EP2786168A1 - Dispositif de mesure optique - Google Patents

Dispositif de mesure optique

Info

Publication number
EP2786168A1
EP2786168A1 EP12798629.7A EP12798629A EP2786168A1 EP 2786168 A1 EP2786168 A1 EP 2786168A1 EP 12798629 A EP12798629 A EP 12798629A EP 2786168 A1 EP2786168 A1 EP 2786168A1
Authority
EP
European Patent Office
Prior art keywords
transmission
window
optical
measuring device
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12798629.7A
Other languages
German (de)
English (en)
Inventor
Heiner Bayha
Peter Horvath
Jens Nicolai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Schalter und Sensoren GmbH
Original Assignee
Valeo Schalter und Sensoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter und Sensoren GmbH filed Critical Valeo Schalter und Sensoren GmbH
Publication of EP2786168A1 publication Critical patent/EP2786168A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the invention relates to an optical measuring device referred to in the preamble of claim 1 Art.
  • Detection and Ranging for vehicles to detect objects and / or obstacles in a surveillance area known.
  • These optical measuring devices determine the distance to objects and / or obstacles detected in the monitoring area with a light pulse transit time method.
  • the known optical measuring devices comprise a housing in which at least one optical transmitter for emitting at least one transmission beam and at least one optical receiver are arranged.
  • the receiver receives the light reflected at Whether ⁇ projects and / or obstacles rays and determined from the light pulse transit time the distance to the objects and / or obstacles.
  • the housing is closed by a cover plate and forms a transmission window and a receiving window, wherein the at least one transmission beam emerges from the housing through the transmission window, and the beam reflected by objects and / or obstacles enters the enclosure via the reception window.
  • the optical transmitter radiates the transmission beam via a rotating deflection mirror, wherein a Umlenkspie ⁇ gel deflected transmission beam is emitted via the transmission window to the outside. If the deflected transmitted beam of the ex ⁇ cover disk directly reflected, then passes this on the deflection mirror inward reflected transmission beam back, is again deflected by the deflection mirror and into another unwanted spatial direction as spurious via the transmit window radiated.
  • the cover of the optical measuring device can be arranged inclined ⁇ . By tilting the cover can be avoided ⁇ the that direct reflections ent ⁇ standing on the cover and reflected reflected beams are thrown back into the housing interior to ⁇ and sent out via the deflection mirror in an undesirable direction. Due to the inclination of the
  • the light beam at the deflecting mirror is reflected into the interior of the housing and "runs dead", so that no interference or interference signals are radiated.
  • As disadvantageous can be seen in the oblique position of the cover that this dictates the outer shape of the optical measuring device Due to the intended installation location of the optical measuring device in the vehicle, ie possibly even directly integrated in the radiator grille at the front part before the radiator, the space requirement of the optical measuring device should be minimized, in particular the optical measuring device should have an outer surface that is as flat as possible.
  • Patent EP 1 308 747 B1 describes a scanning optoelectronic distance sensor.
  • the described distance sensor comprises at least one laser as optical transmitter of pulsed electromagnetic radiation, at least one detector as optical receiver as well as a protective cover which is at least partially permeable to the electromagnetic radiation used, wherein the
  • Protective cover is movable and remain Stör Schemee the Schutzabde ⁇ ckung during the scanning outside a range of particular interest. Furthermore, the movable protective cover has a tilted opposite to the propagation direction of the electromagnetic radiation
  • the described distance sensor comprises at least one laser as optical transmitter, at least one detector as optical receiver and a deflection unit, which deflects a generated electromagnetic radiation ⁇ he electromagnetic radiation to the scene to be measured with a first mirror, and with a second mirror on the backscattered by laser pulses the at least one detector deflects.
  • the first and second mirrors are arranged on a common rotatable axle, which is driven by a drive unit.
  • the first mirror is arranged on a first holder and the second mirror is arranged axially spaced from the first mirror on a second holding ⁇ tion, wherein the drive unit is arranged between the two holders.
  • the at least one laser and the at least one detector with the associated electronics are arranged vertically.
  • the object of the invention is to develop an optical measuring device referred to in the preamble of claim 1, to the effect that a measuring device is provided with an outer surface as flat as possible and reduced interference signals.
  • This object is achieved by an optical measuring ⁇ device with the features of claim 1.
  • Other embodiments of the invention advantageously embodying features include the dependent claims.
  • the advantage achieved by the invention is that ei ⁇ ne outside of the cover can be arranged substantially perpendicular to the emission and only a transmission window over which the transmission radiation is emitted, having an inclination with a predetermined angle of inclination, so that the reflecting of the transmission window Beams are not reflected directly on the deflection mirror inside the optical measuring device.
  • An optical measuring device least comprises a housing in which at least one optical transmitter for emitting at least one transmitted beam and at least one optical receiver are arranged, wherein a cover closes off the housing and forming a transmit window and a receive window, wherein the at least one transmission ⁇ beam exits through the transmission window from the housing.
  • the inclination angle of the transmission window can be approximately 7 ° to a vertical axis.
  • jets can be effectively reduced.
  • the inclination of the disc of the transmission beam reflected on the transmission disc is reflected inside the optical measuring device past the deflection ⁇ mirror and "play dead run" so that no directly reflected transmission ⁇ beam exits the optical measuring device as spurious or spurious signal.
  • an effect can be obtained wel ⁇ cher an inclination of the entire cover panel would correspond to a tilt angle of 7 °.
  • the advantage of the inventive embodiments is that the existing space can be optimally utilized by the partial inclination.
  • the transmission window can be inclined inwards or outwards.
  • the outer surface of the optical measuring device can be flat be such that when arranged in the front region of a vehicle, the air flow, the flat outer surface constantly from
  • the tilt of the transmission window to the outside can be selected if the space requires it.
  • the inclination of the transmission window can be performed, for example, as a Verdi ⁇ ckung dependent on the inclination angle. This allows easy imple ⁇ wetting the inclined transmission window.
  • the thickening can be arranged for example on the inside and / or on the outside of the cover.
  • the transmission window and / or the receiving window can have an antireflection coating.
  • the electro-magnetic radiation ⁇ can be reduced in a disc passage advantageously intensity losses.
  • the light beam has a Refexions tent ⁇ Cä at each interface refraction of air / disk. 4 ⁇ 6 # means that with a disk penetration the light intensity decreases by approx. 8%. With an anti-reflective coating, these losses can be limited to about 1%.
  • the optical transmitter can be designed as a laser.
  • a laser makes it possible in an advantageous manner an excellent setting of the wavelength and / or pulse ⁇ duration and / or intensity and a good focusing of the outgoing transmit beams.
  • the optical measuring device can be arranged between the optical transmitter and the transmission window, an optical unit, which in particular as a plan field lens or as F-Thetalinse is executed.
  • an optical unit which in particular as a plan field lens or as F-Thetalinse is executed.
  • a beam correction can be carried out in vorteilhaf ⁇ ter manner.
  • the lens is designed for the focus of the exiting deflected transmit beam. As a result, the range of the laser scanner can be advantageously increased.
  • At least one transmitting mirror unit can be arranged on a rotatable axle in the housing, wherein the transmitting mirror unit comprises at least one transmitting deflecting mirror and a drive unit which drives the rotatable axle.
  • the inclined window offers advantages in order to avoid interference jets or interference signals.
  • the assignment of the rotor position to the reflected light radiation is missing when interference jets occur, which means that objects based on a rotor position are defined as being arranged on the left, even though they are located to the right of the optical measuring device. If direct reflections on the inside of the deflection mirror are avoided, additional calculation algorithms can advantageously be saved and the computing time can be reduced.
  • FIG. 1 shows a schematic perspective view of a
  • Embodiment of an optical measuring device according to the invention Embodiment of an optical measuring device according to the invention.
  • Fig. 2 is a schematic representation of an exemplary embodiment of a deflecting mirror for the inventiveness modern optical measuring device in FIG. 1.
  • Fig. 3 is a schematic rear perspective view of a cover plate from ⁇ optical for the inventive Messvor ⁇ direction in FIG. 1.
  • Fig. 4 is a front perspective view of the cover for the optical measuring device according to the invention from
  • FIG. 5 is a perspective sectional view of the cover along the line IV of FIG .. 3
  • Measuring device 1 a housing 3 and a cover 5, wel ⁇ che closes the housing and a transmission window 10 and a receiving window 7 is formed.
  • a transmission beam 22, 24 is emitted, for example, pulsed laser light.
  • the cover 5 is arranged in wesent ⁇ union perpendicular to the emission and the transmission window 10 has an inclination with a predetermined inclination angle.
  • the receiving window 7 receives a laser light reflected in a monitored area of objects. Over the measured time between the transmission of the transmission beam 22, 24 and the reception of the reflected transmission beam, the distance to objects or obstacles detected in a monitoring area is calculated according to a light pulse transit time method.
  • the housing also has an electrical connection 9, via which the optical measuring device 1 can be connected to other units in the vehicle and supplied with energy.
  • an optical transmitter 20 for emitting at least one transmission beam 22, 24 are arranged, wherein the at least one transmission beam 22, 24 exits through the transmission window 10 from the housing.
  • the optical transmitter 20 is designed for example as a laser.
  • at least one transmitting ⁇ mirror unit 31 is arranged on a rotatable axis.
  • the transmission mirror unit 31 has a first transmission deflection mirror 31.1 and a second transmission deflection mirror 31.2, wherein the transmission deflection mirrors 31.1, 31.2 run parallel to one another.
  • the Sendeumlenkspiegel 31.1, 31.2 are mounted on a mirror carrier 33 which is of a non-visible drive is trie ⁇ ben.
  • a transmission beam 22 emanating from the optical transmitter 20 is deflected by one of the transmission deflecting mirrors 31.1, 31.2, and the deflected transmission beam 24 is emitted to the outside via the transmission window 10. Without the inventive inclination of the transmission window 10 can be a part of the deflected beam 24 reflects ⁇ transmission 26 directly on the transmission window 10 degrees.
  • the reflected beam 26 is then deflected by one of the Sendeumlenk- mirror 31.1, 31.2 and radiated as deflected reflected interference beam 28 via the transmission window in an undesired spatial direction to the outside.
  • This deflection of the reflected beam 26 is avoided, in which the transmission window 10 is designed inclined by a predetermined inclination angle. In this way, the converted steering ⁇ th transmission beam 24 is reflected at the transmit window 10, the reflected beam 26 is not directly reflected on the deflecting mirror 31.1, 31.2 and "dead running". Therefore, no spurious 28 leave the optical measuring device 1 whose Rays reflected on objects and / or obstacles can adversely affect the evaluation result.
  • an optical unit is arranged between the optical transmitter 20 and the transmitting window 10, which focuses the deflected transmitting beam 24 and thus the range of the optical measuring device. tion 1 increased.
  • This optical unit can be designed, for example, as a plane field lens or as F-theta linseine.
  • an outer side 5.1 of the cover disk 5 is substantially perpendicular to the
  • Direction of emission and the transmission window 10 according to the invention has an inclination with a predetermined inclination angle.
  • the inclination amounts to supply angle of the transmission window 10 is preferably about 7 ° 16 to a vertical axis
  • the transmission window 10 is inclined in the illustrated embodiment inwards and has a dependent Nei ⁇ supply angle thickening which on an inner ⁇ page 5.2 of the cover 5 protrudes.
  • the outside 5.1 of the cover 5 in Be ⁇ rich of the transmission window 10 is inclined inwards, so that the Di ⁇ bridge of the cover 5 is tapered to the transmission window 10 back.
  • the outside 5.1 of the cover 5 is arranged flat and perpendicular to the emission direction. Only in the region of the transmission window 10, the cover 5 has an inclination, so that the radiation reflected on the transmitting window 10 beams 26 is not reflected directly on one of the deflecting mirrors 31.1, 31.2 who ⁇ .
  • the transmission festester 5 may be inclined outwardly and / or protrude outward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne un dispositif de mesure optique (1), comprenant un boîtier (3) dans lequel sont disposés au moins un émetteur optique (20) servant à rayonner un faisceau d'émission (22, 24) et au moins un récepteur optique. Un disque de recouvrement (5) ferme le boîtier et forme une fenêtre d'émission (10) ainsi qu'une fenêtre de réception (7), le ou les faisceaux d'émission (22, 24) sortant du boîtier par la fenêtre d'émission (10). Pour mettre à disposition un dispositif de mesure (1) ayant une surface extérieure (14) la plus plane possible et réduire les signaux parasites, dus entre autres à la réflexion du faisceau d'émission (22, 24) sur la fenêtre d'émission (10), la face extérieure (5.1) du disque de recouvrement (5) est disposée sensiblement perpendiculaire à la direction du rayonnement et la fenêtre d'émission (10) est réalisée avec une inclinaison qui présente un angle d'inclinaison (alpha) prédéfini.
EP12798629.7A 2011-11-29 2012-11-15 Dispositif de mesure optique Withdrawn EP2786168A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011119707A DE102011119707A1 (de) 2011-11-29 2011-11-29 Optische Messvorrichtung
PCT/EP2012/072715 WO2013079331A1 (fr) 2011-11-29 2012-11-15 Dispositif de mesure optique

Publications (1)

Publication Number Publication Date
EP2786168A1 true EP2786168A1 (fr) 2014-10-08

Family

ID=47326069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12798629.7A Withdrawn EP2786168A1 (fr) 2011-11-29 2012-11-15 Dispositif de mesure optique

Country Status (5)

Country Link
US (1) US9239260B2 (fr)
EP (1) EP2786168A1 (fr)
CN (1) CN104081221A (fr)
DE (1) DE102011119707A1 (fr)
WO (1) WO2013079331A1 (fr)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015108762A1 (de) * 2015-06-03 2016-12-08 Valeo Schalter Und Sensoren Gmbh Haltevorrichtung zum Halten einer Antriebseinheit einer Umlenkspiegelanordnung, Detektionsvorrichtung mit einer Umlenkspiegelanordnung sowie Kraftfahrzeug
US10557939B2 (en) 2015-10-19 2020-02-11 Luminar Technologies, Inc. Lidar system with improved signal-to-noise ratio in the presence of solar background noise
CN108369274B (zh) 2015-11-05 2022-09-13 路明亮有限责任公司 用于高分辨率深度映射的具有经改进扫描速度的激光雷达系统
JP6672715B2 (ja) 2015-11-05 2020-03-25 船井電機株式会社 測定装置
US10591600B2 (en) 2015-11-30 2020-03-17 Luminar Technologies, Inc. Lidar system with distributed laser and multiple sensor heads
FR3056524B1 (fr) * 2016-09-28 2018-10-12 Valeo Systemes D'essuyage Systeme de detection pour vehicule automobile
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US9810786B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Optical parametric oscillator for lidar system
US9905992B1 (en) 2017-03-16 2018-02-27 Luminar Technologies, Inc. Self-Raman laser for lidar system
US9810775B1 (en) 2017-03-16 2017-11-07 Luminar Technologies, Inc. Q-switched laser for LIDAR system
US9869754B1 (en) 2017-03-22 2018-01-16 Luminar Technologies, Inc. Scan patterns for lidar systems
US10121813B2 (en) 2017-03-28 2018-11-06 Luminar Technologies, Inc. Optical detector having a bandpass filter in a lidar system
US10114111B2 (en) 2017-03-28 2018-10-30 Luminar Technologies, Inc. Method for dynamically controlling laser power
US10007001B1 (en) 2017-03-28 2018-06-26 Luminar Technologies, Inc. Active short-wave infrared four-dimensional camera
US10061019B1 (en) 2017-03-28 2018-08-28 Luminar Technologies, Inc. Diffractive optical element in a lidar system to correct for backscan
US10545240B2 (en) 2017-03-28 2020-01-28 Luminar Technologies, Inc. LIDAR transmitter and detector system using pulse encoding to reduce range ambiguity
US10267899B2 (en) 2017-03-28 2019-04-23 Luminar Technologies, Inc. Pulse timing based on angle of view
US10139478B2 (en) 2017-03-28 2018-11-27 Luminar Technologies, Inc. Time varying gain in an optical detector operating in a lidar system
US11119198B2 (en) 2017-03-28 2021-09-14 Luminar, Llc Increasing operational safety of a lidar system
US10254388B2 (en) 2017-03-28 2019-04-09 Luminar Technologies, Inc. Dynamically varying laser output in a vehicle in view of weather conditions
US10732281B2 (en) 2017-03-28 2020-08-04 Luminar Technologies, Inc. Lidar detector system having range walk compensation
US10209359B2 (en) 2017-03-28 2019-02-19 Luminar Technologies, Inc. Adaptive pulse rate in a lidar system
US10641874B2 (en) 2017-03-29 2020-05-05 Luminar Technologies, Inc. Sizing the field of view of a detector to improve operation of a lidar system
US11181622B2 (en) 2017-03-29 2021-11-23 Luminar, Llc Method for controlling peak and average power through laser receiver
US10088559B1 (en) 2017-03-29 2018-10-02 Luminar Technologies, Inc. Controlling pulse timing to compensate for motor dynamics
US10254762B2 (en) 2017-03-29 2019-04-09 Luminar Technologies, Inc. Compensating for the vibration of the vehicle
US10663595B2 (en) 2017-03-29 2020-05-26 Luminar Technologies, Inc. Synchronized multiple sensor head system for a vehicle
US10976417B2 (en) 2017-03-29 2021-04-13 Luminar Holdco, Llc Using detectors with different gains in a lidar system
US10191155B2 (en) 2017-03-29 2019-01-29 Luminar Technologies, Inc. Optical resolution in front of a vehicle
US10969488B2 (en) 2017-03-29 2021-04-06 Luminar Holdco, Llc Dynamically scanning a field of regard using a limited number of output beams
US11002853B2 (en) 2017-03-29 2021-05-11 Luminar, Llc Ultrasonic vibrations on a window in a lidar system
US10983213B2 (en) 2017-03-29 2021-04-20 Luminar Holdco, Llc Non-uniform separation of detector array elements in a lidar system
US10684360B2 (en) 2017-03-30 2020-06-16 Luminar Technologies, Inc. Protecting detector in a lidar system using off-axis illumination
US10295668B2 (en) 2017-03-30 2019-05-21 Luminar Technologies, Inc. Reducing the number of false detections in a lidar system
US10401481B2 (en) 2017-03-30 2019-09-03 Luminar Technologies, Inc. Non-uniform beam power distribution for a laser operating in a vehicle
US10241198B2 (en) 2017-03-30 2019-03-26 Luminar Technologies, Inc. Lidar receiver calibration
US9989629B1 (en) 2017-03-30 2018-06-05 Luminar Technologies, Inc. Cross-talk mitigation using wavelength switching
US11022688B2 (en) 2017-03-31 2021-06-01 Luminar, Llc Multi-eye lidar system
US20180284246A1 (en) 2017-03-31 2018-10-04 Luminar Technologies, Inc. Using Acoustic Signals to Modify Operation of a Lidar System
US10677897B2 (en) 2017-04-14 2020-06-09 Luminar Technologies, Inc. Combining lidar and camera data
DE102017213610A1 (de) * 2017-08-04 2019-02-07 Siemens Healthcare Gmbh Vorrichtung für ein Röntgengerät
US10919473B2 (en) 2017-09-13 2021-02-16 Corning Incorporated Sensing system and glass material for vehicles
US10211593B1 (en) 2017-10-18 2019-02-19 Luminar Technologies, Inc. Optical amplifier with multi-wavelength pumping
US10310058B1 (en) 2017-11-22 2019-06-04 Luminar Technologies, Inc. Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror
US10451716B2 (en) 2017-11-22 2019-10-22 Luminar Technologies, Inc. Monitoring rotation of a mirror in a lidar system
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
DE102017131425A1 (de) * 2017-12-29 2019-07-04 Huf Hülsbeck & Fürst Gmbh & Co. Kg Kompaktes Time-of-Flight-Sensormodul
JP6907956B2 (ja) * 2018-01-24 2021-07-21 株式会社デンソー ライダー装置
JP6958383B2 (ja) * 2018-01-24 2021-11-02 株式会社デンソー ライダー装置
CN112292608A (zh) 2018-02-23 2021-01-29 图达通爱尔兰有限公司 用于lidar系统的二维操纵系统
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
US10324170B1 (en) 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
US11029406B2 (en) 2018-04-06 2021-06-08 Luminar, Llc Lidar system with AlInAsSb avalanche photodiode
DE102018108631A1 (de) * 2018-04-11 2019-10-17 Sick Ag Entfernungsmessender Sensor
DE102018109884B4 (de) * 2018-04-24 2023-07-27 Webasto SE Sensoranordnung mit Blendenelement und Verfahren zur Herstellung des Blendenelements
US10348051B1 (en) 2018-05-18 2019-07-09 Luminar Technologies, Inc. Fiber-optic amplifier
US10591601B2 (en) 2018-07-10 2020-03-17 Luminar Technologies, Inc. Camera-gated lidar system
US10627516B2 (en) 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
US10551501B1 (en) 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10340651B1 (en) 2018-08-21 2019-07-02 Luminar Technologies, Inc. Lidar system with optical trigger
US11536845B2 (en) * 2018-10-31 2022-12-27 Waymo Llc LIDAR systems with multi-faceted mirrors
US11774561B2 (en) 2019-02-08 2023-10-03 Luminar Technologies, Inc. Amplifier input protection circuits
FR3099436B1 (fr) * 2019-07-29 2021-12-31 Cie Plastic Omnium Se Dispositif de protection pour Lidar de véhicule automobile
JP7433282B2 (ja) 2021-12-17 2024-02-19 ソマール株式会社 測距装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151981A1 (de) * 2001-10-22 2003-04-30 Ibeo Automobile Sensor Gmbh Optoelektronische Erfassungseinrichtung
JPS56123509A (en) * 1980-03-04 1981-09-28 Nippon Kogaku Kk <Nikon> F theta lens
DE19731754C2 (de) * 1997-07-23 2002-10-24 Martin Spies Kombination Infrarot-Laser-Abstandssensoren mit Scheinwerfern
DE10002090A1 (de) 2000-01-19 2001-07-26 Sick Ag Optische Abtastvorrichtung
ATE481650T1 (de) * 2000-10-06 2010-10-15 Leica Geosystems Ag Entfernungsmessgerät
DE10216405A1 (de) 2002-04-12 2003-10-30 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen eines dreidimensionalen Umgebungsbildes
DE10228677A1 (de) 2002-06-27 2004-01-22 Sick Ag Laserabstandsmesseinrichtung
DE102005043931A1 (de) * 2005-09-15 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laserscanner
DE102005055572B4 (de) 2005-11-19 2007-08-02 Ingenieurbüro Spies GbR (vertretungsberechtigte Gesellschafter: Hans Spies, Martin Spies, 86558 Hohenwart) Abtastender optischer Abstandssensor
ATE544081T1 (de) * 2009-03-31 2012-02-15 Pepperl & Fuchs Optischer sensor nach dem laufzeitprinzip
DE102010013751A1 (de) * 2010-03-31 2011-10-06 Baumer Innotec Ag Vorrichtung zur Laufzeitmessung mit Pulsformung zur Entfernungsbestimmung
JP5729545B2 (ja) * 2010-05-20 2015-06-03 株式会社リコー 光走査装置及び画像形成装置
US8836922B1 (en) * 2013-08-20 2014-09-16 Google Inc. Devices and methods for a rotating LIDAR platform with a shared transmit/receive path

Also Published As

Publication number Publication date
CN104081221A (zh) 2014-10-01
US20140332676A1 (en) 2014-11-13
US9239260B2 (en) 2016-01-19
DE102011119707A1 (de) 2013-05-29
WO2013079331A1 (fr) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2013079331A1 (fr) Dispositif de mesure optique
EP2936193B1 (fr) Système optique de détection d&#39;objets à mems et véhicule à moteur équipé d&#39;un tel système de détection
EP2124069B1 (fr) Système LIDAR omnidirectionnel
DE19731754C2 (de) Kombination Infrarot-Laser-Abstandssensoren mit Scheinwerfern
DE102013012789A1 (de) Abtastende optoelektronische Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung
DE10244641A1 (de) Optoelektronische Erfassungseinrichtung
EP2202533A1 (fr) Dispositif de détection
DE102012212150A1 (de) Laserradarvorrichtung, die zwischen einem Kennzeichenschild und einemFahrzeugaufbau angeordnet ist
DE102015013710A1 (de) Sensoreinrichtung zur Erfassung von Umgebungsinformationen
DE112019000621T5 (de) Lidar-vorrichtung
DE102005010905A1 (de) Objekterfassungsvorrichtung für ein Fahrzeug
DE10341548A1 (de) Optoelektronische Erfassungseinrichtung
EP1118874A2 (fr) Dispositif de balayage optique
EP3699638B1 (fr) Capteur optoélectronique et procédé de détection d&#39;un objet
DE102005011844A1 (de) Objekterfassungsvorrichtung mit Unregelmässigkeitserfassungsvorrichtung
DE19931825A1 (de) Vorrichtung zur Sichtweitenmessung
EP2737334A1 (fr) Dispositif de mesure optique pour un véhicule
EP2431766B1 (fr) Scanner optique avec détection de salissures
EP2703837A1 (fr) Scanner laser de sécurité
DE10214572A1 (de) Niederschlags-Sensor
DE102020109596B4 (de) Optoelektronischer Sensor mit Blende und Herstellungsverfahren dafür
DE102019106544B4 (de) Messvorrichtung zur Erfassung des Umgebungslichts, Regen-Licht-Sensor zur Verwendung an einer Windschutzscheibe und Kraftfahrzeug
DE102016117853A1 (de) Sendeeinrichtung für eine optische Erfassungsvorrichtung, optische Erfassungsvorrichtung, Kraftfahrzeug sowie Verfahren
EP3289382A1 (fr) Capteur laser destiné à un véhicule automobile et muni d&#39;un miroir parabolique, système d&#39;aide à la conduite, et véhicule automobile
DE202012103344U1 (de) Sicherheits-Lichtscanner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161202

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170413