EP2764522B1 - Drahtlos wiederaufladbare batterie und komponenten davon - Google Patents

Drahtlos wiederaufladbare batterie und komponenten davon Download PDF

Info

Publication number
EP2764522B1
EP2764522B1 EP12837228.1A EP12837228A EP2764522B1 EP 2764522 B1 EP2764522 B1 EP 2764522B1 EP 12837228 A EP12837228 A EP 12837228A EP 2764522 B1 EP2764522 B1 EP 2764522B1
Authority
EP
European Patent Office
Prior art keywords
coils
rechargeable battery
coil
battery
wirelessly rechargeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12837228.1A
Other languages
English (en)
French (fr)
Other versions
EP2764522A1 (de
EP2764522A4 (de
Inventor
Hao Li
Saining Ren
Aijun QIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of EP2764522A1 publication Critical patent/EP2764522A1/de
Publication of EP2764522A4 publication Critical patent/EP2764522A4/de
Application granted granted Critical
Publication of EP2764522B1 publication Critical patent/EP2764522B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • H02J5/005
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/025
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F2003/005Magnetic cores for receiving several windings with perpendicular axes, e.g. for antennae or inductive power transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to wirelessly rechargeable batteries. More particularly, although not exclusively, the invention relates to receiver coil topologies, battery shielding and demountable power receivers.
  • Wirelessly rechargeable batteries have been used in a range of devices, such as electric toothbrushes, for many years. Such devices typically employ non-standard batteries or are not easily replaceable. Common consumer batteries still typically require galvanic connections to effect recharging. There is a demand for consumer rechargeable batteries that may conveniently be charged wirelessly if placed in a charging region without requiring any special orientation or galvanic connection.
  • the power receiver of the battery prefferably be recyclable or reusable by consumers.
  • WO 2001/67046 discloses a wireless power receiver with three mutually orthogonal windings wound on a cross shaped core (i.e. the core is the shape of the origin of XYZ coordinate system.
  • US 5,281,941 discloses a spherical form for supporting three mutually orthogonal windings.
  • US 7,414,380 discloses a wireless power receiver with three mutually orthogonal wound on a parallipiped shaped core.
  • US 7,248,017 discloses a wirelessly rechargeable battery with a winding wound on a core outside the battery, or wound on a core and housed inside the battery. The axis of the winding is parallel to the longitudinal axis of the battery.
  • US 2011/0086256 discloses a wirelessly rechargeable battery with the receiver circuitry placed in one end of the battery, but the winding is on the outside of the battery.
  • US 2010/0181962 discloses a wirelessly rechargeable battery with a power receiver and an electrochemical cell within a battery case. The power receiver and electrochemical cell are not contained within respective demountable subcasings.
  • the above topologies are all somewhat bulky and/or have poor coupling in some orientations. Further, the above designs are integrally formed and do not allow easy reuse. Further, they do not provide shielding of the electrochemical cell.
  • a receiver coil assembly for a rechargeable battery including first and second coils having magnetic axes oriented transverse to one another; and a third coil having a magnetic axis transverse to the magnetic axes of the first and second coils and encompassing the first and second coils.
  • the first and second coils are preferably arranged in a cross with the first and second coils wound about arms of the cross and the third coil wound about the cross.
  • receiver coil assembly for a rechargeable battery including first, second and third coils having magnetic axes oriented transverse to one another, wherein one of the coils enables greater power transfer than the other coils.
  • the third coil preferably encompasses the other coils and the first and second coils are preferably in a cross arrangement.
  • the power transfer capacity of the third coil is preferably at least 10%, more preferably 20%, more than that of the first and second coils.
  • the length of the conductor of the third coil is preferably at least 25%, more preferably 50%, more than that of the first and second coils.
  • wirelessly rechargeable battery having a power receiver and an electrochemical cell wherein the power receiver is housed and contained within a first battery sub-casing and the electrochemical cell is housed and contained within a second battery sub-casing wherein the first and second sub-casings are demountable, and wherein the power receiver comprises a receiver coil assembly including a first coil and a second coil, the first and second coils having magnetic axes oriented transverse to one another.
  • the power receiver may be user-demountable from the electrochemical cell by virtue of a screw, push-fit or magnetic connection.
  • the electrochemical cell may be magnetically shielded by a metal layer about the electrochemical cell. This layer may be about one skin depth and may be formed of copper foil.
  • Figure 1 shows a wirelessly rechargeable battery of two part construction.
  • a power receiver is housed within a first battery sub-casing 2 and is demountable from a second battery sub-casing 3 which houses a rechargeable electrochemical cell.
  • the first battery sub-casing 2 and second battery sub-casing 3 may be interconnected by way of screw threads, a push-fit connection, magnetic coupling or the like to enable a user to detach the sub-casing 2 from sub-casing 3 and connect the removed sub-casing 2 to a new sub-casing containing a new electrochemical cell.
  • the electrochemical cell may be magnetically shielded to avoid overheating when the battery is located in a charging alternating magnetic field. This may be achieved by providing metal shielding about the electrochemical cell. This may take the form of a metal foil applied about the exterior of sub-casing 3. The metal foil may be of about one skin depth with copper being a desirable metal due its desirable shielding properties.
  • a receiver coil assembly according to one embodiment is shown.
  • a first winding 4a and 4b is wound about arms of cross-shaped ferrite core 6 and a second winding 5a and 5b is wound about the other arms of cross-shaped ferrite core 6.
  • a third winding 7 is wound about the perimeter of cross-shaped ferrite core 6.
  • the coils are orthogonal to one another to ensure coupling with a charging magnetic field in any orientation. However, in some applications the coils may not be orthogonal due to space constraints or preferential coupling orientations for particular applications.
  • the third coil is preferably annular so as to best conform to a cylindrical battery casing.
  • the third coil may be designed have greater power transfer capacity than the other coils. This may be desirable where the battery has a normal or preferred orientation so that the third coil typically supplies power at the fastest rate whereas the first and second coils still allow power transfer in other orientations.
  • the power transfer capacity of the third coil may be at least 10%, preferably 20% more than that of the first and second coils.
  • the length of the conductor of the third coil may be at least 25%, preferably 50% greater than the length of the first and second coil conductors.
  • the mean diameter of the outer coil is 12mm and has 50 turns whereas the mean diameter of the first and second windings is about 4mm and each has 80 turns.
  • the windings may all be 0.05mm gauge insulated copper wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Claims (8)

  1. Drahtlos wiederaufladbare Batterie (1), die einen Leistungsempfänger und eine elektrochemische Zelle (10) aufweist, dadurch gekennzeichnet, dass der Leistungsempfänger innerhalt eines ersten Batterieteilgehäuses (2) enthalten und untergebracht ist und die elektrochemische Zelle innerhalt eines zweiten Batterieteilgehäuses (3) enthalten und untergebracht ist und das erste und zweite Teilgehäuse abnehmbar sind; wobei der Leistungsempfänger eine Empfängerspulenanordnung umfasst, die eine erste und eine zweite Spule beinhaltet, wobei die erste und die zweite Spule magnetische Achsen aufweisen, die transversal zueinander orientiert sind; und eine dritte Spule, die eine magnetische Achse aufweist, die transversal zu den magnetischen Achsen der ersten und zweiten Spule orientiert ist und die erste und zweite Spule umgibt.
  2. Drahtlos wiederaufladbare Batterie (1) nach Anspruch 1, wobei die dritte Spule eine im Wesentlichen ringförmige Spule ist.
  3. Drahtlos wiederaufladbare Batterie (1) nach Anspruch 1 oder 2, ferner einen Ferrit-Kern umfassend, der innerhalb aller Spulen angeordnet ist, und wobei der Ferrit-Kern in Form eines Kreuzes vorliegt mit der ersten und der zweiten Spule um Arme des Kreuzes gewickelt und der dritten Spule um die distalen Enden der Arme des Kreuzes gewickelt.
  4. Drahtlos wiederaufladbare Batterie (1) nach irgendeinem der Ansprüch 1 bis 3, wobei eine der Spulen einen größeren Leistungstransfer ermöglicht als die anderen Spulen.
  5. Drahtlos wiederaufladbare Batterie (1) nach Anspruch 4, wobei die Spule, welche einen größeren Leistungstransfer ermöglicht als die anderen Spulen, eine längere Leitungslänge aufweist.
  6. Drahtlos wiederaufladbare Batterie (1) nach irgendeinem der vorhergehenden Ansprüche, wobei die abnehmbaren ersten und zweiten Batterieteilgehäuse durch eines oder durch eine Kombination von Folgendem zusammengehalten werden: Schrauben; Magnete; Steckkupplung.
  7. Drahtlos wiederaufladbare Batterie (1) nach irgendeinem der vorhergehenden Ansprüche, wobei die elektrochemische Zelle (10) magnetisch abgeschirmt ist.
  8. Drahtlos wiederaufladbare Batterie (1) nach Anspruch 7, wobei die elektrochemische Zelle (10) durch eine Metallschicht magnetisch abgeschirmt ist, die eine Tiefe aufweist, welche der Skin-Tiefe der Drahtlos-Frequenz entspricht, welche zum Laden der drahtlos wiederaufladbaren Batterie verwendet wird.
EP12837228.1A 2011-09-29 2012-09-24 Drahtlos wiederaufladbare batterie und komponenten davon Not-in-force EP2764522B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NZ59540311 2011-09-29
US201261640739P 2012-05-01 2012-05-01
PCT/NZ2012/000172 WO2013048261A1 (en) 2011-09-29 2012-09-24 Wirelessly rechargeable battery and components thereof

Publications (3)

Publication Number Publication Date
EP2764522A1 EP2764522A1 (de) 2014-08-13
EP2764522A4 EP2764522A4 (de) 2015-04-15
EP2764522B1 true EP2764522B1 (de) 2019-01-09

Family

ID=47996056

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12837228.1A Not-in-force EP2764522B1 (de) 2011-09-29 2012-09-24 Drahtlos wiederaufladbare batterie und komponenten davon

Country Status (6)

Country Link
US (3) US9735586B2 (de)
EP (1) EP2764522B1 (de)
JP (2) JP6100788B2 (de)
KR (1) KR101975839B1 (de)
CN (2) CN103827998B (de)
WO (1) WO2013048261A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100788B2 (ja) * 2011-09-29 2017-03-22 パワーバイプロキシ リミテッド 無線充電式バッテリ
CN104348262A (zh) * 2014-10-24 2015-02-11 天津榕丰科技有限公司 一种用于无线充电和无线供电中的磁芯装置
CN104348261A (zh) * 2014-10-24 2015-02-11 天津榕丰科技有限公司 一种无线鼠标供电系统
CN104345903A (zh) * 2014-10-24 2015-02-11 天津榕丰科技有限公司 一种无线鼠标供电装置
US20160164332A1 (en) * 2014-12-04 2016-06-09 Intel Corporation Tiled wireless charging coil solution for extended active area
KR101645408B1 (ko) 2015-06-16 2016-08-03 (주) 제이앤케이사이언스 무선충전 송신기 및 배터리
US9711272B2 (en) 2015-07-09 2017-07-18 Te Connectivity Corporation Printed circuit for wireless power transfer
KR101792512B1 (ko) * 2015-08-06 2017-11-02 제이비컴퍼니(주) 무선 충전지
US20170040828A1 (en) * 2015-08-07 2017-02-09 Lenovo (Singapore) Pte, Ltd. Wireless charging device with circuit electrically coupleable to first and second coils
KR20170023523A (ko) * 2015-08-24 2017-03-06 엘지이노텍 주식회사 무선 충전 배터리 및 무선 충전 제어 방법
WO2017174359A1 (de) * 2016-04-04 2017-10-12 Tecflower Ag Drahtlos wiederaufladbarer energiespeicher
KR101654562B1 (ko) * 2016-07-18 2016-09-07 (주)테슬라스 원통형 하우징에 장착되는 무선전력 수신기
CN106384649B (zh) * 2016-10-07 2017-12-29 辉亚男 实现输出电压快速、稳定调节的电力电子变压器
KR102439878B1 (ko) * 2017-04-12 2022-09-05 삼성전자주식회사 무선 전력 송신 장치, 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
WO2018190581A1 (en) 2017-04-12 2018-10-18 Samsung Electronics Co., Ltd. Wireless power transmitter, wireless power receiving electronic device, and method for operating the same
US11251656B2 (en) 2019-04-03 2022-02-15 Apple Inc. Coils for wireless power systems
CA3193113A1 (en) * 2020-11-04 2022-05-12 Brian R. Dearden Automatically-aligning magnetic field system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181962A1 (en) * 2009-01-21 2010-07-22 Chen Shih Chung Nondirectional Radio Frequency Rechargeable Dry Cell
US20110086256A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Rechargeable Battery Assemblies and Methods of Constructing Rechargeable Battery Assemblies

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800213A (en) 1972-10-24 1974-03-26 Develco Three axis toroidal fluxgate type magnetic sensor
US4825166A (en) 1987-01-27 1989-04-25 Sundstrand Data Control, Inc. Bobbin for a magnetic sensor
US5281941A (en) 1991-08-14 1994-01-25 Elliot Bernstein Coil form and coil for antenna coils, or the like
JP3907723B2 (ja) * 1995-08-30 2007-04-18 東芝電池株式会社 電池パック
US6208115B1 (en) * 1997-06-16 2001-03-27 Yehuda Binder Battery substitute pack
JPH11191436A (ja) * 1997-12-26 1999-07-13 Hitachi Ltd 蓄電保護器
JP2000231910A (ja) 1999-02-12 2000-08-22 Tookado:Kk 電池パックの取り付け構造
US6459896B1 (en) * 1999-10-18 2002-10-01 Gateway, Inc. Notification of low-battery in a wireless network
JP3855565B2 (ja) * 1999-11-02 2006-12-13 株式会社リコー 充放電保護回路および該充放電保護回路を有するバッテリーパック
ATE270771T1 (de) 2000-03-09 2004-07-15 Abb Research Ltd Anordnung zur erzeugung elektrischer energie aus einem magnetfeld
US6563474B2 (en) * 2000-12-21 2003-05-13 Lear Corporation Remote access device having multiple inductive coil antenna
US6498455B2 (en) * 2001-02-22 2002-12-24 Gary Skuro Wireless battery charging system for existing hearing aids using a dynamic battery and a charging processor unit
DE10144380A1 (de) * 2001-09-10 2003-03-27 Infineon Technologies Ag Magnetisches Bauelement
EP1506554A1 (de) * 2002-05-13 2005-02-16 Splashpower Limited Verbesserung bezüglich der übertragung elektromagnetischer energie
GB0210886D0 (en) 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
GB2388716B (en) * 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
KR100898463B1 (ko) 2003-02-04 2009-05-21 액세스 비지니스 그룹 인터내셔날 엘엘씨 유도 코일 어셈블리
US8310201B1 (en) * 2003-05-06 2012-11-13 Cypress Semiconductor Corporation Battery with electronic compartment
JP3830933B2 (ja) 2003-10-06 2006-10-11 敬介 後藤 非接触型再充電性電池
JP2005124324A (ja) * 2003-10-17 2005-05-12 Kami Electronics Ind Co Ltd 非接触式乾電池型充電器
US7531916B2 (en) * 2004-05-26 2009-05-12 Altergy Systems, Inc. Protection circuits for hybrid power systems
US7414380B2 (en) 2004-09-21 2008-08-19 Lear Corporation Apparatus for inductively recharging batteries of a portable convenience device
JP2006324950A (ja) * 2005-05-19 2006-11-30 Fujitsu Ltd 共用電話機、共用電話機制御プログラム、共用電話機制御方法
US8050774B2 (en) * 2005-12-22 2011-11-01 Boston Scientific Scimed, Inc. Electrode apparatus, systems and methods
KR101230223B1 (ko) * 2006-04-13 2013-02-05 파나소닉 주식회사 전지 팩 및 그 단선 검지 방법
JP2007294275A (ja) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd 二次電池包装体
US8058840B2 (en) 2006-05-25 2011-11-15 Moxia Energy Holdings Limited Rechargeable battery assembly with movable connector and power conversion circuitry
US7948208B2 (en) * 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
KR100920207B1 (ko) * 2006-11-27 2009-10-06 주식회사 엘지화학 전지모듈 어셈블리 제조용 전원 스위칭 모듈
US8010205B2 (en) * 2007-01-11 2011-08-30 Boston Scientific Neuromodulation Corporation Multiple telemetry and/or charging coil configurations for an implantable medical device system
US7602142B2 (en) * 2007-04-02 2009-10-13 Visteon Global Technologies, Inc. System for inductive power transfer
JP2008301645A (ja) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd 非接触式受電装置及びこれを具えた電子機器
JP5118394B2 (ja) 2007-06-20 2013-01-16 パナソニック株式会社 非接触電力伝送機器
US20090010462A1 (en) 2007-07-02 2009-01-08 Front Edge Technology, Inc. Compact rechargeable thin film battery system for hearing aid
GB0716679D0 (en) * 2007-08-28 2007-10-03 Fells J Inductive power supply
US8283812B2 (en) * 2007-10-09 2012-10-09 Powermat Technologies, Ltd. Inductive power providing system having moving outlets
EP3954433A1 (de) * 2007-10-16 2022-02-16 Implantica Patent Ltd. Verfahren und system zur energieversorgung einer medizinischen vorrichtung
US9126514B2 (en) * 2007-12-21 2015-09-08 Cynetic Designs Ltd Vehicle seat inductive charger and data transmitter
US7456606B1 (en) 2008-04-23 2008-11-25 International Business Machines Corporation Battery label with wireless battery charging circuit
JP2009267767A (ja) * 2008-04-25 2009-11-12 Hitachi Ferrite Electronics Ltd 低周波用3軸受信アンテナ装置
JP2009273327A (ja) * 2008-05-10 2009-11-19 Sanyo Electric Co Ltd 電池内蔵機器と充電台
WO2009147664A1 (en) 2008-06-02 2009-12-10 Powermat Ltd. Appliance mounted power outlets
KR101789214B1 (ko) 2008-09-27 2017-10-23 위트리시티 코포레이션 무선 에너지 전달 시스템
JP4815485B2 (ja) * 2008-11-14 2011-11-16 東光株式会社 非接触電力伝送装置
KR101081078B1 (ko) * 2008-11-14 2011-11-07 주식회사 엘지화학 센스 저항 파괴를 감지하여 배터리 팩을 보호하는 장치 및 방법
US9257865B2 (en) * 2009-01-22 2016-02-09 Techtronic Power Tools Technology Limited Wireless power distribution system and method
US9130394B2 (en) 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
US8896315B1 (en) * 2009-02-12 2014-11-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Battery cell balancing system and method
JP5327329B2 (ja) 2009-08-25 2013-10-30 株式会社村田製作所 電池パック
JP5425571B2 (ja) * 2009-09-14 2014-02-26 三洋電機株式会社 円柱状の電池ユニット
US8174234B2 (en) * 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8174233B2 (en) * 2009-10-08 2012-05-08 Etymotic Research, Inc. Magnetically coupled battery charging system
US8237402B2 (en) * 2009-10-08 2012-08-07 Etymotic Research, Inc. Magnetically coupled battery charging system
CA2717533C (en) * 2009-10-13 2019-02-26 Cynetic Designs Ltd. Soldier system wireless power and data transmission
US8390249B2 (en) 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
CN201877893U (zh) 2010-02-26 2011-06-22 中强光电股份有限公司 无线充电电池
US20110241607A1 (en) 2010-04-06 2011-10-06 Garmin Ltd. Electronic device with integral inductive charging station
TWM393921U (en) 2010-06-08 2010-12-01 Winharbor Technology Co Ltd Wireless charging ebook
US8866495B2 (en) * 2010-06-30 2014-10-21 Access Business Group International Llc Spatial tracking system and method
WO2012027824A1 (en) * 2010-09-03 2012-03-08 Cynetic Designs Ltd. A system for inductive power transmission in a garment
NZ607488A (en) * 2010-11-16 2014-08-29 Powerbyproxi Ltd A wirelessly rechargeable battery and power transmitter
KR101228557B1 (ko) * 2010-11-30 2013-01-31 유한회사 한림포스텍 근거리 무선 전력 통신용 코일 공진 커플러 및 이를 포함하는 근거리 무선 전력 전송 장치
WO2012101730A1 (ja) * 2011-01-26 2012-08-02 パナソニック株式会社 非接触充電モジュール及びこれを用いた受信側及び送信側非接触充電機器
JP4835794B1 (ja) * 2011-01-26 2011-12-14 パナソニック株式会社 受信側非接触充電モジュール及び受信側非接触充電機器
US20130175982A1 (en) * 2011-03-02 2013-07-11 Triune Ip Llc Rechargeable Energy Storage Apparatus
US20120274154A1 (en) 2011-04-27 2012-11-01 Research In Motion Limited Methods and apparatuses for wireless power transfer
JP6100788B2 (ja) * 2011-09-29 2017-03-22 パワーバイプロキシ リミテッド 無線充電式バッテリ
CN104025468B (zh) * 2012-01-08 2016-11-02 捷通国际有限公司 用于多个感应系统的干扰缓解
US9343922B2 (en) * 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US20140091756A1 (en) * 2012-10-02 2014-04-03 Witricity Corporation Wireless power transfer
US20140239888A1 (en) 2013-02-26 2014-08-28 Kuan-Wei Chen Wireless charger
JP6323054B2 (ja) * 2013-03-08 2018-05-16 Tdk株式会社 給電装置、受電装置、及び、ワイヤレス電力伝送装置
US20140274216A1 (en) * 2013-03-15 2014-09-18 Onbeond, Llc Mobile communication device
US9780573B2 (en) * 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US20150365003A1 (en) * 2014-06-12 2015-12-17 Laurence P. Sadwick Power Conversion System
EP3218987A4 (de) 2014-11-13 2017-12-20 PowerbyProxi Limited System zum aufladen von elektronischen vorrichtungen
US9647483B1 (en) * 2015-06-29 2017-05-09 The United States Of America As Represented By The Secretary Of The Navy Closed magnetic wireless power transfer system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181962A1 (en) * 2009-01-21 2010-07-22 Chen Shih Chung Nondirectional Radio Frequency Rechargeable Dry Cell
US20110086256A1 (en) * 2009-10-08 2011-04-14 Etymotic Research Inc. Rechargeable Battery Assemblies and Methods of Constructing Rechargeable Battery Assemblies

Also Published As

Publication number Publication date
US20170373508A1 (en) 2017-12-28
JP2017126571A (ja) 2017-07-20
WO2013048261A1 (en) 2013-04-04
US20180358815A1 (en) 2018-12-13
US10340705B2 (en) 2019-07-02
JP2014534558A (ja) 2014-12-18
EP2764522A1 (de) 2014-08-13
US9735586B2 (en) 2017-08-15
CN103827998B (zh) 2017-11-17
US10461543B2 (en) 2019-10-29
CN107705967A (zh) 2018-02-16
EP2764522A4 (de) 2015-04-15
CN103827998A (zh) 2014-05-28
KR20140065436A (ko) 2014-05-29
US20140225562A1 (en) 2014-08-14
KR101975839B1 (ko) 2019-05-09
JP6100788B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
US10461543B2 (en) Wirelessly rechargeable battery and components thereof
EP3157125A1 (de) Drahtlos wiederaufladbare batterie
EP2760035B1 (de) Verfahren zur herstellung von magnetfeldräumen
JP5920363B2 (ja) 受電装置、電力伝送システム、及び電力伝送方法
US10439424B2 (en) Non-contact power supply device and non-contact power transmission device
JP6725002B2 (ja) 携帯用電子機器及びワイヤレス電力伝送装置
JP2014187724A (ja) 二次側受電機器及び充電台と二次側受電機器
US11264836B2 (en) Wireless kinetic charger
WO2019044567A1 (ja) 二次電池ユニット
CN108886270B (zh) 非接触供电装置和非接触电力传输装置
KR102102567B1 (ko) 무선 충전식 전지 및 그 구성요소들
JP2016105435A (ja) 受電装置および送電装置
JP2015002580A (ja) ワイヤレス充電装置
CN104578444B (zh) 无接点供电机构以及无接点供电机构用二次线圈
KR20160069551A (ko) 전방향 무선 전력수신 장치 및 이를 이용한 단말 장치
JP2019033617A (ja) コイルユニット

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150318

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 38/14 20060101AFI20150312BHEP

Ipc: H01F 3/00 20060101ALN20150312BHEP

Ipc: H01M 10/46 20060101ALI20150312BHEP

Ipc: H02J 7/02 20060101ALI20150312BHEP

Ipc: H02J 5/00 20060101ALN20150312BHEP

Ipc: H01M 2/10 20060101ALI20150312BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POWERBYPROXI LIMITED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: QIN, AIJUN

Inventor name: LI, HAO

Inventor name: REN, SAINING

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171012

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: POWERBYPROXI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APPLE INC.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: APPLE INC.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LI, HAO

Inventor name: QIN, AIJUN

Inventor name: REN, SAINING

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 10/46 20060101ALI20180711BHEP

Ipc: H02J 5/00 20060101ALN20180711BHEP

Ipc: H01F 3/00 20060101ALN20180711BHEP

Ipc: H02J 7/02 20060101ALI20180711BHEP

Ipc: H01M 2/10 20060101ALI20180711BHEP

Ipc: H01F 38/14 20060101AFI20180711BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1088342

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012055822

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1088342

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012055822

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

26N No opposition filed

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210818

Year of fee payment: 10

Ref country code: DE

Payment date: 20210818

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012055822

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220924