EP2870266A2 - Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique - Google Patents

Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique

Info

Publication number
EP2870266A2
EP2870266A2 EP13734727.4A EP13734727A EP2870266A2 EP 2870266 A2 EP2870266 A2 EP 2870266A2 EP 13734727 A EP13734727 A EP 13734727A EP 2870266 A2 EP2870266 A2 EP 2870266A2
Authority
EP
European Patent Office
Prior art keywords
slag
metallurgical vessel
level
determined
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13734727.4A
Other languages
German (de)
English (en)
Inventor
Christian KOUBEK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
SIEMENS VAI METALS TECHNOLOGIES GmbH
Siemens VAI Metals Technologies GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS VAI METALS TECHNOLOGIES GmbH, Siemens VAI Metals Technologies GmbH Austria filed Critical SIEMENS VAI METALS TECHNOLOGIES GmbH
Publication of EP2870266A2 publication Critical patent/EP2870266A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0028Devices for monitoring the level of the melt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/28Arrangement of controlling, monitoring, alarm or the like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/02Foam creation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • F27D2021/026Observation or illuminating devices using a video installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method and a device for detecting the level of slag in a metallurgical vessel or a method for controlling the formation of slag on a metallic melt in a metallurgical vessel.
  • slags often serve to cover metallic melts, whereby reduced thermal losses, lower material consumption and also lower noise pollution can be achieved.
  • Slag has to be removed again and again from a metallurgical vessel, because in many metallurgical processes constantly new slag is produced. Therefore, the knowledge of the amount of existing slag or the slag level in the metallurgical vessel is of great importance and this is of importance for the control of the metallurgical process.
  • the prior art systems and methods for measuring slag such as e.g. a foamed slag in an electric arc furnace or the slag in a converter. These are based inter alia on indirect measuring methods in which the information about the current level of the slag is obtained from easily accessible measuring signals.
  • the electrode current, the electrode voltage (evaluation of harmonics, harmonic distortion) of an arc furnace, noise emissions, structure-borne noise or the temperature profile of a heat-conducting element in the wall of the metallurgical vessel are used.
  • JP62224613A discloses a method for controlling the slag height in an oven, wherein the slag level in the oven is adjusted based on a measured slag level by varying the gas pressure in the oven.
  • JP63062812A teaches a method for controlling the slag height in a converter for treating a metallic melt, wherein a temperature distribution is determined in the converter via a temperature sensor, which is arranged in a lance, from which a slag covering of the melt is derived.
  • Detecting a level of slag in a metallurgical vessel e.g. A converter or an electric arc furnace is difficult due to the high temperatures, the mechanical loads, the considerable noise and due to dust or smoke loads. For sensors and measuring devices, these conditions are very unfavorable.
  • the invention enables the detection of a slag level in all operating states.
  • devices such as lances, electrodes or manipulators retract into the vessel, so that a detection of the slag level by sensors is not always possible or disturbed.
  • there may be production-related process conditions in which there is considerable dust or smoke development.
  • the method according to the invention is based on at least one detection device that generates signals.
  • the detection device may be directed to the metallurgical vessel and at least to a slag stream flowing out of it. Furthermore, the detection device can also be directed only to the metallurgical vessel or at least to a slag stream flowing out of it.
  • the slag level S PA is determined directly by a processing unit.
  • the width B M i of the effluent slag can be detected in at least one direction i and the slag level S PB can be determined by means of the processing unit via the amount of effluent slag S M.
  • the width B M i of the effluent slag stream is detected in a direction 1.
  • the amount of effluent slag S M is proportional to the width B M i.
  • the slag level S PB can be determined via a correction factor F K A.
  • the correction factor F K A is continuously determined during phase A from the quotient of slag level S PA and width B M i.
  • phase A the state of the channel through which the slag stream flows and thus the cross section of the slag stream is always taken into account, so that the measurement of a width of the slag stream is sufficient.
  • the width of the effluent slag stream is detected in two mutually substantially perpendicular directions 1 and 2, wherein the widths B M i and B M 2 are determined, and the amount of effluent slag SM proportional to Product of the widths B M i and B M 2 is.
  • the slag level S PB can be determined via a correction factor F K B.
  • the correction factor F K B can be determined empirically or during phase A continuously from the slag level S PA and the product from B M i and B M 2.
  • the correction factor takes into account deviations of the actual cross-section of the slag stream from the theoretical rectangular shape. An empirical determination of the correction factor is easily possible, because the adjusting cross section remains mostly constant. In this case, an additional direct detection of the slag in the metallurgical vessel can be dispensed with.
  • the correction factor can also be determined from the measurement of slag level S PA in phase A and the measured product of B M i and B M 2.
  • the determination of the correction factor does not have to be continuous because the cross-sectional shape of the slag flow does not change rapidly over time.
  • a special embodiment of the inventive method provides that the detection of the level of slag S PA in the phase A is carried out in the metallurgical vessel, in particular through an opened slag door in the metallurgical vessel.
  • the detection device detects the slag directly in the metallurgical vessel, whereby an opening of the metallurgical vessel is used. Due to the distance between the detection device and the metallurgical vessel, it can be protected from the extreme conditions in and directly around the metallurgical vessel. When used through an open slag door, the process can only be used in phases with the slag door open.
  • a further embodiment of the method according to the invention provides that the detection of the slag level S PA in the phase A takes place by an edge detection on the slag in the metallurgical vessel.
  • the detection is carried out at the upper edge of the slag and the slag is detected directly in the metallurgical vessel.
  • the detection device has a detection region which detects the slag in the metallurgical vessel and the slag stream flowing out of the metallurgical vessel.
  • This embodiment enables a detection of the slag in the metallurgical vessel and the effluent slag stream with only one detection device.
  • a detection indirectly over the cross section of effluent slag stream and thus the amount of effluent slag possible.
  • detection is possible even under those operating conditions of a metallurgical process in the metallurgical vessel, which per se are very unfavorable for detection.
  • the detection device has a detection region which detects only the slag stream flowing out of the metallurgical vessel.
  • the at least one detection device may be e.g. be arranged below the metallurgical vessel or below the slag outlet of the vessel or be directed to such a location, so that the detection device is better protected, such as. against unfavorable operating conditions. Manipulations in the metallurgical vessel or smoke or dust in this arrangement or alignment is not a problem.
  • the detection device comprises at least one, in particular in the near infrared region, working CCD camera, with the optical signals, in particular images are generated. Due to the limitation of the wavelength range, it is possible to limit the detection to radiation characteristic of the slag, so that undesired environmental influences or other radiation sources can be excluded. This provides additional security during acquisition.
  • CCD cameras also have the advantage that they are available at low cost and can also be used by appropriate protective measures under difficult environmental conditions (heat, dust, smoke, shocks).
  • corresponding optics permit an adaptation to the respective application situation, so that the detection area or the installation situation can be adapted.
  • the optical signals are images, wherein the slag level S PA and the widths B M i and / or B M 2 are respectively determined from separate fields of the images.
  • areas of the images are used so that two or more fields can be tapped or read out and converted by the processing unit from one image.
  • the slag level can be determined from an image by means of a field, and the width of the slag stream can additionally be determined by means of another field of the same image, so that the correction factor FKA can be determined, for example, by means of the processing unit.
  • the processing unit can also access and process fields from different detection devices.
  • a preferred embodiment of the method according to the invention provides that the determined slag level S PA and / or the slag level S PB for controlling the amount of carbon which is added to the metallurgical vessel for slag formation, in particular for the formation of foam slag, is used. It is known to introduce carbon carriers into a metallurgical vessel in which there is a metallic melt and slag. Thus, the formation of slag is stimulated or is increased by a gas formation, the volume of slag. Due to the constant detection of the slag level, the supply of carbon support can be controlled in a simple manner and so the slag level can be maintained at a desired state. The detected slag level can, however, basically also be used for process adjustments or for process adjustment of the metallurgical process.
  • the device according to the invention for detecting the slag level on a metallic melt in a metallurgical vessel, in particular an electric arc furnace comprises at least one signal-generating detection device which is directed to the metallurgical vessel and / or at least one slag stream flowing out of it via a gutter.
  • a slag level S PA is determined in a phase A and / or if direct optical detection of the slag level S PA is not possible, the width B M i of the effluent slag stream is detected in at least one direction i and by means of the processing unit the slag level S PB determined by the amount of effluent slag S M.
  • the detection device can detect either the slag level or the cross section of the slag stream or both variables together, so that they can be determined jointly from the same signal by the processing unit.
  • a very simple device is thus created.
  • two mutually perpendicular, in particular underfloor, arranged detection means are provided for detecting the widths of the effluent slag stream, wherein the widths B M i and B M 2 are determined, and the amount of effluent slag S M proportional to Product from the widths B M i and B M 2 and a correction factor F K B is determined, wherein the correction factor F K B empirically or during the phase A continuously determined from the slag level S PA and the product of B M i and B M 2 becomes.
  • the Underfloor arrangement below the hut floor offers the advantage that the detection devices can be arranged protected and also lead to no restriction in the area of the metallurgical vessel, since here an operation or the manipulation of eg blow lances or even electrodes must be possible without restriction.
  • the detection device can detect the slag flow without disturbances.
  • the slag stream can be detected so well by the widths B M i and B M 2 that can be determined by a correction factor on the cross section of the slag stream and thus on the amount of effluent slag.
  • the correction factor can be determined empirically, which usually only has to be done once.
  • the correction factor can be determined from the slag level S PA and the product from B M i and B M 2.
  • a preferred embodiment of the device according to the invention provides that the signals are optical signals, in particular images, and are determined by the processing unit from separate fields of the images of the slag level S PA and the widths B M i and B M 2.
  • Optical signals and in particular images are technically widespread, so that the processing of such signals by the processing unit is well controlled.
  • the processing unit taps separate fields from the images, so that a number of information in the form of fields is obtained from an image.
  • information on the slag flow in the form of latitudes, can therefore also be tapped with the same image.
  • the detection device comprises at least one, in particular in the near infrared region, in particular a daylight blocking filter having, CCD camera.
  • a daylight blocking filter having, CCD camera can be adjusted according to the optics, so that the desired areas of the slag can be detected.
  • filters and a defined wavelength range environmental influences for the detection can largely be masked out and the slag can be detected optimally.
  • the detection device has a detection region which detects the slag in the metallurgical vessel, in particular through an opening, preferably through an opened slag door, and the slag stream flowing out of the metallurgical vessel.
  • a detection device detects the slag in the metallurgical vessel and the slag stream.
  • openings can be used, so that the Detektionsseinnchtung away from the extreme conditions (sound pressure, heat, dust, smoke) can be arranged and thus less burden.
  • the detection device has a detection region which detects only the slag stream flowing out of the metallurgical vessel.
  • the detection device can be arranged further from the metallurgical vessel or in a protected area. For example, it is possible to arrange the detection device below the metallurgical vessel, so that the burden of the detection device can be further reduced.
  • the inventive method for controlling the formation of slag on a metallic melt in a metallurgical vessel, in particular an electric arc furnace is characterized in that the control of the amount of carbon, which is added for slag formation, in particular for the formation of foam slag, in the metallurgical vessel, due to the slag level S PA and / or the slag level S PB , determined according to the method of any one of claims 1-10, takes place.
  • the slag is used in metallurgical processes for shielding the metallic melt. This results in advantages in terms of thermal losses as well as the pollution of the environment by noise emissions and exhaust gases.
  • the constant determination of the slag level ensures efficient and timely regulation. On the basis of the determined slag level, injection lances, which are provided for blowing carbon carriers into an electric arc furnace, can be regulated and a desired slag level can always be maintained.
  • Fig. 1 shows an electric arc furnace with the detection means according to the invention for the slag in the furnace and the effluent slag stream
  • Fig. 2 shows an electric arc furnace with the detection means according to the invention for the effluent slag stream
  • Fig. 3 shows the arrangement according to Figure 2 in plan view
  • Fig. 4 shows a detail of Fig. 2 also in plan view WAYS FOR CARRYING OUT THE INVENTION
  • a metallurgical vessel e.g. an electric arc furnace, to treat a metallic melt with an open slag door 2 shown. Slag flows out through the opening and forms a slag stream 3.
  • a metallic melt 4 In the metallurgical vessel 1 there is a metallic melt 4 and above it a slag with a slag level 5.
  • the slag 8 is detected in the electric arc furnace and the effluent slag stream.
  • the detection means 6 e.g. a CCD camera can be used. This works mostly in the near-infrared range and has a daylight blocking filter.
  • the CCD camera detects the slag level 5 in the metallurgical vessel 1, e.g. an edge detection is applied. Furthermore, the slag current is detected by the CCD camera.
  • the signals or images generated by the detection device 6 are supplied to a processing unit 9.
  • the signals or images of the CCD camera are processed.
  • a slag level is determined from the signals or an area of the slag flow is calculated from the detected width B M i of the effluent slag stream via the correction factor FKA. From this area, the amount of effluent slag and, in turn, the slag level in the electric arc furnace can be determined. Proportionalities and / or empirically determined correlations are used.
  • the determined control variables 10 can be supplied to a control, not shown, which regulates the entry of slag-forming or slag-volume-increasing substances, such as carbon carriers, based on the current slag level, so that a target slag level can always be maintained.
  • a control not shown, which regulates the entry of slag-forming or slag-volume-increasing substances, such as carbon carriers, based on the current slag level, so that a target slag level can always be maintained.
  • the electric arc furnace can be operated more efficiently, for example, the electrode and refractory consumption can be reduced.
  • FIG. 2 likewise shows a metallurgical vessel 1 with an opened slag door 2.
  • two detection devices 6 are provided for detecting the effluent slag stream 3.
  • Fig. 3 shows this arrangement in plan view. The two detection devices 6 are arranged at an angle of 90 ° to each other and directed towards the slag stream 3. Via a channel 12 of the slag stream 3 flows from the metallurgical vessel 1 from.
  • the detection means 6 are arranged below the hut corridor 1 1, so that a very sheltered location is achieved.
  • the detection devices 6 are arranged in the vertical direction on the same plane, in 2, the detection devices 6 are shown axonometrically tipped, this serves only for better visibility. Other spatial locations of Detektionsseignchtitch 6 but possible.
  • a processing unit 9 For processing the signals of the detection devices 6, a processing unit 9 is provided.
  • the widths B M i and B M 2 of the slag stream 3 can be determined in two mutually perpendicular directions.
  • the two Detektionsseinnchtungen 6 have detection areas 7 and detect the widths of the slag stream 3. Shown is a typical cross section of the slag stream 3, wherein the width at the side of the metallurgical vessel is usually wide than on the applied side.
  • the amount of effluent slag S M is proportional to the slag level and thus also the product of the widths B M i and B M 2 and a correction factor F K B-
  • the correction factor F K B can be determined empirically.
  • F K B takes into account the deviation of the actual slag flow cross section from the ideal rectangular shape and changes in the cross section of the effluent from the metallurgical vessel, such as the width of the slag opening.
  • the two detection devices 6 can be coupled to an additional detection device, not shown. Whose detected slag level, whereby detection in phases in which a direct detection of slag height in the metallurgical vessel is possible, takes place, can also be used to adjust the correction factor.
  • a relationship between the slag level and the amount of effluent slag or the measured slag cross section can be determined.
  • one of the two detection devices 6 arranged at right angles to one another has a detection region which, in addition to the slag flow 3, also detects the slag 8 and thus the slag level 5 in the metallurgical vessel.
  • About the proportionality between the slag level 5 and the amount of effluent slag or the slag cross section can be closed in a simple manner from the slag cross section on the slag level 5.
  • the determined control variables 10 can in turn be supplied to a control, not shown, for the slag level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

L'invention concerne un procédé et un dispositif de détection du niveau de scories sur une masse fondue métallique dans un récipient métallurgique (1) au moyen d'au moins un dispositif de détection (6) générant des signaux, qui est orienté vers le récipient métallurgique (1) et/ou au moins vers un courant de scories (3) s'en écoulant. Au cours d'une phase A, un niveau de scories SPA est directement obtenu des signaux au moyen d'une unité de traitement (8) et/ou, si une détection directe du niveau de scories SPA est impossible, la largeur BMi du courant de scories (3) s'écoulant dans au moins une direction i est détectée et le niveau de scories SPB est déterminé par l'unité de traitement en se basant sur la quantité d'écoulement de scories SM. L'invention concerne par ailleurs un procédé de régulation de la quantité de porteurs de carbone introduits dans le récipient métallurgique, permettant d'ajuster le niveau de scories, ceci intervenant sur la base du niveau de scories déterminé.
EP13734727.4A 2012-07-05 2013-07-03 Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique Withdrawn EP2870266A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012211714.8A DE102012211714A1 (de) 2012-07-05 2012-07-05 Verfahren und Vorrichtung zur Detektion des Schlackepegels in einem metallurgischen Gefäß
PCT/EP2013/064015 WO2014006081A2 (fr) 2012-07-05 2013-07-03 Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique

Publications (1)

Publication Number Publication Date
EP2870266A2 true EP2870266A2 (fr) 2015-05-13

Family

ID=48748210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13734727.4A Withdrawn EP2870266A2 (fr) 2012-07-05 2013-07-03 Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique

Country Status (6)

Country Link
US (1) US20150192365A1 (fr)
EP (1) EP2870266A2 (fr)
CN (1) CN104395483B (fr)
DE (1) DE102012211714A1 (fr)
MX (1) MX2014015148A (fr)
WO (1) WO2014006081A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20159279A1 (it) * 2015-12-17 2017-06-17 Tenova Spa Metodo ed apparecchiatura per l'ispezione o l'osservazione operativa di spazi pericolosi, inospitali o spazi con condizioni ambientali ostili
IT201600081899A1 (it) * 2016-08-03 2018-02-03 Tenova Spa Apparato e metodo per il monitoraggio del flusso di scoria in uscita da un forno per la produzione di acciaio
TWI657880B (zh) * 2016-12-06 2019-05-01 日商新日鐵住金股份有限公司 熔融金屬表面之熔渣體積評估方法
WO2020041024A1 (fr) * 2018-08-21 2020-02-27 Corning Incorporated Appareil et procédés de fabrication d'un ruban de verre
EP3839076A1 (fr) * 2019-12-20 2021-06-23 Primetals Technologies Austria GmbH Procédé et système de surveillance d'un procédé de coulée du métal liquide et/ou du laitier à partir d'une cuve métallurgique
KR102485010B1 (ko) * 2020-12-17 2023-01-04 주식회사 포스코 노의 잔류 슬래그 측정장치
CN113137992B (zh) * 2021-03-25 2022-02-18 中南大学 一种高温流体质量流量在线检测方法、装置及系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU83826A1 (de) * 1981-12-09 1983-09-01 Arbed Verfahren und einrichtung zum direkten herstellen von fluessigem eisen
DE3462858D1 (en) * 1983-06-20 1987-05-07 Sumitomo Metal Ind Apparatus for detecting slag outflow
AU558925B2 (en) * 1984-04-27 1987-02-12 Nippon Steel Corporation Monitoring and controlling the slag-forming conditions in the basic oxygen steel converter
DD228831A1 (de) 1984-10-26 1985-10-23 Brandenburg Stahl Walzwerk Verfahren zur einhuellung des lichtbogens
JPS62224613A (ja) 1986-03-25 1987-10-02 Nippon Steel Corp フオ−ミング制御方法
JPS6362812A (ja) 1986-09-01 1988-03-19 Nippon Kokan Kk <Nkk> 転炉におけるスラグフオ−ミングの検知装置
JPH0616081B2 (ja) * 1988-10-06 1994-03-02 日本鋼管株式会社 距離測定装置
CA2038823A1 (fr) * 1990-03-30 1991-10-01 Akio Nagamune Methode de mesure en four du niveau de laitier et appareil connexe
JP3600262B2 (ja) * 1994-03-04 2004-12-15 月島機械株式会社 溶滓流量の測定装置及びこれを利用した炉設備
DE19640723C2 (de) * 1996-10-02 1999-08-12 Mannesmann Ag Verfahren zur Messung der Schlackenschichtdicke auf einer Metallschmelze sowie zur Durchführung des Verfahrens geeignete Vorrichtung
US6166681A (en) * 1998-08-18 2000-12-26 Usx Corporation Measuring the thickness of materials
US6562285B1 (en) * 2000-11-15 2003-05-13 Metallurgical Sensors, Inc. Method and apparatus for detecting slag carryover
DE10124784C1 (de) * 2001-05-04 2002-10-31 Georgsmarienhuette Gmbh Verfahren und Vorrichtung zur Ermittlung von Betriebsparametern von Lichtbogenöfen zur Herstellung von Stahl
DE10152371B4 (de) * 2001-10-24 2004-04-15 Sms Demag Ag Verfahren und Vorrichtung zur Bestimmung der Schaumschlackenhöhen beim Frischvorgang in einem Blasstahlkonverter
AT412283B (de) * 2003-05-16 2004-12-27 Voest Alpine Ind Anlagen Verfahren zum verwerten von schlacke
DE102005034409B3 (de) * 2005-07-22 2006-05-24 Siemens Ag Verfahren zur Bestimmung mindestens einer Zustandsgröße eines Elektrolichtbogenofens und Elektrolichtbogenofen
DE202006020272U1 (de) * 2006-05-18 2008-02-07 Itema Gmbh Vorrichtung zur Erkennung von Fremdstoffen in Flüssigmetallen
JP5284164B2 (ja) * 2009-03-31 2013-09-11 パンパシフィック・カッパー株式会社 スラグ排出システムおよびスラグ排出方法
DE102009053169A1 (de) * 2009-09-28 2011-04-21 Siemens Aktiengesellschaft Verfahren zur Kontrolle eines Schmelzvorganges in einem Lichtbogenofen sowie Signalverarbeitungseinrichtung, Programmcode und Speichermedium zur Durchführung dieses Verfahrens
DE102010035910A1 (de) * 2010-06-09 2011-12-15 Sms Siemag Ag Einrichtung zur Temperaturmessung in einem Konverter
EP2410305A1 (fr) * 2010-07-21 2012-01-25 Siemens Aktiengesellschaft Procédé de détermination d'une température d'un métal liquide, dispositif de traitement de signal et dispositif métallurgique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014006081A2 *

Also Published As

Publication number Publication date
US20150192365A1 (en) 2015-07-09
WO2014006081A2 (fr) 2014-01-09
DE102012211714A1 (de) 2014-05-22
MX2014015148A (es) 2015-03-05
CN104395483B (zh) 2017-08-25
WO2014006081A3 (fr) 2014-06-19
CN104395483A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2014006081A2 (fr) Procédé et dispositif de détection du niveau de scories dans un récipient métallurgique
WO2007009924A1 (fr) Procede pour determiner au moins une grandeur d&#39;etat d&#39;un four electrique a arc et four electrique a arc
WO2009095292A1 (fr) Procédé pour faire fonctionner un four à arc électrique comportant au moins une électrode, dispositif de régulation et/ou de commande, code de programme lisible par machine, support de données et four à arc électrique pour la mise en œuvre du procédé
EP1647791B1 (fr) Dispositif pour la mésure de température sans contact dans un four de fusion
DE1940104B2 (de) Steuer- und Regeleinrichtung für Hochofenprozesse
DE102010003845B4 (de) Verfahren zur Bestimmung eines Chargierzeitpunkts zum Chargieren, von Schmelzgut in einen Lichtbogenofen, Signalverarbeitungseinrichtung, maschinenlesbarer Programmcode, Speichermedien und Lichtbogenofen
DE19919222C1 (de) Verfahren zum Steuern der Verbrennung von Brennstoff mit variablem Heizwert
DE4322448A1 (de) Schmelzofen zur thermischen Behandlung von schwermetallhalitgen und/oder dioxinhaltigen Sonderabfällen
EP0668711B1 (fr) Méthodes et dispositifs pour la mesure et le contrôle des débits massiques et des grandeurs correlées
DE102014101373A1 (de) Radiometrisches Messsystem und Verfahren zum Betrieb eines radiometrischen Messsystems
DE2851247A1 (de) Metallschmelzen-fuellstandsmessystem
EP3108017B1 (fr) Procédé de circulation d&#39;un bain de métal et installation de four
DE1928501C3 (de) Absaugvorrichtung für einen Lichtbogenofen
DE102015201026B3 (de) Abzugsvorrichtung mit geregelter Absaugeinrichtung
EP3858108A1 (fr) Procédé de fonctionnement d&#39;un four à arc électrique
EP3215642B1 (fr) Procédé et dispositif de régulation de la pression dans le carneau d&#39;évacuation des gaz d&#39;un convertisseur
EP0896067B1 (fr) Procédé et dispositif pour surveiller l&#39;état du laitier et la stabilité de l&#39; arc d&#39;un four à arc
DE29713666U1 (de) Vorrichtung zur Erfassung des Schlackezustandes und der Lichtbogenstabilität in Lichtbogenöfen
DE102014010820B4 (de) Verfahren zum Betreiben eines Schmelz- und/oder Warmhalteofens und Schmelzofen
DE2655297B2 (de) 09.07.76 Japan 81587-76 09.07.76 Japan 81588-76 Verfahren zum Betrieb eines Hochofens durch Erfassen des Verhaltens von Rohstoffen, mit denen der Hochofen beschickt wird, und Vorrichtung zur Durchfuhrung dieses Verfahrens
EP2321603B1 (fr) Sonde d&#39;analyse d&#39;effluents gazeux en continu
EP2674821A2 (fr) Hotte de laboratoire
DD207613A3 (de) Verfahren und anordnung zum automatischen auftragsschweissen
WO2017063642A1 (fr) Procédé de détermination de la position variante du point d&#39;incidence d&#39;un faisceau d&#39;énergie sur une surface limitée
DE1673174A1 (de) Probenanalysator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170908