EP2828571A1 - Module de projection pour véhicule automobile - Google Patents

Module de projection pour véhicule automobile

Info

Publication number
EP2828571A1
EP2828571A1 EP13716173.3A EP13716173A EP2828571A1 EP 2828571 A1 EP2828571 A1 EP 2828571A1 EP 13716173 A EP13716173 A EP 13716173A EP 2828571 A1 EP2828571 A1 EP 2828571A1
Authority
EP
European Patent Office
Prior art keywords
light
reflector
light source
lens
reflective surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13716173.3A
Other languages
German (de)
English (en)
Other versions
EP2828571B1 (fr
Inventor
Friedrich Bauer
Dietmar KIESLINGER
Andreas Moser
Marcel RAUCH
Thomas SCHLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
Zizala Lichtsysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48095450&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2828571(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zizala Lichtsysteme GmbH filed Critical Zizala Lichtsysteme GmbH
Publication of EP2828571A1 publication Critical patent/EP2828571A1/fr
Application granted granted Critical
Publication of EP2828571B1 publication Critical patent/EP2828571B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/323Optical layout thereof the reflector having two perpendicular cross sections having regular geometrical curves of a distinct nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/338Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector having surface portions added to its general concavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • F21W2102/13Arrangement or contour of the emitted light for high-beam region or low-beam region
    • F21W2102/135Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions
    • F21W2102/155Arrangement or contour of the emitted light for high-beam region or low-beam region the light having cut-off lines, i.e. clear borderlines between emitted regions and dark regions having inclined and horizontal cutoff lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/20Illuminance distribution within the emitted light

Definitions

  • the invention relates to a light module for a motor vehicle, comprising: at least one light source; at least one reflector; at least one lens; wherein the light emitted by the light source is formed by a reflective surface of the at least one reflector to a light distribution and - in the installed state of the light module in a vehicle - is imaged via the at least one lens in an area in front of the vehicle.
  • the invention relates to a vehicle headlight with at least one such light module.
  • A) pure reflector systems with paraboloidal and free-form reflectors and b) projection systems are known in which a converging lens projects the image of a radiation diaphragm onto the area in front of the motor vehicle, that is usually onto the road.
  • the illumination of the beam diaphragm is effected by a unit located behind it, which in addition to a light source usually still has a primary optics in the form of a reflector / mirror, light guide, etc.
  • an aforementioned light module or with a vehicle headlamp which comprises at least one such light module, that according to the invention the reflective surface of the at least one reflector is shaped such that a first focus of the reflector between the reflective surface and the at least a lens is located and a second focus on the side facing away from the lens of the reflector, wherein the reflective surface of the reflector is formed such that the generated light image has at least one light-dark line.
  • the light module according to the invention is a projection system in which light from a light source is focused by a primary optics in the form of a reflector and directed onto a (projection) lens, which projects the desired light image onto an area in front of the light module or vehicle ,
  • the reflector In contrast to a classic structure in which a real intermediate image is generated by the reflector, in the present invention, the reflector generates a virtual intermediate image of the light source, which then imaged by the lens in the form of a converging lens in the area in front of the light module or vehicle becomes.
  • the reflector is designed as a hyperbolic reflector or essentially has the behavior of a hyperbolic reflector.
  • the at least one light-dark line in the light image of the reflector is substantially formed as a reflector sub-shell, for example as a reflector half-shell, and wherein light from a region of the boundary edge of Reflector part shell forms the light distribution on the light-dark line in the photograph.
  • the edge of the reflector acts as a hatch between the virtual object and the lens.
  • the edge of the reflector acts as a hatch between the virtual object and the lens. which are close to the lens, behave approximately like an aperture diaphragm and therefore offer little leeway in terms of the light image, since when a change in the aperture, the image section remains unchanged, the light image is not or only slightly changed.
  • portions of the reflector that are farther away from the lens have more of the character of a field of view diaphragm, a change of these areas also changes the imaged image section and accordingly these areas can be used to form the light image.
  • the upper regions of the reflector can be trimmed in order to reduce the intensity of the light distribution in advance, while the trimming at the lower edge of the shape the light distribution on the HD line can be varied.
  • the reflector sub-shell is open in the installation position of the light module down, so that there is a light-dark line lying in the light image above.
  • the boundary edge of the reflector partial shell extends substantially above a plane in which the at least one light source lies.
  • the light-dark line in the photograph can be lowered, for example, by 0.57 ° (ECE control) or 0.4 ° (SAE control), as required for a law-compliant low beam distribution.
  • the boundary edge is bent towards the front, to the front reflector opening towards the top.
  • boundary upwards means, in the first place, that the boundary edge is bent away from the plane in which the light source lies,
  • the light source is inclined to a horizontal plane and the boundary edge runs basically parallel to the inclined light source This may cause the effect that in an outer edge region of the light distribution, the light distribution is bent upward, so that light reaches an area above the legally permitted areas.
  • the at least one light source has an elongated configuration, and that the light source is arranged with respect to the reflector that in the light image that of the reflective Surface of the reflector generated helical images are substantially parallel to the cut-off in the light image, since the extent of the blur is directly proportional to the size of a helical image, measured across the cut-off line.
  • the longitudinal axis of the light source thus runs essentially parallel to the light-dark boundary to be generated, wherein an inclination of a few degrees with respect to the cut-off line can definitely make sense visually.
  • such a light source has a significantly longer longitudinal than transverse extent, for example, it is a light source of a plurality of light emitting diodes, e.g. in a (1 x n) arrangement in which n LEDs are arranged in a row, the light source thus has a width of one LED and a length of n LEDs.
  • elongated light sources are the arc of a Xe torch or the filament of an incandescent lamp.
  • the at least one light source has a plane light exit surface, the light exit surface facing the reflective surface of the reflector.
  • the light-emitting surface of the at least one light source is preferably substantially planar and wherein the boundary edge of the reflector forming the light-dark boundary is arranged in a region, in which the light-emitting surface of the at least one light source is shortened in perspective.
  • This latter measure can be realized independently or together with the above-mentioned elongated embodiment of the light source.
  • the reflector generates one or more light-dark boundaries in the light image, in that the reflector acts as a real diaphragm, ie the boundary edge (s) of the reflector in the light image as light-dark boundaries (or areas of maximum Brightness).
  • the reflective surface of the reflector is designed such that light from the at least one light source, which is reflected along at least one defined curve on the reflective surface, is imaged in the light image as a region with maximum brightness.
  • the generation of one or more light-dark boundaries with a reflector is based here on the effect of the so-called caustics, so that one or more, in principle arbitrarily shaped light-dark boundaries can be generated without the use of diaphragms.
  • the at least one defined curve on the reflecting surface is displayed in the light image as a caustic line, ie as a line with maximum brightness, on one side (eg below this line) the brightness decreases, on the other side (eg above the line) no or hardly any light shown.
  • the reflective surface of the reflector is formed such that light from both sides of the at least one defined curve on the reflective surface in the light image on one side of the area with maximum brightness, is subsequently imaged on this area.
  • a substantially horizontal cut-off line (caustic line)
  • the light from both reflector areas below the caustic line is correspondingly imaged and generates the light distribution below the HD line.
  • Such a reflector according to the invention can be varied flexibly, for example in order to make it smaller with regard to the installation space.
  • this reflector is substantially parallel to the defined curve on the reflecting surface, which is imaged in the light image as an area with maximum brightness, on at least one side the defined curve is cropped.
  • this reflector is trimmed substantially normal to the defined curve on the reflecting surface, which is imaged in the light image as a region with maximum brightness ,
  • a designed as a real aperture reflector is provided with one or more defined curves which produce a Kaustikline, resulting in a variety of design options with regard to the generation of the light image.
  • a light module according to the invention has the particular advantage that the overall depth of the light module is no longer determined by the sum of the focal lengths of primary optics (reflector) and secondary optics (lens), but by the difference of the two focal lengths and thus can be greatly reduced theoretically. Even if practical limitations (finite size of the light source, manufacturing tolerances, etc.) are given, and thus the reduction of the installation depth limits are set, in a light module or headlight according to the invention the construction volume can be significantly lower than in conventional, known systems. Since only the difference between the focal lengths of primary and secondary optics is included directly in the size, the focal length per se is a quasi-free design parameter that can be used to improve the light image.
  • the total refractive power is distributed to reflector and lens.
  • the cross section of the lens is comparable to a classical projection system with a real intermediate image and otherwise similar characteristics, so that the required numerical aperture of the lens decreases. Since chromatic aberration occurs only in refraction, but not in reflection, can be achieved by the fact that a part of the refractive power is taken over by the reflector, already an improvement in color fidelity.
  • the lens can be designed as achromatic, which is also useful for correcting chromatic aberrations.
  • classical projection lenses with very large numerical aperture it is not possible to perform the lens as achromats.
  • FIG. 1 is a schematic representation of a light module according to the invention
  • FIG. 2 shows a first variant of a light module according to the invention in a perspective view obliquely from below
  • FIG. 2 shows the light module from FIG. 2 in a perspective view obliquely from above
  • FIG. 4 shows the reflector together with the light source of a light module from FIG. 2 in a side view
  • FIG. 5 shows the beam path at a reflector according to FIG. 4, FIG Reflector of Figure 4 generated light distribution
  • FIG. 7 shows a modified light distribution produced with a modified reflector from FIG. 4, FIG.
  • FIG. 8 shows a second variant of a reflector according to the invention in a view from behind
  • 9 shows the reflector from FIG. 8 in a perspective view obliquely from below
  • FIG. 10 shows schematically reflection points on a reflector surface
  • FIG. 11 shows images produced via the reflection points of the reflector surface from FIG. 10, FIG.
  • FIG. 12 shows light distributions generated with a segment of the reflector of the light module of FIG. 8, FIG.
  • FIG. 16 shows a light distribution generated with a light module from FIG. 14, FIG.
  • FIG. 18 shows regions corresponding to the ray progressions from FIG. 17 in the photograph
  • FIG. 19 shows a representation of specific regions on a reflector according to FIG. 17, and FIG.
  • FIG. 1 schematically shows a light module 1 for a motor vehicle, comprising a light source 1, a reflector 2 and a lens 3.
  • the reflective surface 2a of the reflector 2 is shaped such that a first focal point Fl of the reflector 2 is located between the reflective surface 2a and the lens 3.
  • a second focal point F2 lies on the side of the reflector 2 facing away from the lens 3, ie behind the reflector.
  • the light emitted by the light source 1 is formed by the reflective surface 2a of the reflector 2 to a light distribution and - in the installed state of the light module 1 in a vehicle - is imaged via the lens 3 in an area in front of the vehicle.
  • the light module 1 In the light module 1 according to the invention (and also in all other modules or systems shown) is a projection system in which light from a light source by a primary optics in the form of a reflector is focused and directed to a (projection) lens, which the desired light image is projected onto an area in front of the light module or vehicle.
  • the reflector 2 In contrast to a classical construction in which a real intermediate image is generated by the reflector, in the present invention the reflector 2 generates a virtual intermediate image of the light source, which essentially comes to lie in the rear focal point F2 of the reflector 2, and becomes this intermediate image then imaged by the lens 3 in the form of a converging lens in the area in front of the light module or vehicle.
  • the reflector is designed as a hyperbolic reflector or essentially has the behavior of a hyperbolic reflector, and the focal point of the lens 3 lies substantially in the rear focal point F2 of the reflector 2.
  • Fundamentally inventive feature in a present light module is that the reflective surface of the reflector is formed such that the generated light image has at least one light-dark line.
  • a reflector 2 for example by trimming the reflector, it is possible to give the light distribution a desired shape, in particular to provide the light distribution with at least one light-dark boundary, as for example in the case of low-beam light distributions or partial beam distribution is the case.
  • the edge of the reflector acts as a hatch between the virtual object and the lens, parts of a reflector that are close to the lens behave like an aperture stop and thus offer little design freedom on the light image, since with a change in the aperture of the image section remains unchanged, the light image is not or only slightly changed.
  • portions of the reflector that are farther away from the lens have more of the character of a field of view diaphragm, a change of these areas also changes the imaged image section and accordingly these areas can be used to form the light image.
  • the upper regions of the reflector can be cropped to reduce the intensity of the light distribution in advance, while the trimming at the bottom Edge the shape of the light distribution on the HD line can be varied.
  • Figures 2 to 5 show a light module 1 with a light source 10, reflector 20 with reflective surface 20a and lens 30.
  • the proportions are purely schematic, in particular, the lens can be significantly smaller and is for example as large as the reflector.
  • the reflector 20 is designed as a partial shell, in particular as a half shell, and the light source 10 radiates light into this half shell, from which the light is reflected at the reflective surface 20a.
  • the reflector half-shell 20 is bounded by a boundary edge 20 ', 20 ", as shown in Figures 4 and 5.
  • Light from the light source 10, which is reflected from an area around this boundary edge 20', 20" is projected by the lens in the light image near or to the light-dark boundary, the lower boundary edge 20 ', 20 "is thus imaged in the light image as a light-dark boundary, which limits the light image towards the top. Since the boundary edge 20 ', 20 "in this example (after trimming, as will be described) lies in a horizontal plane, the light-dark boundary also essentially forms a horizontal straight line, as is good in FIGS. 6 and 7 can be seen.
  • the boundary edge 20 ', 20 "of the reflector subshell 20 extends substantially above a plane in which the light source 10 lies, in this way the light / dark line in the light image can, for example as required by a lawful low-beam distribution can be lowered by 0.57 ° (ECE control) or 0.4 ° (SAE control), as shown in Figures 6 and 7.
  • the light source 10 can, as can be clearly seen in particular in FIG. 4, be tilted slightly forward, so that the plane in which the light source is correspondingly inclined.
  • the asymmetry part located at approximately 5 ° in FIGS. 6 and 7 is not formed by the edge 20 ', but is usually shown by a reflector segment, not shown in FIGS. 2-5, based on a segment 22 as in FIGS. 8 and 9 , generated.
  • the at least one light source has an elongated configuration, and that the light source is arranged with respect to the reflector that in the light image that of the reflective Surface of the reflector generated helical images are substantially parallel to the cut-off in the light image, since the extent of the blur is directly proportional to the size of a helical image, measured across the cut-off line.
  • the longitudinal axis of the light source thus runs essentially parallel to the light-dark boundary to be generated, wherein an inclination of a few degrees with respect to the cut-off line can definitely make sense visually.
  • such a light source has a significantly longer longitudinal than transverse extent, for example, it is a light source of a plurality of light emitting diodes, e.g. in a (1 x n) arrangement in which n LEDs are arranged in a row, the light source thus has a width of one LED and a length of n LEDs.
  • elongated light sources are the arc of a Xe torch or the filament of an incandescent lamp.
  • the at least one light source has a plane light exit surface, the light exit surface facing the reflective surface of the reflector.
  • the plane of the light source and the plane in which the lower boundary edge of the reflector lies extend in a substantially parallel plane.
  • the light-emitting surface of the light source is preferably substantially planar and wherein the boundary edge of the reflector forming the cut-off line is arranged in a region in which the light-emitting surface of the at least one light source is shortened in perspective is.
  • This latter measure can be realized independently or together with the above-mentioned elongated embodiment of the light source.
  • the reflector generates one or more light-dark boundaries in the light image, in that the reflector acts as a real diaphragm, ie the boundary edge (s) of the reflector in the light image as light-dark boundaries (or areas of maximum Brightness).
  • Figures 8 and 9 show a light module 1 with a reflector 21, light source 11 and lens 31.
  • the reflector 21 has a reflective surface 21a and a lower boundary edge 21 'comparable to the embodiment described above with reference to FIGS 2-5.
  • the hyperbolic reflector has a focal length of about 40 mm
  • the lens is an aspherical converging lens with a focal length of about 100 mm.
  • the reflector 21 has an additional reflector region 22 with a reflecting surface 22a.
  • This reflector region or this reflector segment 22 illuminates a central region directly around HV in the light distribution.
  • this reflector segment 22 or its reflective surface 22a is designed such that it generates a so-called caustic.
  • FIG. 11 shows the helical images W1-W6 generated by these reflector locations PI-P6 in the light image. If one wanders along the reflector along a line connecting the points PI - P6, then initially the helical images W1, W2, W3 move with the corresponding points PI - P3. Point P3 represents an extremal position, i. a reversal point for the spirals in the photograph, because we recognize, wander in a progression from P3 to P4 and then to P5 and P6, the helices W4, W5, W6 back to the helix Wl.
  • the helical image W3 therefore touches the caustic with its outermost boundary edge W3 '(see below for further explanation), the reflector 22 or the reflector surface 22a can be trimmed in the vicinity of the point P3 without the sharpness of the cut-off change.
  • FIG. 12 shows in the upper illustration a light image produced with an untrimmed reflector
  • the lower image in FIG. 12 shows the light image with a trimming of the reflector in the vicinity of those reflector locations which correspond to helical images on the envelope of the caustic, as with reference to FIG Figures 10 and 11 described.
  • the trimming results in the shape of the reflector 22.
  • the overall construction depth is approximately 70 mm.
  • the lens was assumed to have a diameter of 100 mm, whereby the trimming can be made very flexible due to the beam path. Very small Lin Sections (up to minimum sizes of 40 mm x 30 mm) are possible without having to accept large losses in efficiency.
  • the example in the sketch shows a light exit area of 65mm x 45mm.
  • a light source moved away from the lens is displayed higher.
  • this closer LED row produces an upwardly shifted light distribution that can meet the legal requirements for a high beam distribution.
  • the rear row of LEDs is thus shown lower in the focal plane of the lens than the front row.
  • the multi-cell LED light source may be rotated about an axis passing through the dimmed light relevant chips.
  • the high beam row is intentionally defocused, resulting in a more homogeneous appearance and greater high beam height.
  • FIG. 13 shows a light module 1 with a light source 100, a reflector 200 (with reflecting surface 200a) and a lens 300, wherein the reflecting surface 200a of the reflector 200 is designed in such a way that light from the light source 100, which runs along a defined curve the reflecting surface 200a is reflected in the light image as an area of maximum brightness.
  • the light source 100 comprises one or more light-emitting diodes, which are arranged vertically, the light-emitting surface of which thus lies in a vertical plane, and this light source 100 illuminates the laterally arranged reflector 200, which generates a substantially horizontal light-dark boundary, as shown in FIG Photograph is shown in Figure 14.
  • the HD limit is generated according to the invention exclusively by a caustic.
  • the depth of the light module 1 is about 50 mm.
  • the generation of the bright-dark boundary with a reflector is based here on the effect of the so-called caustics, so that one or more, in principle arbitrarily shaped light-dark boundaries can be generated without the use of diaphragms.
  • the at least one defined curve on the reflecting surface is displayed in the light image as a caustic line, ie as a line with maximum brightness, on one side (eg below this line) the brightness decreases, on the other side (eg above the line) no or hardly any light shown.
  • FIG. 15 shows a light module with a light source 110, in this case again comprising one or more vertically arranged LEDs, and this light source 110 illuminates a laterally arranged reflector 210 with reflective surface 210a. Via a lens 310, the light is projected into an area in front of the light module.
  • a light source 110 in this case again comprising one or more vertically arranged LEDs, and this light source 110 illuminates a laterally arranged reflector 210 with reflective surface 210a. Via a lens 310, the light is projected into an area in front of the light module.
  • a basically hyperbolic reflector with, for example, a focal length of approximately 70 mm is used; in this example, furthermore, an aspherical converging lens with a focal length of approximately 90 mm is used.
  • the depth of the light module is approximately 50 mm.
  • FIG. 17 shows by way of example a laterally arranged reflector 2000 whose reflective surface 2000a is illuminated by a light source 1000.
  • the reflecting surface 2000a of the reflector 2000 is designed according to the invention such that light from the light source 1000, which is reflected along the defined curve O on the reflecting surface 2000a, is imaged in the light image as a region with maximum brightness.
  • light from a region around the line O in FIG. 17 illuminates a region at and below the horizontal light-dark boundary (see horizontal hatched region LO in FIG. 18).
  • the line O is substantially horizontal in this example.
  • Light originating from the point 2 on the surface 2000a illuminates approximately the area marked "2" in the light image.
  • FIG. 19 once again shows the reflector 2000 with the reflecting surface 2000a. Shown are three different vertically extending segments "A”, “B”, “C”, which produce the three areas “A”, “B”, “C” in the photograph in FIG. Light from the area around the line O is imaged at the light-dark boundary, light from above and below the line O is imaged below the cut-off line.
  • suitable segmentation and appropriate design of the individual segments which preferably connect continuously to each other, there is a great freedom of design with regard to the generation of a desired light image with cut-off.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

L'invention concerne un module d'éclairage (1) pour un véhicule automobile, comportant au moins une source de lumière (1, 10, 11, 100, 110), au moins un réflecteur (2, 20, 21, 200, 210, 2000) et au moins une lentille (3, 30, 31, 300, 310). La lumière émise par la source de lumière (1, 10, 11, 100, 110) est formée par une surface réfléchissante (2a, 20a, 21a, 22a, 200a, 210a, 2000a) du ou des réflecteurs (2, 20, 21, 200, 210, 2000) pour obtenir une répartition lumineuse et, lorsque le module d'éclairage (1) est monté dans un véhicule, est projetée par la ou les lentilles (3, 30, 31, 300, 310) dans une zone située devant le véhicule. Selon l'invention, la zone réfléchissante (2a, 20a, 21a, 22a, 200a, 210a, 2000a) du ou des réflecteurs (2, 20, 21, 200, 210, 2000) est formée de telle manière qu'un premier foyer (F1) du réflecteur (2, 20, 21, 200, 210, 2000) se situe entre la surface réfléchissante (2a, 20a, 21a, 22a, 200a, 210a, 2000a) et la ou les lentilles (3, 30, 31, 300, 310), et un deuxième foyer (F2) se situe sur la face du réflecteur (2, 20, 21, 200, 210, 2000) opposée à la lentille (3, 30, 31, 300, 310), la surface réfléchissante (2a, 20a, 21a, 22a, 200a, 210a, 2000a) du réflecteur (2, 20, 21, 200, 210, 2000) étant réalisée de telle manière que l'image lumineuse produite présente au moins une ligne clair-obscur.
EP13716173.3A 2012-03-21 2013-03-20 Phare de véhicule avec lentille de projection Active EP2828571B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50093/2012A AT512711B1 (de) 2012-03-21 2012-03-21 Lichtmodul für ein Kraftfahrzeug und Kraftfahrzeugscheinwerfer
PCT/AT2013/050069 WO2013138834A1 (fr) 2012-03-21 2013-03-20 Module de projection pour véhicule automobile

Publications (2)

Publication Number Publication Date
EP2828571A1 true EP2828571A1 (fr) 2015-01-28
EP2828571B1 EP2828571B1 (fr) 2016-06-22

Family

ID=48095450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13716173.3A Active EP2828571B1 (fr) 2012-03-21 2013-03-20 Phare de véhicule avec lentille de projection

Country Status (8)

Country Link
US (1) US9146013B2 (fr)
EP (1) EP2828571B1 (fr)
JP (1) JP5881887B2 (fr)
CN (1) CN104204659B (fr)
AT (1) AT512711B1 (fr)
IN (1) IN2014MN02084A (fr)
MX (1) MX2014011316A (fr)
WO (1) WO2013138834A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT513816B1 (de) 2012-12-20 2015-11-15 Zizala Lichtsysteme Gmbh Lichtführungseinheit für eine Leuchteinheit eines Scheinwerfers sowie Leuchteinheit und Schweinwerfer
US10363860B2 (en) 2013-12-12 2019-07-30 Mitsubishi Electric Corporation Headlight module and headlight apparatus
US10697607B2 (en) 2014-06-08 2020-06-30 Valeo North America, Inc. Thin aspect lighting system with cutoff
JP6550788B2 (ja) * 2015-02-23 2019-07-31 市光工業株式会社 車両用灯具
KR101755830B1 (ko) 2015-08-27 2017-07-10 현대자동차주식회사 차량용 램프 장치
DE102015216746A1 (de) * 2015-09-02 2017-03-02 Volkswagen Aktiengesellschaft Fahrzeugleuchte und Verfahren zum Bereitstellen einer Lichtfunktion mittels einer Fahrzeugleuchte
AT517752B1 (de) * 2015-09-17 2018-04-15 Zkw Group Gmbh Lichtmodul für einen kraftfahrzeugscheinwerfer zur abstrahlung einer langreichweitigen lichtverteilung sowie beleuchtungsvorrichtung
DE112017000365B4 (de) * 2016-01-13 2020-12-17 Mitsubishi Electric Corporation Scheinwerfermodul mit zwei bzw. drei reflektierenden Oberflächen und zwei gekrümmten Emissionsoberflächen, und Scheinwerfervorrichtung mit solch einem Scheinwerfermodul
FR3048060B1 (fr) * 2016-02-22 2019-04-05 Valeo Vision Dispositif de projection de faisceau lumineux muni de sous-matrices de sources de lumiere, module d'eclairage et projecteur muni d'un tel dispositif
FR3048485B1 (fr) * 2016-03-02 2019-04-05 Valeo Vision Lentille amelioree pour dispositif d'eclairage de vehicule automobile
DE102016118152A1 (de) * 2016-09-26 2018-03-29 Automotive Lighting Reutlingen Gmbh Lichtmodul für einen Kraftfahrzeugscheinwerfer
CN110285381A (zh) * 2018-03-19 2019-09-27 深圳市绎立锐光科技开发有限公司 一种光源模组以及车用前照灯
FR3084728B1 (fr) * 2018-07-31 2021-03-19 Valeo Vision Module lumineux imageant la surface eclairee d'un collecteur
WO2020061709A1 (fr) 2018-09-27 2020-04-02 0903608 B.C. Ltd. Compositions pesticides agissant en synergie et procédés d'administration d'ingrédients actifs insecticides
FR3130011B1 (fr) * 2021-12-07 2024-04-05 Valeo Vision Dispositif lumineux d’un véhicule automobile
FR3139375A1 (fr) * 2022-09-06 2024-03-08 Valeo Vision Module d’éclairage route avec source lumineuse dirigée vers le haut

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19602978B4 (de) 1996-01-27 2007-04-26 Automotive Lighting Reutlingen Gmbh Fahrzeug-Scheinwerfer
FR2772111B1 (fr) 1997-12-05 2000-02-25 Valeo Vision Projecteur a reflecteur hyperbolique et bloc optique comportant un tel projecteur
JP2002216515A (ja) * 2001-01-22 2002-08-02 Ichikoh Ind Ltd 車両用前照灯
JP2002216513A (ja) 2001-01-22 2002-08-02 Ichikoh Ind Ltd 車両用前照灯
JP4068387B2 (ja) * 2002-04-23 2008-03-26 株式会社小糸製作所 光源ユニット
JP4108597B2 (ja) 2003-12-24 2008-06-25 株式会社小糸製作所 車両用灯具ユニット
JP4339156B2 (ja) 2004-03-18 2009-10-07 株式会社小糸製作所 車両用灯具ユニット
JP2006156047A (ja) * 2004-11-26 2006-06-15 Koito Mfg Co Ltd 車両用前照灯
JP4675874B2 (ja) 2006-01-20 2011-04-27 株式会社小糸製作所 車両用照明灯具
JP4607811B2 (ja) * 2006-04-18 2011-01-05 株式会社小糸製作所 車両用照明灯具
JP4786420B2 (ja) * 2006-05-31 2011-10-05 株式会社小糸製作所 車両用灯具ユニット
JP4752626B2 (ja) * 2006-06-01 2011-08-17 市光工業株式会社 車両用灯具
FR2904091B1 (fr) 2006-07-21 2009-03-06 Valeo Vision Sa Module optique pour projecteur de vehicule automobile
CN101625075A (zh) * 2008-07-10 2010-01-13 财团法人车辆研究测试中心 Led封装结构及具有该led封装结构的车灯
JP5257665B2 (ja) * 2008-08-20 2013-08-07 スタンレー電気株式会社 車両用前照灯ユニット及び車両用前照灯
JP5574411B2 (ja) * 2010-03-15 2014-08-20 株式会社小糸製作所 車両用灯具ユニット
WO2011132111A2 (fr) 2010-04-19 2011-10-27 Koninklijke Philips Electronics N.V. Agencement d'éclairage frontal à diodes électroluminescentes (del)

Also Published As

Publication number Publication date
JP5881887B2 (ja) 2016-03-09
US9146013B2 (en) 2015-09-29
JP2015511057A (ja) 2015-04-13
AT512711A1 (de) 2013-10-15
IN2014MN02084A (fr) 2015-08-28
AT512711B1 (de) 2014-08-15
WO2013138834A1 (fr) 2013-09-26
CN104204659A (zh) 2014-12-10
CN104204659B (zh) 2017-06-13
MX2014011316A (es) 2014-10-17
US20150023045A1 (en) 2015-01-22
EP2828571B1 (fr) 2016-06-22

Similar Documents

Publication Publication Date Title
EP2828571B1 (fr) Phare de véhicule avec lentille de projection
DE102006033920B4 (de) Fahrzeugleuchte
DE602006000872T2 (de) Kfz-Scheinwerfer mit im Wesentlichen vertikaler Ausdehnung
AT512468B1 (de) Beleuchtungsmodul für ein kraftfahrzeug
DE602004002043T2 (de) Elliptische Beleuchtungseinheit ohne Lichtblende zur Erzeugung eines Abblendlichtbündels und Scheinwerfer mit einer derartigen Belleuchtungseinheit
AT512569B1 (de) Beleuchtungsvorrichtung für ein Kraftfahrzeug
DE102004043706B4 (de) Optisches System für einen Kraftfahrzeugscheinwerfer, Beleuchtungseinheit für einen Kraftfahrzeugscheinwerfer und Kraftfahrzeugscheinwerfer
DE102014200368B4 (de) Teilfernlicht-Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
EP2875281B1 (fr) Phare pour véhicules
AT512246A1 (de) Led-projektionsmodul und scheinwerfer mit modul
DE102016201977A1 (de) Fahrzeugleuchte
DE102008015510A1 (de) Leuchteneinheit eines Fahrzeugscheinwerfers
AT512864B1 (de) Beleuchtungsvorrichtung zur Erzeugung einer segmentierten Lichtverteilung sowie Kraftfahrzeugscheinwerfer und Scheinwerfersystem
DE102008051109A1 (de) Fahrzeugmarkierungsleuchte
DE102009037698A1 (de) Fahrzeugbeleuchtungseinheit und Fahrzeugleuchte
AT510931A1 (de) Fahrzeugscheinwerfer mit led-lichtmodul
DE102013207845A1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
DE102014116862A1 (de) Scheinwerfersystem für Kraftfahrzeuge
DE102014205994A1 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
DE102014215785A1 (de) Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
DE102012220507A1 (de) Lichtmodul für einen Scheinwerfer eines Kraftfahrzeugs
DE69401164T2 (de) Fahrzeugscheinwerfer mit einem ellipsoid-ähnlichen Reflektor
DE10302969B4 (de) Scheinwerfer, insbesondere für Kraftfahrzeuge
DE427143C (de) Scheinwerferlampe, insbesondere fuer Automobile, mit Reflektor, Projektionslinse undObturator
WO2020104576A1 (fr) Unité d'éclairage destinée à un phare de véhicule automobile pour générer une distribution de lumière à coupure clair-obscur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 807877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013003468

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013003468

Country of ref document: DE

Owner name: ZKW GROUP GMBH, AT

Free format text: FORMER OWNER: ZIZALA LICHTSYSTEME GMBH, WIESELBURG, AT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ZKW GROUP GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013003468

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20170315

Ref country code: FR

Ref legal event code: CD

Owner name: ZKW GROUP GMBH, AT

Effective date: 20170315

26 Opposition filed

Opponent name: VALEO VISION SAS

Effective date: 20170321

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170323

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013003468

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0043000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170320

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502013003468

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 807877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130320

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 12