EP2798965B1 - Verfahren zum befeuchten von starttabakmaterial - Google Patents

Verfahren zum befeuchten von starttabakmaterial Download PDF

Info

Publication number
EP2798965B1
EP2798965B1 EP12871593.5A EP12871593A EP2798965B1 EP 2798965 B1 EP2798965 B1 EP 2798965B1 EP 12871593 A EP12871593 A EP 12871593A EP 2798965 B1 EP2798965 B1 EP 2798965B1
Authority
EP
European Patent Office
Prior art keywords
flow rate
deviation
threshold
control process
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12871593.5A
Other languages
English (en)
French (fr)
Other versions
EP2798965A4 (de
EP2798965A1 (de
Inventor
Akira SARAYA
Shinobu MIYAMORI
Ryuji IWAI
Naoki Ito
Hiroaki Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to PL12871593T priority Critical patent/PL2798965T3/pl
Publication of EP2798965A1 publication Critical patent/EP2798965A1/de
Publication of EP2798965A4 publication Critical patent/EP2798965A4/de
Application granted granted Critical
Publication of EP2798965B1 publication Critical patent/EP2798965B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/02Humidifying packed raw tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/12Steaming, curing, or flavouring tobacco

Definitions

  • the present invention relates to a moisture conditioning method suited for tobacco material such as leaf tobacco.
  • Processing of leaf tobacco as tobacco material includes a moisture conditioning process for increasing the water content of the leaf tobacco.
  • the moisture conditioning process is an important process whereby flexibility is imparted to the leaf tobacco prior to the removal of leafstalks from the leaf tobacco.
  • Patent Document 1 A moisture conditioning method in which the above moisture conditioning process is carried out is disclosed, for example, in Patent Document 1 identified below.
  • the moisture conditioning method of Patent Document 1 includes measuring the initial water content, initial temperature and feed rate of leaf tobacco at the inlet of a moisture conditioning machine, as well as the water content and temperature of the conditioned leaf tobacco at the outlet of the moisture conditioning machine, and controlling the amounts of water and steam to be supplied to the leaf tobacco on the basis of the measurement results, to adjust the water content and temperature of the conditioned leaf tobacco to respective target values.
  • Patent Document 1 Japanese Examined Patent Publication No. S63-62185 ( JP 1988-62185 B2 ) US 4572218 A discloses a method and apparatus for reordering or remoistening tobacco wherein a circulating treating medium is passed through the tobacco bed.
  • the apparatus is provided with both water and steam nozzles, and controls are provided such that the water input maintains a desired tobacco moisture level, whereas the steam input is controlled to keep the temperature of the circulating treating medium at a predetermined level.
  • the water is in the form of an atomized fine mist at point of contact with the tobacco bed.
  • the water content of the conditioned leaf tobacco can be controlled to the target value, but it is necessary that the water content of the leaf tobacco should be measured at each of the inlet and outlet of the moisture conditioning machine.
  • the purpose of moisture conditioning is to impart flexibility to leaf tobacco
  • the control of steam amount employed in the moisture conditioning method of Patent Document 1 is more complex than necessary.
  • An object of the present invention is to provide a moisture conditioning method whereby the water content of tobacco material can be increased with ease to impart required flexibility to the tobacco material.
  • the above object is achieved by a moisture conditioning method for tobacco material according to the present invention.
  • attention is directed to the outlet-side temperature of conditioned tobacco material, or outlet material temperature, and the amount of steam supply is controlled so as to maintain the outlet material temperature at a target temperature.
  • the present invention provides a moisture conditioning method according to claim 1 of the present application.
  • Such feedback control serves to reduce the adverse influence exerted on the main control process by continuous change of the outlet material temperature, thereby stabilizing the control of the outlet material temperature by the main control process.
  • the outlet material temperature of the tobacco material is detected and the flow rate of the steam supplied to the interior of the rotor is controlled on the basis of the reference flow rate so as to make the outlet material temperature equal to the target temperature.
  • the water content of the tobacco material can be easily increased by adjusting the outlet material temperature of the conditioned tobacco material to the target temperature.
  • the main control process includes a neutral area which is selected when the first deviation is between a positive first threshold and a negative second threshold and in which the supply flow rate is maintained at the reference flow rate, a positive cubic function control area which is selected when the first deviation is greater than the first threshold and is less than or equal to a positive third threshold greater than the first threshold, and in which the supply flow rate is decreased from the reference flow rate in accordance with a corrective flow rate computed according to a cubic function of the first deviation, and a negative cubic function control area which is selected when the first deviation is greater in magnitude than the negative second threshold and is less than or equal in magnitude to a negative fourth threshold greater in magnitude than the second threshold, and in which the supply flow rate is increased from the reference flow rate in accordance with a corrective flow rate computed according to a cubic function of the first deviation.
  • control areas of the main control process include the positive and negative cubic function control areas
  • the cubic function control areas effectively serve to promptly compensate for an instantaneous change in the outlet material temperature.
  • the main control process further includes a positive linear function control area which is selected when the first deviation is greater than the positive third threshold and is less than or equal to a positive fifth threshold greater than the third threshold, and in which the supply flow rate is decreased from the reference flow rate in accordance with a corrective flow rate computed according to a linear function of the first deviation, and a negative linear function control area which is selected when the first deviation is greater in magnitude than the negative fourth threshold and is less than or equal in magnitude to a negative sixth threshold greater in magnitude than the fourth threshold, and in which the supply flow rate is increased from the reference flow rate in accordance with a corrective flow rate computed according to a linear function of the first deviation.
  • a positive linear function control area which is selected when the first deviation is greater than the positive third threshold and is less than or equal to a positive fifth threshold greater than the third threshold, and in which the supply flow rate is decreased from the reference flow rate in accordance with a corrective flow rate computed according to a linear function of the first deviation
  • a negative linear function control area which is selected
  • the main control process further includes the positive and negative linear function control areas as its control areas, the linear function control areas each serve to increase and decrease the supply flow rate in accordance with the corrective flow rate proportional to the first deviation, so that the outlet material temperature can be quickly returned to the target temperature without suddenly changing the supply flow rate.
  • the main control process preferably includes a positive fixed value control area which is selected when the first deviation is greater than the positive fifth threshold and in which the supply flow rate is fixed at a lower-limit flow rate, and a negative fixed value control area which is selected when the first deviation is greater in magnitude than the negative sixth threshold and in which the supply flow rate is fixed at an upper-limit flow rate.
  • the positive and negative fixed value control areas serve to prevent excessive decrease and increase of the supply flow rate.
  • the moisture conditioning method of the present invention may further include a start-up control process executed prior to the main control process.
  • the start-up control process includes supplying the steam to the interior of the rotor with the supply flow rate set at a start-up flow rate higher than the reference flow rate.
  • the execution of the start-up control process is stopped when the first deviation becomes less than or equal to a seventh threshold, or when a second deviation between the target temperature and a temperature of the steam at the outlet of the rotor becomes less than or equal to an eighth threshold, or when a predetermined start-up period elapses from start of the start-up control process.
  • the moisture conditioning method of the present invention may further include a switching control process executed after the start-up control process and before the main control process.
  • the switching control process includes selecting a switching control area corresponding to the first deviation, from among a plurality of switching control areas demarcated according to magnitude and positivity/negativity of the first deviation, and controlling the supply flow rate of the steam in accordance with a control procedure of the selected switching control area.
  • the above moisture conditioning method of the present invention is suited for the conditioning of leaf tobacco as the tobacco material.
  • the moisture conditioning method for tobacco material according to the present invention involves only controlling the supply flow rate of the steam on the basis of the first deviation between the outlet material temperature of the tobacco material and the target temperature, and therefore, the outlet material temperature of the tobacco material can be easily adjusted to the target temperature. As a result, the conditioned tobacco material contains a sufficient amount of water.
  • the moisture conditioning machine is equipped with a cylindrical hollow rotor 10.
  • the rotor 10 has a material inlet 12 for receiving leaf tobacco as tobacco material (hereinafter merely referred to as the material) and a material outlet 14 for discharging the material which has undergone moisture conditioning.
  • the material is a mixture of a plurality of kinds of leaf tobacco, and the mixture is used to manufacture cigarettes of a specified brand.
  • the rotor 10 is rotatable in one direction. As the rotor 10 rotates, the material fed into the rotor 10 through the material inlet 12 is transferred within the rotor 10 toward the material outlet 14, and in the process of transfer, the material is conditioned with use of steam, more specifically, water vapor supplied to the interior of the rotor 10. The conditioned material is discharged from the material outlet 14 to a conveyance path and then is conveyed on the conveyance path toward a subsequent processing station (not shown).
  • the moisture conditioning machine is further provided with a steam supply path 16 for supplying steam to the rotor 10, and the supply path 16 includes the internal space of the rotor 10 as part thereof.
  • the supply path 16 has a steam inlet 18 and a steam outlet 20, both opening into the rotor 10.
  • the steam inlet 18 is located on the same side as the material inlet 12, and the steam outlet 20 is located on the same side as the material outlet 14.
  • the supply path 16 has an upstream section extending from a steam supply source, more specifically, a boiler room, to the steam inlet 18 of the rotor 10, and a downstream section extending from the steam outlet 20 of the rotor 10.
  • the upstream section of the supply path 16 has a diaphragm-type steam flow regulator 22 and a steam flowmeter 24 arranged therein, and the downstream section of the supply path 16 is open to the atmosphere at a terminal end thereof.
  • the steam flow regulator 22 and the steam flowmeter 24 are electrically connected to an arithmetic unit 26.
  • the arithmetic unit 26 is supplied with a target value Qo of the steam flow rate to be supplied to the interior of the rotor 10 and an actual steam flow rate Qa measured by the steam flowmeter 24, and controls operation of the steam flow regulator 22 so that the actual steam flow rate Qa may become equal to the target value Qo.
  • a temperature sensor 28 is arranged at the material outlet 14 and measures an outlet material temperature Ta of the material discharged from the rotor 10. Also, a temperature sensor 30 is arranged in the downstream section of the supply path 16 and measures a discharge temperature Ts of the steam discharged from the rotor 10.
  • the outlet material temperature Ta and the discharged steam temperature Ts are supplied as electrical signals to an arithmetic unit 32, which then computes the target value Qo of the steam flow rate on the basis of the outlet material temperature Ta, the discharged steam temperature Ts and various setting values and supplies the target value Qo to the arithmetic unit 26.
  • the setting values include values specific to the brand for which the material is used, the capacity of the rotor 10, and so forth.
  • the arithmetic unit 32 executes a start-up control process, a switching control process and a cascade control process in cooperation with the arithmetic unit 26.
  • the control processes will be explained in detail.
  • the arithmetic unit 32 sets the target value Qo of the steam flow rate (supply flow rate at which steam is supplied to the rotor 10) to a start-up flow rate Qst (kg/h) and provides the start-up flow rate Qst to the arithmetic unit 26.
  • the start-up flow rate Qst is an unambiguous value determined on the basis of the setting values mentioned above. Accordingly, during execution of the start-up control process, the actual steam flow rate Qa is controlled to the start-up flow rate Qst.
  • the start-up control process ends when any one of the following three transition conditions 1 to 3 is fulfilled.
  • Transition Condition 3 The time elapsed from the start of the start-up control process reaches T1.
  • the target temperature To is an unambiguous value set in accordance with the brand for which the material is used, and the thresholds Th_a and Th_b are, for example, 2°C and 5°C, respectively.
  • the discharged steam temperature Ts normally tends to rise more quickly than the outlet material temperature Ta, and therefore, by employing the transition condition 1 in addition to the transition condition 2, it is possible to quickly terminate the start-up control process.
  • the transition condition 3 serves to prevent the duration of the start-up control process from being undesirably prolonged.
  • the arithmetic unit 32 terminates the start-up control process and then executes the switching control process described below.
  • the arithmetic unit 32 changes the target value Qo of the steam flow rate from the start-up flow rate Qst to a reference flow rate Qb.
  • the reference flow rate Qb is smaller than the start-up flow rate Qst and is an unambiguous value determined on the basis of the aforementioned setting values, like the start-up flow rate Qst.
  • the arithmetic unit 32 includes a control map for the switching control, such as the one illustrated in FIG. 4 .
  • the control map has a plurality of control areas demarcated according to the magnitude and positivity/negativity of the aforementioned deviation ⁇ t.
  • the control map has a neutral area R1, positive and negative cubic function control areas R2 and R3 defined on both sides of the neutral area R1, and positive and negative fixed value control areas R4 and R5 defined outside of the respective cubic function control areas R2 and R3.
  • thresholds Th_c and -Th_d are positive and negative small values, respectively, smaller than or equal in magnitude to 1°C.
  • the threshold Th_c may be equal to
  • the arithmetic unit 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb.
  • the actual supply flow rate Qa is controlled to the reference flow rate Qb.
  • a threshold Th_e is a positive value (e.g. 4°C) greater than the threshold Th_c.
  • the arithmetic unit 32 computes a positive corrective flow rate C1 according to a cubic function F1[(al ⁇ ⁇ t) 3 ] of the deviation ⁇ t.
  • a1 represents a coefficient.
  • the corrective flow rate C1 is calculated on the basis of the cubic function F1 of the deviation ⁇ t, it increases along the cubic curve with increase in the deviation ⁇ t.
  • the supply flow rate Qc1 is not so significantly smaller than the reference flow rate Qb, but as the deviation ⁇ t becomes greater and greater, the supply flow rate Qc1 becomes much smaller than the reference flow rate Qb.
  • the outlet material temperature Ta is effectively lowered according to the magnitude of the deviation ⁇ t, toward the target temperature To.
  • a threshold -Th_f is a negative value (e.g. about - 3.2°C) greater than the threshold -Th_d.
  • the arithmetic unit 32 computes a corrective flow rate C2 according to a cubic function F2[(a2 ⁇ At) 3 ] of the deviation ⁇ t.
  • a2 represents a coefficient.
  • the cubic function is not only useful in effectively changing the outlet material temperature Ta toward the target temperature To but also facilitates handling of the positivity/negativity of the deviation ⁇ t in the computation of the corrective flow rates C1 and C2.
  • the fixed value control area R4 is selected. Th _ e ⁇ ⁇ t
  • the arithmetic unit 32 computes, as the target value Qo of the steam flow rate, a supply flow rate Qc3 according to the equation below.
  • the supply flow rate Qc3 is fixed at a minimum value, and with the supply flow rate Qc3 set in this manner, the outlet material temperature Ta is lowered toward the target temperature To.
  • the negative fixed value control area R5 is selected. ⁇ ⁇ t ⁇ ⁇ Th _ f
  • the arithmetic unit 32 computes, as the target value Qo of the steam flow rate, a supply flow rate Qc4 according to the following equation.
  • the supply flow rate Qc4 is fixed at a maximum value. Accordingly, in the fixed value control area R5, the actual steam flow rate Qa is controlled to the supply flow rate Qc4, with the result that the outlet material temperature Ta is quickly raised toward the target temperature To.
  • the aforementioned switching control ends when either one of the following transition conditions 4 and 5 ) is fulfilled.
  • Transition Condition 4 The deviation ⁇ t is less than or equal to a threshold Th_g (see FIG. 5 ).
  • Transition Condition 5 The time elapsed from the start of the switching control reaches T2.
  • Th_g satisfies the relationship indicated by the following expression. Th _ g ⁇ Th _ a
  • the arithmetic unit 32 terminates the switching control process and then executes the cascade control process described below.
  • the cascade control process includes a feedforward (FF) control process as a main control process, and a feedback (FB) control process as a sub-control process.
  • FF feedforward
  • FB feedback
  • the arithmetic unit 32 further includes a control map for the FF control process, such as the one illustrated in FIG. 6 .
  • the control map has a plurality of control areas demarcated according to the magnitude and positivity/negativity of the deviation ⁇ t.
  • the control map has a neutral area R6, positive and negative cubic function control areas R7 and R8 defined on both sides of the neutral area R6, positive and negative linear function control areas R9 and R10 defined outside of the respective cubic function control areas R7 and R8, and positive and negative fixed value control areas R11 and R12 defined outside of the respective linear function control areas R9 and R10.
  • thresholds Th_h and -Th_i are positive and negative small values, respectively, smaller than or equal in magnitude to 1°C.
  • the threshold Th_h may be equal to
  • the arithmetic unit 32 maintains the target value Qo of the steam flow rate at the reference flow rate Qb. That is, in the neutral area R6, the actual steam flow rate Qa is controlled to the reference flow rate Qb.
  • a threshold Th_j is a positive value (e.g. 3°C) greater than the threshold Th_h.
  • the negative cubic function control area R8 is selected. ⁇ Th _ k ⁇ ⁇ ⁇ t ⁇ ⁇ Th _ i
  • a threshold -Th_k is a negative value (e.g. about - 2.5°C) greater in magnitude than the threshold -Th_i.
  • the actual steam flow rate Qa is controlled to the supply flow rate Qc6.
  • a threshold Th_1 is a value (e.g. 5.5°C) greater than Th_J.
  • the arithmetic unit 32 computes a positive corrective flow rate C7 according to a linear function F5(b1 ⁇ ⁇ t) of the deviation ⁇ t.
  • b1 represents a coefficient.
  • the negative linear function control area R10 is selected. ⁇ Th _ m ⁇ ⁇ ⁇ t ⁇ ⁇ Th _ k
  • a threshold -Th_m is a negative value (e.g. -4.3°C) greater in magnitude than -Th_k.
  • the arithmetic unit 32 computes a negative corrective flow rate C8 according to a linear function F6(b2 ⁇ At) of the deviation ⁇ t.
  • b2 represents a coefficient.
  • the actual steam flow rate Qa is controlled to the supply flow rate Qc8.
  • the corrective flow rates C7 and C8 are computed according to the respective linear functions F5 and F6 of the deviation ⁇ t and, therefore, assume values proportional to the magnitude of the deviation ⁇ t.
  • the supply flow rates Qc7 and Qc8 are decreased or increased in accordance with the deviation ⁇ t.
  • the outlet material temperature Ta is quickly varied toward the target temperature To.
  • the arithmetic unit 32 computes a supply flow rate Qc9 according to the following equation, and sets the computed supply flow rate Qc9 as the target value Qo of the steam flow rate.
  • a corrective flow rate C9 is a positive value. Accordingly, the supply flow rate Qc9 is fixed at a minimum value, and the outlet material temperature Ta is lowered toward the target temperature To.
  • the negative fixed value control area R12 is selected. ⁇ ⁇ t ⁇ ⁇ Th _ m
  • the arithmetic unit 32 computes a supply flow rate Qc10 according to the following equation, and sets the computed supply flow rate Qc10 as the target value Qo of the steam flow rate.
  • a corrective flow rate C10 is a negative value, and therefore, the supply flow rate Qc10 is fixed at a maximum value, with the result that the outlet material temperature Ta is raised toward the target temperature To.
  • the moisture conditioning for the material is carried out by causing the outlet material temperature Ta to become equal to the target temperature To, and thus the material can easily be made to have a required water content after being conditioned.
  • the combination of the cubic function control areas R7 and R8 and the linear function control areas R9 and R10 makes it possible to promptly eliminate instantaneous change of the outlet material temperature Ta and stably maintain the outlet material temperature Ta at the target temperature To.
  • control areas of the FF control process include the positive and negative fixed value control areas R11 and R12, the flow rate of the steam supplied to the rotor 10 is not excessively increased even if the deviation ⁇ t is large.
  • the FF control process may include a predetermined transitional standby time provided at the transition from the cubic function control area R7 to the linear function control area R9 and at the transition from the cubic function control area R8 to the linear function control area R10.
  • the FB control process is executed in parallel with the aforementioned FF control process.
  • the arithmetic unit 32 starts the FB control process after a lapse of a predetermined standby time T3 from the start of the cascade control process.
  • the arithmetic unit 32 After the FB control process is started, the arithmetic unit 32 repeatedly samples the deviation ⁇ t at regular intervals during a predetermined computation period T4, and computes an average deviation ⁇ t_av of the deviations ⁇ t sampled during the computation period T4.
  • the arithmetic unit 32 computes a positive or negative corrective flow rate C11 for the reference flow rate Qb on the basis of the average deviation At_av, and resets the reference flow rate Qb to a new reference flow rate Qb' with use of the corrective flow rate C11.
  • the reference flow rate Qb' is obtained according to the following assignment expression.
  • the reference flow rate Qb' becomes effective at the time when the next FB execution period (resetting control area) T5 starts following the end of the computation period T4, and is used in the aforementioned FF control process.
  • the computation of the corrective flow rate C11 in the computation period T4 and the resetting of the reference flow rate Qb' in the FB execution period T5 are thereafter repeatedly executed.
  • the reference flow rate Qb is reset to the reference flow rate Qb' in response to a continuous slight change of the outlet material temperature Ta.
  • This enables the FF control process to maintain the outlet material temperature Ta at the target temperature To with higher accuracy and stability by using the reference flow rate Qb'.
  • the combination of the FB control process and the FF control process namely, the cascade control process enables excellent moisture conditioning of the material based on the outlet material temperature Ta.
  • the present invention is not limited to the moisture conditioning method of the above embodiment and may be modified in various ways.
  • the moisture conditioning method of the present invention is started from the switching control process, as indicated by the dashed line in FIG. 2 .
  • the material to be used is not limited to leaf tobacco, and the moisture conditioning method of the present invention is applicable to a variety of materials.

Claims (8)

  1. Feuchtigkeitskonditionierungsverfahren für Tabakmaterial, wobei das Tabakmaterial und Dampf in das Innere eines Rotors (10) eingeleitet werden, um Feuchtigkeit des Tabakmaterials zu konditionieren, während das Tabakmaterial das Innere des Rotors (10) passiert, und das Folgendes umfasst:
    einen Prozess zum Detektieren einer Material-Auslasstemperatur (Ta) des Tabakmaterials, das gerade aus einem Auslass (14) des Rotors (10) ausgelassen wurde, während der Dampf mit einer Einleitungsströmungsrate (Qa) in das Innere des Rotors (10) eingeleitet wird;
    einen Prozess zum Erhalten einer ersten Abweichung (Δt) zwischen einer Zieltemperatur (To) des Tabakmaterials an dem Auslass (14) des Rotors (10) und der Material-Auslasstemperatur (Ta); und
    einen Hauptsteuerungsprozess zum Steuern der Einleitungsströmungsrate (Qa) auf der Basis einer Referenzströmungsrate (Qb) des Dampfes gemäß der ersten Abweichung (Δt), wobei der Hauptsteuerungsprozess Folgendes umfasst:
    Auswählen eines Steuerbereichs, der der ersten Abweichung (Δt) entspricht, unter mehreren Steuerbereichen, die gemäß einer Größenordnung und Positivität oder Negativität der ersten Abweichung (Δt) abgegrenzt sind, und
    Steuern der Einleitungsströmungsrate (Qa) des Dampfes gemäß einem Steuerungsablauf des ausgewählten Steuerbereichs,
    dadurch gekennzeichnet, dass das Feuchtigkeitskonditionierungsverfahren des Weiteren Folgendes umfasst:
    einen Teilsteuerungsprozess, der parallel zu dem Hauptsteuerungsprozess ausgeführt wird,
    wobei der Teilsteuerungsprozess einen Referenzströmungsraten-Rücksetzungssteuerbereich umfasst, der periodisch wiederholt wird, und
    der Rücksetzungssteuerbereich das Rücksetzen der Referenzströmungsrate (Qb) gemäß einem Durchschnittswert der ersten Abweichung (Δt) innerhalb eines festen Zeitraums umfasst.
  2. Feuchtigkeitskonditionierungsverfahren nach Anspruch 1, wobei die Steuerbereiche Folgendes umfassen:
    einen neutralen Bereich (R6), der ausgewählt wird, wenn die erste Abweichung (Δt) zwischen einer positiven ersten Schwelle (Th_h) und einer negativen zweiten Schwelle (-Th_i) liegt, und wobei die Einleitungsströmungsrate (Qa) bei der Referenzströmungsrate (Qb) gehalten wird,
    einen positiven kubischen Funktionssteuerbereich (R7), der ausgewählt wird, wenn die erste Abweichung (Δt) größer ist als die erste Schwelle (Th_h) und maximal so groß ist wie eine positive dritte Schwelle (Th_l), die größer ist als die erste Schwelle (Th_h), und wobei die Einleitungsströmungsrate (Qa) ausgehend von der Referenzströmungsrate (Qb) gemäß einer korrektiven Strömungsrate (C5), die gemäß einer kubischen Funktion (F3) der ersten Abweichung (Δt) berechnet wird, verringert wird, und
    einen negativen kubischen Funktionssteuerbereich (R8), der ausgewählt wird, wenn die erste Abweichung (Δt) eine größere Größenordnung hat als die negative zweite Schwelle (-Th_l) und maximal die Größenordnung einer negativen vierten Schwelle (-Th_k) hat, deren Größenordnung größer ist als die zweite Schwelle (-Th_i), und wobei die Einleitungsströmungsrate (Qa) ausgehend von der Referenzströmungsrate (Qb) gemäß einer korrektiven Strömungsrate (C6), die gemäß einer kubischen Funktion (F4) der ersten Abweichung (Δt) berechnet wird, erhöht wird.
  3. Feuchtigkeitskonditionierungsverfahren nach Anspruch 2, wobei die Steuerbereiche des Weiteren Folgendes umfassen:
    einen positiven linearen Funktionssteuerbereich (R9), der ausgewählt wird, wenn die erste Abweichung (Δt) größer ist als die positive dritte Schwelle (Th_l) und maximal so groß ist wie eine positive fünfte Schwelle (Th_l), die größer ist als die dritte Schwelle (Th_l), und wobei die Einleitungsströmungsrate (Qa) ausgehend von der Referenzströmungsrate (Qb) gemäß einer korrektiven Strömungsrate (C9), die gemäß einer linearen Funktion (F5) der ersten Abweichung (Δt) berechnet wird, verringert wird, und
    einen negativen linearen Funktionssteuerbereich (R10), der ausgewählt wird, wenn die erste Abweichung (Δt) eine größere Größenordnung hat als die negative vierte Schwelle (-Th_k) und maximal die Größenordnung einer negativen sechsten Schwelle (-Th_m) hat, deren Größenordnung größer ist als die vierte Schwelle (-Th_k), und wobei die Einleitungsströmungsrate (Qa) ausgehend von der Referenzströmungsrate gemäß einer korrektiven Strömungsrate (C8), die gemäß einer linearen Funktion (F6) der ersten Abweichung (Δt) berechnet wird, erhöht wird.
  4. Feuchtigkeitskonditionierungsverfahren nach Anspruch 3, wobei die Steuerbereiche des Weiteren Folgendes umfassen:
    einen positiven Festwert-Steuerbereich (R11), der ausgewählt wird, wenn die erste Abweichung (Δt) größer ist als die positive fünfte Schwelle (Th_l), und wobei die Einleitungsströmungsrate (Qa) auf einer Untergrenzen-Strömungsrate (Qc9) fixiert ist, und
    einen negativen Festwert-Steuerbereich (R12), der ausgewählt wird, wenn die erste Abweichung (Δt) eine größere Größenordnung hat als die negative sechste Schwelle (-Th_m), und wobei die Einleitungsströmungsrate (Qa) auf einer Obergrenzen-Strömungsrate (Qc10) fixiert ist.
  5. Feuchtigkeitskonditionierungsverfahren nach Anspruch 1, das des Weiteren einen Start-Steuerungsprozess umfasst, der vor dem Hauptsteuerungsprozess ausgeführt,
    wobei der Start-Steuerungsprozess das Einleiten des Dampfes in das Innere des Rotors (10) umfasst, wobei die Einleitungsströmungsrate auf eine Start-Strömungsrate (Qst) eingestellt ist, die höher ist als die Referenzströmungsrate (Qb) .
  6. Feuchtigkeitskonditionierungsverfahren nach Anspruch 5, wobei die Ausführung des Start-Steuerungsprozesses angehalten wird, wenn die erste Abweichung (Δt) maximal so groß wird wie eine siebente Schwelle (Th_la) oder wenn eine zweite Abweichung zwischen der Zieltemperatur (To) und einer Temperatur (Ts) des Dampfes an dem Auslass (14) des Rotors (10) maximal so groß wird wie eine achte Schwelle (Th_a), oder wenn ein zuvor festgelegter Start-Zeitraum (T1) ab dem Beginn des Start-Steuerungsprozesses verstrichen ist.
  7. Feuchtigkeitskonditionierungsverfahren nach Anspruch 6, das des Weiteren einen Umschaltsteuerungsprozess umfasst, der nach dem Start-Steuerungsprozess und vor dem Hauptsteuerungsprozess ausgeführt wird,
    wobei der Umschaltsteuerungsprozess Folgendes umfasst:
    Auswählen eines Umschaltsteuerbereichs, der der ersten Abweichung (Δt) entspricht, unter mehreren Umschaltsteuerbereichen, die gemäß einer Größenordnung und Positivität oder Negativität der ersten Abweichung (Δt) abgegrenzt sind, und
    Steuern der Einleitungsströmungsrate (Qa) des Dampfes gemäß einem Steuerungsablauf des ausgewählten Umschaltsteuerbereichs.
  8. Feuchtigkeitskonditionierungsverfahren nach Anspruch 1, wobei das Tabakmaterial Blatttabak ist.
EP12871593.5A 2012-03-15 2012-03-15 Verfahren zum befeuchten von starttabakmaterial Active EP2798965B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12871593T PL2798965T3 (pl) 2012-03-15 2012-03-15 Sposób nawilżania wyjściowego materiału tytoniowego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056716 WO2013136487A1 (ja) 2012-03-15 2012-03-15 タバコ原料の調湿方法

Publications (3)

Publication Number Publication Date
EP2798965A1 EP2798965A1 (de) 2014-11-05
EP2798965A4 EP2798965A4 (de) 2015-11-11
EP2798965B1 true EP2798965B1 (de) 2019-07-24

Family

ID=49160453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12871593.5A Active EP2798965B1 (de) 2012-03-15 2012-03-15 Verfahren zum befeuchten von starttabakmaterial

Country Status (5)

Country Link
EP (1) EP2798965B1 (de)
JP (1) JP5709289B2 (de)
CN (1) CN104168782B (de)
PL (1) PL2798965T3 (de)
WO (1) WO2013136487A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105595390B (zh) * 2015-12-30 2017-03-22 山东中烟工业有限责任公司 一种提高润梗机料头阶段出口水分稳定性的方法
CN108378406B (zh) * 2018-04-11 2021-02-19 红塔烟草(集团)有限责任公司 烟片复烤机回潮区温湿度控制方法及其系统
CN109471404A (zh) * 2018-11-21 2019-03-15 河南中烟工业有限责任公司 一种加料系统一键状态检测方法和系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864381A (en) * 1956-02-01 1958-12-16 Imp Tobacco Co Ltd Method for conditioning tobacco
DE2240682C2 (de) * 1972-08-18 1983-09-01 Hauni-Werke Körber & Co KG, 2050 Hamburg Verfahren und Vorrichtung zum Feuchten von Tabak
JPS6024171A (ja) * 1983-07-21 1985-02-06 日本たばこ産業株式会社 たばこの調湿機における水分および温度の制御装置
US4572218A (en) * 1983-10-27 1986-02-25 Proctor & Schwartz, Inc. Remoistening of tobacco
JPS6185182A (ja) * 1984-10-04 1986-04-30 日本たばこ産業株式会社 たばこの悪癖成分を除去する原料調和方法およびその装置
ITTV20010086A1 (it) * 2001-07-02 2003-01-02 Garbuio Spa Macchina per il trattamento del tabacco
CN100393249C (zh) * 2006-07-19 2008-06-11 山东中烟工业公司 润叶回潮处温度的两级控制方法
CN201094273Y (zh) * 2007-10-22 2008-08-06 厦门卷烟厂 一种烟片松散回潮装置
CN101380136B (zh) * 2008-10-21 2011-06-15 龙岩烟草工业有限责任公司 卷烟加工松散回潮设备及其热风控制方法
CN201336924Y (zh) * 2009-02-13 2009-11-04 湖南中烟工业有限责任公司 一种烟片松散回潮筒内部湿热空气精确控制的装置
CN101502337B (zh) * 2009-02-26 2012-05-02 孟科峰 烟丝生产中叶片回潮过程的建模控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104168782B (zh) 2017-10-13
EP2798965A4 (de) 2015-11-11
JP5709289B2 (ja) 2015-04-30
CN104168782A (zh) 2014-11-26
EP2798965A1 (de) 2014-11-05
PL2798965T3 (pl) 2019-12-31
JPWO2013136487A1 (ja) 2015-08-03
WO2013136487A1 (ja) 2013-09-19

Similar Documents

Publication Publication Date Title
TWI579037B (zh) Substrate liquid processing device and substrate liquid treatment method
CN102777999B (zh) 室压控制系统
CN101836173B (zh) 真空容器的压力控制方法及压力控制装置
JP6700952B2 (ja) 排ガス脱塩装置及び排ガス脱塩方法
EP2798965B1 (de) Verfahren zum befeuchten von starttabakmaterial
CN111831029A (zh) 烟叶复烤温度控制方法、装置以及介质
CN108536087B (zh) 烟叶和烟草薄片回潮加湿含水率的控制方法及其控制装置
JP5431382B2 (ja) 乾燥機の蒸発負荷制御システム
CN102052734B (zh) 一种空调机组能量控制装置及方法
CN106679121A (zh) 一种基于pid控制的稳定加湿控制方法
JP5846831B2 (ja) 燃料電池の加湿ガス供給装置及びその方法
CN114322252B (zh) 组合式空调机组及其控制方法
RU2575817C1 (ru) Способ кондиционирования влажности табачного материала
JP2011032166A (ja) ガラス材料を作製する方法および装置
JP6528500B2 (ja) ボイラシステム
JP2010203266A (ja) 脱硝装置
JP5939244B2 (ja) 空調装置及び空調制御方法
JP5800293B2 (ja) クリーンルーム用設備及びクリーンルームの空調方法
JP6409382B2 (ja) ボイラ装置
JPS63229126A (ja) 湿式排煙脱硫装置の吸収液循環量制御装置
RU2811554C1 (ru) Способ автоматического управления процессом осушки газа на установках комплексной подготовки газа в условиях Севера РФ
CN115542721A (zh) 一种烘丝机出口水分反馈控制方法及控制系统
CN116974308A (zh) 一种用于天然气计量阀的控制装置及方法
JP2010121817A (ja) 給気システムおよび給気方法
RU2444689C1 (ru) Способ автоматического управления процессом сушки пищевых продуктов в ленточной сушилке с использованием конвективного и свч-энергоподвода

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151012

RIC1 Information provided on ipc code assigned before grant

Ipc: A24B 3/02 20060101AFI20151006BHEP

Ipc: A24B 3/12 20060101ALI20151006BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180821

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012062357

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1157108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1157108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012062357

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230302

Year of fee payment: 12

Ref country code: GB

Payment date: 20230322

Year of fee payment: 12

Ref country code: DE

Payment date: 20220620

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 12