EP2836312B1 - Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat - Google Patents

Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat Download PDF

Info

Publication number
EP2836312B1
EP2836312B1 EP13714914.2A EP13714914A EP2836312B1 EP 2836312 B1 EP2836312 B1 EP 2836312B1 EP 13714914 A EP13714914 A EP 13714914A EP 2836312 B1 EP2836312 B1 EP 2836312B1
Authority
EP
European Patent Office
Prior art keywords
coating material
compressed air
valve unit
pressure vessel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13714914.2A
Other languages
English (en)
French (fr)
Other versions
EP2836312A1 (de
Inventor
Michael Petry
Thorsten Adebahr
Joachim Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Worlee Chemie GmbH
Original Assignee
Worlee Chemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Worlee Chemie GmbH filed Critical Worlee Chemie GmbH
Priority to EP13714914.2A priority Critical patent/EP2836312B1/de
Publication of EP2836312A1 publication Critical patent/EP2836312A1/de
Application granted granted Critical
Publication of EP2836312B1 publication Critical patent/EP2836312B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0093At least a part of the apparatus, e.g. a container, being provided with means, e.g. wheels or casters for allowing its displacement relative to the ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1431Arrangements for supplying particulate material comprising means for supplying an additional liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/1463Arrangements for supplying particulate material the means for supplying particulate material comprising a gas inlet for pressurising or avoiding depressurisation of a powder container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/005Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 mounted on vehicles or designed to apply a liquid on a very large surface, e.g. on the road, on the surface of large containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like
    • E04F21/08Mechanical implements
    • E04F21/12Mechanical implements acting by gas pressure, e.g. steam pressure

Definitions

  • the present invention relates to a system and a method for applying a liquid to pasty and porous coating material to a substrate, in particular by means of compressed air-controlled spraying of the coating material, as well as a part of the system which serves to control the promotion of the coating material so that its porosity making Properties are preserved. Furthermore, the present invention relates to the use of a porous coating material for spray application to a substrate.
  • liquid to pasty coating materials which contain highly porous solid particles which are based, for example, on aerogels or xerogels based on silica (silica).
  • coating materials may additionally contain gas bubbles which produce a foam-like structure.
  • Such solid particles can be obtained by known sol-gel methods and special drying methods and are available commercially and industrially. Due to their large pore volumes of up to more than 90%, they are interesting as insulating materials, in particular for heat, cold or sound insulation. Liquid to pasty coating materials of the aforementioned type are also referred to below as porous coating materials.
  • the surfaces to be insulated are coated with the materials, so that the desired insulating effect is achieved, for. B. for roofs, exterior and interior walls of buildings or containers such as containers, tanks, pipelines, Vehicle parts, ship components, plant components of the chemical industry and other industries.
  • coating materials are generally done by rolling, trowelling or spraying.
  • the coating material is generally supplied from a reservoir via a suitable conduit to a spraying apparatus such as a spray gun, by means of which it is then applied to one or more surfaces (substrate) of an article.
  • porous coating materials When using porous coating materials, it has proved to be disadvantageous that the pressures occurring in the conveying of the material in installations which are suitable for the injection-molding of liquid to pasty materials on substrates according to the prior art, are so high that the porous and / or foam-like structure is impaired or even completely destroyed. This is accompanied by a corresponding loss of insulation performance.
  • porous coating materials can not be adequately sprayed in systems which are suitable for the spray-applied application of liquid to pasty materials on substrates according to the prior art. The delivery rate is minimal and it comes after a short period of operation to blockages.
  • pressure vessel pressure vessel
  • the coating material is filled into a container and pressurized with compressed air upon closure, thereby delivering material through an outlet from the container to a conduit connected thereto and devices connected thereto for processing and application of the material to substrates.
  • the formation of the funnel or V-shaped space prevents the promotion of the coating material.
  • the pressure vessel may be provided with a so-called pressure plate, also called a follower plate, which divides the container into a pressure medium space and a material space.
  • a so-called pressure plate also called a follower plate, which divides the container into a pressure medium space and a material space.
  • the pressure medium space is pressurized and the pressure plate then presses the coating material uniformly in the direction of the outlet.
  • too high pressures occur so that the porous structure is compressed, impaired or destroyed.
  • the DE 102 11 331 A1 describes a mechanically applicable sound or heat insulation and a method for applying the same.
  • a sprayable thermal insulation is mentioned. It can be used as insulating filler airgel.
  • the airgel can be conveyed in dry form by means of propellant air from a conveyor via a transport hose in the form of a so-called thin stream to a spraying device, which is located directly in front of a surface to be coated (application surface).
  • a mixer in which the dry airgel mixed with binder and moved in a so-called dense stream on to the spray nozzle and the mixture is then applied under pressure from directly to the spray nozzle supplied compressed air to the application surface. Furthermore, it is mentioned that a ready-processed, airgel-containing insulation material can be provided in containers and processed from the container by machine or by hand, without, however, disclosing details regarding a method or a device therefor.
  • the DE 39 16 319 A1 relates to a spray head on a plastering machine for processing mortar.
  • the mortar is conveyed by means of a mortar pump.
  • the spray head has an air supply, is supplied via the compressed air in the mouth region of the spray head before leakage of the mortar.
  • US 4,117,551 relates to a spray gun for applying urethane foam.
  • the individual components of the foam are supplied separately from storage containers of the spray gun and mixed within the spray gun and from there to a Substrate applied as a foam.
  • the structure of the spray gun is particularly in the FIGS. 2 to 6 shown.
  • valve unit for controlling the delivery of a coating material containing porous solid particles formed from airgel or xerogel particles of organic or inorganic materials
  • the valve unit has at least one longitudinally extending through the valve unit bore which forms a passageway for transporting the coating material, has at least one lateral bore which forms an inlet for the supply of compressed air, which is optionally mixed with water or aqueous additives, wherein the at least one lateral bore is connected to the longitudinal bore such that the coating material in the passageway with the compressed air can be mixed, and optionally has at least one further lateral bore which forms an inlet for water for cleaning purposes and which is also connected to the longitudinal bore, wherein the lateral bores are each provided with check valves.
  • the invention relates to the use of a coating material as defined herein for spray application to a substrate as defined herein.
  • the invention relates to a method for the isolation of an article, in which as substrate one or more surfaces of the object to be insulated are coated by the method according to the invention as defined herein.
  • the method according to the invention and the system according to the invention comprise further features in addition to the features mentioned in the patent claims.
  • the method and the system according to the invention consist of the features disclosed in the patent claims and the present description. The same applies mutatis mutandis to the part of the system according to the invention, which serves to control the promotion of the coating material.
  • the system according to the invention does not comprise pumps for conveying the coating material.
  • the porous coating material is conveyed by means of compressed air. It is in the valve unit according to the invention, which can also be referred to as a mixing unit, mixed with compressed air and, if necessary, water or water-containing additives.
  • the porous structure of the coating material can be obtained.
  • the present invention is thus characterized in particular by the advantage that no pumps are used to convey the coating material. Instead, the coating material is conveyed with compressed air and, in particular, in the valve or mixing unit according to the invention with compressed air and, if necessary, water / water-containing Mixed additives before then the coating material is supported by compressed air applied by means of a spraying apparatus on a surface to be coated.
  • FIG. 1 shows an overall view of the system according to the invention, a pressure vessel 1 , a spraying apparatus 2 , a valve unit according to the invention 3 , a Druckregelventil- and Druckmess Anlagensan Aunt (manometer) 5 for the regulation of compressed air supply and the corresponding lines 4a , 4b , 6, 7, 8 for compressed air - and coating material promotion includes.
  • a Druckregelventil- and Druckmess wornsan Aunt (manometer) 5 for the regulation of compressed air supply
  • the corresponding lines 4a , 4b , 6, 7, 8 for compressed air - and coating material promotion includes.
  • FIG. 1 is another container for receiving liquid, especially water or water-containing liquids, and a conduit with which the container is connected to the compressed air line 7 , so that the compressed air supplied in the valve unit 3 can be moistened as required.
  • the pressure vessel 1 is charged via an inlet with porous coating material.
  • the inlet can be formed, for example, by a removable lid of the container, which is closed again after being charged to the container with this pressure.
  • the inlet may be in the form of an opening at a suitable location on the container provided with a suitable valve connected to a conduit through which coating material is supplied.
  • the coating material according to step (b) of the method according to the invention by pressurization via the outlet 1 d (see FIG. 2 ), which is provided with a valve for opening and closing the outlet, is conveyed from the container into the conduit ( 4a, 4b ) to which a spraying apparatus 2 is connected.
  • the pressure plate 9 (see FIG. 2 ) , the pressure vessel is divided into a coating material space 1e and a pressure medium space 1f .
  • the pressure medium space With compressed air supplied via line 6 , this is set in motion, so that the coating material from the coating material space 1e in line 4a , 4b is conveyed.
  • the pressure plate can be moved mechanically or hydraulically.
  • more than one pressure vessel can be used and can be removed from this simultaneously or successively coating material. There are then other lines and valves that regulate the simultaneous or successive transport of the coating material from these containers.
  • the coating material according to step (c) of the method according to the invention is passed through a valve unit 3 according to the invention.
  • the valve unit has a longitudinal bore which forms a passageway 3a for the coating material. This is connected to lateral bores 3b and 3c , which form inlets for compressed air, so that the coating material is mixed in the passageway with the compressed air and swirled by them.
  • the inlets are provided with check valves 3e, 3f .
  • the compressed air is optionally a liquid, in particular water or water-containing materials, added and optionally further additives to be added to the coating material and the compressed air can be transported.
  • a suitable nebulizer (not shown in FIG. 1 ) can be used.
  • valve unit 3 can connect via a short line section 4a or directly to the pressure vessel.
  • the coating material is further conveyed by compressed air through line 4b to the injection apparatus.
  • the line 4a, 4b may be wholly or partly formed of rigid or flexible pressure-resistant material.
  • the conduit 4a may be made of stainless steel and the conduit 4b of a pressure-resistant flexible hose based on, for example, polyvinyl chloride.
  • hoses based on mixtures of PVC and silicone are suitable, which are in particular double-walled.
  • the tube materials are characterized in that they are smooth-walled and absorb moisture.
  • valve unit arranged line 4b For example, for the downstream of the valve unit arranged line 4b , a commercially available from the company Petzetakis Germany GmbH flexible hose based on PVC with the trade name Helivyl Buna Super Soft is used, which can be used over a temperature range of -30 ° C to + 80 ° C. and required resistance to weathering (ozone and UV, water, acids, alkalis, aging resistance).
  • Exemplary hose lengths are 1 to 50 m, preferably 10 to 40 m, z. B. 12 or 15 to 20 m.
  • the inner diameter of the lines of the system according to the invention can be in the range of a few mm to cm, depending on the overall dimensioning of the system.
  • the inner diameter is, for example, 10 to 20 mm.
  • a tube of the above type can be used, wherein the inner diameter is 13 mm.
  • Cables used for compressed air supply have diameters within the same order of magnitude as described above.
  • a line 8 for supplying compressed air to the injection apparatus from a conduit such as a hose having an inner diameter in the range of 5 to 20 mm, in particular 5 to 15 mm such as 9 mm exist.
  • step (d) of the method according to the invention the coating material is conducted into an inlet of a spraying apparatus 2 , which can be designed, for example, as a manual or automatic spray gun with a nozzle arrangement 2a , an actuating lever 2b and a pistol grip 2c .
  • the injection apparatus has a further inlet 2d for the supply of compressed air.
  • the compressed air is then brought into contact with the coating material in such a way that it can be atomized via the nozzle arrangement 2a and applied to the substrate to be coated in a suitable jet such as a flat jet or an omnidirectional jet.
  • the pressure control valve and pressure gauge 5 By the pressure control valve and pressure gauge 5 , the pressures in the pressure vessel 1 , in the coating material line 4a , 4b and in the compressed air lines 7 to the valve unit and 8 to the injection apparatus separately controllable, so that in each case the desired operating conditions can be adjusted.
  • the working pressures in the pressure vessel are generally in the range between 2 and 5 bar, in particular 2 to 4.5 bar, in the valve unit according to the invention in the range between 2 and 4 bar, in particular 2 to 3 bar, and in the injection apparatus in Range from 2 to 5 bar.
  • the working pressure in the pressure vessel and the pressure for the additional compressed air supply in the valve unit according to the invention between 1.5 and 3.0 bar, the pressure for the additional compressed air supply equal to or lower than the working pressure in Pressure vessel is.
  • the flow rate of the coating material is generally 0.25 to 10 kg / min., Which value depends on the pressures used in the individual plant areas and the dimensioning of the nozzle arrangement in the spraying apparatus.
  • the liquid consumption in the above conditions is about 0.05 to 1 kg / hour, this value also from the Dimensioning of the system and the pressures used in the individual plant areas and the nozzle assembly depends.
  • the process according to the invention is generally carried out at room temperature, i. H. carried out in a temperature range between 15 and 25 ° C. However, it may also be carried out at lower or higher temperatures as long as the conveyance of the coating material is given, e.g. in a temperature range of 5 to 15 ° C.
  • FIG. 2 shows an embodiment of the pressure vessel according to the invention with pressure plate 9 and outlet 1d, which leads into a coating material line 4a , which is connected to a valve 1b for controlling the outflow from the pressure vessel 1 .
  • the pressure vessel is subdivided into a coating material space 1e and a pressure medium space 1f .
  • the pressure plate is moved towards the outlet and so the coating material in line 4a transported.
  • FIG. 3 shows an enlarged view of an embodiment of the valve unit according to the invention, which is connected upstream via the valve 1b to a line 4a , in which the coating material from the outlet of the pressure vessel occurs.
  • the valve unit On the downstream side, the valve unit is connected to a conduit 4b leading to the injection apparatus.
  • the valve unit has a passage 3 a , which is laterally connected to bores 3 b and 3 c , which are provided on their outer side respectively with check valves 3 e and 3 f , are connected to the lines 7 a and 7 b , takes place via the compressed air supply.
  • the compressed air with liquid especially water, water-containing materials or other additives, which are conveyed by compressed air, are added.
  • the lateral bores 3b and 3c are arranged so that the supply of compressed air, the promotion of the material downstream of the injection apparatus supports.
  • the holes are arranged in particular at an angle ⁇ 90 °, preferably at an angle in the range of 20 to 60 °, in particular 30 to 50 °, such as 35 to 45 °.
  • the lateral bores are arranged opposite one another. As a result, a particularly favorable mixing and loosening of the material is achieved.
  • FIG. 3 Not shown in FIG. 3 is another connection that can be mounted on the top of the valve unit and the supply of detergent and / or water after the end of the operation of the system according to the invention, so that it can be cleaned and freed from coating material residues.
  • This further supply line is also provided with a suitable valve such as a check valve.
  • FIG. 4 shows a side view of a spray gun in the form of a handgun, which is equipped with a nozzle assembly 2a , an actuating lever 2b, an inlet for the coating material 2c and another inlet for compressed air 2d .
  • the handgun also has a suspension hook 2f .
  • FIG. 5 shows a side sectional view of the handgun after FIG. 4 .
  • the atomization is carried out, for example, by means of commercially available spray guns known to the person skilled in the art, which have suitable nozzle arrangements with internal and external atomization.
  • FIG. 6 shows an embodiment of the system according to the invention, in which it is arranged on a trolley.
  • a suitable embodiment of the trolley has a width 10 of 70 to 100 cm, a height 11 of 70 to 100 cm and a length 12 of 80 to 100 cm.
  • a housing is applied, within which the valve unit 3 according to the invention is housed.
  • On the top of the housing there are two pressure vessels, each having an outlet with adjoining material conduit, which are merged into a conduit connected to the valve unit (not shown in FIG FIG. 6 ).
  • connection 14 can be seen, to which a line 4 for conveying the coating material can be connected to a spraying apparatus.
  • Line 4 is in the in FIG. 6 shown embodiment designed as a flexible hose, which is shown in its storage position.
  • a container 15 is arranged on the trolley, in which a liquid such as water is stored for humidifying the compressed air and the to a compressed air line 7 (not shown in FIG FIG. 6 ) , which leads to the valve unit according to the invention.
  • the installation according to the invention can also be designed to be stationary, ie permanently at a specific location.
  • FIG. 7 is a three-dimensional view of the trolley according to FIG. 6 shown in particular inlet valves for the compressed air supply to the pressure vessels 1 are shown.
  • the pressure vessels 1 have on their upper side also via pressure gauges, which indicate the pressure in the pressure medium space. Otherwise, the explanations to FIG. 6 to get expelled.
  • the equipment according to the invention has been described above with respect to its use for the application of a porous coating material.
  • the system and in particular the arrangement of the valve unit according to the invention can also be used for other purposes in which a material delivery and compressed air supply are beneficial, as the plant of the invention allows.
  • the system can also be used to apply non-porous materials to substrates or to treat surfaces with materials which can be conveyed and applied by the system according to the invention, even if no lasting connection between the material and the treated substrate is associated with the application. z. B. because there is only a cleaning or polishing effect to be achieved.
  • Porous coating materials which can be conveyed with the system according to the invention and applied to substrates, as well as their preparation are described, for example, in US Pat EP 1 697 671 A1 and the WO 2003/097227 A1 described.
  • Other suitable materials are commercially available, e.g. From Worlee-Chemie GmbH, Hamburg, Germany.
  • the porous, liquid to pasty coating materials are generally aqueous dispersions of porous, i. Pore-containing solid particles before.
  • a coating material according to the invention comprises a liquid phase in which porous solid particles dispersed in airgel or xerogel particles of organic or inorganic materials are dispersed.
  • the consistency of this dispersion can be described as liquid to pasty, depending on the proportions of the solid and liquid components of the respective dispersion.
  • these coating materials may additionally contain gas bubbles (e.g., air-filled or air-filled gas bubbles) which create a foam-like structure.
  • gas bubbles e.g., air-filled or air-filled gas bubbles
  • the coating material according to the invention has a viscosity of 10,000 to 100,000 mPas, in particular 30,000 to 100,000 mPas, preferably 50,000 to 90,000 mPas, measured with a haake VT 500 viscometer, measuring device E 100, shear stress about 91 S -1 .
  • the coating materials in addition to the constituents that make up the porosity, more solid or liquid ingredients are added to give the desired properties such.
  • the substrates to be coated may form or form part of items such as roofs, exterior and interior walls of buildings or containers such as containers, tanks, pipelines, vehicle parts, marine components, plant components of the chemical industry and other industries. They may have already been coated with other materials prior to applying the coating of the invention, e.g. with paints.
  • the substrate comprises or consists of a material selected from the group consisting of glass, wood and wood-based materials, metals, in particular iron, steel and aluminum, in particular anodized aluminum, mineral building materials such as concrete, cement materials, tiles, stones, such as eg Limestone, ytong stone, ceramics, and plastics, in particular polyethylene, and copolymers thereof, and polymers suitable for use as paints, such as alkyd resins, and combinations thereof.
  • the porous solid particles of the coating material of the invention are formed from airgel or xerogel particles of organic or inorganic materials, e.g. Resorcinol-formaldehyde or melamine-formaldehyde airgel particles or metal oxide airgel particles (e.g., silica, titania and alumina aerogels).
  • airgel or xerogel particles of organic or inorganic materials e.g. Resorcinol-formaldehyde or melamine-formaldehyde airgel particles or metal oxide airgel particles (e.g., silica, titania and alumina aerogels).
  • the porous coating material which can be processed according to the invention preferably contains porous solid particles based on silica aerogels or xerogels, which may optionally be chemically modified.
  • the surface of the aerosols or xerogels is hydrophobically modified, in particular by silanization.
  • silica-based aerogels are hereafter also short Silica aerogels, suitable according to the invention. These materials have a density in the range of 100 to 140 kg / m 3 and a porosity of> 80%, in particular of> 90%.
  • the porosity is accompanied by a high internal surface area of about 600 to 800 g / m 2 , measured as the BET surface area, and a high oil absorption of about 500 to 700 g of DBP (dibutyl phthalate) per 100 g of solid particles.
  • DBP dibutyl phthalate
  • the porosity or degree of porosity means the percentage of pore volume in the total volume of the porous material.
  • a porous coating material based on silica aerogels or xerogels which can be processed according to the invention preferably has the following parameters, which relate to the material as starting material, ie. H. before application to substrates by the method described herein and subsequent drying to form an insulating layer.
  • the density of the material is generally 0.3 to 0.8 g / cm 3 , in particular 0.4 to 0.6 g / cm 3 , in particular 0.5 g / cm 3 .
  • the pH is generally in the range of 7 to 10, preferably 8 to 10, especially 8.3 to 8.5.
  • the total solids content ie the content of the dispersions of porous and non-porous solids, is generally in the range of about 50 to 90 wt .-%, preferably 60 to 80 wt .-%, in particular 65 to 75 wt .-% as about 67% by weight.
  • the content of porous solid particles is generally in the range of about 8 to 30 wt .-%, preferably 10 to 20 wt .-%, in particular 10 to 15 wt .-%.
  • the gas bubble content is generally in the range of 0 vol .-% to 50 vol .-%, preferably 10 vol .-% to 40 vol .-%, in particular 20 vol .-% to 30 vol .-%.
  • the gas bubble content is calculated by subtracting from the volume of the total formulation (calculated from mass * density) the volume fraction of the formulation constituents and placing it in relation to the total volume.
  • the water content of the formulation of the coating material is generally in the range of 20 to 50 wt .-%, preferably 25 to 40 wt .-%, in particular 30 to 35 wt .-% such as 32 wt .-%.
  • the coating material In addition to the porous solid constituent and a dispersant, in particular water, the coating material generally contains as further constituents at least one polymer or copolymer, in particular acrylate-based, and optionally further constituents such as emulsifiers, stabilizers, surfactants, pigments, flame retardant additives, corrosion inhibitors, etc.
  • the porous coating material is applied by means of the method according to the invention generally in layer thicknesses of up to 30 mm on a substrate.
  • the layer thickness is in the range of 10 mm to 100 .mu.m, in particular 5 mm to 500 .mu.m, based on the dried state, which is generally achieved by drying at room temperature within 24 hours after application. It can also be dried at elevated temperatures, eg at temperatures up to 120 ° C. In the not yet dried, ie wet state, the layer thicknesses are usually about 10 to 20% larger.
  • a coating material was prepared according to the following recipe.
  • Enova airgel 9.39 Silica airgel 7 WorléeAdd 8905 2.82 Alkaline ZnO solution 8th water 1.5 ⁇ 100.00
  • component 1 and component 2 were initially charged and homogenized with stirring. Then, constituent 3 and constituent 4 were slowly interspersed in portions with stirring and then dispersed with the dissolver under high shear. Thereafter, ingredient 5 was slowly interspersed in portions with slow stirring and homogenized using low gravitational forces. Subsequently, constituent 6 was slowly interspersed in portions with slow stirring and homogenized using low gravitational forces. Finally, ingredient 7 and ingredient 8 were allowed to flow in with slow stirring and homogenized using low gravitational forces.
  • the porous coating material Before the porous coating material was filled in the system, it was filled with water and rinsed. In addition to the pre-moistening of the pressure vessel 1 and the tubes 4a, 4b, the function of the individual components can be checked in this case.
  • the container or containers 1 were designed so that they could be filled with 2 liters of water each and then sealed.
  • the containers were pressurized with 0.5 bar.
  • the outlet valve 1b of the pressure vessels and the valve unit 3 according to the invention were opened and the lever 2b of the spray gun 2 was actuated.
  • the water was pushed through the system and exited the gun nozzle.
  • the compressed air supply via line 7 was opened, also with 0.5 bar.
  • the water was enriched with air from the nozzle.
  • the atomizing air supply 8 was opened and also set at 0.5 bar.
  • the air-enriched water sputtered out of the nozzle on the gun 2 . This process can serve both the pre-moistening of all relevant parts and the function check. After the container (s) were drained, the pressure was released.
  • coating material was filled in the pressure vessel 2 . Thereafter, the pressure plate 9 was placed on the material and the container / 2 closed. The material pressure and the compressed air supply 7 were set to 2.5 bar. Thereafter, the exhaust valve 1b was opened and the gun lever 2b was operated. If the material comes out of the nozzle of the gun 2 , the atomizing air was adjusted to 3.0 bar and the material was applied to a substrate.
  • suitable specimens were prepared from the coating material and the heat transfer coefficient and the thermal conductivity were measured.
  • the coating material was applied to a non-adhesive surface (eg made of Teflon) (wet about 12 mm layer thickness, dry about 10 mm layer thickness). After drying, the coating was removed from the substrate and square test specimens with 29 cm edge length were cut.
  • a non-adhesive surface eg made of Teflon
  • the heat transfer coefficient indicates the amount of heat that passes through 1 m 2 of a substance with a certain layer thickness when the temperature difference is 1 K. This value is thus layer thickness-dependent. It was measured according to the method described in DIN EN 12664. Thereafter, the heat transfer coefficient for a sample coated with a 10 mm thick layer of the above insulating material was 4.7 W / (m 2 ⁇ K).
  • the thermal conductivity is the ability of a substance to transport thermal energy by means of heat conduction in the form of heat. As a substance constant, this value is independent of the layer thickness.
  • the thermal conductivity of the sample layer mentioned above was 0.046 W / (m 2 ⁇ K), measured according to the method described in DIN EN 12664.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Anlage und ein Verfahren zum Aufbringen eines flüssig bis pastösen und porösen Beschichtungsmaterials auf ein Substrat, insbesondere mittels druckluftgesteuertem Spritzen des Beschichtungsmaterials, sowie einen Teil der Anlage, der zur Steuerung der Förderung des Beschichtungsmaterials dient, so dass seine die Porosität ausmachenden Eigenschaften erhalten bleiben. Ferner betrifft die vorliegende Erfindung die Verwendung eines porösen Beschichtungsmaterials zur spritztechnischen Aufbringung auf ein Substrat.
  • Im Stand der Technik sind flüssige bis pastöse Beschichtungsmaterialien bekannt, die hochporöse Festkörperteilchen enthalten, die beispielsweise auf Aerogelen oder Xerogelen auf Basis von Siliciumdioxid (Silica) beruhen. Zudem können derartige Beschichtungsmaterialien noch zusätzlich Gasblasen enthalten, die eine schaumartige Struktur erzeugen. Derartige Festkörperteilchen können nach an sich bekannten Sol-Gel-Verfahren und speziellen Trocknungsverfahren erhalten werden und sind kommerziell und großtechnisch erhältlich. Auf Grund ihrer großen Porenvolumina von bis zu mehr als 90% sind sie als Isoliermaterialien interessant, insbesondere zur Wärme-, Kälte oder Schallisolierung. Flüssige bis pastöse Beschichtungsmaterialien der vorgenannten Art werden nachstehend auch kurz als poröse Beschichtungsmaterialien bezeichnet.
  • Für diesen Zweck werden die zu isolierenden Flächen mit den Materialien beschichtet, so dass die gewünschte Isolierwirkung erzielt wird, z. B. für Dächer, Außen- und Innenwände von Gebäuden oder Behältern wie Containern, Tanks, Rohrleitungen, Fahrzeugteilen, Schiffsbauteilen, Anlagenbauteilen der chemischen Industrie und anderer Industrien.
  • Die Aufbringung von Beschichtungsmaterialien erfolgt im Allgemeinen durch Rollen, Spachteln oder Spritzen. Bei letzterem Verfahren wird das Beschichtungsmaterial im Allgemeinen aus einem Vorratsbehälter über eine geeignete Leitung einer Spritzapparatur wie beispielsweise einer Spritzpistole zugeführt werden, mittels derer es dann auf eine oder mehrere Flächen (Substrat) eines Gegenstands aufgebracht wird.
  • Beim Einsatz von porösen Beschichtungsmaterialien hat es sich als nachteilig erwiesen, dass die bei der Förderung des Materials in Anlagen, die nach dem Stand der Technik zur spritztechnischen Aufbringung von flüssigen bis pastösen Materialien auf Substrate geeignet sind, auftretenden Drücke derart hoch sind, dass die poröse und/oder schaumartige Struktur beeinträchtigt bzw. sogar vollständig zerstört wird. Dies geht mit einem entsprechenden Verlust der Isolierleistung einher. Zudem lassen sich in Anlagen, die nach dem Stand der Technik zur spritztechnischen Aufbringung von flüssigen bis pastösen Materialien auf Substrate geeignet sind, poröse Beschichtungsmaterialien nicht sachgerecht verspritzen. Die Förderleistung ist minimal und es kommt nach kurzer Betriebszeit zu Verstopfungen.
  • So können bei Verwendung von gängigen Pumpenaggregaten zur Förderung eines Beschichtungsmaterials aus einem Vorratsbehälter zum Einlass einer Spritzpistole Drücke im Bereich von 10 bis etwa 180 bar auftreten, und zwar unabhängig vom verwendeten Pumpentyp wie Kolben, Membran, Kreisel-, Schnecken-, Zahnrad- oder Perestaltikpumpen.
  • Ferner sind Druckbehälter (Druckkessel) als Vorratsbehälter und zur Förderung von Beschichtungsmaterial für eine spritztechnische Applikation bekannt. Bei dieser Form der Materialförderung wird das Beschichtungsmaterial in einen Behälter gefüllt und dieser nach Verschließen mit Druckluft beaufschlagt, wodurch das Material über einen Auslass aus dem Behälter in eine damit verbundene Leitung und daran angeschlossene Vorrichtungen zur Verarbeitung und Aufbringung des Materials auf Substrate befördert wird. Dabei erweist es sich als nachteilig, dass sich in dem Druckbehälter nach Druckbeaufschlagung ein Trichter bzw. V-förmiger Raum ausbildet, wodurch das Beschichtungsmaterial an die Behälterwände gedrückt wird, was mit einer unerwünschten Komprimierung und Beschädigung der porösen Struktur verbunden ist. Zudem verhindert die Ausbildung des Trichters bzw. V-förmigen Raumes die Förderung des Beschichtungsmaterials.
  • Zur Vermeidung dieses Nachteils kann der Druckbehälter mit einer sogenannten Druckplatte, auch Folgeplatte genannt, versehen werden, die den Behälter in einen Druckmittelraum und einen Materialraum unterteilt. Um das Beschichtungsmaterial aus dem Materialraum zu befördern, wird der Druckmittelraum mit Druck beaufschlagt und die Druckplatte drückt das Beschichtungsmaterial dann gleichmäßig in die Richtung des Auslasses. Allerdings treten auch bei dieser Variante noch so hohe Drücke auf, dass die poröse Struktur komprimiert, beeinträchtigt bzw. zerstört wird.
  • Bislang war daher der Einsatz von Isoliermaterialien des vorstehend genannten Typs vergleichsweise begrenzt bzw. mit den weniger effizienten Aufbringungsarten des Spachtelns oder Rollens verbunden.
  • So beschreibt die DE 20 2007 017 944 U1 eine Verputzmaschine mit einer Rohrleitung zum Befördern des Verputzmaterials mittels einer Pumpe. Daneben weist die Anlage einen Druckluftkreis auf. Dieser dient dazu, Ventile an einer Spritzlanze sowie in der Förderleitung für das Verputzmaterial zu steuern.
  • Die DE 102 11 331 A1 beschreibt eine maschinell applizierbare Schall- bzw. Wärmedämmung und ein Verfahren zum Applizieren derselben. Im Rahmen der Schilderung der Aufgabe, die der Erfindung dieser Patentanmeldung zu Grunde liegt, wird die Schaffung einer spritzbaren Wärmedämmung erwähnt. Dabei kann als dämmender Füllstoff Aerogel eingesetzt werden. Das Aerogel kann in trockener Form mittels Treibluft von einer Fördereinrichtung aus über einen Transportschlauch in Form eines sogenannten Dünnstroms zu einer Spritzvorrichtung gefördert werden, die sich unmittelbar vor einer zu beschichtenden Fläche (Auftragsfläche) befindet. Unmittelbar vor der Spritzdüse der Spritzvorrichtung befindet sich ein Mischer, in dem das trockene Aerogel mit Bindemittel gemischt und in einem sogenannten Dichtstrom weiter zur Spritzdüse bewegt und die Mischung dann unter Druck von unmittelbar an der Spritzdüse zugeführter Druckluft auf die Auftragsfläche aufgebracht wird. Ferner wird erwähnt, dass auch ein fertig verarbeitetes, Aerogel-haltiges Dämmmaterial in Gebinden bereitgestellt und aus dem Gebinde maschinell oder händisch verarbeitet werden kann, ohne dass dazu jedoch Einzelheiten bzgl. eines Verfahrens oder einer Vorrichtung dafür offenbart werden.
  • Die DE 39 16 319 A1 betrifft einen Spritzkopf an einer Putzmaschine zur Verarbeitung von Mörteln. Der Mörtel wird mittels einer Mörtelpumpe gefördert. Der Spritzkopf verfügt über eine Luftzufuhr, über die Druckluft im Mündungsbereich des Spritzkopfes vor Austritt des Mörtels zugeführt wird.
  • US 4,117,551 betrifft eine Spritzpistole zum Aufbringen von Urethanschaum. Die einzelnen Komponenten des Schaums werden aus Vorratsbehältern der Spritzpistole separat zugeführt und innerhalb der Spritzpistole gemischt und von dort aus auf ein Substrat als Schaum aufgebracht. Der Aufbau der Spritzpistole ist insbesondere in den Figuren 2 bis 6 gezeigt.
  • Vor dem obigen Hintergrund liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine Anlage und ein Verfahren bereitzustellen, mit denen Materialien, die poröse Festkörper enthalten, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind, wie insbesondere Aerogele und Xerogele auf Basis von Siliciumdioxid, effizient auf eine Vielzahl von verschiedenen Substraten aufgebracht werden können, ohne dass die für die isolierende Wirkung entscheidende Porosität der Beschichtungsmaterialien verlorengeht.
  • Die erfindungsgemäße Aufgabe wird durch eine Anlage und ein Verfahren zum druckluftgesteuerten Aufbringen eines porösen Beschichtungsmaterials auf ein Substrat gelöst, bei dem
    1. a) mindestens ein Druckbehälter über einen Einlass mit Beschichtungsmaterial beschickt wird, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind,
    2. b) das Beschichtungsmaterial durch einen Auslass des mindestens einen Druckbehälters in eine Leitung befördert wird, an die eine Spritzapparatur angeschlossen ist,
    3. c) wobei das Beschichtungsmaterial durch eine Ventileinheit geleitet wird, die stromabwärts des mindestens einen Druckbehälters und stromaufwärts der Spritzapparatur angeordnet ist und in der das Beschichtungsmaterial mit Druckluft und gegebenenfalls Wasser oder wasserhaltigen Zusätzen vermischt wird,
    4. d) das so behandelte Beschichtungsmaterial in einen Einlass der Spritzapparatur geleitet wird,
    5. e) der Spritzapparatur über einen weiteren Einlass Druckluft zugeführt wird und
    6. f) das Beschichtungsmaterial druckluftunterstützt zerstäubt und auf ein Substrat aufgebracht wird.
  • Die erfindungsgemäße Anlage zum druckluftgesteuerten Aufbringen von Beschichtungsmaterial, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind, auf ein Substrat umfasst
    mindestens einen Druckbehälter zur Beschickung mit Beschichtungsmaterial, wobei der Druckbehälter einen Einlass und einen Auslass für das Beschichtungsmaterial aufweist,
    eine Spritzapparatur zum Aufbringen des porösen Beschichtungsmaterials auf ein Substrat, wobei die Spritzapparatur einen Einlass für das Beschichtungsmaterial, einen weiteren Einlass für die Zufuhr von Druckluft und eine Düsenanordnung aufweist,
    eine Leitung, die den Beschichtungsmaterialauslass des Druckbehälters mit dem Beschichtungsmaterialeinlass der Spritzapparatur verbindet,
    eine Ventileinheit, die mit der Leitung verbunden ist und die stromabwärts des Auslasses des Druckbehälters und stromaufwärts des Einlasses der Spritzapparatur angeordnet ist, wobei die Ventileinheit
    • mindestens eine in Längsrichtung durch die Ventileinheit verlaufende Bohrung aufweist, die einen Durchlasskanal zum Transport des Beschichtungsmaterials bildet,
    • mindestens eine seitliche Bohrung aufweist, die einen Einlass für die Zufuhr von Druckluft bildet, die gegebenenfalls mit Wasser oder wasserhaltigen Zusätzen versetzt ist, wobei die mindestens eine seitliche Bohrung mit der in Längsrichtung verlaufenden Bohrung so verbunden ist,
    • dass das Beschichtungsmaterial im Durchlasskanal mit der Druckluft vermischt werden kann, wobei die seitlichen Bohrungen jeweils mit Rückschlagventilen versehen sind.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung einer Ventileinheit zur Steuerung der Förderung eines Beschichtungsmaterials, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind, wobei die Ventileinheit
    mindestens eine in Längsrichtung durch die Ventileinheit verlaufende Bohrung aufweist, die einen Durchlasskanal zum Transport des Beschichtungsmaterials bildet,
    mindestens eine seitliche Bohrung aufweist, die einen Einlass für die Zufuhr von Druckluft bildet, die gegebenenfalls mit Wasser oder wasserhaltigen Zusätzen versetzt ist, wobei die mindestens eine seitliche Bohrung mit der in Längsrichtung verlaufenden Bohrung so verbunden ist, dass das Beschichtungsmaterial im Durchlasskanal mit der Druckluft vermischt werden kann, und
    gegebenenfalls mindestens eine weitere seitliche Bohrung aufweist, die einen Einlass für Wasser zu Reinigungszwecken bildet und die ebenfalls mit der in Längsrichtung verlaufenden Bohrung verbunden ist, wobei die seitlichen Bohrungen jeweils mit Rückschlagventilen versehen sind.
  • Ferner betrifft die Erfindung die Verwendung eines Beschichtungsmaterials wie hierin definiert zur spritztechnischen Aufbringung auf ein Substrat wie hierin definiert.
  • Schließlich betrifft die Erfindung ein Verfahren zur Isolierung eines Gegenstandes, bei dem als Substrat eine oder mehrere zu isolierende Flächen des Gegenstandes nach dem erfindungsgemäßen Verfahren wie hierin definiert beschichtet werden.
  • Bevorzugte Ausführungsformen der Erfindung sind in der nachstehenden Beschreibung, den Figuren sowie den abhängigen Patentansprüchen offenbart.
  • In bestimmten Ausführungsformen umfassen das erfindungsgemäße Verfahren und die erfindungsgemäße Anlage zusätzlich zu den in den Patentansprüchen genannten Merkmalen weitere Merkmale. In weiteren Ausführungsformen bestehen das erfindungsgemäße Verfahren und die erfindungsgemäße Anlage aus den in den Patentansprüchen und der vorliegenden Beschreibung offenbarten Merkmalen. Sinngemäß das Gleiche gilt für den erfindungsgemäßen Teil der Anlage, der zur Steuerung der Förderung des Beschichtungsmaterials dient.
  • Insbesondere umfasst die erfindungsgemäße Anlage keine Pumpen zur Förderung des Beschichtungsmaterials. Stattdessen wird, wie vorstehend und auch nachstehend offenbart, das poröse Beschichtungsmaterial mittels Druckluft befördert. Dabei wird es in der erfindungsgemäßen Ventileinheit, die auch als Mischeinheit bezeichnet werden kann, mit Druckluft und ggfs. Wasser oder wasserhaltigen Zusätzen vermischt. So kann die poröse Struktur des Beschichtungsmaterials erhalten werden.
  • Gegenüber dem vorgenannten Stand der Technik zeichnet sich die vorliegende Erfindung also insbesondere durch den Vorteil aus, dass keine Pumpen zur Förderung des Beschichtungsmaterials verwendet werden. Stattdessen wird das Beschichtungsmaterial mit Druckluft befördert und insbesondere in der erfindungsgemäßen Ventil- bzw. Mischeinheit mit Druckluft und ggfs. Wasser/wasserhaltigen Zusätzen vermischt, bevor dann das Beschichtungsmaterial druckluftunterstützt mittels einer Spritzapparatur auf eine zu beschichtende Fläche aufgebracht wird.
  • Kurze Beschreibung der Figuren
    • Figur 1 zeigt eine Gesamtansicht der erfindungsgemäßen Anlage.
    • Figur 2 zeigt einen erfindungsgemäßen Druckbehälter mit Druckplatte, Auslass und Auslassventil.
    • Figur 3 zeigt eine erfindungsgemäße Ventileinheit mit Durchlasskanal für das Beschichtungsmaterial und seitlichen Zuführungen für Druckluft.
    • Figur 4 zeigt eine Seitenansicht einer Spritzapparatur in Form einer Handspritzpistole.
    • Figur 5 zeigt eine Schnittansicht der Handspritzpistole.
    • Figur 6 zeigt eine Vorderansicht, eine Seitenansicht und eine Aufsicht einer erfindungsgemäßen Anlage, die auf einem Rollwagen angeordnet ist, sowie eine Abbildung eines Bedieners mit der Anlage zur Veranschaulichung einer möglichen Dimensionierung.
    • Figur 7 zeigt eine dreidimensionale Ansicht einer erfindungsgemäßen Anlage mit zwei Druckbehältern, die auf einem Rollwagen angeordnet ist.
  • Die Erfindung ist jedoch nicht auf die in den vorstehend angegebenen Figuren dargestellten Ausführungsformen beschränkt.
  • Figur 1 zeigt eine Gesamtansicht der erfindungsgemäßen Anlage, die einen Druckbehälter 1, eine Spritzapparatur 2, eine erfindungsgemäße Ventileinheit 3, eine Druckregelventil- und Druckmesseinrichtungsanordnung (Manometer) 5 für die Regulierung der Druckluftzufuhr sowie die entsprechenden Leitungen 4a, 4b, 6, 7, 8 für Druckluft- und Beschichtungsmaterialförderung umfasst. Nicht gezeigt in Figur 1 ist ein weiterer Behälter zur Aufnahme von Flüssigkeit, insbesondere Wasser oder wasserhaltigen Flüssigkeiten, sowie eine Leitung, mit der der Behälter an die Druckluftleitung 7 angeschlossen wird, so dass die in der Ventileinheit 3 zugeführte Druckluft wie erforderlich befeuchtet werden kann.
  • In Schritt (a) des erfindungsgemäßen Verfahrens wird der Druckbehälter 1 über einen Einlass mit porösem Beschichtungsmaterial beschickt. Der Einlass kann beispielsweise durch einen abnehmbaren Deckel des Behälters gebildet werden, der nach Beschickung des Behälters wieder mit diesem druckfest verschlossen wird. Alternativ kann der Einlass in Form einer Öffnung an einer geeigneten Stelle des Behälters ausgebildet sein, die mit einem geeigneten Ventil versehen ist, das mit einer Leitung verbunden ist, über die Beschichtungsmaterial zugeführt wird.
  • Nach Beschickung des Druckbehälters 1 wird das Beschichtungsmaterial gemäß Schritt (b) des erfindungsgemäßen Verfahrens durch Druckbeaufschlagung über den Auslass 1d (siehe Figur 2 ), der mit einem Ventil zum Öffnen und Verschließen des Auslasses versehen ist, aus dem Behälter in die Leitung (4a, 4b) befördert, an die eine Spritzapparatur 2 angeschlossen ist.
  • Wird bei dem Druckbehälter eine Ausführungsform verwendet, die eine Druckplatte 9 (siehe Figur 2 ) verwendet, so ist der Druckbehälter in einen Beschichtungsmaterialraum 1e und einem Druckmittelraum 1f unterteilt. Durch Beaufschlagung des Druckmittelraums mit über Leitung 6 zugeführter Druckluft wird diese in Bewegung gesetzt, so dass das Beschichtungsmaterial aus dem Beschichtungsmaterialraum 1e in Leitung 4a, 4b befördert wird. Alternativ kann die Druckplatte mechanisch oder hydraulisch bewegt werden.
  • Erfindungsgemäß kann mehr als ein Druckbehälter verwendet werden und aus diesem gleichzeitig bzw. nacheinander Beschichtungsmaterial entnommen werden. Es sind dann weitere Leitungen und Ventile vorhanden, die die gleichzeitige bzw. nacheinander erfolgende Beförderung des Beschichtungsmaterials aus diesen Behältern regeln.
  • Nach Austritt aus dem Druckbehälter und Eintritt in Leitung 4a wird das Beschichtungsmaterial gemäß Schritt (c) des erfindungsgemäßen Verfahrens durch eine erfindungsgemäße Ventileinheit 3 geleitet. Die Ventileinheit weist eine in Längsrichtung verlaufende Bohrung auf, die einen Durchlasskanal 3a für das Beschichtungsmaterial bildet. Diese ist mit seitlichen Bohrungen 3b und 3c verbunden, die Einlässe für Druckluft bilden, so dass das Beschichtungsmaterial im Durchlasskanal mit der Druckluft vermischt und durch diese verwirbelt wird. Die Einlasse sind mit Rückschlagventilen 3e, 3f versehen.
  • Der Druckluft wird gegebenenfalls eine Flüssigkeit, insbesondere Wasser bzw. wasserhaltige Materialien, zugesetzt sowie gegebenenfalls weitere Zusätze, die dem Beschichtungsmaterial zugesetzt werden sollen und die Druckluft befördert werden können. Dazu wird kann ein geeigneter Vernebler (nicht in Figur 1 gezeigt) verwendet werden.
  • Durch die in der Ventileinheit 3 erfolgende Druckluftzufuhr wird das Beschichtungsmaterial bei der weiteren Förderung durch Leitung 4b zur Spritzapparatur derart aufgelockert, dass eine Beschädigung bzw. Zerstörung der porösen Struktur bzw. der die poröse Struktur des Beschichtungsmaterials ausmachenden Bestandteile vermieden bzw. ausreichend vermindert wird, so dass das Material nach Aufbringung auf ein Substrat als Isoliermaterial geeignet ist.
  • Im Lichte dieser Offenbarung erkennt der Fachmann in Bezug auf die Länge der Leitungen 4a und 4b, dass diese so auszulegen sind, dass der obige Effekt erzielt wird. Die genauen Längen hängen natürlich von der gesamten Dimensionierung der erfindungsgemäßen Anlage ab. Wie auch in Figur 1 veranschaulicht, kann sich die erfindungsgemäße Ventileinheit 3 über ein kurzes Leitungsstück 4a oder unmittelbar an den Druckbehälter anschließen.
  • Nach Durchmischung und gegebenenfalls Befeuchtung bzw. Zusatz weiterer mittels Druckluft förderbarer Materialien in der Ventileinheit 3 wird das Beschichtungsmaterial druckluftgestützt weiter durch Leitung 4b zur Spritzapparatur befördert. Die Leitung 4a, 4b kann ganz oder teilweise aus starrem oder flexiblem druckfestem Material ausgebildet sein.
  • Zum Beispiel kann die Leitung 4a aus Edelstahl bestehen und die Leitung 4b aus einem druckfesten flexiblem Schlauch auf Basis von beispielsweise Polyvinylchlorid. Ferner sind Schläuche auf Basis von Gemischen aus PVC und Silikon geeignet, die insbesondere doppelwandig ausgeführt sind. Die Schlauchmaterialien zeichnen sich dadurch aus, dass sie glattwandig sind und keine Feuchtigkeit aufnehmen.
  • Beispielsweise wird für die stromabwärts der Ventileinheit angeordnete Leitung 4b, ein von der Firma Petzetakis Deutschland GmbH erhältlicher flexibler Schlauch auf Basis von PVC mit der Handelsbezeichnung Helivyl Buna Super Soft verwendet, der über einen Temperaturbereich von -30°C bis +80°C einsetzbar ist und erforderliche Beständigkeit gegen Witterungseinflüsse (Ozon und UV, Wasser, Säuren, Laugen, Alterungsbeständigkeit) aufweist. Beispielhafte Schlauchlängen betragen 1 bis 50 m, vorzugsweise 10 bis 40 m, z. B. 12 oder 15 bis 20 m.
  • Die Innendurchmesser der Leitungen der erfindungsgemäßen Anlage können im Bereich von einigen mm bis cm liegen, je nach der gesamten Dimensionierung der Anlage. Für die Leitung 4a, 4b zur Beförderung des Beschichtungsmaterials beträgt der Innendurchmesser beispielsweise 10 bis 20 mm. Insbesondere kann ein Schlauch der obigen Art verwendet werden, bei dem der Innendurchmesser 13 mm beträgt.
  • Für die Druckluftzufuhr verwendete Leitungen weisen Durchmesser innerhalb der gleichen Größenordnung auf wie vorstehend beschrieben. Insbesondere kann eine Leitung 8 zur Zufuhr von Druckluft zur Spritzapparatur aus einer Leitung wie einem Schlauch mit einem Innendurchmesser im Bereich von 5 bis 20 mm, insbesondere 5 bis 15 mm wie beispielsweise 9 mm bestehen.
  • In Schritt (d) des erfindungsgemäßen Verfahrens wird das Beschichtungsmaterial in einen Einlass einer Spritzapparatur 2 geleitet, die beispielsweise als Hand- oder Automatikspritzpistole mit einer Düsenanordnung 2a, einem Betätigungshebel 2b und einem Pistolengriff 2c ausgebildet sein kann. Die Spritzapparatur weist einen weiteren Einlass 2d für die Zufuhr von Druckluft auf.
  • In der Spritzapparatur wird die Druckluft dann so mit dem Beschichtungsmaterial in Kontakt gebracht, dass es über die Düsenanordnung 2a zerstäubt und in einem geeigneten Strahl wie einem Flachstrahl oder einem Rundstrahl auf das zu beschichtende Substrat aufgebracht werden kann.
  • Durch die Druckregelventil- und Manometeranordnung 5 sind die Drücke im Druckbehälter 1, in Beschichtungsmaterialleitung 4a, 4b sowie in den Druckluftleitungen 7 zur Ventileinheit und 8 zur Spritzapparatur getrennt voneinander steuerbar, so dass jeweils die gewünschten Betriebsbedingungen eingestellt werden können.
  • Bei dem erfindungsgemäßen Verfahren liegen die Arbeitsdrücke im Druckbehälter im Allgemeinen im Bereich zwischen 2 und 5 bar, insbesondere 2 bis 4,5 bar, in der erfindungsgemäßen Ventileinheit im Bereich zwischen 2 und 4 bar, insbesondere 2 bis 3 bar, und in der Spritzapparatur im Bereich von 2 bis 5 bar.
  • Je nach Viskosität des Beschichtungsmaterials betragen nach einer Ausführungsform der Erfindung der Arbeitsdruck im Druckbehälter und der Druck für die zusätzliche Druckluftzufuhr in der erfindungsgemäßen Ventileinheit zwischen 1,5 und 3,0 bar, wobei der Druck für die zusätzliche Druckluftzufuhr gleich oder niedriger als der Arbeitsdruck im Druckbehälter ist.
  • Die Durchflussrate des Beschichtungsmaterials beträgt im Allgemeinen 0,25 bis 10 kg/min., wobei dieser Wert von den in den einzelnen Anlagenbereichen verwendeten Drücken und der Dimensionierung der Düsenanordnung in der Spritzapparatur abhängig ist.
  • Bei Zusatz von Flüssigkeit zur Befeuchtung der Druckluft, insbesondere Wasser bzw. wasserhaltiger Flüssigkeit, in der über eine Leitung 7 der Ventileinheit 3 zugeführten Druckluft beträgt der Flüssigkeitsverbrauch bei den obigen Bedingungen etwa 0,05 bis 1 kg/Stunde, wobei dieser Wert ebenfalls von der Dimensionierung der Anlage sowie den in den einzelnen Anlagenbereichen verwendeten Drücken und der Düsenanordnung abhängt.
  • Die beiden folgenden Tabellen geben typische Verbrauchsmengen für Druckluft (in 1/min.) in Spritzapparaturen vom Typ Spritzpistole in Abhängigkeit von der in der Spritzapparatur verwendeten Düsengröße und dem eingestellten Druck an.
    Düse Ø mm Druck in bar
    2 bar 3 bar 4 bar 5 bar 6 bar
    3.0 300 380 470 570 700
    4,0 450 570 700 840 1000
    5,0 640 840 1050 1270 1500
    6,0 920 1250 1600 1950 2200
    Düse Ø
    Druck 6mm 9mm 12 mm
    3 bar 510 650 800
    4 bar 530 670 825
    5 bar 530 700 860
  • Obige Werte sind jedoch auch von der Umgebungstemperatur und den Eigenschaften des Beschichtungsmaterials abhängig und können in Abhängigkeit davon variieren.
  • Das erfindungsgemäße Verfahren wird im Allgemeinen bei Raumtemperatur, d. h. in einem Temperaturbereich zwischen 15 und 25°C durchgeführt. Es kann jedoch auch bei niedrigeren oder höheren Temperaturen durchgeführt werden, solange die Förderbarkeit des Beschichtungsmaterials gegeben ist, z.B. in einem Temperaturbereich von 5 bis 15°C.
  • Figur 2 zeigt eine Ausführungsform des erfindungsgemäßen Druckbehälters mit Druckplatte 9 und Auslass 1d, der in eine Beschichtungsmaterialleitung 4a führt, die an ein Ventil 1b zur Steuerung des Ausflusses aus dem Druckbehälter 1 angeschlossen ist. Durch die Verwendung der Druckplatte 9 wird der Druckbehälter in einen Beschichtungsmaterialraum 1e und einen Druckmittelraum 1f unterteilt. Durch Druckbeaufschlagung des Druckmittelraums 1f wird die Druckplatte Richtung Auslass bewegt und so das Beschichtungsmaterial in Leitung 4a befördert.
  • Figur 3 zeigt eine vergrößerte Ansicht einer Ausführungsform der erfindungsgemäßen Ventileinheit, die stromaufwärts über das Ventil 1b an eine Leitung 4a angeschlossen ist, in die das Beschichtungsmaterial aus dem Auslass des Druckbehälters eintritt. Auf der stromabwärts gelegenen Seite ist die Ventileinheit mit einer Leitung 4b verbunden, die zur Spritzapparatur führt. Die Ventileinheit weist einen Durchlasskanal 3a auf, der seitlich mit Bohrungen 3b und 3c verbunden ist, die auf ihrer äußeren Seite jeweils mit Rückschlagventilen 3e und 3f versehen sind, an die Leitungen 7a und 7b angeschlossen sind, über die Druckluftzufuhr erfolgt. Dabei kann die Druckluft mit Flüssigkeit, insbesondere Wasser, wasserhaltigen Materialien oder sonstigen Zusätzen, die mittels Druckluft förderbar sind, versetzt werden.
  • Die seitlichen Bohrungen 3b und 3c sind so angeordnet, dass die Druckluftzufuhr, die Förderung des Materials stromabwärts zur Spritzapparatur unterstützt. Dazu sind die Bohrungen insbesondere in einem Winkel < 90° angeordnet, vorzugsweise in einem Winkel im Bereich von 20 bis 60°, insbesondere 30 bis 50°, wie 35 bis 45°. Bevorzugt sind die seitlichen Bohrungen gegenüberliegend angeordnet. Dadurch wird eine besonders günstige Durchmischung und Auflockerung des Materials erzielt.
  • Nicht gezeigt in Figur 3 ist ein weiterer Anschluss, der auf der Oberseite der Ventileinheit angebracht sein kann und der die Zufuhr von Reinigungsmittel und/oder Wasser nach Ende des Betriebs der erfindungsgemäßen Anlage dient, so dass diese gereinigt und von Beschichtungsmaterialrückständen befreit werden kann. Diese weitere Zuleitung ist ebenfalls mit einem geeigneten Ventil wie einem Rückschlagventil versehen.
  • Figur 4 zeigt eine Seitenansicht einer Spritzapparatur in Form einer Handspritzpistole, die mit einer Düsenanordnung 2a, einem Betätigungshebel 2b, einem Einlass für das Beschichtungsmaterial 2c und einem weiteren Einlass für Druckluft 2d ausgestattet ist. Die Handspritzpistole verfügt ferner über einen Aufhängehaken 2f.
  • Figur 5 zeigt eine seitliche Schnittansicht durch die Handspritzpistole nach Figur 4 . Erfindungsgemäß erfolgt die Zerstäubung z.B. mittels dem Fachmann bekannter handelsüblicher Spritzpistolen, die geeignete Düsenanordnungen mit Innen- und Außenzerstäubung aufweisen.
  • Figur 6 zeigt eine Ausführungsform der erfindungsgemäßen Anlage, bei der diese auf einem Rollwagen angeordnet ist. Eine geeignete Ausführungsform des Rollwagens weist eine Breite 10 von 70 bis 100 cm, eine Höhe 11 von 70 bis 100 cm und eine Länge 12 von 80 bis 100 cm auf. Auf der Bodenplatte des Rollwagens ist ein Gehäuse aufgebracht, innerhalb dessen die erfindungsgemäße Ventileinheit 3 untergebracht ist. Auf der Oberseite des Gehäuses sind zwei Druckbehälter angeordnet, die jeweils einen Auslass mit sich daran anschließender Materialleitung aufweisen, die zu einer Leitung zusammengeführt werden, die mit der Ventileinheit verbunden ist (nicht gezeigt in Figur 6).
  • In der Vorderansicht von Figur 6a ist ein Anschluss 14 zu sehen, an den eine Leitung 4 zur Beförderung des Beschichtungsmaterials zu einer Spritzapparatur angeschlossen werden kann. Leitung 4 ist in der in Figur 6 gezeigten Ausführungsform als flexibler Schlauch ausgeführt, der in seiner Aufbewahrungsposition gezeigt ist. Ferner ist auf dem Rollwagen ein Behälter 15 angeordnet, in dem eine Flüssigkeit wie Wasser zur Befeuchtung der Druckluft aufbewahrt wird und der an eine Druckluftleitung 7 (nicht gezeigt in Figur 6 ) angeschlossen werden kann, die zur erfindungsgemäßen Ventileinheit führt.
  • Neben einer mobilen Ausführungsform wie beispielsweise in Figur 6 gezeigt kann die erfindungsgemäße Anlage auch stationär, d.h. dauerhaft an einem bestimmten Ort, ausgeführt sein.
  • In Figur 7 ist eine dreidimensionale Ansicht des Rollwagens gemäß Figur 6 gezeigt, in der insbesondere Einlassventile für die Druckluftzufuhr zu den Druckbehältern 1 gezeigt sind. Die Druckbehälter 1 verfügen auf ihrer Oberseite ferner über Manometer, die den Druck im Druckmittelraum anzeigen. Ansonsten kann auf die Erläuterungen zu Figur 6 verwiesen werden.
  • Die erfindungsgemäße Anlage wurde vorstehend in Bezug auf ihre Verwendung zur Aufbringung eines porösen Beschichtungsmaterials beschrieben. Die Anlage und insbesondere die Anordnung der erfindungsgemäßen Ventileinheit kann jedoch auch zu anderen Zwecken verwendet werden, bei denen eine Materialförderung und Druckluftzufuhr von Vorteil sind, wie sie die erfindungsgemäße Anlage ermöglicht. So kann die Anlage falls gewünscht auch zur Aufbringung nichtporöser Materialien auf Substrate oder zum Behandeln von Flächen mit Materialien genutzt werden, die mit der erfindungsgemäßen Anlage gefördert und appliziert werden können, auch wenn mit der Applikation keine dauerhafte Verbindung zwischen Material und behandeltem Substrat verbunden ist, z. B. weil dort nur eine Reinigungs- oder Polierwirkung erzielt werden soll.
  • Erfindungsgemäß können neben herkömmlicher Druckluft auch andere Gase und Gasgemische (Druckgase) zur Druckbeaufschlagung und druckunterstützen Beförderung und Aufbringung eingesetzt werden.
  • Poröse Beschichtungsmaterialien, die mit der erfindungsgemäßen Anlage gefördert und auf Substrate aufgebracht werden können, sowie deren Herstellung sind beispielsweise in der EP 1 697 671 A1 und der WO 2003/097227 A1 beschrieben. Andere geeignete Materialien sind kommerziell erhältlich, z. B. von der Worlee-Chemie GmbH, Hamburg, Deutschland.
  • Die porösen, flüssig bis pastösen Beschichtungsmaterialien liegen im Allgemeinen als wässrige Dispersionen von porösen, d.h. Poren aufweisenden Festkörperteilchen vor. Mit anderen Worten, ein erfindungsgemäßes Beschichtungsmaterial umfasst eine flüssige Phase, in der poröse Festkörperteilchen dispergiert sind, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind. Die Konsistenz dieser Dispersion kann als flüssig bis pastös beschrieben werden, in Abhängigkeit von den Anteilen der festen und flüssigen Bestandteile der jeweiligen Dispersion. Zudem können diese Beschichtungsmaterialien noch zusätzlich Gasblasen (z.B. luftgefüllte oder lufthaltige Gasblasen) enthalten, die eine schaumartige Struktur erzeugen. Die vorstehend beschriebenen erfindungsgemäßen Materialien werden hier auch kurz als poröse Beschichtungsmaterialien bezeichnet.
  • Insbesondere weist das erfindungsgemäße Beschichtungsmaterial eine Viskosität von 10.000 bis 100.000 mPas auf, insbesondere 30.000 bis 100.000 mPas, vorzugsweise 50.000 bis 90.000 mPas, gemessen mit einem Viskosimeter Haake VT 500, Messeinrichtung E 100, Schubspannung ca. 91 S-1.
  • Je nach gewünschter Anwendung können den Beschichtungsmaterialien neben den Bestandteilen, die die Porosität ausmachen, weitere feste oder flüssige Bestandteile zugefügt werden, die gewünschte Eigenschaften verleihen wie z. B. Flammschutzmittel zur flammhemmenden Ausrüstung einer aus dem Beschichtungsmaterial hergestellten Isolierschicht oder Korrosionsschutzmittel zur korrosionsschützenden Ausrüstung bei Aufbringung auf Metallsubstrate.
  • Die zu beschichtenden Substrate können Teil von Gegenständen wie Dächern, Außen- und Innenwänden von Gebäuden oder Behältern wie Containern, Tanks, Rohrleitungen, Fahrzeugteilen, Schiffsbauteilen, Anlagenbauteilen der chemischen Industrie und anderer Industrien sein oder diese bilden. Sie können vor Aufbringung der erfindungsgemäßen Beschichtung bereits mit anderen Materialen beschichtet worden sein, z.B. mit Lacken.
  • Das Substrat umfasst insbesondere ein Material, oder besteht daraus, das ausgewählt ist aus der Gruppe bestehend aus Glas, Holz und Holzwerkstoffe, Metallen, insbesondere Eisen, Stahl und Aluminium, insbesondere eloxiertem Aluminium, mineralische Baustoffe wie Beton, Zementwerkstoffe, Fliesen, Steine, wie z.B. Kalksandstein, Ytong-Stein, Keramik, sowie Kunststoffen, insbesondere Polyethylen sowie Copolymere davon und zur Verwendung als Lacke geeignete Polymere wie Alkydharze, und Kombinationen davon.
  • Die porösen Festkörperteilchen des erfindungsgemäßen Beschichtungsmaterials sind aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet, z.B. Resorzinol-Formaldehyd- oder Melamin-Formaldehyd-Aerogel-Teilchen bzw. Metalloxid-Aerogel-Teilchen (z.B. Kieselsäure-, Titandioxid- und Aluminiumoxid-Aerogele).
  • Das erfindungsgemäß verarbeitbare poröse Beschichtungsmaterial enthält vorzugsweise poröse Festkörperteilchen auf Basis von Siliciumdioxid-Aerogelen oder -Xerogelen, die gegebenenfalls chemisch modifiziert sein können. Insbesondere ist die Oberfläche der Aero- bzw. Xerogele hydrophob modifiziert, insbesondere durch Silanisierung. Insbesondere sind Aerogele auf Siliciumdioxidbasis, nachstehend auch kurz Silica-Aerogele, erfindungsgemäß geeignet. Diese Materialien weisen eine Dichte im Bereich von 100 bis 140 kg/m3 und eine Porosität von > 80 %, insbesondere von > 90% auf. Mit der Porosität einher geht eine hohe innere Oberfläche von ca. 600 bis 800 g/m2, gemessen als BET Oberfläche, sowie ein hohe Ölaufnahme von ca. 500 bis 700 g DBP (Dibutylphthalat) per 100g Festkörperteilchen.
  • Wie dem Fachmann bekannt ist, ist mit Porosität bzw. Porositätsgrad der prozentuale Anteil des Porenvolumens am Gesamtvolumen des porösen Materials gemeint. Ein erfindungsgemäß verarbeitbares poröses Beschichtungsmaterial auf Basis von Silica-Aerogelen bzw. -Xerogelen weist vorzugsweise die folgenden Parameter auf, die sich auf das Material als Ausgangsmaterial beziehen, d. h. vor Aufbringung auf Substrate mittels dem hierin beschriebenen Verfahren und anschließender Trocknung zur Ausbildung einer Isolierschicht.
  • Die Dichte des Materials liegt im Allgemeinen bei 0,3 bis 0,8 g/cm3, insbesondere 0,4 bis 0,6 g/cm3, wie insbesondere 0,5 g/cm3.
  • Der pH-Wert liegt im Allgemeinen im Bereich von 7 bis 10, vorzugsweise 8 bis 10, insbesondere 8,3 bis 8,5. Die Shore-Härte (gemessen mit einem Härteprüfgerät nach DIN 53505) liegt im Allgemeinen im Bereich von A = 20 bis 70, vorzugsweise 30 bis 60, insbesondere 45.
  • Der Festkörpergesamtgehalt, d.h. der Gehalt der Dispersionen an porösen und nicht-porösen Feststoffen, liegt im Allgemeinen im Bereich von ca. 50 bis 90 Gew.-%, vorzugsweise 60 bis 80 Gew.-%, insbesondere 65 bis 75 Gew.-% wie etwa 67 Gew.-%.
  • Der Gehalt an porösen Festkörperteilchen liegt im Allgemeinen im Bereich von ca. 8 bis 30 Gew.-%, vorzugsweise 10 bis 20 Gew.-%, insbesondere 10 bis 15 Gew.-%.
  • Der Gasblasengehalt liegt im allgemeinen im Bereich von 0 Vol.-% bis 50 Vol.-%, vorzugsweise 10 Vol.-% bis 40 Vol-%, insbesondere 20 Vol.-% bis 30 Vol.-%. Der Gasblasengehalt errechnet sich, in dem vom Volumen der Gesamtformulierung (errechnet aus Masse * Dichte) der Volumenanteil der Formulierungsbestandteile abgezogen wird und ins Verhältnis zum Gesamtvolumen gesetzt wird.
  • Der Wasseranteil der Formulierung des Beschichtungsmaterials liegt im Allgemeinen im Bereich von 20 bis 50 Gew.-%, vorzugsweise 25 bis 40 Gew.-%, insbesondere 30 bis 35 Gew.-% wie etwa 32 Gew.-%.
  • Neben dem porösen Festkörperbestandteil und einem Dispersionsmittel, insbesondere Wasser, enthält das Beschichtungsmaterial im Allgemeinen als weitere Bestandteile mindestens ein Polymer oder Copolymer, insbesondere auf Acrylatbasis, sowie gegebenenfalls weitere Bestandteile wie Emulgatoren, Stabilisatoren, Tenside, Pigmente, flammhemmende Additive, Korrosionsschutzmittel etc.
  • Das poröse Beschichtungsmaterial wird mittels des erfindungsgemäßen Verfahrens im Allgemeinen in Schichtdicken von bis zu 30 mm auf ein Substrat aufgebracht. Vorzugsweise liegt die Schichtdicke im Bereich von 10 mm bis 100 µm, insbesondere 5 mm bis 500 µm, bezogen auf den getrockneten Zustand, der im Allgemeinen bei Trocknung bei Raumtemperatur innerhalb von 24 Stunden nach Aufbringung erreicht wird. Es kann auch bei erhöhten Temperaturen getrocknet werden, z.B. bei Temperaturen bis zu 120°C. Im noch nicht getrockneten, d. h. nassen Zustand sind die Schichtdicken in der Regel etwa 10 bis 20% größer.
  • Ausführungsbeispiel
  • Es wurde ein Beschichtungsmaterial gemäß der nachstehenden Rezeptur hergestellt.
    Bestandteil Menge Chem. Zusammensetzung
    1 WorléeCryl CH-X-2156 61% in Wasser 48,20 Acrylatdispersion
    2 WorléeCryl CH-X 2157 59% in Wasser 24,00 Acrylatdispersion
    3 WorléePaste W 931 (weiß) 50% in Wasser 1,41 TiO2-Paste
    4 Glasfaser FGCS 316 / 3 3,29 Glasfasern
    5 WorléeAdd FR 5000 9,39 Flammschutzmittel auf Basis von Phosphorverbindungen
    6 Enova Aerogel 9,39 Silica Aerogel
    7 WorléeAdd 8905 2,82 Alkalische ZnO-Lösung
    8 Wasser 1,5
    100,00
  • 4 ist von STW - Schwarzwälder Textilwerke erhältlich, die übrigen Bestandteile sind von Worlee Chemie GmbH, Hamburg erhältlich.
  • Zur Herstellung des Beschichtungsmaterials wurden Bestandteil 1 und Bestandteil 2 vorgelegt und unter Rühren homogenisiert. Dann wurden Bestandteil 3 und Bestandteil 4 portionsweise unter Rühren langsam eingestreut und anschließend mit dem Dissolver unter starker Scherung dispergiert. Danach wurde Bestandteil 5 portionsweise unter langsamen Rühren langsam eingestreut und unter Anwendung niedriger Schwerkräfte homogenisiert. Anschließend wurde Bestandteil 6 portionsweise unter langsamen Rühren langsam eingestreut und unter Anwendung niedriger Schwerkräfte homogenisiert. Schließlich wurde Bestandteil 7 und Bestandteil 8 unter langsamen Rühren einfließen gelassen und unter Anwendung niedriger Schwerkräfte homogenisiert.
  • Anschließend wurde eine Menge von etwa 5kg des Beschichtungsmaterials in einen Druckbehälter einer Anlage wie in Figur 6 gezeigt eingebracht und mittels dieser Anlage auf ein Stahlblech als Substrat aufgebracht.
  • Bevor das poröse Beschichtungsmaterial in die Anlage gefüllt wurde, wurde diese mit Wasser befüllt und gespült. Neben der Vorbefeuchtung des Druckbehälters 1 und der Schläuche 4a, 4b kann hierbei die Funktion der einzelnen Bauteile überprüft werden.
  • Der bzw. die Behälter 1 waren so ausgelegt, dass sie mit je 2 Liter Wasser befüllt werden konnten und sodann verschlossen wurden. Auf die Behälter wurde mit 0.5 Bar Druck beaufschlagt. Das Auslassventil 1b der Druckbehälter und die erfindungsgemäße Ventileinheit 3 wurden geöffnet und der Hebel 2b der Spritzpistole 2 betätigt. Das Wasser wurde durch die Anlage gedrückt und trat an der Pistolendüse aus.
  • Zusätzlich wurde die Druckluftzufuhr über Leitung 7 geöffnet, ebenfalls mit 0,5 Bar. Das Wasser trat mit Luft angereichert aus der Düse. Die Zerstäuberdruckluftzufuhr 8 wurde geöffnet und ebenfalls mit 0,5 Bar eingestellt. Das mit Luft angereicherte Wasser trat zerstäubt aus der Düse an der Pistole 2 aus. Dieser Vorgang kann sowohl der Vorbefeuchtung aller relevanten Teile als auch der Funktionsüberprüfung dienen. Nachdem der bzw. die Behälter entleert waren, wurde der Druck abgelassen.
  • Sodann wurde Beschichtungsmaterial in den bzw. die Druckbehälter 2 gefüllt. Danach wurde die Druckplatte 9 auf das Material gelegt und der/die Behälter 2 verschlossen. Der Materialdruck und die Druckluftzufuhr 7 wurden auf 2,5 Bar eingestellt. Danach wurde das Auslassventil 1b geöffnet und der Pistolenhebel 2b betätigt. Bei Austritt des Materials an der Düse der Pistole 2 wurde die Zerstäuberluft mit 3,0 Bar eingestellt und das Material so auf ein Substrat aufgebracht.
  • Nach Beendigung der Arbeiten wurde die Anlage wie beschrieben mit Wasser gespült und gereinigt.
  • Ferner wurden geeignete Probenkörper aus dem Beschichtungsmaterial hergestellt und der Wärmedurchgangskoeffizient sowie die Wärmeleitfähigkeit gemessen. Zur Herstellung der Probenkörper wurde das Beschichtungsmaterial auf eine nicht haftende Oberfläche (z. B. aus Teflon) appliziert (nass ca. 12 mm Schichtdicke, trocken ca. 10 mm Schichtdicke). Nach Trocknung wurde die Beschichtung vom Substrat entfernt und es wurden quadratische Prüfkörper mit 29 cm Kantenlänge zugeschnitten.
  • Der Wärmedurchgangskoeffizient gibt die Wärmemenge an, welche durch 1 m2 eines Stoffes mit einer bestimmten Schichtdicke hindurchgeht, wenn der Temperaturunterschied 1 K beträgt. Dieser Wert ist somit schichtdickenabhängig. Er wurde nach dem in DIN EN 12664 beschriebenen Verfahren gemessen. Danach betrug der Wärmedurchgangskoeffizient bei einer mit einer 10 mm dicken Schicht aus obigem Isoliermaterial beschichteten Probe 4, 7 W/ (m2 x K).
  • Die Wärmeleitfähigkeit ist das Vermögen eines Stoffes, thermische Energie mittels Wärmeleitung in Form von Wärme zu transportieren. Als Stoffkonstante ist dieser Wert von der Schichtdicke unabhängig. Die Wärmeleitfähigkeit der vorstehend genannten Probenschicht betrug 0,046 W/(m2 x K), gemessen nach dem in DIN EN 12664 beschriebenen Verfahren.
  • Bezugszeichenliste
  • 1
    Druckbehälter
    1a, 1b
    Einlassventil bzw. Auslassventil Druckbehälter
    1c
    Oberseitiger Verschluss des Druckbehälters
    1e
    Beschichtungsmaterialraum
    1d
    Auslass Druckbehälter
    1f
    Druckmittelraum
    2
    Spritzapparatur
    2a
    Zerstäuberdüse
    2b
    Betätigungshebel
    2c
    Spritzapparaturgriff
    2d
    Einlass Druckluft Spritzapparatur
    2e
    Beschichtungsmaterialzufuhr Spritzapparatur
    2f
    Haltegriff Spritzapparatur
    3
    Ventileinheit
    3a
    Durchlasskanal Ventileinheit
    3b, 3c
    seitlichen Bohrungen Ventileinheit
    3d, 3e
    Rückschlagventile
    4
    Leitung zwischen Druckbehälter und Spritzapparatur
    4a, 4b
    Stromabwärts bzw. stromaufwärts gelegene Leitungen
    5
    Druckregelventil und Manometeranordnung für Druckluftzufuhr
    5a
    Druckregelventil und Manometer für Druckluftzufuhr Druckbehälter
    5b
    Druckregelventil und Manometer für Druckluftzufuhr Ventileinheit
    5c
    Druckregelventil und Manometer für Druckluftzufuhr Spritzapparatur
    6
    Druckluftleitung Druckbehälter
    7
    Druckluftleitung Ventileinheit
    7a, 7b
    Druckluftzuleitungen Ventileinheit
    8
    Druckluftleitung Spritzapparatur
    9
    Druckplatte Druckbehälter
    10
    Breite Rollwagen
    11
    Höhe Rollwagen
    12
    Länge Rollwagen
    13
    Bedienperson
    14
    Anschluss für Leitung 4
    15
    Flüssigkeitsbehälter

Claims (16)

  1. Verfahren zum druckluftgesteuerten Aufbringen eines porösen Beschichtungsmaterials auf ein Substrat, bei dem
    a) mindestens ein Druckbehälter über einen Einlass mit Beschichtungsmaterial beschickt wird, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind,
    b) das Beschichtungsmaterial durch einen Auslass des mindestens einen Druckbehälters in eine Leitung befördert wird, an die eine Spritzapparatur angeschlossen ist,
    c) wobei das Beschichtungsmaterial durch eine Ventileinheit geleitet wird, die stromabwärts des mindestens einen Druckbehälters und stromaufwärts der Spritzapparatur angeordnet ist und in der das Beschichtungsmaterial mit Druckluft und gegebenenfalls Wasser oder wasserhaltigen Zusätzen vermischt wird,
    d) das so behandelte Beschichtungsmaterial in einen Einlass der Spritzapparatur geleitet wird,
    e) der Spritzapparatur über einen weiteren Einlass Druckluft zugeführt wird und
    f) das Beschichtungsmaterial druckluftunterstützt zerstäubt und auf ein Substrat aufgebracht wird.
  2. Verfahren nach Anspruch 1, bei dem das Beschichtungsmaterial eine Porosität aufweist, so dass es zur Verwendung als Isoliermaterial geeignet ist und die Porosität des Beschichtungsmaterials während der Verfahrensschritte (a) bis (f) erhalten bleibt.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem das Beschichtungsmaterial poröse Festkörperteilchen enthält, die eine Porosität von > 80 % aufweisen.
  4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Beschichtungsmaterial eine Viskosität von 10.000 bis 120.000 mPas aufweist, gemessen mit einem Viskosimeter Haake VT 500, Messeinrichtung E 100, Schubspannung ca. 91 S-1.
  5. Verfahren nach einem der vorhergehenden Ansprüche, bei der Druck im Druckbehälter und der Spritzapparatur von 2 bis 5 bar und in der Ventileinheit 2 bis 3 bar beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Substrat ein Material umfasst oder daraus besteht, das ausgewählt ist aus der Gruppe bestehend aus Glas, Holz und Holzwerkstoffe, Metallen, mineralischen Baustoffen sowie Kunststoff und Kombinationen davon.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Beschichtungsmaterial mit einer Dicke von etwa 50 µm bis 30 mm, auf das Substrat aufgebracht wird und so eine Isolierschicht erzeugt wird.
  8. Anlage zum druckluftgesteuerten Aufbringen von Beschichtungsmaterial, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind, auf ein Substrat, welche Anlage
    mindestens einen Druckbehälter zur Beschickung mit Beschichtungsmaterial, wobei der Druckbehälter einen Einlass und einen Auslass für das Beschichtungsmaterial aufweist,
    eine Spritzapparatur zum Aufbringen des porösen Beschichtungsmaterials auf ein Substrat, wobei die Spritzapparatur einen Einlass für das Beschichtungsmaterial, einen weiteren Einlass für die Zufuhr von Druckluft und eine Düsenanordnung aufweist,
    eine Leitung, die den Beschichtungsmaterialauslass des Druckbehälters mit dem Beschichtungsmaterialeinlass der Spritzapparatur verbindet,
    eine Ventileinheit, die mit der Leitung verbunden ist und die stromabwärts des Auslasses des Druckbehälters und stromaufwärts des Einlasses der Spritzapparatur angeordnet ist, wobei die Ventileinheit
    mindestens eine in Längsrichtung durch die Ventileinheit verlaufende Bohrung aufweist, die einen Durchlasskanal zum Transport des Beschichtungsmaterials bildet,
    mindestens eine seitliche Bohrung aufweist, die einen Einlass für die Zufuhr von Druckluft bildet, die gegebenenfalls mit Wasser oder wasserhaltigen Zusätzen versetzt ist, wobei die mindestens eine seitliche Bohrung mit der in Längsrichtung verlaufenden Bohrung so verbunden ist, dass das Beschichtungsmaterial im Durchlasskanal mit der Druckluft vermischt werden kann,
    wobei die seitlichen Bohrungen jeweils mit Rückschlagventilen versehen sind,
    aufweist.
  9. Anlage nach Anspruch 8, bei der die Leitung, die den Druckbehälter mit der Spritzapparatur verbindet, stromaufwärts und/oder stromabwärts der Ventileinheit in Form eines flexiblen Schlauchs ausgebildet ist.
  10. Anlage nach Anspruch 9, bei der der Schlauch aus Polyvinylchlorid enthaltendem Material besteht.
  11. Anlage nach einem der Ansprüche 8 bis 10, bei der die Ventileinheit mindestens eine weitere seitliche Bohrung aufweist, die einen Einlass für Wasser zu Reinigungszwecken bildet und ebenfalls mit der in Längsrichtung verlaufenden Bohrung verbunden ist.
  12. Anlage nach einem der Ansprüche 8 bis 11, wobei die Ventileinheit
    zwei seitliche Bohrungen aufweist, die jeweils Einlässe für die Zufuhr von Druckluft bilden, wobei die Druckluft gegebenenfalls mit Wasser oder wasserhaltigen Zusätzen versetzt ist, und die mit der in Längsrichtung verlaufenden Bohrung in Fluidkommunikation stehen, wobei die beiden seitlichen Bohrungen rechtseitig und linkseitig gegenüberliegend angeordnet sind,
    eine dritte seitliche Bohrung aufweist, die einen Einlass für Wasser zu Reinigungszwecken bildet und die mit der in Längsrichtung verlaufenden Bohrung ebenfalls in Fluidkommunikation steht, wobei die dritte seitliche Bohrung oberseitig oder unterseitig angeordnet ist.
  13. Anlage nach Anspruch 11 oder Anspruch 12, bei der die mindestens eine bzw. die beiden seitlichen Bohrungen, die jeweils Einlässe für die Zufuhr von Druckluft bilden, wobei die Druckluft gegebenenfalls mit Wasser oder wasserhaltigen Zusätzen versetzt ist, bezogen auf den stromaufwärts gelegenen Teil der in Längsrichtung verlaufenden Bohrung, die den Durchlasskanal für das Beschichtungsmaterial bildet, in einem spitzen Winkel angeordnet sind, vorzugsweise in einem Winkel im Bereich von 20 bis 60°, insbesondere 30 bis 40 °.
  14. Verwendung eines Beschichtungsmaterials wie in einem der Ansprüche 1 bis 4 definiert zur spritztechnischen Aufbringung auf ein Substrat gemäß einem der Ansprüche 6 bis 7 mittels eines Verfahrens wie in einem der Ansprüche 1, 2 und 5 definiert.
  15. Verfahren zur Isolierung eines Gegenstandes, bei dem als Substrat eine oder mehrere zu isolierende Flächen des Gegenstandes nach dem Verfahren gemäß einem der Ansprüche 1 bis 7 beschichtet werden.
  16. Verwendung einer Ventileinheit zur Steuerung der Förderung eines Beschichtungsmaterials, das poröse Festkörperteilchen enthält, die aus Aerogel- oder Xerogelteilchen aus organischen oder anorganischen Materialien gebildet sind, wobei die Ventileinheit wie in einem der Ansprüche 8 und 11 bis 13 definiert ausgestaltet ist.
EP13714914.2A 2012-04-13 2013-04-05 Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat Not-in-force EP2836312B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13714914.2A EP2836312B1 (de) 2012-04-13 2013-04-05 Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12164096 2012-04-13
EP13714914.2A EP2836312B1 (de) 2012-04-13 2013-04-05 Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat
PCT/EP2013/057254 WO2013153006A1 (de) 2012-04-13 2013-04-05 Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat

Publications (2)

Publication Number Publication Date
EP2836312A1 EP2836312A1 (de) 2015-02-18
EP2836312B1 true EP2836312B1 (de) 2017-08-16

Family

ID=48050708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13714914.2A Not-in-force EP2836312B1 (de) 2012-04-13 2013-04-05 Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat

Country Status (2)

Country Link
EP (1) EP2836312B1 (de)
WO (1) WO2013153006A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013743A (zh) * 2016-07-07 2016-10-12 洛阳高昌机电科技有限公司 一种可同时喷涂多种建筑涂料的喷涂装置
CN106824596A (zh) * 2016-12-28 2017-06-13 芜湖顺景自动化设备有限公司 一种带防腐蚀层的建筑涂装机装置
CN106866013B (zh) * 2017-01-20 2020-03-31 伊科纳诺(北京)科技发展有限公司 一种雾化吸附提高二氧化硅气凝胶水相分散性的方法
DE102018001800A1 (de) 2018-03-07 2019-09-12 Smart Material Printing B.V. Verfahren und Vorrichtung zur Reinigung von Gasen von Ammoniak oder Ammoniak und Noxen
CN108722719B (zh) * 2018-06-28 2021-05-25 芜湖扬展新材料科技服务有限公司 一种用于建筑涂料的高压喷涂装置
CN108816601A (zh) * 2018-07-05 2018-11-16 安徽知之信息科技有限公司 一种新能源汽车制造用节能喷漆装置
CN108952109B (zh) * 2018-07-24 2020-07-03 郑广耀 一种墙面涂料喷涂装置
CN111411762B (zh) * 2020-03-31 2021-06-01 重庆工程职业技术学院 用于建筑装饰的喷涂装置
CN112252676A (zh) * 2020-10-23 2021-01-22 湖南欧龙艺墅建筑材料有限公司 一种真石漆喷射装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007017944U1 (de) * 2006-12-21 2008-05-21 Lancy Mixjet Verputzmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4117551A (en) 1974-05-30 1978-09-26 William R. Brooks Purgeable dispensing gun for polyurethane foam and the like
DE3916319A1 (de) 1989-05-19 1990-11-29 Harry Reinhardt Spritzkopf an einer putzmaschine
DE10211331B4 (de) 2002-03-14 2006-02-02 Sto Ag Verfahren zum Herstellen einer aerogelhaltigen Dämmschicht auf einer Außenwand eines Gebäudes
JP5068930B2 (ja) 2002-05-15 2012-11-07 キャボット コーポレイション エーロゲルと中空粒子バインダーの組成物、絶縁複合材料、及びそれらの製造方法
EP1697671B1 (de) 2003-11-12 2010-08-25 Stuart G. Burchill Jr Zusammensetzung für wärmeisolierschicht

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007017944U1 (de) * 2006-12-21 2008-05-21 Lancy Mixjet Verputzmaschine

Also Published As

Publication number Publication date
WO2013153006A1 (de) 2013-10-17
EP2836312A1 (de) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2836312B1 (de) Anlage und verfahren zum druckluftgesteuerten aufbringen eines porösen beschichtungsmaterials auf ein substrat
DE924075C (de) Sandstrahl-Verfahren und -Vorrichtung zur Oberflaechenbehandlung
DE10010141C1 (de) Mischkammer zur Erzeugung von Druckluftschaum für Löschanlagen
EP0299134B1 (de) Verfahren zur Innenausbesserung von installierten Leitungen
DE602004010235T2 (de) Verfahren zur Herstellung von einem Bauobjekt, Fugen- und Flächenbearbeitungsmörtelzusammensetzung für Bauelemente und Verfahren zu ihrer Herstellung
DE4021068C2 (de) Verfahren zur Injizierung eines flüssigen Konservierungsmaterials, Verfahren zur Konservierung von Bauwerken und Vorrichtung zum Injizieren eines flüssigen Konservierungsmaterials
DE102005060754A1 (de) Verfahren und Anlage zum Aufbringen fester Partikel auf ein Substrat
EP3301138B2 (de) Wässrige behandlungsmasse für gebäudewandungen, -decken oder -böden
EP1611210B1 (de) Farbe auf basis mindestens einer polymerdispersion und verfahren zum auftrag der farbe
KR20000076156A (ko) 주조성 내화재의 분무 건조공정
DE102006002653A1 (de) Trockeneisstrahlverfahren und Anordnung zur Durchführung des Verfahrens
DE19632666C1 (de) Verfahren und Vorrichtung zur Herstellung von Luftporenbeton
DE10211331B4 (de) Verfahren zum Herstellen einer aerogelhaltigen Dämmschicht auf einer Außenwand eines Gebäudes
DD250328A5 (de) Verfahren und vorrichtung zum schaeumen von bitumen
DE3322460A1 (de) Verfahren zum dichten von rohren
EP2476481B1 (de) Vorrichtung und Verfahren zur Schaumerzeugung
EP2019742A1 (de) Verfahren und vorrichtung zur herstellung eines geformten baumaterials
EP2922903B1 (de) Schaumzusammensetzung für bauzwecke
EP3294682B1 (de) Zusammensetzung zur oberflächenbehandlung
DE19508837C2 (de) Verfahren zur Herstellung einer Bauwerksverkleidung
CN105131752A (zh) 一种水性多功能封闭剂的制备工艺
JP2022517482A (ja) 低収縮のペースト状の充填および仕上げ材料用の組成物、ペースト状の充填および仕上げ材料、ならびにペースト状の充填および仕上げ材料を生成するための方法
WO2013167243A1 (de) Verwendung von lithiumpolyacrylat als dispergiermittel
AT522763B1 (de) Druckkopf
EP3401019A1 (de) Vorrichtung zur befeuchtung von druckluft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 13/00 20060101ALI20170307BHEP

Ipc: B05B 7/14 20060101ALI20170307BHEP

Ipc: E04F 21/00 20060101ALI20170307BHEP

Ipc: B05D 7/24 20060101ALI20170307BHEP

Ipc: B05B 7/00 20060101ALI20170307BHEP

Ipc: B05D 1/02 20060101AFI20170307BHEP

Ipc: E04F 21/12 20060101ALI20170307BHEP

Ipc: B05D 7/02 20060101ALI20170307BHEP

INTG Intention to grant announced

Effective date: 20170328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 918559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008089

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008089

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 918559

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200325

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130405

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200316

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200420

Year of fee payment: 8

Ref country code: NL

Payment date: 20200417

Year of fee payment: 8

Ref country code: DE

Payment date: 20200325

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013008089

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210405

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210405

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430