EP2888530A1 - Verfahren zur regelung einer heizeinrichtung und heizeinrichtung - Google Patents
Verfahren zur regelung einer heizeinrichtung und heizeinrichtungInfo
- Publication number
- EP2888530A1 EP2888530A1 EP13753841.9A EP13753841A EP2888530A1 EP 2888530 A1 EP2888530 A1 EP 2888530A1 EP 13753841 A EP13753841 A EP 13753841A EP 2888530 A1 EP2888530 A1 EP 2888530A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- determined
- heating device
- coefficient
- power
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000001105 regulatory effect Effects 0.000 title abstract description 5
- 238000002485 combustion reaction Methods 0.000 claims abstract description 38
- 230000003068 static effect Effects 0.000 claims abstract description 18
- 239000000446 fuel Substances 0.000 claims description 8
- 239000008236 heating water Substances 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/08—Regulating air supply or draught by power-assisted systems
- F23N3/082—Regulating air supply or draught by power-assisted systems using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/002—Regulating air supply or draught using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/04—Measuring pressure
- F23N2225/06—Measuring pressure for determining flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/04—Heating water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2900/00—Special features of, or arrangements for controlling combustion
- F23N2900/05181—Controlling air to fuel ratio by using a single differential pressure detector
Definitions
- the invention relates to a method for controlling a heating device according to the preamble of claim 1. Furthermore, the invention relates to a heating device for carrying out the method.
- Such heaters are used to heat a heating medium, heating water is usually used.
- the heating device in this case has a combustion chamber in which a fuel, such as a gas, is burned. In this case, combustion air is supplied via a blower. The heat released is transferred to the heating medium in a heat exchanger.
- a correct ratio of the volume of combustion air supplied and the amount of fuel supplied is essential. If too little air is supplied, the fuel can not burn completely. This results in high pollutant emissions, in particular of carbon monoxide and hydrocarbon. If too much air is supplied, the combustion is cooled, which also leads to increased pollutant emissions.
- the blower generally has an impeller whose speed influences a volume flow of the combustion air, ie the volume per unit time. The volume flow can be monitored.
- DE 19 945 562 A1 describes a method for monitoring and / or regulating a vehicle heating device, wherein a rotational speed of a fan for controlling a volume flow of a combustion air is regulated.
- combustion in the combustion chamber is monitored by a pressure or sound pressure sensor.
- DE 10 2005 01 1 021 A1 describes a method for adapting the device heating power of a fan-assisted heater to the individual pressure losses of a fresh-air exhaust gas line system, wherein a fan speed and a fan power are detected. If the ratio of the fan speed to the measured fan power is not within a predefinable range, an error message is output.
- the invention has for its object to overcome the disadvantages of the prior art and in particular to allow control of the heater with little effort.
- a static pressure and / or a power consumption of the fan are determined, wherein a volume flow of the combustion air is determined based on the rotational speed in conjunction with the static pressure and / or the power consumption.
- a speed detection is usually provided anyway with variable controllable blowers.
- only one sensor for detecting the static pressure and / or the power consumption of the fan must be provided. This can be realized with very little effort. In this case, such sensors are available as a mass-produced very cost.
- reference values for a pressure coefficient and / or a power coefficient as a function of a volumetric flow coefficient at a Reference fan determined are taken into account in the determination of the flow rate.
- the pressure coefficient H is dependent on the gravitational acceleration g, the rotational speed N, the diameter D of the impeller and the static pressure h and is calculated according to the following formula:
- the pressure coefficient can be determined after measuring the static pressure and the rotational speed.
- the power coefficient P is dependent on the power consumption W, the density of the combustion air p, the rotational speed N, the diameter D and is calculated according to the following formula:
- the density of the combustion air can be considered approximately constant. To increase the accuracy of the density can also be detected in addition.
- the diameter of the impeller is constant.
- volumetric flow coefficient F which is a quadratic function of the pressure coefficient and of the power coefficient, is dependent on the volumetric flow V, the rotational speed N and the diameter D and is calculated according to the following formula:
- Power consumption or the calculated static pressure calculated pressure coefficient or coefficient of performance can be determined based on reference values, which were obtained in a geometrically similar fan and deposited, for example in the form of characteristics, the volumetric flow coefficient. From this, the volumetric flow can be determined relatively simply using formula (3) above. The volume flow can therefore be determined with relatively little effort. To increase the volumetric flow coefficient.
- the volume flow may also be parallel in two ways.
- the Reynolds number should be sufficiently high and influences of the viscosity should be low. This is usually the case.
- the power consumption of the fan is determined from the recorded by an electric fan motor electric power, wherein an efficiency is taken into account. It is associated with less effort, the electrical
- the mechanical power depends on the electrical power and the efficiency, which depends on a load and a motor speed. This efficiency can be determined for example by experiments and then deposited in a controller.
- the static pressure in the flow direction behind the fan is determined.
- the current air pressure can then be determined while the static pressure of the combustion air can be determined relatively accurately during operation.
- the object is also achieved by the heating device for carrying out the method with the features of claim 6.
- This heating device is used for heating a heating medium, in particular heating water, and has a combustion chamber into which combustion air can be supplied via a blower and fuel via a feed line.
- the heating device has a rotational speed sensor and a pressure sensor and / or a power sensor. By determining the volume flow of the combustion air, the combustion can then be regulated well. In particular, the volume supplied to combustion air in
- FIG. 1 shows a heating device of a first embodiment
- Fig. 2 shows a heater of a second embodiment
- 3 is a diagram with a power coefficient characteristic and a
- a heating device is shown schematically, which has a fan 1, a burner, a heat exchanger 3, a discharge channel 4 and a discharge pipe 5.
- Combustion air is conveyed into a combustion chamber of the heating device via the blower 1.
- the burner 2 is fuel, such as a gas, promoted. This is not shown.
- this has a supply interface 1.2.
- the heat released in the burner is transferred to a heating medium, such as heating water.
- a volume flow is significantly influenced by a speed of the blower 1.
- the speed of an impeller is therefore detected by means of a speed sensor 1 .1, which is designed for example as a Hall sensor.
- a static pressure of the combustion air between blower 1 and burner 2 is determined via a pressure sensor 1 .3.
- the pressure sensor 1 .3 and the speed sensor 1 .1 are connected to a controller 6, which calculates a volume flow on the basis of the determined values for a speed of the impeller and the static pressure.
- the controller 6 has a memory in which reference values for a pressure coefficient, a power coefficient and a volumetric flow coefficient are stored in the form of characteristic curves. These reference values have been determined on a reference fan and are applicable to fans with similar geometrical dimensions. The determination of the volume flow can therefore be relatively easy by detecting the speed and the static pressure.
- FIG. 2 shows a slightly modified embodiment with respect to FIG. 1. The same and corresponding elements are provided with the same reference numerals.
- a power consumption is measured via a power sensor and made available to the controller 6.
- a measurement of the electrical power which is supplied to a motor of the blower 1 takes place. Based on this power and the speed then the controller calculates the guided through the fan 1 to the burner 2 and in the combustion chamber volume flow.
- FIG. 3 is a diagram in which a pressure coefficient H is plotted in a first characteristic curve and a power coefficient P is plotted in each case over a volume flow coefficient F in a second characteristic curve. These are characteristic curves that have been determined from reference values.
- a corresponding manner can be determined by detecting the speed and the power absorbed with the above formula (2), the power coefficient and determine the corresponding volume flow coefficient based on the characteristic in Fig. 3. From this, the volumetric flow can be calculated with the above formula (3).
- the method according to the invention and the heating device according to the invention thus make it possible to determine the volume flow with little effort. Only two sensors are required, namely a speed sensor and a pressure sensor or a speed sensor and a power sensor. Incidentally, the calculation is based on fixed values and dependencies. Thus, the determination of the volume flow is subject only to a low error rate. A clean, low-emission combustion can be ensured with it.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012016606.0A DE102012016606A1 (de) | 2012-08-23 | 2012-08-23 | Verfahren zur Regelung einer Heizeinrichtung und Heizeinrichtung |
PCT/EP2013/067215 WO2014029721A1 (de) | 2012-08-23 | 2013-08-19 | Verfahren zur regelung einer heizeinrichtung und heizeinrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2888530A1 true EP2888530A1 (de) | 2015-07-01 |
EP2888530B1 EP2888530B1 (de) | 2017-04-12 |
Family
ID=49083654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13753841.9A Active EP2888530B1 (de) | 2012-08-23 | 2013-08-19 | Verfahren zur regelung einer heizeinrichtung und heizeinrichtung |
Country Status (9)
Country | Link |
---|---|
US (1) | US20150233578A1 (de) |
EP (1) | EP2888530B1 (de) |
KR (1) | KR102119376B1 (de) |
CN (1) | CN104583679B (de) |
AU (1) | AU2013305101B2 (de) |
DE (1) | DE102012016606A1 (de) |
ES (1) | ES2632942T3 (de) |
PT (1) | PT2888530T (de) |
WO (1) | WO2014029721A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020043887A1 (de) | 2018-08-30 | 2020-03-05 | Bosch Termotecnologia S.A. | Verfahren zur regelung einer heizeinrichtung und heizeinrichtung |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2413047B2 (de) † | 2010-07-30 | 2021-11-17 | Grundfos Management A/S | Brauchwassererwärmungseinheit |
US10502418B2 (en) * | 2015-03-17 | 2019-12-10 | Intergas Heating Assets B.V. | Device and method for mixing combustible gas and combustion air, hot water installation provided therewith, corresponding thermal mass flow sensor and method for measuring a mass flow rate of a gas flow |
PT108703B (pt) | 2015-07-17 | 2021-03-15 | Bosch Termotecnologia, S.A. | Dispositivo para aparelhos de aquecimento e processo para a operação de um dispositivo para aparelhos de aquecimento |
FR3039260B1 (fr) * | 2015-07-23 | 2017-08-25 | Bosch Gmbh Robert | Procede de gestion d'une chaudiere a condensation et chadiere pour la mise en oeuvre du procede |
CN106642711B (zh) * | 2015-09-22 | 2022-09-16 | 艾欧史密斯(中国)热水器有限公司 | 双传感燃烧系统 |
US10962257B2 (en) * | 2015-12-09 | 2021-03-30 | Fulton Group N.A., Inc. | Compact fluid heating system with high bulk heat flux using elevated heat exchanger pressure drop |
PL3296634T3 (pl) * | 2016-09-14 | 2019-05-31 | Valeo Thermal Commercial Vehicles Germany GmbH | Sposób stałego utrzymywania przepływu masowego powietrza do spalania doprowadzonego do komory spalania ruchomego urządzenia grzewczego oraz urządzenia grzewcze działające zgodnie z takim sposobem |
EP3321582A1 (de) * | 2016-11-14 | 2018-05-16 | Hubert Ziegler | Vorrichtung zur regelung eines schornsteindruckes für eine feuerstelle und verfahren zur schornsteindruckkonstantregelung |
DE102018104242A1 (de) * | 2018-02-26 | 2019-08-29 | Eberspächer Climate Control Systems GmbH & Co. KG | Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgeräts |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2605134C2 (de) * | 1975-02-12 | 1984-10-04 | Fascione, Pietro, Busto Arsizio, Varese | Vorrichtung zur Zuführung einer Mischung von Luft und rückgeführtem Rauchgas zu einem Brenner |
US4330260A (en) * | 1979-01-31 | 1982-05-18 | Jorgensen Lars L S | Method and apparatus for regulating the combustion in a furnace |
FR2512179A1 (fr) * | 1981-08-27 | 1983-03-04 | Sdecc | Chaudiere a gaz etanche a tirage force avec regulation par microprocesseur |
JPH0436508A (ja) * | 1990-06-01 | 1992-02-06 | Toshiba Corp | 燃焼機 |
US5037291A (en) * | 1990-07-25 | 1991-08-06 | Carrier Corporation | Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner |
DE9310451U1 (de) * | 1993-03-05 | 1994-06-30 | Landis & Gyr Business Support Ag, Zug | Steuer- bzw. Regeleinrichtung für Gas-Feuerungsautomaten von Heizungsanlagen |
DE4326945C2 (de) | 1993-08-11 | 1996-10-24 | Schott Glaswerke | Regeleinrichtung für die Gaszufuhr zu einer Gaskocheinrichtung mit unter einer durchgehenden Kochfläche angeordneten Gasstrahlungsbrennern |
JP3312978B2 (ja) * | 1993-11-30 | 2002-08-12 | 株式会社ガスター | 燃焼装置 |
DE19824521B4 (de) * | 1998-06-02 | 2004-12-23 | Honeywell B.V. | Regeleinrichtung für Gasbrenner |
DE19922226C1 (de) * | 1999-05-14 | 2000-11-30 | Honeywell Bv | Regeleinrichtung für Gasbrenner |
DE19945562B4 (de) | 1999-09-23 | 2014-01-16 | Eberspächer Climate Control Systems GmbH & Co. KG | Verfahren zur Überwachung und/oder Regelung eines Fahrzeugheizgerätes |
AT413300B (de) * | 2001-03-23 | 2006-01-15 | Vaillant Gmbh | Notlaufprogramm für heizungsgeräte |
DE10159033B4 (de) | 2000-12-01 | 2012-08-16 | Vaillant Gmbh | Regelungsverfahren für Heizungsgeräte |
DE10109808C2 (de) * | 2001-03-01 | 2003-12-04 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Anpassung eines brennerbetriebenen Heizgerätes an ein Luft-Abgas-System |
DE10144404C2 (de) | 2001-09-10 | 2003-09-18 | Webasto Thermosysteme Gmbh | Mobiles Zusatzheizgerät mit Ermittlung der Luftdichte |
US6994620B2 (en) * | 2003-04-30 | 2006-02-07 | Carrier Corporation | Method of determining static pressure in a ducted air delivery system using a variable speed blower motor |
US7036559B2 (en) * | 2003-07-08 | 2006-05-02 | Daniel Stanimirovic | Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices |
AT412902B (de) | 2003-09-23 | 2005-08-25 | Vaillant Gmbh | Verfahren zur anpassung der geräteheizleistung eines gebläseunterstützten heizgerätes |
DE102005011021A1 (de) | 2004-09-22 | 2006-09-21 | Vaillant Gmbh | Verfahren zur Anpassung der Geräteheizleistung eines gebläseunterstützten Heizgerätes an die individuellen Druckverluste eines Frischluft-Abgas-Leitungssystems |
EP1701096A1 (de) * | 2005-03-10 | 2006-09-13 | Vaillant GmbH | Verfahren zur Anpassung der Geräteheizleistung eines gebläseunterstützten Heizgerätes an die individuellen Druckverluste eines Frischluft-Abgas-Leitungssystems |
US8303297B2 (en) * | 2007-10-31 | 2012-11-06 | Webster Engineering & Manufacturing Co., Llc | Method and apparatus for controlling combustion in a burner |
US8738185B2 (en) * | 2009-12-11 | 2014-05-27 | Carrier Corporation | Altitude adjustment for heating, ventilating and air conditioning systems |
CN102345635B (zh) * | 2010-08-03 | 2014-04-02 | 沈阳鼓风机研究所(有限公司) | 循环流化床锅炉节能风机系列模型 |
ITBA20110037A1 (it) * | 2011-07-07 | 2013-01-08 | Ind Plant Consultant Srl | Metodo per la protezione dei compressori centrifughi dal fenomeno del pompaggio |
US20130260664A1 (en) * | 2012-03-30 | 2013-10-03 | Rockwell Automation Technologies, Inc. | Eccentric fan housing |
US20130345995A1 (en) * | 2012-05-21 | 2013-12-26 | Carrier Corporation | Air Flow Control And Power Usage Of An Indoor Blower In An HVAC System |
-
2012
- 2012-08-23 DE DE102012016606.0A patent/DE102012016606A1/de active Pending
-
2013
- 2013-08-19 PT PT137538419T patent/PT2888530T/pt unknown
- 2013-08-19 KR KR1020157004326A patent/KR102119376B1/ko active IP Right Grant
- 2013-08-19 ES ES13753841.9T patent/ES2632942T3/es active Active
- 2013-08-19 CN CN201380044363.9A patent/CN104583679B/zh not_active Expired - Fee Related
- 2013-08-19 EP EP13753841.9A patent/EP2888530B1/de active Active
- 2013-08-19 US US14/423,323 patent/US20150233578A1/en not_active Abandoned
- 2013-08-19 AU AU2013305101A patent/AU2013305101B2/en not_active Ceased
- 2013-08-19 WO PCT/EP2013/067215 patent/WO2014029721A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2014029721A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020043887A1 (de) | 2018-08-30 | 2020-03-05 | Bosch Termotecnologia S.A. | Verfahren zur regelung einer heizeinrichtung und heizeinrichtung |
US11421876B2 (en) | 2018-08-30 | 2022-08-23 | Bosch Termotecnologia S.A. | Method for regulating a heating device and heating device |
Also Published As
Publication number | Publication date |
---|---|
US20150233578A1 (en) | 2015-08-20 |
CN104583679B (zh) | 2017-11-17 |
KR102119376B1 (ko) | 2020-06-09 |
WO2014029721A1 (de) | 2014-02-27 |
AU2013305101A1 (en) | 2015-04-09 |
ES2632942T3 (es) | 2017-09-18 |
AU2013305101B2 (en) | 2017-08-24 |
EP2888530B1 (de) | 2017-04-12 |
KR20150045440A (ko) | 2015-04-28 |
DE102012016606A1 (de) | 2014-02-27 |
PT2888530T (pt) | 2017-05-08 |
CN104583679A (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2888530B1 (de) | Verfahren zur regelung einer heizeinrichtung und heizeinrichtung | |
DE102014201947B3 (de) | Verfahren und Vorrichtung zur Bestimmung eines Ladeluftmassenstroms | |
EP2193353B1 (de) | Verfahren zur detektion eines vergiftungsgrads eines partikelsensors und partikelsensor | |
DE112011104817B4 (de) | Controller einer Verbrennungsmaschine | |
DE102006041478A1 (de) | Verfahren zur Ermittlung einer Rußkonzentration im Abgas einer Brennkraftmaschine | |
EP2435812A1 (de) | Prüfstand mit temperaturgesteuertem kühlgebläse | |
DE3840247C2 (de) | ||
DE19732642C2 (de) | Einrichtung zum Steuern einer Brennkraftmaschine | |
DE102010033081A1 (de) | Elektrische Heizung sowie Steuersystem und -verfahren für elektrisch beheizte Partikelfilter | |
DE102010055478A1 (de) | Verfahren zum Betreiben eines Rußsensors | |
DE4132008C2 (de) | Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde | |
WO2010086435A1 (de) | Verfahren und vorrichtung zur messung der russbeladung in abgassystemen von dieselmotoren | |
DE102005056152A1 (de) | Verfahren zum Kalibrieren des von einem Breitband-Lambdasensor bereitgestellten Signals und Vorrichtung zur Durchführung des Verfahrens | |
AT510075B1 (de) | Verfahren zur kalibrierung einer einrichtung zum regeln des brenngas-luft-verhältnisses eines brenngasbetriebenen brenners | |
WO2014187639A1 (de) | Kraftstofftanksystem | |
AT412902B (de) | Verfahren zur anpassung der geräteheizleistung eines gebläseunterstützten heizgerätes | |
DE102008034323B4 (de) | Verfahren und Vorrichtung zur Bestimmung des Drucks vor dem Verdichter eines Turboladers zur Ermittlung des Verscchmutzungsgrades eines Luftfilters, der vor dem Verdichter des Turboladers angeordnet ist. | |
DE102016101259A1 (de) | System zum Schätzen einer Partikelanzahl | |
DE102005042690A1 (de) | Verfahren und Anordnung zur Plausibilitätsprüfung eines Luftmassenmessers | |
DE102009023200A1 (de) | Verfahren zum Betreiben eines Rußsensors und Rußsensor betrieben nach diesem Verfahren | |
DE102011053419B4 (de) | Verfahren zur Steuerung eines Abgassystems eines Dieselmotors sowie Abgassystem eines Dieselmotors | |
EP1432655B1 (de) | Brennstoffzellensystem mit einem massenstromsensor | |
WO2017029074A1 (de) | VERFAHREN ZUR FUNKTIONSÜBERWACHUNG EINES ELEKTROSTATISCHEN RUßSENSORS | |
DE102020206042A1 (de) | Verfahren und Recheneinheit zur Modellierung des Differenzdruckes über einem Partikelfilter | |
DE102008008589A1 (de) | Verfahren zur Kalibrierung eines Strömungssensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150323 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160602 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161124 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 2888530 Country of ref document: PT Date of ref document: 20170508 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20170424 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 884293 Country of ref document: AT Kind code of ref document: T Effective date: 20170515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013006960 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170412 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2632942 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170918 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170713 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170712 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170812 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502013006960 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
26 | Opposition filed |
Opponent name: VAILLANT GMBH Effective date: 20180112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170831 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170819 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130819 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 884293 Country of ref document: AT Kind code of ref document: T Effective date: 20180819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180819 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 502013006960 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
27O | Opposition rejected |
Effective date: 20200120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220824 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230831 Year of fee payment: 11 Ref country code: ES Payment date: 20230918 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231025 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230819 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240805 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240821 Year of fee payment: 12 |