EP2831916A4 - Pile de sonos avec couche de mémoire au nitrure fendue - Google Patents

Pile de sonos avec couche de mémoire au nitrure fendue

Info

Publication number
EP2831916A4
EP2831916A4 EP13767277.0A EP13767277A EP2831916A4 EP 2831916 A4 EP2831916 A4 EP 2831916A4 EP 13767277 A EP13767277 A EP 13767277A EP 2831916 A4 EP2831916 A4 EP 2831916A4
Authority
EP
European Patent Office
Prior art keywords
memory layer
nitride memory
sonos stack
split
split nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP13767277.0A
Other languages
German (de)
English (en)
Other versions
EP2831916A1 (fr
Inventor
Fredrick Jenne
Krishnaswamy Ramkumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cypress Semiconductor Corp
Original Assignee
Cypress Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/431,069 external-priority patent/US8710578B2/en
Application filed by Cypress Semiconductor Corp filed Critical Cypress Semiconductor Corp
Priority to EP18213110.2A priority Critical patent/EP3534408A1/fr
Publication of EP2831916A1 publication Critical patent/EP2831916A1/fr
Publication of EP2831916A4 publication Critical patent/EP2831916A4/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • H01L29/42348Gate electrodes for transistors with charge trapping gate insulator with trapping site formed by at least two separated sites, e.g. multi-particles trapping site
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
EP13767277.0A 2012-03-27 2013-03-08 Pile de sonos avec couche de mémoire au nitrure fendue Ceased EP2831916A4 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18213110.2A EP3534408A1 (fr) 2012-03-27 2013-03-08 Piles sonos à couche de mémoire de nitrure divisée

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/431,069 US8710578B2 (en) 2009-04-24 2012-03-27 SONOS stack with split nitride memory layer
PCT/US2013/029784 WO2013148112A1 (fr) 2012-03-27 2013-03-08 Pile de sonos avec couche de mémoire au nitrure fendue

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP18213110.2A Division EP3534408A1 (fr) 2012-03-27 2013-03-08 Piles sonos à couche de mémoire de nitrure divisée

Publications (2)

Publication Number Publication Date
EP2831916A1 EP2831916A1 (fr) 2015-02-04
EP2831916A4 true EP2831916A4 (fr) 2015-10-28

Family

ID=49260998

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18213110.2A Pending EP3534408A1 (fr) 2012-03-27 2013-03-08 Piles sonos à couche de mémoire de nitrure divisée
EP13767277.0A Ceased EP2831916A4 (fr) 2012-03-27 2013-03-08 Pile de sonos avec couche de mémoire au nitrure fendue

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18213110.2A Pending EP3534408A1 (fr) 2012-03-27 2013-03-08 Piles sonos à couche de mémoire de nitrure divisée

Country Status (6)

Country Link
EP (2) EP3534408A1 (fr)
JP (1) JP6422430B2 (fr)
KR (2) KR102061253B1 (fr)
CN (1) CN104254921B (fr)
TW (2) TWI581432B (fr)
WO (1) WO2013148112A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090179253A1 (en) 2007-05-25 2009-07-16 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US9449831B2 (en) 2007-05-25 2016-09-20 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US8940645B2 (en) 2007-05-25 2015-01-27 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
US8633537B2 (en) 2007-05-25 2014-01-21 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US9299568B2 (en) 2007-05-25 2016-03-29 Cypress Semiconductor Corporation SONOS ONO stack scaling
US9431549B2 (en) 2007-12-12 2016-08-30 Cypress Semiconductor Corporation Nonvolatile charge trap memory device having a high dielectric constant blocking region
KR102220842B1 (ko) * 2012-03-31 2021-03-02 롱지튜드 플래쉬 메모리 솔루션즈 리미티드 복수의 산질화물 층들을 구비한 산화물-질화물-산화물 스택
TWI709174B (zh) * 2012-07-01 2020-11-01 愛爾蘭商經度閃存解決方案有限公司 用於製造非揮發性電荷捕獲記憶體元件之基氧化方法
TWI604595B (zh) * 2012-07-01 2017-11-01 賽普拉斯半導體公司 非揮發性電荷捕獲記憶體元件以及其製造方法
US8883624B1 (en) 2013-09-27 2014-11-11 Cypress Semiconductor Corporation Integration of a memory transistor into high-K, metal gate CMOS process flow
JP2016018805A (ja) * 2014-07-04 2016-02-01 マクロニクス インターナショナル カンパニー リミテッド 電荷を蓄積する複数の電荷トラップ層を備えたバンドギャップエンジニアドメモリ
CN104617100A (zh) * 2015-01-30 2015-05-13 武汉新芯集成电路制造有限公司 Sonos存储器结构及其制作方法
CN107924952A (zh) * 2015-04-24 2018-04-17 Neo半导体公司 双功能混合存储单元
US20190103414A1 (en) * 2017-10-04 2019-04-04 Cypress Semiconductor Corporation Embedded sonos with a high-k metal gate and manufacturing methods of the same
TWI812974B (zh) * 2020-09-04 2023-08-21 日商鎧俠股份有限公司 半導體記憶裝置
JP2022043897A (ja) 2020-09-04 2022-03-16 キオクシア株式会社 半導体記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067577A1 (en) * 2006-09-15 2008-03-20 Ming-Tsong Wang Multi-trapping layer flash memory cell
US20110248332A1 (en) * 2007-05-25 2011-10-13 Sagy Levy Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers
US8222688B1 (en) * 2009-04-24 2012-07-17 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489359B2 (ja) * 2003-01-31 2010-06-23 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US7473589B2 (en) * 2005-12-09 2009-01-06 Macronix International Co., Ltd. Stacked thin film transistor, non-volatile memory devices and methods for fabricating the same
JP4791949B2 (ja) * 2006-12-22 2011-10-12 株式会社東芝 不揮発性半導体メモリ
KR20100014557A (ko) * 2007-03-26 2010-02-10 도쿄엘렉트론가부시키가이샤 질화 규소막의 형성 방법, 비휘발성 반도체 메모리 장치의 제조 방법, 비휘발성 반도체 메모리 장치 및 플라즈마 처리 장치
US8283261B2 (en) * 2007-05-25 2012-10-09 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
JP2009027134A (ja) * 2007-06-21 2009-02-05 Tokyo Electron Ltd Mos型半導体メモリ装置
US7737488B2 (en) * 2007-08-09 2010-06-15 Macronix International Co., Ltd. Blocking dielectric engineered charge trapping memory cell with high speed erase
TWI374448B (en) * 2007-08-13 2012-10-11 Macronix Int Co Ltd Charge trapping memory cell with high speed erase
US7816727B2 (en) * 2007-08-27 2010-10-19 Macronix International Co., Ltd. High-κ capped blocking dielectric bandgap engineered SONOS and MONOS
TW200913162A (en) * 2007-09-11 2009-03-16 Univ Nat Chiao Tung Nonvolatile memory device with nanowire channel and a method for fabricating the same
JP2011124240A (ja) * 2008-03-31 2011-06-23 Tokyo Electron Ltd Mos型半導体メモリ装置、その製造方法およびコンピュータ読み取り可能な記憶媒体
JP2010016228A (ja) * 2008-07-04 2010-01-21 Toshiba Corp 不揮発性半導体記憶装置及びその形成方法
JP5531259B2 (ja) * 2009-03-19 2014-06-25 株式会社東芝 半導体装置及びその製造方法
US8071453B1 (en) * 2009-04-24 2011-12-06 Cypress Semiconductor Corporation Method of ONO integration into MOS flow
KR102220842B1 (ko) * 2012-03-31 2021-03-02 롱지튜드 플래쉬 메모리 솔루션즈 리미티드 복수의 산질화물 층들을 구비한 산화물-질화물-산화물 스택
TW201830705A (zh) * 2012-07-01 2018-08-16 美商賽普拉斯半導體公司 在多層電荷捕獲區域具有氘化層之非揮發性電荷捕獲記憶體元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080067577A1 (en) * 2006-09-15 2008-03-20 Ming-Tsong Wang Multi-trapping layer flash memory cell
US20110248332A1 (en) * 2007-05-25 2011-10-13 Sagy Levy Oxide-Nitride-Oxide Stack Having Multiple Oxynitride Layers
US8222688B1 (en) * 2009-04-24 2012-07-17 Cypress Semiconductor Corporation SONOS stack with split nitride memory layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013148112A1 *

Also Published As

Publication number Publication date
JP6422430B2 (ja) 2018-11-14
TWI581432B (zh) 2017-05-01
WO2013148112A1 (fr) 2013-10-03
JP2015517211A (ja) 2015-06-18
KR20200003425A (ko) 2020-01-09
CN104254921A (zh) 2014-12-31
CN104254921B (zh) 2020-06-12
KR20140147083A (ko) 2014-12-29
EP3534408A1 (fr) 2019-09-04
KR102352542B1 (ko) 2022-01-18
EP2831916A1 (fr) 2015-02-04
TWI615982B (zh) 2018-02-21
KR102061253B1 (ko) 2019-12-31
TW201724527A (zh) 2017-07-01
TW201349505A (zh) 2013-12-01

Similar Documents

Publication Publication Date Title
EP2831916A4 (fr) Pile de sonos avec couche de mémoire au nitrure fendue
EP2786409A4 (fr) Unité centrale de traitement (cpu) dotée d'une mémoire à plaques superposées
EP2704015A4 (fr) Système d'enregistrement à semi-conducteurs non volatiles
SG10201504486PA (en) Semiconductor device with biased feature
EP2991143A4 (fr) Structures de cellules d'un empilement de pile à combustible
EP2893433A4 (fr) Couche de traduction de stockage
EP2831917A4 (fr) Empilement d'oxyde-nitrure-oxyde comportant plusieurs couches d'oxynitrure
IL238263B (en) A non-volatile semiconductor storage device
GB2507780B (en) Storage device
GB201505778D0 (en) Memorabilia storage device
TWI561393B (en) Thin film stack
EP2847795A4 (fr) Cellules-mémoire à permutations
EP2860807A4 (fr) Empilement de piles à combustible
EP3040204A4 (fr) Dispositif de stockage
PL2691324T3 (pl) Urządzenie magazynujące
SG11201408686QA (en) Non-volatile semiconductor storage device
EP2850667A4 (fr) Pile de couches minces
GB201502452D0 (en) Storage
GB201312767D0 (en) Fuel cell stack assembly
GB201215340D0 (en) Semiconductor stack
EP2872714A4 (fr) Dispositif de stockage sécurisé
EP2851943A4 (fr) Dispositif de stockage, élément de stockage
GB201115486D0 (en) Temporary storage device
GB201120288D0 (en) Storage device
ITTO20100128U1 (it) Dispositivo limitatore di sovratensione.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150928

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 29/792 20060101AFI20150922BHEP

Ipc: H01L 21/28 20060101ALI20150922BHEP

Ipc: H01L 29/51 20060101ALI20150922BHEP

Ipc: H01L 29/423 20060101ALI20150922BHEP

Ipc: H01L 27/115 20060101ALI20150922BHEP

Ipc: H01L 29/66 20060101ALI20150922BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161021

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CYPRESS SEMICONDUCTOR CORPORATION

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190308