non-destructive methods, such as, for example, by X-ray diffractometry.
  • a material having as main constituents of titanium and aluminum is understood according to the present invention, a material having as main constituents of titanium and aluminum.
  • Main constituents are understood to mean those elements whose proportion in at.% Or wt.% Is the largest, ie in the case of a TiAl alloy titanium and aluminum as elements having the largest proportions in at.% Or wt.% In the alloy.
  • a TiAl alloy which is processed into a component according to the present method it can be, in particular, a high-alloy TiAl alloy, which is particularly suitable for high temperatures, for example.
  • B. can be used as a blade material for turbomachinery.
  • chemical elements such as niobium, molybdenum, tungsten, cobalt, chromium, vanadium, zirconium, silicon, carbon, erbium, gadolinium, hafnium, yttrium and boron may be included.
  • the method according to the invention forms a rotor blade of an aircraft engine made of a highly alloyed TiAl alloy, wherein first in a first step, a compact of powders of the individual elements to be alloyed and / or of so-called master alloys is pressed.
  • the compact may contain titanium sponge (step I).
  • the compact is subsequently melted (method step II) by a single plasma arc melting process, so that an alloy melt results.
  • This is first poured off and then melted a second time in a third process step (process step III) for powder production in order to make a gas atomization from the molten bath can.
  • the gas atomization from the molten bath can be carried out by VIGA or PIGA process, whereby as spherical as possible powder particles are to be produced by the gas atomization.
  • the particle size fractions desired for further processing are selected from the powder produced, for example particle size fractions with maximum or average diameters of the particles in the range from 15 to 150 ⁇ m or preferably 45 to 125 ⁇ m. In the chosen embodiment, the particle size ⁇ 125 ⁇ m is maintained in order to achieve a fine-grained structure.
  • a fifth method step (method step V) the selected powder fraction is introduced into a plasma, so that the plasma cleans the powder particles and forms a spherical formation of the powder particles.
  • the plasma reduces the oxygen occupancy of the powder surface and approximates the surface shape to a spherical shape.
  • the thus purified powder is filled under protective gas, for example helium or argon in capsules made of titanium (step VI), for example, have a wall thickness of 1 to 2 mm, and are formed according to the shape of the component to be produced, for example, two deep-drawn titanium sheets.
  • protective gas for example helium or argon in capsules made of titanium (step VI)
  • step VI have a wall thickness of 1 to 2 mm, and are formed according to the shape of the component to be produced, for example, two deep-drawn titanium sheets.
  • the titanium material used for the capsules may be so-called titanium grade I material.
  • a further purification of the material is carried out in a seventh process step (step VII) by the powder-filled, but not yet sealed capsule under vacuum conditions at a pressure of ⁇ 10 -3 mbar , in particular ⁇ 10 -5 mbar is heated at temperatures up to 450 ° C, so that further impurities volatilize by evaporation. In this way, for example, the oxygen content ⁇ 600 ppm can be set.
  • the capsule which is furthermore kept under vacuum, can be cooled to 120 ° C. or 100 ° C., wherein a cooling rate of 30 ° C./min can be selected (method step VIII).
  • the capsule is closed by welding, so that in the tenth process step (process step X) the capsule can be hot isostatically pressed with the powder enclosed therein at a pressure in the range of 100 to 240 MPa and a temperature in the range from 1150 ° C to 1400 ° C for a period of two to six hours.
  • process step XI After hot isostatic pressing (process step X), the eleventh process step (process step XI) is followed by a multi-stage heat treatment, with the aid of which the microstructure of the component can be adjusted.
  • a solution heat treatment at 1400 ° C or just below for a period of 15 to 45 minutes.
  • a high-temperature annealing is carried out at 1100 ° C to 1300 ° C
  • an aging annealing is carried out at 850 ° C to 1100 ° C for a period of six to one hundred hours.
  • the component is finished with respect to the material structure and it only need to be done final work on the shape of the component.
  • the capsule is removed in a twelfth method step (method step XII), namely by pickling the outer layer and / or electrochemical machining, blasting with particles, in particular plastic particles, and / or by mechanical processing, such as milling, grinding or the like.
  • a thirteenth method step (method step XIII), the excess material is now removed from the component by mechanical, in particular machining, for example by milling, grinding, polishing and the like.
  • the material removal can also be done by electrochemical machining, so that the final dimension is set.
  • the set microstructure of the component can be checked by X-ray diffractometry and other nondestructive testing methods. Furthermore, required on the component layers such as corrosion protection layers, oxidation protection layers, wear protection layers and the like can be deposited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Powder Metallurgy (AREA)

Description

    HINTERGRUND DER ERFINDUNG GEBIET DER ERFINDUNG
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils, insbesondere eines Bauteils für eine Strömungsmaschine, wie beispielsweise ein Flugtriebwerk, aus einem Hochtemperaturwerkstoff, insbesondere einer TiAl - Legierung.
  • STAND DER TECHNIK
  • Für den Betrieb von Strömungsmaschinen sind auf Grund der Einsatzbedingungen der verwendeten Bauteile mit zum Teil hohen Temperaturen, aggressiven Umgebungen und hohen einwirkenden Kräften spezielle Werkstoffe für bestimmte Bauteile erforderlich, die sowohl durch ihre chemische Zusammensetzung als auch durch ihre Mikrostruktur optimal an den Einsatzzweck angepasst sind.
  • Legierungen auf Basis von intermetallischen Titanaluminid - Verbindungen (TiAl - Legierungen) finden beim Bau von Strömungsmaschinen, wie stationären Gasturbinen oder Flugtriebwerken, beispielsweise als Werkstoff für Laufschaufeln Verwendung, da sie die für den Einsatz erforderlichen mechanischen Eigenschaften aufweisen und zusätzlich ein geringes spezifisches Gewicht besitzen, sodass der Einsatz derartiger Legierungen die Effizienz von stationären Gasturbinen und Flugtriebwerken steigern kann. Entsprechend gibt es bereits eine Vielzahl von TiAl - Legierungen sowie Verfahren zur Herstellung von entsprechenden Bauteilen daraus.
  • Bauteile aus TiAl - Legierungen lassen sich ähnlich wie vergleichbare Bauteile aus anderen Hochtemperaturlegierungen, beispielsweise auf Ni - , Fe - oder Co - Basis, sowohl schmelzmetallurgisch als auch pulvermetallurgisch herstellen.
  • Bei der schmelzmetallurgischen Herstellung wird die Legierung, die für die Herstellung des Bauteils verwendet wird, in Form einer Schmelze bereitgestellt und diese wird in einer Form abgegossen. Der gegossene Werkstoff muss üblicherweise geeigneten Umformungen und/oder Wärmebehandlungen unterzogen werden, um das Gussgefüge zu zerstören und eine gewünschte Mikrostruktur des Werkstoffs einzustellen. Das entsprechende Bauteil kann dann durch geeignete Nachbearbeitung, beispielsweise durch spanabhebende, mechanische Bearbeitung oder elektrochemische Bearbeitung in die gewünschte Form gebracht werden.
  • Bei der pulvermetallurgischen Herstellung umfassen die Herstellungsschritte zusätzlich oder alternativ zu den einzelnen Schritten der schmelzmetallurgischen Herstellung den Einsatz von Pulvermaterialien, um beispielsweise durch mechanisches Legieren eine gewünschte Zusammensetzung des Werkstoffs zu erzeugen. Ein Beispiel für die Herstellung eines Gegenstands aus einer TiAl - Legierung unter Verwendung von Pulvermaterialien ist in der US 5,424,027 beschrieben.
  • Gemäß diesem Dokument werden Gegenstände aus TiAl - Legierungen mit 50 at.% Aluminium sowie Legierungen mit 48 at.% Aluminium und 1 at.% Niob, 48 at.% Aluminium, 2 at.% Niob und 2 at.% Chrom sowie 48 at.% Aluminium, 1 at.% Niob und 1 at.% Vanadium und 48 at.% Aluminium, 3 at.% Niob, 2 at.% Chrom und 1 at.% Mangan sowie Rest jeweils Titan dadurch hergestellt, dass ein entsprechend vorlegiertes TiAl - Pulver in eine geeignete Form eingefüllt wird, um anschließend heißisostatisch gepresst zu werden. Nach dem heißisostatischen Pressen wird der Werkstoff einer Warmumformung unterzogen, um eine feine, gleichmäßige und isotrope Mikrostruktur einzustellen.
  • Für eine Warmumformung, die sowohl bei einer schmelzmetallurgischen Herstellung als auch bei der pulvermetallurgischen Herstellung gemäß der US 5,424,027 durchgeführt werden kann bzw. zur Erzielung bestimmter Eigenschaften durchgeführt werden muss, ist ein hoher Aufwand bezüglich der Warmumformungsschritte erforderlich. Außerdem ist bei einer derartigen Herstellung ein hoher Materialverbrauch gegeben, da eine endkonturnahe Herstellung, beispielsweise durch endkonturnahes Gießen, nicht möglich ist. In diesem Zusammenhang ergibt sich dann ein weiterer, erhöhter Aufwand für die spannabhebende bzw. elektrochemische Formgebung des Bauteils.
  • Das Dokument JP 2008208432 A offenbart eine pulvermetallurgische Herstellung eines Bauteils aus einem TiAl - Werkstoff durch heißisostatisches Pressen. Auch in den Dokumenten US 5 768 679 A und JP 2006 009 062 A werden Verfahren zur Herstellung von Bauteilen aus TiAl - Werkstoffen beschrieben, bei denen die Formgebung durch heißisostatisches Pressen (HIP) erfolgt, wobei nach der Formgebung eine Wärmebehandlung des Bauteils vorgenommen wird.
  • OFFENBARUNG DER ERFINDUNG AUFGABE DER ERFINDUNG
  • Es ist deshalb Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Bauteils aus einer Hochtemperaturlegierung, insbesondere einer TiAl - Legierung anzugeben, mit welchem effizient unter Reduzierung des Aufwands gegenüber dem Stand der Technik ein Bauteil gefertigt werden kann, wobei der Werkstoff des Bauteils eine optimale Mikrostruktur, insbesondere eine homogene und gleichmäßige Gefügestruktur aufweisen soll, sodass das Bauteil ebenfalls gleichmäßige mechanische Eigenschaften aufweist. Das entsprechende Verfahren soll einfach und zuverlässig durchführbar sein und reproduzierbar geeignete Mikrostrukturen bei Hochtemperaturlegierungen und insbesondere TiAl-Legierungen einstellen lassen, die die erforderlichen Eigenschaften insbesondere für Bauteile von Strömungsmaschinen bereitstellen.
  • TECHNISCHE LÖSUNG
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.
  • Gemäß der vorliegenden Erfindung wird vorgeschlagen, ein Bauteil, insbesondere ein Bauteil für eine Strömungsmaschine, wie eine stationäre Gasturbine oder ein Flugtriebwerk, aus einer TiAl - Legierung dadurch herzustellen, dass zunächst ein Pulver aus der gewünschten Legierung hergestellt wird, dieses Pulver in eine Kapsel eingefüllt wird, deren Form der Form des herzustellenden Bauteils weitgehend entspricht, und diese Kapseln mit dem eingefüllten Pulver heißisostatisch zu pressen und einer Wärmebehandlung zu unterziehen, sodass nach dem Entfernen der Kapsel und der Nachbearbeitung des Bauteils zur Herstellung der endgültigen Kontur durch Materialabtrag das fertige Bauteil vorliegt.
  • Durch das erfindungsgemäße Verfahren lässt sich eine Warmumformung bzw. ein Schmieden des Werkstoffs vermeiden, sodass der Aufwand bei der Herstellung reduziert werden kann. Gleichzeitig kann jedoch eine homogene, gleichmäßige Mikrostruktur ohne Seigerungen und Ausscheidungsvergröberungen hergestellt werden, die günstige mechanische Eigenschaften des eingesetzten Werkstoffs für den Einsatz in Strömungsmaschinen liefert.
  • Durch die Verwendung einer endkonturnahen Kapsel, die also die Form des herzustellenden Bauteils berücksichtigt bzw. dieser angenähert ist, lassen sich aufwändige Nachbearbeitungen mit der Entfernung eines großen Volumens überschüssigen Materials durch Materialabtrag vermeiden, sodass der Materialeinsatz und der dadurch verbundene Aufwand verringert werden können. Die endkonturnahe Form der Kapsel muss somit lediglich die nachfolgenden Bearbeitungsschritte berücksichtigen, bei denen jedoch keine umfangreiche Formänderung des Bauteils mehr stattfindet, wie dies beispielsweise bei einer erforderlichen Warmumformung der Fall wäre. Beispielsweise kann lediglich ein geringes Aufmaß zur endgültigen Form bzw. Kontur des herzustellenden Bauteils vorgesehen werden, welches herstellungsbedingte Abweichungen beim heißisostatischen Pressen, der Wärmebehandlung oder dem Entfernen der Kapsel Rechnung trägt, sodass durch den anschließenden Materialabtrag die gewünschte Form des Bauteils erhalten werden kann.
  • Durch die Verwendung von Pulver kann eine feine Mikrostruktur mit kleiner, homogen verteilter Korngröße und homogener Elementverteilung erzielt werden, da beispielsweise keine Texturen durch Schmiedeprozesse eingebracht werden und das Pulver sehr gut im Vakuum und unter Schutzgas handhabbar ist und somit in entsprechender Reinheit eingesetzt und verarbeitet werden kann. Dabei kann zum Erreichen eines geringen Anteils an Verunreinigungen, beispielsweise Sauerstoffkontaminationen, eine Verarbeitung unter Schutzgas vorgenommen werden.
  • Das oben beschriebene Herstellungsverfahren kann insbesondere für TiAl - Legierungen und insbesondere hochlegierte TiAl - Legierungen und/oder TiAl - Legierungen mit hohen Al - Gehalten, beispielsweise mit Al - Gehalten von mehr als 30 at.% Al, insbesondere mehr als 45 at.% Al, vorzugsweise mehr als 50 at.% und bis zu 60 at.% Al oder mehr eingesetzt werden, da bei diesen Legierungen die Ausbildung von fein verteilten Ausscheidungen und einer feinkörnigen, homogenen Mikrostruktur mit dem vorliegenden Verfahren günstig zu erzielen ist.
  • Bei der Herstellung des Pulvers für den Einsatz bei dem vorliegenden Verfahren können verschiedene Ausgangsmaterialien Verwendung finden, wie beispielsweise Pulver aus den einzelnen, zu legierenden Elementen oder zu recycelndes Pulver oder Pulver aus Masteralloys, also Legierungen, die Teile der späteren Legierungszusammensetzung umfassen. Die Ausgangsmaterialien können zu Presslingen gepresst werden, welche dann für das Erschmelzen der Legierung eingesetzt werden können.
  • Das Erschmelzen der Legierung kann durch einmaliges oder mehrmaliges Plasma - Lichtbogen - Schmelzen (PAM plasma arc melting), Vakuum - Lichtbogen - Schmelzen (VAR vacuum arc remelting) oder Vakuum - Induktions - Schmelzen (VIM vacuum induction melting) erfolgen. Beim Erschmelzen der TiAl - Legierung kann bereits eine mögliche Verarmung der Legierung bei der Herstellung und Verarbeitung, beispielsweise durch Abbrand von Elementen, wie z.B. Aluminium, beim Verdüsen berücksichtigt werden und somit die Legierungszusammensetzung entsprechend angepasst werden, also beispielsweise mit einem höheren Al - Anteil versehen werden.
  • Das Pulver kann direkt aus der entsprechenden Schmelze oder nach erneutem Aufschmelzen nach einem zwischenzeitlichen Abgießen der Schmelze aus einem Schmelzbad oder aus einem zwischenzeitlich abgegossenem Ingot durch Verdüsen hergestellt werden. Als Verfahren können das Vakuum - Inertgas - Zerstäuben (VIG vacuum inert gas atomization), das Plasma - Schmelzen - Induktionsführungs - Zerstäuben (PIGA plasma melting induction guiding atomization) oder die Elektroden - Induktions - Zerstäubung (EIGA electrode induction gas atomization) eingesetzt werden.
  • Das Pulver kann weiterhin einem zusätzlichen Reinigungsprozess unterzogen werden, um beispielsweise die Sauerstoffbelegung der Pulveroberfläche zu reduzieren und somit die Sauerstoffkontamination des eingesetzten Werkstoffs für die Bauteilherstellung zu reduzieren sowie organische und/oder anorganische Verunreinigungen zu verringern oder zu beseitigen. Außerdem kann bei dem Reinigungsprozess eine Bearbeitung der Pulverpartikel dahingehend erfolgen, dass eine sphärische Partikelform eingestellt und/oder die Größe der Partikel (Korngröße) beeinflusst wird. Beispielsweise kann dies in einem Plasmareinigungsprozess erfolgen, bei dem die Pulverpartikel in ein Plasma eingebracht werden, sodass Kontaminationen entfernt werden und sich die Oberflächenform der Partikel einer Kugelform annähern kann.
  • Das hergestellte Pulver kann entsprechend der Partikelgröße klassifiziert werden und es können ein oder mehrere Pulverfraktionen für die weitere Herstellung des Bauteils ausgewählt werden. Die Fraktionierung kann vor oder nach dem Reinigungsprozess durchgeführt werden, wobei eine Reinigung vor der Fraktionierung bevorzugt ist, da durch eine Plasma - Reinigung die Größe der Partikel verändert werden kann.
  • Die Fraktionierung kann mit verschiedenen bekannten Verfahren durchgeführt werden und insbesondere ist eine zweistufige Fraktionierung möglich, bei der z.B. zunächst mittels einer Zentrifuge eine Vorfraktionierung erfolgt und anschließend in einem zweiten Schritt durch Sieben und/oder Sichten eine Hauptfraktion erzeugt wird. Für die Herstellung eines feinkörnigen TiAl - Werkstoffs können insbesondere Pulverfraktionen mit durchschnittlichen oder maximalen Partikelgrößen ≤ 125µm im Durchmesser oder entsprechend der maximalen Erstreckung ausgewählt werden.
  • Die Kapsel, in die das Pulver für das nachfolgende heiß - isostatische Pressen eingefüllt wird, kann aus einem Blech aus einem ähnlichen Material wie das Pulver gefertigt werden, insbesondere aus dem Basis - Material des eingesetzten Pulvers, also beispielsweise einer Legierung mit dem gleichen Hauptbestandteil. Bei Verwendung einer TiAl - Legierung zur Herstellung des Bauteils kann die Kapsel mit beispielsweise 1 bis 3 mm, vorzugsweise 2 bis 3 mm, Wandstärke aus Titan oder einer Titan - Legierung gebildet sein.
  • Darüber hinaus kann die Kapsel aus mindestens zwei Formteilen gebildet sein, die zum Verschließen der Kapsel miteinander verbunden werden können, beispielsweise durch Schweißen unter Schutzgas.
  • Die Formteile der Kapsel können aus tiefgezogenen Blechen des entsprechenden Kapselmaterials gebildet sein, sodass eine der Form des herzustellenden Bauteils ähnliche Kontur der Kapsel in einfacher Weise hergestellt werden kann. Wie bereits vorher erwähnt, kann die Kontur bzw. Form der Kapsel mit einem gewissen Aufmaß ausgebildet sein, welches die Formänderungen beim anschließenden heißisostatischen Pressen und den Wärmebehandlungen berücksichtigt bzw. eine nachgeschalteten Nachbearbeitung durch Materialabtrag erlaubt, die die Möglichkeit gibt, die exakte gewünschte Form des Bauteils zu erzeugen.
  • Das Einfüllen des Pulvers in die Kapsel kann unter Schutzgas erfolgen, um so die Belastung mit Kontaminationen weiter zu verringern. Insbesondere kann das Einfüllen des Pulvers in die Kapsel direkt im Anschluss an die Reinigung unter Vakuum oder Schutzgas erfolgen, sodass das Pulver nicht mehr der Umgebungsatmosphäre ausgesetzt wird.
  • Zusätzlich kann die befüllte, aber noch nicht verschlossene Kapsel - oder alternativ auch das Pulver vor dem Abfüllen in die Kapsel - einer Wärmebehandlung unter Vakuum (Reinigungswärmebehandlung) ausgesetzt werden, um eine weitere Reinigung des Pulvermaterials durch Verdampfen bzw. Ausgasen zu bewirken. Beispielsweise kann die Wärmebehandlung bei einer Temperatur im Bereich von 200°C bis 500°C, vorzugsweise zwischen 440°C und 460°C bei Vakuum mit einem Druck ≤10-3 mbar , insbesondere ≤10-5 mbar oberhalb des Pulvers durchgeführt werden. Damit lässt sich beispielsweise der Sauerstoffgehalt bei der Herstellung eines Bauteils aus einer TiAl - Legierung auf einem Bereich ≤ 600 ppm verringern.
  • Die Abkühlung der Oberfläche der Kapsel mit dem eingefüllten Pulver nach der Reinigungswärmebehandlung kann mit einer Abkühlrate von 25°C/min bis 35°C/min, vorzugsweise bei 30°C/min bis zu einer Temperatur von 120°C oder darunter, insbesondere auf 100°C, unter Vakuum durchgeführt werden, wobei anschließend das Verschließen der Kapsel beispielsweise durch Verschweißen unter Schutzgas erfolgen kann. Durch die schnelle Abkühlung kann das herrschende Vakuum verbessert, also niedrigere Drücke erzeugt werden, sodass die Reinigung des Pulvers weiter verbessert werden kann. Beispielsweise kann sich das Vakuum von 10-3 mbar auf 10-4 mbar verbessern.
  • Um die Schrumpfung und den Verzug kontrollieren zu können, kann das Pulver in der Kapsel durch mechanische Anregung, wie Vibration, Rütteln, Klopfen oder dergleichen verdichtet werden. Die Kapsel kann dabei noch offen oder verschlossenen sein, wobei bei einer offenen Kapsel die mechanische Verdichtung unter Vakuum erfolgen kann.
  • Die so vorbereitete Kapsel kann bei Temperaturen im Bereich von 1100°C bis 1400°C, insbesondere 1150°C bis 1300°C bei einem Druck von 100 bis 250 MPa für eine Zeitdauer von zwei bis sechs Stunden heißisostatisch gepresst werden, sodass sich ein kompaktierter Materialblock in einer endkonturnahen Form des Bauteils ergibt.
  • Die endkonturnahe Form kann so gewählt werden, dass das hergestellte Bauteil den Anforderungen der Herstellung von net - shape - Bauteilen oder near - net - shape - Bauteilen entspricht. Beispielsweise kann die heißisostatisch gepresste Kapsel ein Übermaß gegenüber dem fertigen Bauteil von 0,5 mm bis 5 mm, insbesondere 0,5 mm oder 1 mm bis 2 mm (net shape) oder 2 mm bis 5 mm (near net shape) plus jeweils der entsprechenden Kapseldicke aufweisen.
  • Nach dem heißisostatischen Pressen wird die Kapsel einer mehrstufigen Wärmebehandlung unterzogen, bei der entsprechend dem eingesetzten Pulvermaterial eine Lösungsglühung, eine Hochtemperaturglühung und eine Auslagerungsglühung in dieser Reihenfolge durchgeführt wird.
  • Bei der Verwendung einer TiAl - Legierung wird eine Lösungsglühung bei einer Temperatur bis zu 1400°C für 15 bis 45 Minuten durchgeführt. Die Hochtemperaturglühung wird bei einer Temperatur von 1100°C bis 1300°C durchgeführt und eine Auslagerungsglühung erfolgt bei einer Temperatur von 850°C bis 1100°C für sechs bis hundert Stunden.
  • Die Aufheiz - und/oder Abkühlraten für die Wärmebehandlung können in Abhängigkeit der Größe und/oder der Form des Bauteils gewählt werden, wobei beispielsweise für größere Bauteile eher geringere Aufheiz - und/oder Abkühlraten gewählt werden, während für kleine Bauteile größere Aufheiz - und/oder Abkühlraten realisiert werden können. Außerdem können die Aufheiz - und/oder Abkühlraten so bestimmt werden, dass möglichst kein Verzug des Bauteils stattfindet.
  • Nach der Wärmebehandlung wird die Kapsel entfernt, und zwar beispielsweise durch chemisches Beizen, elektrochemische Bearbeitung, Strahlen mit Partikeln, insbesondere mit Kunststoffgranulat und/oder spanabhebende mechanische Bearbeitung, wie Fräsen oder Schleifen. Danach kann die Nachbearbeitung der äußeren Form (Kontur) des Bauteils durch mechanische, spannabhebende Bearbeitung, insbesondere durch Fräsen, Schleifen, Polieren etc. und/oder elektrochemische Bearbeitung erfolgen.
  • Auf dem so hergestellten Bauteil können verschiedene Funktionsschichten aufgebracht werden, wie beispielsweise Verschleißschutzschichten, Korosionsschutzschichten, Oxidationsschutzschichten und dergleichen.
  • Während des Verfahrens können das Bauteil und/oder das Material bzw. der Werkstoff, aus dem das Bauteil hergestellt ist, charakterisiert werden, insbesondere durch zerstörungsfreie Verfahren, wie beispielsweise durch Röntgendiffraktometrie.
  • Unter einer TiAl - Legierung wird gemäß der vorliegenden Erfindung ein Werkstoff verstanden wird, der als Hauptbestandteile Titan und Aluminium aufweist. Unter Hauptbestandteile werden diejenigen Elemente verstanden, deren Anteil in at.% oder Gew.% der größte ist, also bei einer TiAl - Legierung Titan und Aluminium als Elemente mit den größten Anteilen in at.% oder Gew.% in der Legierung vorliegen. Bei einer TiAl - Legierung, die gemäß dem vorliegenden Verfahren zu einem Bauteil verarbeitet wird, kann es sich insbesondere um eine hochlegierte TiAl - Legierung handeln, die insbesondere für hohe Temperaturen z. B. als Schaufelwerkstoff für Strömungsmaschinen eingesetzt werden kann. Entsprechend können chemische Elemente wie Niob, Molybdän, Wolfram, Kobalt, Chrom, Vanadium, Zirkon, Silizium, Kohlenstoff, Erbium, Gadolinium, Hafnium, Yttrium und Bor enthalten sein.
  • AUSFÜHRUNGSBEISPIEL
  • Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung eines Ausführungsbeispiels deutlich. Allerdings ist die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt.
  • Nach einem Ausführungsbeispiel wird mit dem erfindungsgemäßen Verfahren eine Laufschaufel eines Flugtriebwerks aus einer hochlegierten TiAl - Legierung gebildet, wobei zunächst in einem ersten Schritt ein Pressling aus Pulvern der einzelnen zu legierenden Elemente und/oder von sogenannten Masteralloys gepresst wird. Außerdem kann der Pressling Titanschwamm enthalten (Verfahrensschritt I).
  • Der Pressling wird anschließend (Verfahrensschritt II) durch einen einmaligen Plasma - Lichtbogen - Schmelzvorgang aufgeschmolzen, sodass sich eine Legierungsschmelze ergibt. Diese wird zunächst abgegossen und anschließend in einem dritten Verfahrensschritt (Verfahrensschritt III) für die Pulverherstellung ein zweites Mal aufgeschmolzen, um eine Gasverdüsung aus dem Schmelzbad vornehmen zu können. Die Gasverdüsung aus dem Schmelzbad kann durch VIGA oder PIGA-Verfahren erfolgen, wobei durch die Gasverdüsung möglichst sphärische Pulverpartikel erzeugt werden sollen.
  • In einem vierten Verfahrensschritt (Verfahrensschritt IV) werden aus dem erzeugten Pulver die für die Weiterverarbeitung gewünschten Partikelgrößenfraktionen ausgewählt, beispielsweise Partikelgrößenfraktionen mit maximalen oder durchschnittlichen Durchmessern der Partikel im Bereich von 15 bis 150µm oder vorzugsweise 45 bis 125µm. Bei dem gewählten Ausführungsbeispiel wird die Partikelgröße ≤125µm gehalten, um ein feinkörniges Gefüge zu erzielen.
  • In einem fünften Verfahrensschritt (Verfahrensschritt V) wird die gewählte Pulverfraktion in ein Plasma eingegeben, sodass durch das Plasma eine Reinigung der Pulverpartikel und eine sphärische Ausbildung der Pulverpartikel erfolgt. Durch das Plasma wird beispielsweise die Sauerstoffbelegung an der Pulveroberfläche reduziert und die Oberflächenform einer Kugelform angenähert.
  • Das so gereinigte Pulver wird unter Schutzgas, beispielsweise Helium oder Argon in Kapseln aus Titan eingefüllt (Verfahrensschritt VI), die beispielsweise eine Wandstärke von 1 bis 2 mm aufweisen, und entsprechend der Form des herzustellenden Bauteils beispielsweise aus zwei tiefgezogenen Titan-Blechen geformt sind. Bei dem Titanmaterial, das für die Kapseln verwendet wird, kann es sich um sogenanntes Titan Grade I Material handeln.
  • Vor dem Verschließen der Kapsel durch Zusammenschweißen der Kapselteile im neunten Verfahrensschritt wird in einem siebten Verfahrensschritt (Verfahrensschritt VII) eine weitere Reinigung des Materials durchgeführt, indem die mit Pulver gefüllte, aber noch nicht verschlossene Kapsel unter Vakuumbedingungen bei einem Druck von ≤10-3 mbar, insbesondere ≤10-5 mbar bei Temperaturen bis 450°C ausgeheizt wird, damit weitere Verunreinigungen durch Verdampfen verflüchtigen. Auf diese Weise lässt sich beispielsweise der Sauerstoffgehalt ≤600 ppm einstellen. Von der Ausheiztemperatur kann die weiterhin unter Vakuum gehaltene Kapsel auf 120°C oder 100°C abgekühlt werden, wobei eine Abkühlrate von 30°C/min gewählt werden kann (Verfahrensschritt VIII).
  • Im neunten Verfahrensschritt (Verfahrensschritt IX) wird die Kapsel durch Verschweißen verschlossen, sodass im zehnten Verfahrensschritt (Verfahrensschritt X) die Kapsel mit dem darin eingeschlossenen Pulver heißisostatisch gepresst werden kann und zwar bei einem Druck im Bereich von 100 bis 240 MPa und einer Temperatur im Bereich von 1150°C bis 1400°C für eine Zeitdauer von zwei bis sechs Stunden.
  • Nach dem heißisostatischen Pressen (Verfahrensschritt X) schließt sich als elfter Verfahrensschritt (Verfahrensschritt XI) eine mehrstufige Wärmebehandlung an, mit deren Hilfe die Mikrostruktur des Bauteils eingestellt werden kann. Zunächst erfolgt ein Lösungsglühen bei 1400°C oder knapp darunter für eine Zeitdauer von 15 bis 45 Minuten. Danach wird eine Hochtemperaturglühung bei 1100°C bis 1300°C durchgeführt und zum Abschluss erfolgt eine Auslagerungsglühung bei 850°C bis 1100°C für eine Zeitdauer von sechs bis hundert Stunden. Danach ist das Bauteil bezüglich des Werkstoffgefüges fertiggestellt und es müssen lediglich noch abschließende Arbeiten bezüglich der Formgebung des Bauteils durchgeführt werden.
  • Hierzu wird in einem zwölften Verfahrensschritt (Verfahrensschritt XII) die Kapsel entfernt, und zwar durch Abbeizen der Außenschicht und/oder elektrochemische Bearbeitung, Strahlen mit Partikeln, insbesondere Kunststoffpartikeln, und/oder durch mechanische Bearbeitung, wie Fräsen, Schleifen oder dergleichen.
  • In einem dreizehnten Verfahrensschritt (Verfahrensschritt XIII) wird nunmehr durch mechanische, insbesondere spanabhebende Bearbeitung das überschüssige Material von dem Bauteil entfernt, beispielsweise durch Fräsen, Schleifen, Polieren und dergleichen. Alternativ kann der Materialabtrag auch durch elektrochemische Bearbeitung erfolgen, sodass das Endmaß eingestellt wird.
  • Die eingestellte Mikrostruktur des Bauteils lässt sich durch Röntgendiffraktometrie und sonstige zerstörungsfreie Prüfverfahren überprüfen. Des Weiteren können auf dem Bauteil erforderliche Schichten, wie Korrosionsschutzschichten, Oxidationsschutzschichten, Verschleißschutzschichten und dergleichen abgeschieden werden.
  • Obwohl die vorliegende Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt, sondern vielmehr können Abänderungen in der Weise vorgenommen werden, dass einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden, solange der Schutzbereich der beigefügten Ansprüche nicht verlassen wird.

Claims (17)

  1. Verfahren zur Herstellung eines Bauteils, insbesondere eines Bauteils für eine Strömungsmaschine, aus einer TiAl - Legierung, welches folgende Schritte in der angegebenen Reihenfolge umfasst:
    - Herstellung eines Pulvers aus der TiAl - Legierung,
    - Herstellung einer Kapsel, deren Form der Form des herzustellenden Bauteils entspricht,
    - Einfüllen des Pulvers in die Kapsel und Verschließen derselben,
    - heißisostatisches Pressen der Kapsel mit dem Pulver,
    - Wärmebehandlung der heißisostatisch gepressten Kapsel, wobei die Wärmebehandlung in der angegebenen Reihenfolge umfasst:
    - eine Lösungsglühung bei einer Temperatur bis zu 1400°C für 15 bis 45 min,
    - eine Hochtemperaturglühung bei einer Temperatur von 1100°C bis 1300°C für 15 bis 120 min, und
    - eine Auslagerungsglühung bei einer Temperatur von 850°C bis 1100°C für 6 bis 100 h
    - Entfernen der Kapsel,
    - Nachbearbeitung der Kontur des Bauteils durch Materialabtrag.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Herstellung des Pulvers mindestens einen der folgenden Schritte, vorzugsweise alle Schritte in der angegebenen Reihenfolge umfasst:
    • Pressen von Ausgangsmaterialien oder Erschmelzen von Vorlegierungen, die aus den zu legierenden Komponenten bestehen oder diese umfassen,
    • Erschmelzen der Legierung durch einmaliges oder mehrmaliges Plasma - Lichtbogen - Schmelzen (PAM plasma arc melting) oder Vakuum - Lichtbogen - Schmelzen (VAR vacuum arc remelting) oder Vakuum - Induktions - Schmelzen (VIM),
    • Verdüsung der Legierung zur Herstellung des Pulvers aus einem Schmelzbad oder mit Hilfe eines abgegossenen Ingots, insbesondere unter Verwendung eines der Verfahren, die Vakuum - Inertgas - Zerstäubung (VIGA vacuum inert gas atomization), Plasmaschmelzen - Induktionsführungszerstäubung (PIGA plasma melting induction guiding atomization), Elektronen - Induktions - Zerstäubung (EIGA electrode induction gas atomization) und Plasma - Rotationselektroden - Zerstäubung (PREP plasma rotating electrode process) umfassen,
    • Klassifizieren von Pulverfraktionen und Auswählen einer oder mehrerer Pulverfraktionen mit durchschnittlichen oder maximalen Partikelgrößen kleiner oder gleich 150 µm, insbesondere kleiner oder gleich 125 µm Durchmesser oder maximaler Erstreckung, insbesondere Partikeln mit maximalen oder durchschnittlichen Durchmessern der Partikel im Bereich von 15 bis 150 µm oder vorzugsweise 45 bis 125 µm, und
    • Reinigung des Pulvers in einem Plasmareinigungsprozess.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kapsel aus Titan oder einer Ti - Legierung gebildet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kapsel aus mindestens zwei Formteilen gebildet wird, die insbesondere miteinander verschweißt werden, vorzugsweise unter Schutzgas.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Kapsel mit Aufmaß gegenüber dem herzustellenden Bauteil ausgebildet ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Einfüllen des Pulvers unter Schutzgas oder unter Vakuum erfolgt.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Pulver vor dem Abfüllen in die Kapsel oder die befüllte, aber noch nicht verschlossene Kapsel einer Wärmebehandlung unter Vakuum unterzogen wird, insbesondere einer Wärmebehandlung bei einer Temperatur im Bereich von 200°C bis 500°C, vorzugsweise zwischen 440°C und 460°C, und einem Druck kleiner oder gleich 10-3 mbar, insbesondere kleiner oder gleich 10-5 mbar.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, dass
    nach der Wärmebehandlung die Abkühlung mit einer Abkühlrate von 25°C/min bis 35°C/min, insbesondere 30°C/min bis auf eine Temperatur von 120°C oder weniger, insbesondere 100°C oder weniger erfolgt.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Packungsdichte des Pulvers in der Kapsel vor oder nach dem Verschließen durch mechanische Anregung erhöht wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das heißisostatische Pressen im Temperaturbereich von 1100°C bis 1400°C, insbesondere 1150°C bis 1300°C bei einem Druck von 100 bis 250 MPa für eine Zeitdauer von 2 bis 6 h erfolgt.
  11. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    durch das heißisostatische Pressen ein net - shape - Bauteil oder near - net - shape - Bauteil erzeugt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Entfernen der Kapsel durch chemisches Beizen, elektrochemische Bearbeitung und/oder mechanische Bearbeitung erfolgt.
  13. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Nachbearbeitung der Kontur durch mechanische, spanabhebende Bearbeitung, insbesondere Fräsen, und/oder durch elektrochemische Bearbeitung erfolgt.
  14. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Bauteil mit geeigneten Funktionsschichten versehen wird.
  15. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Bauteil und/oder das Material, aus dem das Bauteil hergestellt worden ist, charakterisiert wird, insbesondere durch Röntgenbeugung.
  16. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Legierung einen oder mehrere Bestandteile aus der Gruppe umfasst, die Nb, Mo, W, Co, Cr, V, Zr, Si, C, Er, Gd, Hf, Y und B beinhaltet.
  17. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Legierung neben den Hauptbestandteilen Ti und Al folgende Elemente mit den angegebenen Anteilen beinhaltet und vorzugsweise - außer unvermeidlichen Verunreinigungen - aus diesen gebildet ist: W 0 bis 3 at.% und/oder Si 0,2 bis 0,35 at.% und/oder C 0 bis 0,6 at. % und/oder Zr 0 bis 6 at.% und/oder Y 0 bis 0,5 at.% und/oder Hf 0 bis 0,3 at.% und/oder Er 0 bis 0,5 at.% und/oder Gd 0 bis 0,5 at.% und/oder B 0 bis 0,2 at.%. und/oder Nb 4 bis 25 at.% und/oder Mo 1 bis 10 at.% und/oder W 0,5 bis 3 at.% und/oder Co 0,1 bis 10 at.% und/oder Cr 0,5 bis 3 at.% und/oder V 0,5 bis 10 at.% .
EP14182981.2A 2014-09-01 2014-09-01 Herstellungsverfahren für TiAl-Bauteile Not-in-force EP2990141B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES14182981T ES2728527T3 (es) 2014-09-01 2014-09-01 Procedimiento de fabricación de componentes de TiAl
EP14182981.2A EP2990141B1 (de) 2014-09-01 2014-09-01 Herstellungsverfahren für TiAl-Bauteile
US14/838,802 US10029309B2 (en) 2014-09-01 2015-08-28 Production process for TiAl components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14182981.2A EP2990141B1 (de) 2014-09-01 2014-09-01 Herstellungsverfahren für TiAl-Bauteile

Publications (2)

Publication Number Publication Date
EP2990141A1 EP2990141A1 (de) 2016-03-02
EP2990141B1 true EP2990141B1 (de) 2019-04-03

Family

ID=51453656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14182981.2A Not-in-force EP2990141B1 (de) 2014-09-01 2014-09-01 Herstellungsverfahren für TiAl-Bauteile

Country Status (3)

Country Link
US (1) US10029309B2 (de)
EP (1) EP2990141B1 (de)
ES (1) ES2728527T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016224532A1 (de) * 2016-12-08 2018-06-14 MTU Aero Engines AG Hochtemperaturschutzschicht für Titanaluminid-Legierungen
DE102017215321A1 (de) * 2017-09-01 2019-03-07 MTU Aero Engines AG Verfahren zur herstellung eines titanaluminid - bauteils mit zähem kern und entsprechend hergestelltes bauteil
JP7197597B2 (ja) * 2017-11-24 2022-12-27 コリア インスティテュート オブ マテリアルズ サイエンス 高温特性に優れた3dプリンティング用チタン-アルミニウム系合金及びその製造方法
CN108115365A (zh) * 2017-12-20 2018-06-05 西安西工大超晶科技发展有限责任公司 一种钛铝合金铸锭的包套开坯锻造成型工艺
DE102018208709A1 (de) 2018-06-04 2019-12-05 MTU Aero Engines AG Kapsel zur Herstellung eines Bauteils für eine Strömungsmaschine, Verfahren zur Herstellung eines Bauteils für eine Strömungsmaschine und Bauteil für eine Strömungsmaschine
CN110586948A (zh) * 2019-09-09 2019-12-20 中国人民解放军第五七一九工厂 航空发动机低成本双性能粉末涡轮盘的制备方法
CN111455203A (zh) * 2020-05-28 2020-07-28 陕西工业职业技术学院 一种3D打印制粉用TiAl棒材的制备方法
CN113664199A (zh) * 2021-08-20 2021-11-19 西安欧中材料科技有限公司 航空发动机涡轮叶片热等静压近净成型方法
CN114921735B (zh) * 2022-06-02 2022-11-18 中国航发北京航空材料研究院 改善铸造用高Nb-TiAl合金力学性能的热调控方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
JP2006009062A (ja) * 2004-06-23 2006-01-12 Nippon Steel Corp チタンアルミ金属間化合物製精密機械装置用部材の製造方法及び精密機械装置用部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094672A (en) * 1975-12-22 1978-06-13 Crucible Inc. Method and container for hot isostatic compacting
US4834942A (en) * 1988-01-29 1989-05-30 The United States Of America As Represented By The Secretary Of The Navy Elevated temperature aluminum-titanium alloy by powder metallurgy process
US5098484A (en) * 1991-01-30 1992-03-24 The United States Of America As Represented By The Secretary Of The Air Force Method for producing very fine microstructures in titanium aluminide alloy powder compacts
US5424027A (en) 1993-12-06 1995-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce hot-worked gamma titanium aluminide articles
JP3459138B2 (ja) * 1995-04-24 2003-10-20 日本発条株式会社 TiAl系金属間化合物接合体およびその製造方法
DE10355036A1 (de) * 2003-11-25 2005-06-23 Mtu Aero Engines Gmbh Verfahren zur Herstellung einer Schutzschicht, Schutzschicht und Bauteil mit einer solchen Schutzschicht
US20060083653A1 (en) * 2004-10-20 2006-04-20 Gopal Das Low porosity powder metallurgy produced components
JP2008208432A (ja) * 2007-02-27 2008-09-11 Kinzoku Giken Kk TiAl金属間化合物基合金の粉末焼結体の製造方法
US20130248061A1 (en) * 2012-03-23 2013-09-26 General Electric Company Methods for processing titanium aluminide intermetallic compositions
US20160138423A1 (en) * 2013-03-15 2016-05-19 Rolls-Royce North American Technologies, Inc. Titanium-aluminide components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768679A (en) * 1992-11-09 1998-06-16 Nhk Spring R & D Center Inc. Article made of a Ti-Al intermetallic compound
JP2006009062A (ja) * 2004-06-23 2006-01-12 Nippon Steel Corp チタンアルミ金属間化合物製精密機械装置用部材の製造方法及び精密機械装置用部材

Also Published As

Publication number Publication date
US20160059312A1 (en) 2016-03-03
US10029309B2 (en) 2018-07-24
EP2990141A1 (de) 2016-03-02
ES2728527T3 (es) 2019-10-25

Similar Documents

Publication Publication Date Title
EP2990141B1 (de) Herstellungsverfahren für TiAl-Bauteile
EP3069802B1 (de) Verfahren zur herstellung eines bauteils aus einem verbund-werkstoff mit einer metall-matrix und eingelagerten intermetallischen phasen
EP3994287B1 (de) Verfahren zur herstellung eines pulvers auf basis einer nickel-basislegierung
EP1523390B1 (de) Verfahren zur endkonturnahen herstellung von hochporösen met allischen formkörpern
DE60033018T2 (de) Verfahren zur herstellung von metallprodukten, wie bleche durch kaltverformung und flashalterung
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
DE102007047523B3 (de) Verfahren zur Herstellung von Halbzeuge aus NiTi-Formgedächtnislegierungen
DE2125562C3 (de) Verfahren zur pulvermetallurgischen Herstellung dichter Körper aus Nickel-Superlegierungen
DE2542094A1 (de) Metallpulver, verfahren zur behandlung losen metallpulvers und verfahren zur herstellung eines verdichteten presslings
DE1901766A1 (de) Verfahren zum Herstellen eines verdichteten Gegenstandes aus Pulver,insbesondere aus Metallpulver
EP0686443A1 (de) Verfahren zum Herstellen von Gussteilen aus reaktiven Metallen und wiederverwendbare Giessform zur Durchführung des Verfahrens
DE2445462B2 (de) Verwendung einer Nickellegierung
EP2185738B1 (de) Herstellung von legierungen auf basis von titanuluminiden
EP3994289B1 (de) Nickel-basislegierung für pulver und verfahren zur herstellung eines pulvers
EP3249064A1 (de) Additive fertigung von hochtemperaturbauteilen aus tial
DE4219469A1 (de) Hohen Temperaturen aussetzbares Bauteil, insbesondere Turbinenschaufel, und Verfahren zur Herstellung dieses Bauteils
DE2326284A1 (de) Werkstueck aus einer verdichteten superlegierung auf ni-basis
DE2603693A1 (de) Verfahren zum pulvermetallurgischen herstellen von teilen aus knetlegierungen
EP3269838A1 (de) Hochwarmfeste tial-legierung und herstellungsverfahren hierfür sowie bauteil aus einer entsprechenden tial-legierung
EP1568486A1 (de) Verfahren zur Herstellung von Bauteilen oder Halbzeugen, die intermetallische Titanaluminid-Legierungen enthalten, sowie mittels des Verfahrens herstellbare Bauteile
DE2200670B2 (de)
EP1647606B1 (de) Hochharte Nickelbasislegierung für verschleissfeste Hochtemperaturwerkzeuge
EP3015199A2 (de) Verfahren zur herstellung einer hochtemperaturfesten ziellegierung, eine vorrichtung, eine legierung und ein entsprechendes bauteil
DE3730082A1 (de) Verfahren zur herstellung eisenhaltiger sinterlegierungen mit erhoehter abriebfestigkeit
DE2814553A1 (de) Verdichtete erzeugnisse aus nickel- superlegierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160831

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/18 20060101ALI20181108BHEP

Ipc: B22F 5/00 20060101AFI20181108BHEP

Ipc: C22C 1/04 20060101ALI20181108BHEP

Ipc: C25F 5/00 20060101ALI20181108BHEP

Ipc: B22F 3/15 20060101ALI20181108BHEP

Ipc: C22C 14/00 20060101ALI20181108BHEP

Ipc: B22D 7/00 20060101ALI20181108BHEP

Ipc: B22D 29/00 20060101ALI20181108BHEP

Ipc: B22F 5/04 20060101ALI20181108BHEP

Ipc: C22C 1/02 20060101ALI20181108BHEP

Ipc: B22F 3/24 20060101ALI20181108BHEP

Ipc: B22F 9/08 20060101ALI20181108BHEP

INTG Intention to grant announced

Effective date: 20181207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011288

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2728527

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011288

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200921

Year of fee payment: 7

Ref country code: GB

Payment date: 20200923

Year of fee payment: 7

Ref country code: DE

Payment date: 20200924

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1115111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201016

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014011288

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210902