EP2878685B9 - Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke - Google Patents

Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke Download PDF

Info

Publication number
EP2878685B9
EP2878685B9 EP13195334.1A EP13195334A EP2878685B9 EP 2878685 B9 EP2878685 B9 EP 2878685B9 EP 13195334 A EP13195334 A EP 13195334A EP 2878685 B9 EP2878685 B9 EP 2878685B9
Authority
EP
European Patent Office
Prior art keywords
slag
mass
mixture
iron
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13195334.1A
Other languages
English (en)
French (fr)
Other versions
EP2878685A1 (de
EP2878685B1 (de
Inventor
Alexander Cepak
Thomas Kollmann
Oliver Zach
Marcus Kirschen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Refractory Intellectual Property GmbH and Co KG
Original Assignee
Refractory Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13195334.1A priority Critical patent/EP2878685B9/de
Priority to PL13195334T priority patent/PL2878685T3/pl
Application filed by Refractory Intellectual Property GmbH and Co KG filed Critical Refractory Intellectual Property GmbH and Co KG
Priority to PT131953341T priority patent/PT2878685E/pt
Priority to ES13195334.1T priority patent/ES2559024T3/es
Priority to HUE13195334A priority patent/HUE026614T2/hu
Priority to RS20150849A priority patent/RS54471B1/en
Priority to SI201330101T priority patent/SI2878685T1/sl
Priority to PCT/EP2014/071022 priority patent/WO2015082093A1/de
Priority to CN201480062204.6A priority patent/CN105705662A/zh
Priority to MX2016005055A priority patent/MX2016005055A/es
Priority to US15/038,735 priority patent/US20160376672A1/en
Publication of EP2878685A1 publication Critical patent/EP2878685A1/de
Publication of EP2878685B1 publication Critical patent/EP2878685B1/de
Priority to HRP20151446TT priority patent/HRP20151446T1/hr
Application granted granted Critical
Publication of EP2878685B9 publication Critical patent/EP2878685B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal

Definitions

  • the invention relates to a mixture comprising magnesium, carbon and aluminum for introduction into the slag present on a molten metal in iron and steel metallurgy, to the use of such a mixture and to a method for conditioning a metallurgical one in iron and steel metallurgy on a molten metal Container, for example in a converter, in an electric arc furnace or in a pan, slag.
  • the pig iron melt is separated from unwanted components before it is cast.
  • the crude steel melt is produced by the melting of scrap, pig iron, molten iron and / or sponge iron and other raw materials.
  • the slag must be specifically influenced or conditioned with regard to chemical and physical properties.
  • the basicity ie the mass or molar ratio of the basic components to the other components of the slag (which can be calculated, for example, according to the following formula: [xCaO + MgO] / [xSiO 2 + Al 2 O 3 + other components])
  • the first acidic or non-basic slag are increased to the corrosive attack of the slag on the basic delivery of the metallurgical vessel, in the the molten metal is to reduce and thereby reduce the wear of the delivery and to increase their service life.
  • slag conditioners have a component that increases the basicity of the slag, in particular lime, dolomitic lime or dolomite.
  • the viscosity of the slag may be desirable to adjust the viscosity of the slag by the slag conditioner.
  • the viscosity of the slag during refining is as low as possible in order to be able to incorporate the iron companion oxidized by the applied oxygen well into the slag.
  • This applied slag layer a corrosive attack of a molten metal can be reduced to the delivery of the converter.
  • the process of applying the slag to the converter is also referred to as "maintenance" of the converter.
  • the foamed slag has insulating properties, so that the heat losses from the melt can be reduced and energy can be saved. Furthermore, components of the metallurgical vessel in which the molten iron is located can be protected from heat radiation by the foamed slag.
  • the object of the invention is to provide a slag conditioner by means of which the basicity and the MgO content of the slag can be increased rapidly in order to prevent the slag from attacking the refractory lining of the metallurgical vessel, in which the slag conditioner Molten metal with the slag on it is able to reduce.
  • a further object of the invention is to provide a slag conditioner by means of which the viscosity of the slag can be adjusted in a targeted manner.
  • Another object of the invention is to provide a slag conditioner by which foaming of the slag can be achieved.
  • a further object of the invention is to provide a slag conditioner by which an increase in the iron yield of the primary metallurgical process can be achieved.
  • a mixture or a slag conditioner for introduction into the slag contained in a molten metal in iron and steel metallurgy, the mixture comprising magnesium, carbon and aluminum in the following proportions by mass: MgO: 45-90% by mass; C: 5-40 mass%; and Al 2 O 3 : 1-20 mass%.
  • the mixture according to the invention or the slag conditioner according to the invention is suitable for introduction into slags on molten metals in any metallurgical vessel, but in particular for slags in converters, electric arc furnaces and ladles.
  • magnesium and aluminum in the mixture according to the invention are given as fractions of their oxides MgO and Al 2 O 3 in the mixture, as usual in refractory technology.
  • magnesium and especially aluminum may also be used as described herein other than in oxide form in the mixture according to the invention, for example in metallic form or, with regard to aluminum, in the form of carbide.
  • the proportion of MgO in the mixture according to the invention By the proportion of MgO in the mixture according to the invention, the MgO saturation of the slag is reached faster, so that the corrosive attack of the slag is reduced to the refractory lining of the metallurgical vessel holding the molten metal. Furthermore, the viscosity of the slag increases with increasing MgO content.
  • Magnesium is preferably present in the mixture according to the invention as an oxide, ie in the form of MgO.
  • the proportions of magnesium in the mixture according to the invention are preferably exclusively in the form of MgO, particularly preferably in the form of sintered or fused magnesia.
  • MgO can be present in the mixture according to the invention in proportions of at least 45% by mass, that is also for example in proportions of at least 48, 50, 52, 54, 56, 57, 58, 59, 60 or 61% by mass. Furthermore, MgO may be present in the mixture in proportions of at most 90% by weight, that is to say, for example, in proportions of at most 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 69, 68, 67, 66 , 65, 64 or 63% by mass.
  • the proportion of carbon of the mixture according to the invention reacts when entering the mixture into the slag with oxygen in the slag to form carbon oxides, in particular to carbon monoxide CO and carbon dioxide CO 2 .
  • the carbon of the mixture oxidizes immediately and violently with oxygen fractions of the slag, so that it foams spontaneously when introducing the mixture.
  • the slag thus rises, as in slag-foaming, in the air and covers the refractory lining of the metallurgical vessel.
  • the Electric arc furnace is shielded by the increased volume of the foamed slag, the radiation of the arcs partially or completely with respect to the furnace wall. Due to the increased content of MgO, the slag simultaneously obtains the necessary viscosity in order to adhere to the wall during and after foaming.
  • the carbon of the mixture can react directly with oxygen of the molten metal and extract oxygen from the molten metal.
  • This extracted from the molten metal oxygen must not be removed later in additional steps by deoxidizer, such as aluminum, from the molten metal.
  • At least part of the oxygen with which the carbon introduced into the slag from the mixture according to the invention reacts originates from iron oxides in the slag, which are reduced by the carbon to metallic iron.
  • iron oxides are fluxes which reduce the viscosity of the slag.
  • the viscosity of the slag can be increased.
  • the yield of recovered iron is increased in the overall process.
  • Due to the proportion of carbon in the mixture can thus be achieved on the one foaming of the slag. Furthermore, the viscosity of the slag can be increased. By the proportion of carbon in the mixture can thus be adjusted in a targeted manner the extent of foaming of the slag and its viscosity.
  • the carbon in the mixture, can be present substantially in pure form, for example in the form of graphite or coke, but also, for example, communitized with other constituents, for example with aluminum fractions or magnesium fractions of the mixture.
  • the proportions of carbon according to the invention in the mixture is present partially, substantially or even completely in the form of aluminum carbide (Al 4 C 3 ).
  • Carbon is present in the mixture according to the invention in proportions of at least 5% by mass, for example also in proportions of at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22 or 23 mass%. Furthermore, carbon is present in the mixture according to the invention in proportions of at most 40% by mass, ie for example also in proportions of at most 38, 36, 34, 32, 31, 30, 29, 28, 27, 26 or 25% by mass.
  • Aluminum calculated as Al 2 O 3
  • Aluminum can be present in a proportion of at least 1% by mass in the mixture, ie also in a proportion of at least 2, 3, 4 or 5% by mass. Further, aluminum, calculated as Al 2 O 3, present at levels of at most 20 mass% in the mixture, thus for example also in proportions of at most 18, 16, 14, 13, 12, 11, 10, 9, 8 or 7 Dimensions-%.
  • the proportion of aluminum in the mixture according to the invention is herein calculated as Al 2 O 3 , although the proportions of aluminum in the mixture preferably not in oxide form as Al 2 O 3 , but preferably partially, substantially or completely in metallic form and / or in the form of carbide, ie as Al 4 C 3 .
  • this aluminum carbide simultaneously forms a carrier of both the aluminum and the carbon content in the mixture.
  • the aluminum carbide component is particularly advantageous insofar as both the aluminum and the carbon of the aluminum carbide can react with oxygen fractions of the slag and thereby reduce oxidic constituents of the slag, in particular iron oxides can be. With corresponding reactions, the aluminum content of the aluminum carbide oxidizes to Al 2 O 3 and the carbon content of the aluminum carbide to CO 2 .
  • slag conditioners include magnesium, they have this regularly in the form of magnesium carbonate (MgCO 3 ), dolomite or partially in the form of magnesium hydroxide (Mg (OH) 2 ).
  • MgCO 3 magnesium carbonate
  • dolomite magnesium hydroxide
  • Mg (OH) 2 magnesium hydroxide
  • the mixture according to the invention in contrast to the prior art, is formulated such that the component comprising magnesium, in particular in the form of MgO, is provided solely for increasing the basicity and the MgO content in the mixture, while the foaming of the slag by other components the mixture is caused, in particular by the components comprising carbon and aluminum.
  • the resource efficiency is higher, that is, the specific consumption and the total weight of slag conditioner to be introduced and transported into the slag is lower than in the prior art.
  • the emissions of carbon dioxide can be reduced by the slag conditioner according to the invention, as far as carbonate-containing slag formers are replaced by the slag former according to the invention.
  • the mixture has a proportion of magnesium carbonate of less than 10% by mass, that is to say, for example, a proportion of less than 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0.5% by mass.
  • the mixture has a content of Mg (OH) 2 of less than 10% by mass, that is to say for example also a fraction of 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0.5 Dimensions-%.
  • the mixture has a proportion of dolomite, in particular of crude dolomite, less than 10% by mass, so for example, a proportion of 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0.5 mass%.
  • the mixture has a proportion of calcium carbonate or of limestone below 10% by mass, ie, for example, a proportion of 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0.5 mass -%.
  • the mixture is present in a relatively small particle size, for example at least 70% by mass, 80% by mass or at least 90% by mass or else 100% by mass in a particle size of less than 0.5 mm.
  • the mixture according to the invention can meet, for example, only one of the following conditions in terms of particle size: ⁇ 1 mm: 100% by mass; ⁇ 500 ⁇ m: 100% by mass; ⁇ 315 ⁇ m: at least 90 or 95% by mass and at most 100% by mass; ⁇ 200 ⁇ m: at least 85 or 90% by mass and at most 95 or 100% by mass; ⁇ 100 ⁇ m: at least 65 or 70% by mass and at most 75 or 80% by mass; ⁇ 63 ⁇ m: at least 45 or 50% by mass and at most 65 or 70% by mass.
  • the mixture according to the invention having this very small average particle size, it is possible to effect a particularly good and uniform distribution and, in particular, rapid dissolution of the mixture in a slag.
  • a mixture according to the invention which in particular can have the previously described particle size distribution, is pressed into pellets without additions of additives.
  • these pellets may have an almond-shaped, rod-shaped or spherical shape, for example with a maximum length of, for example, 50 mm, 40 mm or 30 mm.
  • the pellets may also have, for example, a minimum diameter of 5, 10, 15, 20 or 25 mm.
  • the mixture according to the invention has a proportion of calcium oxide (CaO), as by this the basicity of the slag can be further increased and the attack of the slag can be reduced to the refractory lining of the metallurgical vessel.
  • the CaO of the mixture has, in particular, an advantageous basicity-reducing effect if the ratio of CaO to SiO 2 in the mixture does not exceed a certain level.
  • the basicity of the slag can be increased by the CaO, in particular, if the ratio of mass fractions of CaO to SiO 2 in the mixture is not less than 0.7. It can therefore be provided that the ratio of the mass fractions of CaO to SiO 2 in the mixture according to the invention is not less than 0.7.
  • SiO 2 can essentially be introduced into the mixture according to the invention via impurities in the raw materials of the mixture according to the invention.
  • CaO can be present in proportions of at least 0.1 or 0.2 or 0.5 or 1 or 1.5 or 2% by mass in the mixture and, for example, in proportions of at most 10, 9, 8, 7, 6, 5, 4, 3 or 2.5 mass%.
  • SiO 2 can be present in the mixture in proportions of at least 0.1 or 0.2 or 0.5 or 1 or 1.5 or 2 mass% and, for example, in proportions of at most 7, 6, 5, 4, 3 or 2.5% by mass.
  • the mixture in the form of pellets, wherein the mixture is compressed into pellets without the addition of additives.
  • additives are used to compress the mixture into pellets
  • the mixture may be envisioned to use CaO as such a pressing additive.
  • the mixture contrary to the previously disclosed concept of the invention, according to which the mixture has proportions of CaO of at most 10% by mass of CaO, may have proportions of CaO of up to 40% by mass.
  • the mixture preferably has no additive for pressing, so that the proportion of CaO in the mixture, as stated above, is not more than 10% by mass.
  • Iron oxide stands for the sum of all iron oxides in the mixture, ie in particular FeO and Fe 2 O 3 , but also, for example, Fe 3 O 4 and Fe 2 O.
  • Iron oxides may also be present in the mixture in proportions of at least 0.1% by mass, 0.2% by mass, 0.4% by mass, 0.6% by mass or 0.8% by mass, for example at most in Proportions of 7 mass%, 6 mass%, 5 mass%, 4 mass%, 3 mass%, 2.8 mass%, 2.6 mass%, 2.4 mass%, 2, 2% by mass or 2% by mass.
  • the mixture comprises, in addition to the aforementioned components, ie MgO, C, Al, Al 4 C 3 , CaO, SiO 2 , iron oxides and optionally Al 2 O 3 only small proportions of other components, for example in proportions below 5% by mass, 4% by mass, 3% by mass, 2.5% by mass, 2% by mass, 1.5% by mass or else less than 1% by mass.
  • the aforementioned components ie MgO, C, Al, Al 4 C 3 , CaO, SiO 2 , iron oxides and optionally Al 2 O 3 only small proportions of other components, for example in proportions below 5% by mass, 4% by mass, 3% by mass, 2.5% by mass, 2% by mass, 1.5% by mass or else less than 1% by mass.
  • the mixture comprises fractions of the following components below the mass fractions indicated below: Cr 2 O 3 : ⁇ 0.2% by mass; P 2 O 5 : ⁇ 0.2% by mass; TiO 2 : ⁇ 0.2% by mass; K 2 O + Na 2 O: ⁇ 0.5 mass%; ZrO 2 : ⁇ 0.2 mass%.
  • magnesia-carbon products which have been used in the steel industry, in particular as wear linings of oxygen blowing converters, in electric arc furnaces or in pans, are partly suitable as raw material for the mixture according to the invention.
  • correspondingly recycled magnesia-carbon products can be used partially, largely or exclusively as raw material for the mixture according to the invention.
  • the invention also relates to the use of recycled gastric carbon products as raw material for the mixture according to the invention or the use of such recycled magnesia-carbon products as inventive slag conditioners.
  • magnesia in particular sintered magnesia
  • carbon in particular graphite
  • corundum aluminum carbide
  • the mixture may, as described herein, be provided, for example, in compacted or compressed form, for example in the form of pellets.
  • the mixture provided is added to the slag and sinks into it so that it can unfold its effect there according to the invention.
  • the mixture according to the invention is fundamentally suitable as a slag conditioner for slags on a molten metal in any metallurgical vessel, for example for molten metals in converters, electric arc furnaces or ladles.
  • the mixture according to the invention is particularly preferably used as a slag conditioner for slags on molten metals which are located in a metallurgical vessel with a basic feed, ie in particular with a feed based on at least one of the following materials: magnesia, magnesia-carbon, doloma or dolomite. Carbon.
  • the invention furthermore relates to the use of a mixture according to the invention described herein for conditioning a slag present in iron and steel metallurgy on a molten metal in a metallurgical vessel.
  • a mixture which comprises magnesium, carbon and aluminum as well as further components in the proportions by mass according to Table 1.
  • Table 1 component Mass shares [%] MgO 62.6 C 24.6 Al 2 O 3 6.4 CaO 2.4 SiO 2 2.3 Fe 2 O 3 1.3 Cr 2 O 3 0.05 P 2 O 5 0.08 TiO 2 0.08 K 2 O 0.05 Na 2 O 0.08 ZrO 2 0.06
  • the carbon was present in the mixture in the form of graphite and aluminum carbide.
  • Aluminum was present in the mixture in the form of metallic aluminum and in the form of aluminum carbide.
  • the raw materials used were exclusively recycled magnesia-carbon products.
  • the mixture was provided in the form of almond-shaped pellets having a thickness of about 15 mm and a length of about 30 mm pressed without additional additives.
  • the particle size distribution of the mixture in the pellets is given in Table 2.
  • the mixture was used as a slag conditioner for a slag on a molten metal in an oxygen converter.
  • the mixture was applied to the slag contained on the melt.
  • its basicity could be increased.
  • by the proportions of carbon, aluminum and aluminum carbide in the mixture foaming of the slag could be achieved.
  • the viscosity of the slag could be adjusted to the desired level.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

  • Die Erfindung betrifft eine Magnesium, Kohlenstoff und Aluminium umfassende Mischung zur Einbringung in die bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze befindlichen Schlacke, die Verwendung einer solchen Mischung sowie ein Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß, beispielsweise in einem Konverter, in einem Elektrolichtbogenofen oder in einer Pfanne, befindlichen Schlacke.
  • Bei der Stahl- und Eisenmetallurgie wird die Roheisenschmelze vor dem Vergießen von unerwünschten Bestandteilen getrennt.
  • Soweit ein Konverter verwendet wird, wird hierzu bei dem heutzutage am weitesten verbreiteten LD-Verfahren Sauerstoff mittels einer Lanze auf die in einem mit einem basischen feuerfesten Material zugestellten Konverter befindliche Roheisenschmelze aufgeblasen. Der Vorgang dieses Aufblasens von Sauerstoff auf die Roheisenschmelze wird auch als Frischen bezeichnet. Beim Frischen werden Eisenbegleiter, insbesondere Eisenbegleiter in Form von Kohlenstoff, Mangan, Silicium und Phosphor durch den eingeblasenen Sauerstoff oxidiert und bilden zusammen mit zugesetztem gebranntem Kalk eine auf der Metallschmelze aufschwimmende Schlackenschicht.
  • Im Elektrolichtbogenofen wird die Rohstahlschmelze durch das Einschmelzen von Schrott, Roheisen, Flüssigeisen und/oder Eisenschwamm und anderer Rohstoffe erzeugt.
  • Nachdem die im primärmetallurgischen Aggregat gefrischte Metallschmelze die gewünschten Eigenschaften aufweist, wird diese zur sekundärmetallurgischen Behandlung durch den Abstichkanal in die Pfanne abgestochen.
  • Die Schlacke muss hinsichtlich chemischer und physikalischer Eigenschaften gezielt beeinflusst beziehungsweise konditioniert werden.
  • Zur Konditionierung der Schlacke ist es bekannt, die Schlacke mit sogenannten Schlackenkonditionierern zu versehen, um die Eigenschaften der Schlacke verändern zu können.
  • So muss die Basizität, also das Massen- oder Molverhältnis der basischen Komponenten zu den anderen Komponenten der Schlacke (das beispielsweise nach der folgenden Formel berechnet werden kann: [xCaO+MgO] / [xSiO2+Al2O3+weitere Komponenten]), der zunächst sauren beziehungsweise nicht-basischen Schlacke erhöht werden, um den korrosiven Angriff der Schlacke auf die basische Zustellung des metallurgischen Gefäßes, in dem sich die Metallschmelze befindet, zu reduzieren und dadurch den Verschleiß der Zustellung zu vermindern und deren Lebensdauer zu erhöhen. Hierzu weisen Schlackenkonditionierer eine die Basizität der Schlacke erhöhende Komponente auf, insbesondere Kalk, dolomitischen Kalk oder Dolomit. Zusätzlich ist es sinnvoll, den Gehalt an MgO in der Schlacke durch Zugabe eines Schlackenkonditionierers so einzustellen, dass dieser im Bereich der Sättigung an MgO in der Schlacke liegt und dadurch ein korrosiver Angriff der Schlacke auf die Zustellung vermindert wird.
  • In WO 99/05466 wird beispielweise die Basizität und Viskosität der Schlacke in Zusammenhang mit einer konkreten Ausmauerung kontrolliert.
  • Ferner kann es gewünscht sein, die Viskosität der Schlacke durch den Schlackenkonditionierer einzustellen. So ist es häufig gewünscht, dass die Viskosität der Schlacke während des Frischens möglichst gering ist, um die durch den aufgebrachten Sauerstoff oxidierten Eisenbegleiter gut in die Schlacke einbinden zu können. Ferner kann es während des Abstichs oder nach dem Abstich gewünscht sein, dass die Schlacke eine hohe Viskosität aufweist, um die nach dem Abstich im Konverter verbliebene Schlacke besser auf die feuerfeste Zustellung des Konverters auftragen zu können. Durch diese aufgetragene Schlackenschicht kann ein korrosiver Angriff einer Metallschmelze auf die Zustellung des Konverters reduziert werden. Der Vorgang des Auftragens der Schlacke auf den Konverter wird auch als "Pflege" des Konverters bezeichnet. Bei den bekannten Methoden zur Pflege des Konverters handelt es sich zum einen um das sogenannte "Slag-Washing", bei dem die Schlacke durch Schwenken des Konverters auf die Abstich- und Chargierseite verteilt wird. Ein weitere Pflegemethode ist das sogenannte "Slag-Splashing", bei dem die Schlacke mit Hilfe eines Stickstoff-Gasstroms einer Lanze mechanisch verspritzt wird. Schließlich wird beim sogenannten "Slag-Foaming" Schlacke durch Zugabe eines Kohlenstoffträgers chemisch aufgeschäumt. Die beim Slag-Foaming aufgeschäumt Schlacke wird auch als "Schaumschlacke" bezeichnet.
  • Neben der Pflege des Konverters durch die Schaumschlacke, hat diese weitere vorteilhafte Wirkungen. So weist die Schaumschlacke isolierende Eigenschaften auf, so dass die Wärmeverluste aus der Schmelze vermindert und Energie gespart werden kann. Ferner können Komponenten des metallurgischen Gefäßes, in dem sich die Eisenschmelze befindet, durch die Schaumschlacke vor Wärmestrahlung geschützt werden.
  • Um im Elektrolichtbogenofen eine Schaumschlacke zu erzeugen, wird zusätzlich in die Schlacke eingeblasener Kohlenstoff mittels Sauerstoff zu Kohlenmonoxid verbrannt und das zum Schäumen notwendige Kohlenmonoxidgas derart bereitgestellt. Im Fall des Einschmelzprozesses im Elektrolichtbogenofen ist ein Aufschäumen der Schlackenschicht von Bedeutung, da diese durch Volumenvergrößerung die Lichtbogen abschirmt, Strahlungsverluste auf die Ofenwand vermindert, die Energieübertragung auf die Schmelze verbessert und dadurch ebenfalls Energie gespart wird.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, einen Schlackenkonditionierer zur Verfügung zu stellen, durch den die Basizität und der MgO-Gehalt der Schlacke schnell erhöht werden können, um den Angriff der Schlacke auf die feuerfeste Zustellung des metallurgischen Gefäßes, in dem sich die Metallschmelze mit der darauf befindlichen Schlacke befindet, reduzieren zu können.
  • Eine weitere Aufgabe der Erfindung besteht darin, einen Schlackenkonditionierer zur Verfügung zu stellen, durch den die Viskosität der Schlacke gezielt eingestellt werden kann.
  • Eine weitere Aufgabe der Erfindung besteht darin, einen Schlackenkonditionierer zur Verfügung zu stellen, durch den ein Aufschäumen der Schlacke erreicht werden kann.
  • Schließlich liegt eine weitere Aufgabe der Erfindung darin, einen Schlackenkonditionierer zur Verfügung zu stellen, durch den eine Erhöhung der Eisenausbringung des primärmetallurgischen Prozesses erreicht werden kann.
  • Zur Lösung dieser Aufgabe wird erfindungsgemäß zur Verfügung gestellt eine Mischung beziehungsweise ein Schlackenkonditionierer zur Einbringung in die bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze befindliche Schlacke, wobei die Mischung Magnesium, Kohlenstoff und Aluminium in folgenden Massenanteilen umfasst:
    MgO: 45-90 Masse-%;
    C: 5-40 Masse-%; und
    Al2O3: 1-20 Masse-%.
  • Die erfindungsgemäße Mischung beziehungsweise der erfindungsgemäße Schlackenkonditionierer eignet sich zum Einbringen in Schlacken auf Metallschmelzen in einem beliebigen metallurgischen Gefäß, insbesondere jedoch für Schlacken in Konvertern, Elektrolichtbogenöfen und Pfannen.
  • Sämtliche der hierin gemachten Angaben in % sind Angaben in Masse-%, jeweils bezogen auf die Gesamtmasse der erfindungsgemäßen Mischung.
  • Die Anteile an Magnesium und Aluminium in der erfindungsgemäßen Mischung sind als Anteile an deren Oxiden MgO und Al2O3 in der Mischung angegeben, wie in der Feuerfesttechnologie üblich. Allerdings können Magnesium und insbesondere Aluminium auch, wie hierin ausgeführt, in anderer Form als in Oxidform in der erfindungsgemäßen Mischung vorliegen, beispielsweise in metallischer Form oder, in Hinblick auf Aluminium, in Form von Carbid.
  • Durch den Anteil an MgO in der erfindungsgemäßen Mischung wird die MgO-Sättigung der Schlacke schneller ereicht, so dass der korrosive Angriff der Schlacke auf die feuerfeste Zustellung des die Metallschmelze haltenden metallurgischen Gefäßes reduziert wird. Ferner erhöht sich die Viskosität der Schlacke mit steigendem MgO-Gehalt.
  • Magnesium liegt in der erfindungsgemäßen Mischung bevorzugt als Oxid, also in Form von MgO vor. Bevorzugt liegen die Anteile an Magnesium in der erfindungsgemäßen Mischung ausschließlich in Form von MgO vor, besonders bevorzugt in Form von Sinter- oder Schmelzmagnesia.
  • MgO kann in der erfindungsgemäßen Mischung in Anteilen von wenigstens 45 Masse-% vorliegen, also beispielsweise auch in Anteilen von wenigstens 48, 50, 52, 54, 56, 57, 58, 59, 60 oder 61 Masse-%. Ferner kann MgO in der Mischung in Anteilen von höchstens 90 Masse-% vorliegen, also beispielsweise auch in Anteilen von höchstens 88, 86, 84, 82, 80, 78, 76, 74, 72, 70, 69, 68, 67, 66, 65, 64 oder 63 Masse-%.
  • Der Anteil an Kohlenstoff der erfindungsgemäßen Mischung reagiert bei Eingabe der Mischung in die Schlacke mit in der Schlacke befindlichem Sauerstoff zu Kohlenstoffoxiden, insbesondere zu Kohlenmonoxid CO und Kohlendioxid CO2. Bei Einbringen der Mischung in die Schlacke oxidiert der Kohlenstoff der Mischung umgehend und heftig mit Sauerstoffanteilen der Schlacke, so dass diese bei Einbringen der Mischung spontan aufschäumt. Die Schlacke steigt hierdurch, wie beim Slag-Foaming, in die Höhe und bedeckt die feuerfeste Zustellung des metallurgischen Gefäßes. Im Elektrolichtbogenofen wird durch das erhöhte Volumen der aufgeschäumten Schlacke die Strahlung der Lichtbögen teilweise oder vollständig gegenüber der Ofenwand abgeschirmt. Durch den erhöhten Gehalt an MgO erhält die Schlacke gleichzeitig die notwendige Viskosität um auch während und nach dem Aufschäumen an der Wand haften zu bleiben.
  • Soweit die Mischung in unmittelbaren Kontakt mit der Metallschmelze tritt, beispielsweise weil es durch einen Spüler zu einer Öffnung der Schlackenschicht kommt, kann der Kohlenstoff der Mischung direkt mit Sauerstoff der Metallschmelze reagieren und der Metallschmelze Sauerstoff entziehen. Dieser der Metallschmelze entzogene Sauerstoff muss später nicht mehr in zusätzlichen Schritten durch Desoxidationsmittel, beispielsweise Aluminium, aus der Metallschmelze entfernt werden.
  • Zumindest ein Teil des Sauerstoffs, mit dem der aus der erfindungsgemäßen Mischung in die Schlacke eingebrachte Kohlenstoff reagiert, stammt aus Eisenoxiden in der Schlacke, die durch den Kohlenstoff zu metallischem Eisen reduziert werden. Eisenoxide stellen im Gegensatz zu metallischem Eisen jedoch Flussmittel dar, die die Viskosität der Schlacke reduzieren. Indem der Anteil an Eisenoxiden in der Schlacke durch die Zugabe der Mischung reduziert wird, kann somit die Viskosität der Schlacke erhöht werden. Ferner wird das Ausbringen an gewonnenem Eisen im Gesamtprozess erhöht.
  • Durch den Anteil an Kohlenstoff in der Mischung kann somit zum einen ein Aufschäumen der Schlacke erreicht werden. Zum weiteren kann die Viskosität der Schlacke erhöht werden. Durch den Anteil an Kohlenstoff in der Mischung kann somit der Umfang des Aufschäumens der Schlacke sowie deren Viskosität gezielt eingestellt werden.
  • In der Mischung kann der Kohlenstoff im Wesentlichen in reiner Form vorliegen, beispielsweise in Form von Graphit oder Koks, aber beispielsweise auch vergemeinschaftet mit weiteren Bestandteilen, beispielsweise mit Aluminiumanteilen oder Magnesiumanteilen der Mischung. Insbesondere kann vorgesehen sein, dass die erfindungsgemäßen Anteile an Kohlenstoff in der Mischung teilweise, weitgehend oder auch vollständig in Form von Aluminiumcarbid (Al4C3) vorliegt.
  • Kohlenstoff liegt in der erfindungsgemäßen Mischung in Anteilen von wenigstens 5 Masse-% vor, also beispielsweise auch in Anteilen von wenigstens 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 oder 23 Masse-%. Ferner liegt Kohlenstoff in der erfindungsgemäßen Mischung in Anteilen von höchstens 40 Masse-% vor, also beispielsweise auch in Anteilen von höchstens 38, 36, 34, 32, 31, 30, 29, 28, 27, 26 oder 25 Masse-%.
  • Aluminium kann, berechnet als Al2O3, in einem Anteil von wenigstens 1 Masse-% in der Mischung vorliegen, also beispielsweise auch in einem Anteil von wenigstens 2, 3, 4 oder 5 Masse-%. Ferner kann Aluminium, berechnet als Al2O3, in Anteilen von höchstens 20 Masse-% in der Mischung vorliegen, also beispielsweise auch in Anteilen von höchstens 18, 16, 14, 13, 12, 11, 10, 9, 8 oder 7 Masse-%.
  • Der Anteil an Aluminium in der erfindungsgemäßen Mischung ist hierin, wie zuvor ausgeführt, als Al2O3 berechnet, wobei die erfindungsgemäßen Anteile an Aluminium in der Mischung jedoch bevorzugt nicht in Oxidform als Al2O3, sondern bevorzugt teilweise, weitgehend oder auch vollständig in metallischer Form und/oder in Form von Carbid, also als Al4C3 vorliegen.
  • Soweit Aluminium als Carbid in der Mischung vorliegt, bildet dieses Aluminiumcarbid gleichzeitig einen Träger sowohl des Anteils an Aluminium als auch des Kohlenstoffs in der Mischung.
  • Soweit Kohlenstoff und Aluminium in der Mischung in Form von Aluminiumcarbid vorliegen, ist die Aluminiumcarbid-Komponente insoweit besonders vorteilhaft, als dass sowohl das Aluminium als auch der Kohlenstoff des Aluminiumcarbids mit Sauerstoffanteilen der Schlacke reagieren können und hierdurch oxidische Bestandteile der Schlacke, insbesondere Eisenoxide, reduziert werden können. Bei entsprechenden Reaktionen oxidiert der Aluminiumanteil des Aluminiumcarbids zu Al2O3 und der Kohlenstoffanteil des Aluminiumcarbids zu CO2.
  • Soweit Schlackenkonditionierer gemäß dem Stand der Technik Magnesiumanteile umfassen, weisen sie diese regelmäßig in Form von Magnesiumcarbonat (MgCO3), Dolomit oder teilweise auch in Form von Magnesiumhydroxid (Mg(OH)2) auf. Insoweit wird gemäß dem Stand der Technik als vorteilhaft angesehen, dass bei Kontakt dieser Komponenten der betreffenden Schlackenkonditionierer mit der Schlacke das Magnesiumcarbonat in Magnesiumoxid und Kohlendioxid, der Dolomit in Magnesium- und Calziumoxid sowie Kohlendioxid beziehungsweise das Magnesiumhydroxid in Magnesiumoxid und Wasserdampf aufgespalten wird. Dabei bewirken das Kohlendioxid und der Wasserdampf ein Aufschäumen der Schlacke.
  • Erfindungsgemäß wurde jedoch festgestellt, dass in Form von Magnesiumcarbonat, Dolomit oder Magnesiumhydroxid vorliegendes Magnesium nur zu einer verzögerten Erhöhung der Basizität und des MgO-Gehaltes der Schlacke führen. Ferner wurde erfindungsgemäß festgestellt, dass die Basizität und der MgO-Gehalt der Schlacke wesentlich schneller und effektiver dadurch erhöht werden können, dass Magnesium in Form von Magnesiumoxid in die Schlacke eingegeben wird. Insofern ist die erfindungsgemäße Mischung in Abwendung vom Stand der Technik derart konfektioniert, dass die Magnesium umfassende Komponente, insbesondere in Form von MgO, allein zur Erhöhung der Basizität und des MgO-Gehaltes in der Mischung vorgesehen ist, während das Aufschäumen der Schlacke durch andere Komponenten der Mischung verursacht wird, insbesondere durch die Kohlenstoff und Aluminium umfassenden Komponenten. Indem durch den erfindungsgemäßen Schlackenkonditionierer ferner keine weiteren Carbonate in den primärmetallurgischen Prozess eingebracht werden müssen, ist die Ressourceneffizienz höher, das heißt der spezifische Verbrauch und das in die Schlacke einzutragende und zu transportierende Gesamtgewicht an Schlackenkonditionierer geringer als im Stand der Technik. Darüber hinaus können die Emissionen an Kohlendioxid durch den erfindungsgemäßen Schlackenkonditionierer reduziert werde, soweit carbonathaltige Schlackenbildner durch den erfindungsgemäßen Schlackenbildner ersetzt werden.
  • Erfindungsgemäß kann insoweit vorgesehen sein, dass die Mischung einen Anteil an Magnesiumcarbonat unter 10 Masse-% aufweist, also beispielsweise auch einen Anteil unter 9, 8, 7, 6, 5, 4, 3, 2, 1 oder 0,5 Masse-%.
  • Ferner kann vorgesehen sein, dass die Mischung einen Anteil an Mg(OH)2 unter 10 Masse-% aufweist, also beispielsweise auch einen Anteil unter 9, 8, 7, 6, 5, 4, 3, 2, 1 oder 0,5 Masse-%.
  • Ferner kann vorgesehen sein, dass die Mischung einen Anteil an Dolomit, insbesondere an Roh-Dolomit, unter 10 Masse-% aufweist, also beispielsweise auch einen Anteil unter 9, 8, 7, 6, 5, 4, 3, 2, 1 oder 0,5 Masse-%.
  • Ferner kann vorgesehen sein, dass die Mischung einen Anteil an Kalziumcarbonat beziehungsweise an Kalkstein unter 10 Masse-% aufweist, also beispielsweise auch einen Anteil unter 9, 8, 7, 6, 5, 4, 3, 2, 1 oder 0,5 Masse-%.
  • Bevorzugt ist vorgesehen, dass die Mischung in einer verhältnismäßig geringen Korngröße vorliegt, beispielsweise zu wenigstens 70 Masse-%, 80 Masse-% oder zu wenigstens 90 Masse-% oder auch zu 100 Masse-% in einer Korngröße unter 0,5 mm.
  • Beispielsweise kann vorgesehen sein, dass die Korngröße der Komponenten der erfindungsgemäßen Mischung unterhalb der nachfolgend angegebenen Korngrößen in den jeweils angegebenen Massenanteilen vorliegt, wobei die erfindungsgemäße Mischung beispielsweise auch nur eine der nachfolgenden Bedingungen hinsichtlich ihrer Korngröße erfüllen kann:
    < 1 mm: 100 Masse-%;
    < 500µm: 100 Masse-%;
    < 315µm: wenigstens 90 oder 95 Masse-% und höchstens 100 Masse-%;
    < 200µm: wenigstens 85 oder 90 Masse-% und höchstens 95 oder 100 Masse-%;
    < 100µm: wenigstens 65 oder 70 Masse-% und höchstens 75 oder 80 Masse-%;
    < 63µm: wenigstens 45 oder 50 Masse-% und höchstens 65 oder 70 Masse-%.
  • Indem die erfindungsgemäße Mischung diese sehr geringe, mittlere Korngröße aufweist, kann eine besonders gute und gleichmäßige Verteilung und insbesondere auch eine schnelle Auflösung der Mischung in einer Schlacke bewirkt werden.
  • Um trotz dieser geringen Korngröße der Mischung ein gutes Handling der erfindungsgemäßen Mischung erreichen zu können, kann vorgesehen sein, die Mischung in kompaktierter oder gepresster Form, beispielsweise in Form von Pellets zur Verfügung zu stellen. Um die Mischung in Form von Pellets zur Verfügung zu stellen, kann vorgesehen sein, dass eine erfindungsgemäße Mischung, die insbesondere die zuvor beschriebene Korngrößenverteilung aufweisen kann, ohne Zugaben von Additiven zu Pellets verpresst wird. Beispielsweise können diese Pellets eine mandelförmige, stäbchenförmige oder kugelige Form aufweisen, beispielsweise mit einer maximalen Länge von beispielsweise 50 mm, 40 mm oder 30 mm. Die Pellets können ferner beispielsweise einen Mindestdurchmesser von 5, 10, 15, 20 oder 25 mm aufweisen. Pellets mit einer entsprechenden Größe sind gut handhabbar, jedoch gleichzeitig noch so klein, dass sie nach Eingabe in eine Schlacke dort schnell zerfallen und die Vorteile der erfindungsgemäßen, geringen Korngrößenverteilung dort schnell zum Tragen kommen können.
  • Es kann vorgesehen sein, dass die erfindungsgemäße Mischung einen Anteil an Calciumoxid (CaO) aufweist, da durch diesen die Basizität der Schlacke weiter erhöht werden kann und der Angriff der Schlacke auf die feuerfeste Zustellung des metallurgischen Gefäßes gesenkt werden kann. Das CaO der Mischung hat insbesondere dann eine vorteilhafte, die Basizität reduzierende Wirkung, wenn das Verhältnis von CaO zu SiO2 in der Mischung ein bestimmtes Maß nicht überschreitet.
  • Erfindungsgemäß hat sich herausgestellt, dass die Basizität der Schlacke insbesondere dann durch das CaO erhöht werden kann, wenn das Verhältnis von Massenanteilen von CaO zu SiO2 in der Mischung nicht unter 0,7 liegt. Es kann daher vorgesehen sein, dass das Verhältnis der Massenanteile von CaO zu SiO2 in der erfindungsgemäßen Mischung nicht unter 0,7 liegt.
  • SiO2 kann im Wesentlichen über Verunreinigungen der Rohstoffe der erfindungsgemäßen Mischung in diese gelangt sein.
  • Es kann vorgesehen sein, dass die Mischung Calciumoxid und Siliciumdioxid in folgenden Massenanteilen umfasst:
    • CaO: 0 bis 10 Masse-%,
    • SiO2: 0 bis 7 Masse-%.
  • CaO kann ferner beispielsweise in Anteilen von wenigstens 0,1 oder 0,2 oder 0,5 oder 1 oder 1,5 oder 2 Masse-% in der Mischung vorliegen und beispielsweise in Anteilen von höchstens 10, 9, 8, 7, 6, 5, 4, 3 oder 2,5 Masse-%.
  • SiO2 kann beispielsweise in Anteilen von wenigstens 0,1 oder 0,2 oder 0,5 oder 1 oder 1,5 oder 2 Masse-% in der Mischung vorliegen und beispielsweise in Anteilen von höchstens 7, 6, 5, 4, 3 oder 2,5 Masse-%.
  • Wie zuvor ausgeführt, kann vorgesehen sein, die Mischung in Form von Pellets zur Verfügung zu stellen, wobei die Mischung ohne die Zugabe von Additiven zu Pellets verpresst wird. Soweit jedoch Additive zur Verpressung der Mischung zu Pellets verwendet werden, kann vorgesehen sein, CaO als ein solches Pressadditiv zu verwenden. In diesem Fall kann die Mischung, in Abwendung von dem zuvor offenbarten Erfindungsgedanken, wonach die Mischung Anteile an CaO von höchstens 10 Masse-% CaO aufweist, Anteile an CaO von bis zu 40 Masse-% aufweisen. Bevorzugt weist die Mischung jedoch kein Additiv zum Verpressen auf, so dass der Anteil an CaO in der Mischung, wie oben ausgeführt, nicht über 10 Masse-% liegt.
  • Es kann vorgesehen sein, dass die Mischung Eisenoxide in folgenden Massenanteilen umfasst:
    • Eisenoxid: 0 bis 7 Masse-%.
  • Eisenoxid steht dabei für die Summe sämtlicher Eisenoxide in der Mischung, also insbesondere FeO und Fe2O3, aber beispielsweise auch Fe3O4 und Fe2O.
  • Eisenoxide können in der Mischung beispielsweise auch in Anteilen von wenigstens 0,1 Masse-%, 0,2 Masse-%, 0,4 Masse-%, 0,6 Masse-% oder 0,8 Masse-% vorliegen und beispielsweise höchstens in Anteilen von 7 Masse-%, 6 Masse-%, 5 Masse-%, 4 Masse-%, 3 Masse-%, 2,8 Masse-%, 2,6 Masse-%, 2,4 Masse-%, 2,2 Masse-% oder 2 Masse-%.
  • Erfindungsgemäß hat sich herausgestellt, dass die hierin beschriebenen, vorteilhaften Wirkungen der erfindungsgemäßen Mischung als Schlackenkonditionierer durch die Anwesenheit von weiteren Komponenten in der Mischung nachteilig beeinflusst werden können.
  • Es kann daher vorgesehen sein, dass die Mischung neben den vorgenannten Komponenten, also MgO, C, Al, Al4C3, CaO, SiO2, Eisenoxiden und gegebenenfalls Al2O3 nur geringe Anteile an weiteren Komponenten umfasst, zum Beispiel in Anteilen unter 5 Masse-%, 4 Masse-%, 3 Masse-%, 2,5 Masse-%, 2 Masse-%, 1,5 Masse-% oder auch unter 1 Masse-%.
  • Beispielsweise kann vorgesehen sein, dass die Mischung Anteile an den folgenden Komponenten unterhalb der nachfolgend angegebenen Massenanteile umfasst:
    Cr2O3: < 0,2 Masse-%;
    P2O5: < 0,2 Masse-%;
    TiO2: < 0,2 Masse-%;
    K2O + Na2O: < 0,5 Masse-%;
    ZrO2: < 0,2 Masse-%.
  • Überraschenderweise hat sich erfindungsgemäß herausgestellt, dass Magnesia-Kohlenstoff-Erzeugnisse, die in der Stahlindustrie benutzt worden sind, insbesondere als Verschleißfutter von Sauerstoffblaskonvertern, in Elektrolichtbogenöfen oder in Pfannen, sich teilweise als Rohstoff für die erfindungsgemäße Mischung eignen. Insofern können entsprechend recycelte Magnesia-Kohlenstoff-Erzeugnisse teilweise, weitgehend oder ausschließlich als Rohstoff für die erfindungsgemäße Mischung verwendet werden. Gegenstand der Erfindung ist insoweit auch die Verwendung von recycelten Magensia-Kohlenstoff-Erzeugnissen als Rohstoff für die erfindungsgemäße Mischung beziehungsweise die Verwendung solch recycelter Magnesia-Kohlenstoff-Erzeugnisse als erfindungsgemäßer Schlackenkonditionierer.
  • Beispielsweise kann vorgesehen sein, als Rohstoffe für die erfindungsgemäße Mischung neben recycelten Magnesia-Kohlenstoff-Erzeugnissen wenigstens einen der folgenden weiteren Rohstoffe zu wählen: Magnesia (insbesondere Sintermagnesia), Kohlenstoff (insbesondere Graphit), Korund oder Aluminiumcarbid.
  • Gegenstand der Erfindung ist ferner ein Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke mit folgenden Schritten:
    • Zur Verfügungstellung einer hierin beschriebenen, erfindungsgemäßen Mischung;
    • Einbringen der Mischung in die auf der Metallschmelze in dem metallurgischen Gefäß befindliche Schlacke.
  • Die Mischung kann, wie hierin beschrieben, beispielsweise in kompaktierter oder gepresster Form, beispielsweise in Form von Pellets zur Verfügung gestellt werden.
  • Die zur Verfügung gestellte Mischung wird auf die Schlacke gegeben und sinkt in diese ein, so dass sie dort ihre erfindungsgemäße Wirkung entfalten kann.
  • Die erfindungsgemäße Mischung eignet sich grundsätzlich als Schlackenkonditionierer für Schlacken auf einer Metallschmelze in einem beliebigen metallurgischen Gefäß, beispielsweise für Metallschmelzen in Konvertern, Elektrolichtbogenöfen oder Pfannen. Besonders bevorzugt wird die erfindungsgemäße Mischung als Schlackenkonditionierer für Schlacken auf solchen Metallschmelzen verwendet, die sich in einem metallurgischen Gefäß mit einer basischen Zustellung befinden, also insbesondere mit einer Zustellung auf Basis wenigstens eines der folgenden Werkstoffe: Magnesia, Magnesia-Kohlenstoff, Doloma oder Doloma-Kohlenstoff.
  • Gegenstand der Erfindung ist ferner die Verwendung einer hierin beschriebenen, erfindungsgemäßen Mischung zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke.
  • Die Verwendung kann dabei wie hierin offenbart erfolgen.
  • Sämtliche der hierin offenbarten Merkmale der Erfindung können, einzeln oder in Kombination, beliebig miteinander kombiniert sein.
  • Die Erfindung wird anhand des nachfolgenden Ausführungsbeispiels näher erläutert.
  • Zunächst wurde im Ausführungsbeispiel eine Mischung zur Verfügung gestellt, die Magnesium, Kohlenstoff und Aluminium sowie weitere Komponenten in den Massenanteilen gemäß Tabelle 1 umfasst. Tabelle 1
    Komponente Massenanteile [%]
    MgO 62,6
    C 24,6
    Al2O3 6,4
    CaO 2,4
    SiO2 2,3
    Fe2O3 1,3
    Cr2O3 0,05
    P2O5 0,08
    TiO2 0,08
    K2O 0,05
    Na2O 0,08
    ZrO2 0,06
  • Der Kohlenstoff lag in der Mischung in Form von Graphit sowie Aluminiumcarbid vor.
  • Aluminium lag in der Mischung in Form von metallischem Aluminium sowie in Form von Aluminiumcarbid vor.
  • Als Rohstoffe wurden ausschließlich recyclierte Magnesia-Kohlenstoff-Erzeugnisse verwendet.
  • Die Mischung wurde in Form von ohne zusätzliche Additive gepressten, mandelförmigen Pellets mit einer Dicke von etwa 15 mm und einer Länge von etwa 30 mm zur Verfügung gestellt.
  • Die Korngrößenverteilung der Mischung in den Pellets ist in Tabelle 2 angegeben. Tabelle 2
    Korngröße Massenanteile [%]
    < 63 µm 55
    < 100 µm 72
    < 200 µm 92
    < 250 µm 97
    < 500 µm 100
  • Die Mischung wurde verwendet als Schlackenkonditionierer für eine Schlacke auf einer in einem Sauerstoffkonverter befindlichen Metallschmelze. Dabei wurde die Mischung auf die auf der Schmelze befindliche Schlacke aufgegeben. Durch die Aufgabe der Mischung auf die Schlacke konnte deren Basizität erhöht werden. Ferner konnte durch die Anteile an Kohlenstoff, Aluminium und Aluminiumcarbid in der Mischung eine Schaumbildung der Schlacke erreicht werden. Schließlich konnte die Viskosität der Schlacke auf das gewünschte Maß eingestellt werden.

Claims (6)

  1. Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke mit folgenden Schritten:
    1.1 Zur Verfügungstellung einer Mischung, die Magnesium, Kohlenstoff und Aluminium in folgenden Massenanteilen umfasst: MgO: 45 bis 90 Massen-%; C: 12 bis 40 Massen-%; Al2O3: 1 bis 20 Massen-%;
    1.2 Einbringen der Mischung in die auf der Metallschmelze in dem metallurgischen Gefäß befindliche Schlacke.
  2. Verfahren nach Anspruch 1, bei dem die Mischung einen Anteil an MgCO3 unter 10 Masse-% aufweist.
  3. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, bei dem die Mischung in Form von Pellets vorliegt.
  4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, mit einer Mischung deren Körnung zu wenigstens 70 Masse-% in einer Korngröße unter 0,5 mm vorliegt.
  5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, mit einer Mischung die Kalziumoxid und Siliziumdioxid in folgenden Massenanteilen umfasst: CaO: 0 bis 10 Massen-%; SiO2: 0 bis 7 Massen-%.
  6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, mit einer Mischung die Eisenoxid in folgenden Massenanteilen umfasst: Eisenoxid: 0 bis 7 Massen-%.
EP13195334.1A 2013-12-02 2013-12-02 Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke Active EP2878685B9 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
SI201330101T SI2878685T1 (sl) 2013-12-02 2013-12-02 Postopek za kondicioniranje žlindre, ki se nahaja na talini kovine v metalurški posodi, v metalurgiji železa in jekla
PT131953341T PT2878685E (pt) 2013-12-02 2013-12-02 Método para condicionar uma escória em metal derretido a partir do processamento de ferro e aço num recipiente metalúrgico
ES13195334.1T ES2559024T3 (es) 2013-12-02 2013-12-02 Procedimiento para el acondicionamiento de una escoria que se encuentra sobre una masa fundida de metal en un recipiente metalúrgico en la metalurgia de hierro y acero
HUE13195334A HUE026614T2 (hu) 2013-12-02 2013-12-02 Eljárás a vas- és acélkohászatban egy metallurgiai edényben levõ fémolvadékon található salaknak a kondicionálására
RS20150849A RS54471B1 (en) 2013-12-02 2013-12-02 PROCEDURE FOR CONDITIONING A HEATING METAL IN A METALLURGICAL COURT IN IRON AND STEEL METALLURGY
PL13195334T PL2878685T3 (pl) 2013-12-02 2013-12-02 Sposób kondycjonowania żużla znajdującego się na stopionym metalu w zbiorniku metalurgicznym w hutnictwie żelaza i stali
EP13195334.1A EP2878685B9 (de) 2013-12-02 2013-12-02 Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke
PCT/EP2014/071022 WO2015082093A1 (de) 2013-12-02 2014-10-01 MISCHUNG, VERWENDUNG DIESER MISCHUNG SOWIE VERFAHREN ZUR KONDITIONIERUNG EINER BEI DER EISEN- UND STAHLMETALLURGIE AUF EINER METALLSCHMELZE IN EINEM METALLURGISCHEN GEFÄß BEFINDLICHEN SCHLACKE
MX2016005055A MX2016005055A (es) 2013-12-02 2014-10-01 Mezcla, uso de dicha mezcla, asi como procedimiento para el acondicionamiento de una escoria que se encuentra sobre una masa fundida de metal en un recipiente metalurgico en la metalurgia de hierro y acero.
CN201480062204.6A CN105705662A (zh) 2013-12-02 2014-10-01 混合物、这种混合物用于调制炼铁和炼钢时位于冶金容器中的金属熔体上的渣的用途以及方法
US15/038,735 US20160376672A1 (en) 2013-12-02 2014-10-01 Mixture, use of this mixture and process for conditioning a slag located on a metal melt in a metallurgical vessel in iron and steel metallurgy
HRP20151446TT HRP20151446T1 (hr) 2013-12-02 2015-12-31 Postupak u željeznoj i äśeliäśnoj metalurgiji za kondicioniranje troske koja se nalazi na metalnoj talini u metalurškoj posudi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13195334.1A EP2878685B9 (de) 2013-12-02 2013-12-02 Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke

Publications (3)

Publication Number Publication Date
EP2878685A1 EP2878685A1 (de) 2015-06-03
EP2878685B1 EP2878685B1 (de) 2015-11-18
EP2878685B9 true EP2878685B9 (de) 2016-08-03

Family

ID=49712976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13195334.1A Active EP2878685B9 (de) 2013-12-02 2013-12-02 Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke

Country Status (12)

Country Link
US (1) US20160376672A1 (de)
EP (1) EP2878685B9 (de)
CN (1) CN105705662A (de)
ES (1) ES2559024T3 (de)
HR (1) HRP20151446T1 (de)
HU (1) HUE026614T2 (de)
MX (1) MX2016005055A (de)
PL (1) PL2878685T3 (de)
PT (1) PT2878685E (de)
RS (1) RS54471B1 (de)
SI (1) SI2878685T1 (de)
WO (1) WO2015082093A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023884B1 (fr) 2016-07-08 2017-09-04 Lhoist Rech Et Developpement Sa Procédé de fabricatrion de briquettes contenant de l'oxyde de fer actif, et briquettes ainsi obtenues

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9005431D0 (en) * 1990-03-10 1990-05-09 Foseco Int Metallurgical flux compositions
GB9108889D0 (en) * 1991-04-25 1991-06-12 Foseco Int Metallurgical fluxes
US5946339A (en) * 1997-07-22 1999-08-31 Itz A Gaz, Inc. Steelmaking process using direct reduction iron
CN101302577B (zh) * 2008-06-16 2010-09-01 东北大学 基于自蔓延的MgO基脱硫剂及其制备方法
CN102660662A (zh) * 2012-05-11 2012-09-12 西峡县兴宝冶金保温耐材有限公司 一种利用废旧镁碳砖和煤矸石生产脱氧护炉剂的方法
CN103537635B (zh) * 2012-07-11 2015-10-21 攀钢集团研究院有限公司 一种半钢保温剂及其应用

Also Published As

Publication number Publication date
PL2878685T3 (pl) 2016-04-29
PT2878685E (pt) 2016-02-15
HUE026614T2 (hu) 2016-06-28
EP2878685A1 (de) 2015-06-03
EP2878685B1 (de) 2015-11-18
SI2878685T1 (sl) 2016-01-29
MX2016005055A (es) 2016-07-19
WO2015082093A1 (de) 2015-06-11
HRP20151446T1 (hr) 2016-02-12
RS54471B1 (en) 2016-06-30
US20160376672A1 (en) 2016-12-29
CN105705662A (zh) 2016-06-22
ES2559024T3 (es) 2016-02-10

Similar Documents

Publication Publication Date Title
DE60221844T2 (de) Verfahren zur herstellung von körnigem metall
DE60117269T2 (de) Verfahren zur herstellung von metallischem eisen
DE3304762A1 (de) Veredelungsmittel fuer metalle und verfahren zu dessen herstellung
EP0061012A1 (de) Verfahren zur Herstellung eines Entschwefelungsmittels für Roheisen- und Stahlschmelzen
AT502396B1 (de) Verfahren zum abtrennen von verunreinigungen aus einsatzstoffen
EP2878685B9 (de) Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke
DE2521202A1 (de) Verfahren zum herstellen von phosphorarmem stahl durch sauerstoff-frischen
EP0220522B1 (de) Entschwefelungsgemisch für Metallschmelzen, ein Verfahren zu seiner Herstellung und seine Verwendung
DE2612500C3 (de) Reduktionsmittel für die Stahlherstellung
WO2014198261A1 (de) Zuschlagsstoff für metallurgische verfahren, verfahren zu dessen herstellung und dessen verwendung in metallurgischen schmelzen
EP3034633B1 (de) Mischung, Verwendung dieser Mischung sowie Verfahren zur Konditionierung einer bei der Eisen- und Stahlmetallurgie auf einer Metallschmelze in einem metallurgischen Gefäß befindlichen Schlacke
AT502312B1 (de) Verfahren zur direkten stahllegierung
WO2012095471A2 (de) Mittel zur behandlung von metallschmelzen, verfahren zur herstellung und verwendung desselben
EA037174B1 (ru) Способ приготовления флюса на основе вторичного алюмосодержащего шлака
DE19747896B4 (de) Verfahren zum Valorisieren und zum eventuellen hierfür Bearbeiten von Pfannenschlacken
DE60100659T2 (de) Verfahren zur behandlung von elektroöfenschlacken
DE2545340A1 (de) Verfahren zum entschwefeln von geschmolzenem stahl
RU2354707C2 (ru) Способ получения комплексных синтетических флюсов для черной металлургии
DE202014100884U1 (de) Schlackekonditionierer für die Entschwefelung in der Sekundärmetallurgie von Stahl
EP1252341A1 (de) Verfahren zum herstellen von puzzolanischen zumahlstoffen für die zementindustrie aus stahlschlacken unter verwendung eines reduzierenden metallbades
EP0070912B1 (de) Verfahren zur Verminderung des Eisengehaltes von bei der Entschwefelung von Roheisen entstehenden CaO-reichen Schlacken
DE973695C (de) Verfahren zur Herstellung von schwefel- und phosphorarmem desoxydiertem Gusseisen
DE3644518A1 (de) Verwendung von magnesit und verfahren zur durchfuehrung einer solchen verwendung
DE102011008690A1 (de) Mittel zur Behandlung von Metallschmelzen und Verwendung desselben
EP4342865A1 (de) Agglomeratstein zum einsatz in einem elektroofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAX Requested extension states of the european patent have changed

Extension state: ME

Extension state: BA

Payment date: 20150623

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20150717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 761618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20151446

Country of ref document: HR

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001507

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2559024

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160210

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20151446

Country of ref document: HR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160115

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20151118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160400085

Country of ref document: GR

Effective date: 20160414

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E026614

Country of ref document: HU

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20309

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001507

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

26N No opposition filed

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20151446

Country of ref document: HR

Payment date: 20171123

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171219

Year of fee payment: 5

Ref country code: TR

Payment date: 20171130

Year of fee payment: 5

Ref country code: CZ

Payment date: 20171121

Year of fee payment: 5

Ref country code: FI

Payment date: 20171215

Year of fee payment: 5

Ref country code: RO

Payment date: 20171129

Year of fee payment: 5

Ref country code: FR

Payment date: 20171219

Year of fee payment: 5

Ref country code: LU

Payment date: 20171219

Year of fee payment: 5

Ref country code: SK

Payment date: 20171128

Year of fee payment: 5

Ref country code: HU

Payment date: 20171121

Year of fee payment: 5

Ref country code: DE

Payment date: 20171220

Year of fee payment: 5

Ref country code: NO

Payment date: 20171219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20171221

Year of fee payment: 5

Ref country code: GR

Payment date: 20171218

Year of fee payment: 5

Ref country code: GB

Payment date: 20171221

Year of fee payment: 5

Ref country code: RS

Payment date: 20171124

Year of fee payment: 5

Ref country code: BG

Payment date: 20171215

Year of fee payment: 5

Ref country code: HR

Payment date: 20171123

Year of fee payment: 5

Ref country code: BE

Payment date: 20171219

Year of fee payment: 5

Ref country code: PT

Payment date: 20171127

Year of fee payment: 5

Ref country code: CH

Payment date: 20171221

Year of fee payment: 5

Ref country code: IT

Payment date: 20171218

Year of fee payment: 5

Ref country code: SI

Payment date: 20171122

Year of fee payment: 5

Ref country code: PL

Payment date: 20171121

Year of fee payment: 5

Ref country code: LV

Payment date: 20171215

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180105

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151118

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20151446

Country of ref document: HR

Effective date: 20181202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013001507

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190603

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 20309

Country of ref document: SK

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 761618

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202